The Tearless server-side
JavaScript security architecture

Willem De Groef

Context wrt Tearless

 Tearless project envisions future in which multi-tier web apps are
developed as a single artefact that spans all tiers

* One of its objectives is to investigate programming constructs for
implementing confinement-related security policies

* This talk is about specific security mechanism (developed at
KULeuven)

* NodeSentry
* |solate and restrict untrusted JavaScript libraries at runtime

What can you make with§350,0004building blocks?

The npm registry hosts over a quarter million packages of reusable code — t

t code registry in the world.

350,000
Available packages

Find Discover

Popular libraries like JQuery, Packages for mobile, loT, fron

1,584,183,103
weekly downloads

framewo

AAUTODESK m trivago

Join the modular
development revolution

1584183103
Every month, more than 4 million developers use
npm to find, share, and reuse code — and assemble it

in powerful new ways.

npm-www

The Big Bug

The bug found by Charlie Somerville is a classic “static file leakage” bug: the
code that runs the npm website served static files through a module called
st. It was possible, through a carefully encoded URL, to get st to serve any
file it could see, not just the ones in the static content directory, and you

could also list the contents of directories, so it was very easy to go looking
for sensitive files.

1%2e%2e/%2e%2e/etc/passw
d

———,

e

@ﬂ;hﬁ_ @ Security Status

Versions prior to 0.2.5 did not properly prevent folder traversal. Literal dots in a path were resolved out, but url
encoded dots were not. Thus, a request like /%2eX2e/X2eX2e/%2e¥2e/K2ek2e/%2ek2e/etc/passwd would leak
sensitive data from the server.

As of version 0.2.5, any '/../" in the request path, urlencoded or not, will be replaced with */" . If your
application depends on url traversal, then you are encouraged to please refactor so that you do not depend on
having .. inurl paths, as this tends to expose data that you may be surprised to be exposing.

Server-side security framework

* |solate and restrict (buggy) third-party JavaScript libraries at runtime,
without the need for modifications

* NodelS easily integrates third-party libraries via NPM
* Without a clear vetting or trust mechanism

e Researchers proposed a number of solutions with common pattern
for similar client-side security problems
* Isolated unit/sandbox, completely cut off from any sensitive functionality
* Provide mediated access to sensitive parts
* Mainly vary in policy specification and isolation technique

NodeSentry

* Variant of inline reference monitor for flexibility
* Wrap each APl in a membrane to intercept interactions

* Relies on membrane pattern and Trustworthy Proxies [Van Cutsem &
Miller, ECOOP’13]

* Inline only hooks with the monitor as external component

* Support policies that can specify how to fix executions
* What to do with a violation of a security policy?

var http = require("http");
var st = require ("st");

Host static files from the

current working directory

var cwd = process.cwd() ;
var handler = st(cwd) ;
http.createServer(handler) .1listen(1337);

Full mediation between

- = - library and the
requlre(nodesentry) ; environment/application/OS

var st = safe_require("st", /* policy */);

var cwd = process.cwd() ;
var handler = st(cwd);
http.createServer(handler) .1listen(1337);

How does it work?

require

*
------ o
se® i Tug, . . “wLe N
““““““““ "+ require(“fs”)
. p/ -
o* *,

Is there a policy that
reasons about the
file system?

safe_require(‘st) %

Example policy

API called when library

tries to read the URL
property of an incoming
HTTP request

+ var st_policy = new Policy(

5 .on("IncomingMessage.url")
6 .return(errorPage) .if (invalidUrl)

Return /error404.html Test for .. and /

IncomingMessage. url Malicious?

-
—
——
-

HTTP Request

st

m ime u r 1 e = require("nodesentyy") .Policy;
. function inva\idUrl (reqObj, yrl) { /* do some checks */ }
; function errorRage () { retu "/404 .html"; }

s+ var st_policy ="mew Policy()

path S .on("IncomingMessage.url")

6 .return(errorPage) .if (invalidUrl)

; .build() // build the actual policy object

More experiments

ONodeSocurityPlaﬁonn PRICING SERVICES RESOURCES FREETOOLS ADVISORIES LOGIN

Continuous Security monitoring
for your node apps

Sign up Free

L NNUUD oLunily rmiauuouinm e e S L Sl e “

Denial of service - Potential socket Vulnerable: <1113

Patched: >=111.3

exhaust /[* req.get(“Last-Modified™) */

Published: Decem!|

Reported by: Ada NeW POIICy()
SELEAN .0N(“IncomingMessage.get”)

return(properlyParsedDate)
If(paramEqualsLastModified)

Overview

Certain input passed into the If-Modified-Since or Last-Modified headers will cause an 'illegal access' exception to be raised.
Instead of sending a HTTP 500 error back to the sender, hapi will continue to hold the socket open until timed out (default node

timeout is 2 minutes).

Based on 73 reported

TYPE OF POLICY

Out of scope
6%

vulnerabilities from the
Node Security Project

More than 90% of

reported vulnerabilities
could be fixed with specific
policy in NodeSentry

More research needed

* Other types of web application firewall-like policies
 Blacklisting clients
* Enforcing web-hardening techniques like HSTS

* Fine-grained access control

* Access control policies on general ‘capability’ categories (e.g., no file
system access) [Vanacker et al, ACSAC’12]

* Indicated via annotation in tearless application

* More research to understand the possibilities of such a general and
flexible framework

Performance benchmarks setup

/

_

\

Scalar — highly scalable
benchmarking framework

[Heyman et al, 2014]

-

Requests
Warm-up

Peak

Ramp-up

Cool down

to t1 1o

Time

Capacity (concurrent users served)

1000

750

500

2

0

Performance is king

-

Loss from around 200-250
concurrent users

~

Max difference about 40%
between NodeSentry and Node.js

{ Theoretical linear scaling

- _ ,:—-—-E'r"""" =
. S
& Loss of about 10% in capacity
- C.= with 1000 concurrent users
| I I I I
0 250 500 750 1000

Concurrent users

Performance Benchmarks - Conclusions

* Level of performance comparable to commercial security
events monitoring systems [Gartner, 2014]

* Trade-off between performance and security

* Policy impact decreases when other conditions stretch
performance

NodeSentry — Wrap up

* Goal: restrict impact of —untrusted? — third-party libraries

* At runtime
* Without need for modification of the underlying runtime

* NodeSentry:
* Provides initial compartmentalization technique
* Based on membranes and concept of reference monitor

* Provides platform for enforcing broad range of security policies
* Performs OK for research prototype

The Tearless server-side
JavaScript security architecture

Willem De Groef

Willem.DeGroef(@cs.kuleuven.be

