
The Tearless server-side 
JavaScript security architecture

Willem De Groef



Context wrt Tearless

• Tearless project envisions future in which multi-tier web apps are 
developed as a single artefact that spans all tiers

• One of its objectives is to investigate programming constructs for 
implementing confinement-related security policies

• This talk is about specific security mechanism (developed at 
KULeuven)

• NodeSentry

• Isolate and restrict untrusted JavaScript libraries at runtime



1,584,183,103
weekly downloads

350,000
Available packages







/%2e%2e/%2e%2e/etc/passw

d



Server-side security framework

• Isolate and restrict (buggy) third-party JavaScript libraries at runtime, 
without the need for modifications

• NodeJS easily integrates third-party libraries via NPM
• Without a clear vetting or trust mechanism

• Researchers proposed a number of solutions with common pattern 
for similar client-side security problems

• Isolated unit/sandbox, completely cut off from any sensitive functionality

• Provide mediated access to sensitive parts

• Mainly vary in policy specification and isolation technique



NodeSentry

• Variant of inline reference monitor for flexibility

• Wrap each API in a membrane to intercept interactions

• Relies on membrane pattern and Trustworthy Proxies [Van Cutsem & 
Miller, ECOOP’13]

• Inline only hooks with the monitor as external component

• Support policies that can specify how to fix executions
• What to do with a violation of a security policy?



Host static files from the 
current working directory



Full mediation between 
library and the 

environment/application/OS



How does it work?

st

require

require(“fs”)

Is there a policy that 
reasons about the 

file system?

fs

HTTP 
Request

safe_require(“st’)



API called when library 
tries to read the URL 

property of an incoming 
HTTP request

Return /error404.html Test for .. and /

Example policy



Malicious? 
HTTP Request

IncomingMessage.url



More experiments



/* req.get(“Last-Modified”) */

New Policy()

.on(“IncomingMessage.get”)

.return(properlyParsedDate)

.if(paramEqualsLastModified)



Input filtering
42%

Output filtering
16%

Denial-of-Service 
filtering

26%

Additional Logic
10%

Out of scope
6%

TYPE OF POLICY
Based on 73 reported 

vulnerabilities from the 
Node Security Project

More than 90% of 
reported vulnerabilities 
could be fixed with specific 
policy in NodeSentry



More research needed

• Other types of web application firewall-like policies
• Blacklisting clients
• Enforcing web-hardening techniques like HSTS

• Fine-grained access control

• Access control policies on general ‘capability’ categories (e.g., no file 
system access) [Vanacker et al, ACSAC’12]

• Indicated via annotation in tearless application

• More research to understand the possibilities of such a general and 
flexible framework



Performance benchmarks setup

Scalar – highly scalable 
benchmarking framework 

[Heyman et al, 2014]

st



Max difference about 40% 
between NodeSentry and Node.js

Loss from around 200-250 
concurrent users

Theoretical linear scaling

Loss of about 10% in capacity 
with 1000 concurrent users

Concurrent users

C
ap

ac
it

y 
(c

o
n

cu
rr

en
t 

u
se

rs
 s

er
ve

d
)

Performance is king



Performance Benchmarks - Conclusions

• Level of performance comparable to commercial security 
events monitoring systems [Gartner, 2014]

• Trade-off between performance and security

• Policy impact decreases when other conditions stretch 
performance



NodeSentry – Wrap up

• Goal: restrict impact of –untrusted? – third-party libraries
• At runtime

• Without need for modification of the underlying runtime

• NodeSentry:
• Provides initial compartmentalization technique

• Based on membranes and concept of reference monitor

• Provides platform for enforcing broad range of security policies

• Performs OK for research prototype



The Tearless server-side 
JavaScript security architecture

Willem De Groef

Willem.DeGroef@cs.kuleuven.be


