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ABSTRACT
The actor model prevents the traditional pitfalls of concur-
rent programming (deadlocks and data-races) by not allow-
ing shared state between different processes. While shared
state can be simulated through a set of message exchanges,
this quickly becomes complex and renders the program in-
expressive. In this paper we present a novel way of integrat-
ing shared state into the communicating event-loop model
by introducing a new type of object called a repliq. When
such object crosses actor boundaries it exhibits what we call
pass-by-replication semantics. The object is deeply copied
and the runtime keeps track of the owner of the original
repliq, the actor that first created it. Actors can access and
alter repliq objects locally, while the runtime makes sure
they are eventually consistent with other replicas of the ob-
ject. Consistency is guaranteed by eventually executing all
the operations of the replicas in the same order, as deter-
mined by the original object. Synchronization happens in a
background process and external updates become visible in
between message processing. This makes sure that the pro-
grammer’s code is always executed in a consistent snapshot
of the object states. We present the semantics, guarantees
and restrictions exhibited by repliq objects using an imple-
mentation in the AmbientTalk actor language. This model
maintains the easy and safe local-only execution model for
the programmer that is key to the actor model, while pro-
viding integrated and expressive means to share state that
is eventually consistent.

CCS Concepts
•Computer systems organization → Embedded sys-
tems; Redundancy; Robotics; •Networks → Network reli-
ability;
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1. INTRODUCTION
The actor model is a concurrency programming model in-

tended to provide secure computing capability by nature.
One of the core principles of the traditional model is to never
explicitly share state between concurrent processes. Every
process, called an actor, has its own object heap and can
never directly access that of another process. This strict
isolation of the different actors ensures that the actor model
is free of low-level data races. Actors can communicate with
each other by means of exchanging asynchronous messages
and because of the asynchronicity of their communication
mechanism the actor model is also free of low-level dead-
locks. This way the actor model avoids the main pitfalls of
the traditional thread model.

In practice, actors are made available either trough a ded-
icated programming language (for example Erlang [1]) or
trough a library implementation (for example, the Akka
framework for Scala). On the one hand, actor languages
are mostly pure, in the sense that they often enforce strict
isolation of the different actors. The benefit of this is that
low-level data races and deadlocks are ruled out by design.
The downside is that they are severely limited in the way
they can model access to a shared resource. A common ap-
proach to model shared state under these restrictions is by
modelling that shared state a delegate actor. Different client
actors can then access that shared state by sending asyn-
chronous requests to the delegate actor. However, because
clients are forced to use asynchronous communication to ac-
cess the shared state, this approach leads to an event-driven
style of programming and introduces the inversion-of-control
problem [9]. On the other hand, actor libraries are mostly
impure, in the sense that they cannot enforce strict isolation
of the different actors. Because of this, developers can use
the underlying shared memory as an“escape hatch”to model
shared state by allowing actors to obtain direct references to
that shared state. It is shown that programmers often step
outside of the actor model when possible in order to regain
the ability to explicitly share state [13]. However, once the
developer chooses to go this route, the benefits of the high-
level actor model are lost, and the developer typically has
to resort to other ad hoc synchronization mechanisms (e.g.
locks) to prevent data races.

Explicit and synchronous access to shared state can be
useful both in a shared-memory concurrency setting as well
as in a distributed setting. For concurrent programs it’s suf-
ficient to think about any desktop application that includes
editing, saving and displaying of something (e.g. text or
images). In order to make the application efficient and re-



sponsive, different processes need to perform the different
tasks in parallel.

Any application where people collaborate on the same
data makes a good case for shared state in distributed pro-
grams. This goes from simple chat applications to docu-
ment and image editing applications. Moreover, more mod-
ern applications that allow both collaborating and continu-
ous operation while disconnected, require a more advanced
type of shared state. Namely, they require optimistically
replicated shared state, also called eventually consistent,
which includes a lot more than traditional or pessimistically
shared state [11]. First, state and local operations need to
be copied. Second, operations need to be applied locally
and buffered. Then, the operations need to be synchronized
with other copies. Finally, a consistency model needs to be
in place to keep the replicas consistent.

In this paper we focus on adding optimistically repli-
cated, or shared, state to the actor model, by introduc-
ing a novel kind of object: a repliq. This object has pass-
by-replication semantics, which means that when crossing
actor boundaries it is replicated. This involves a deep copy
of the object and an algorithm that runs in the background
to keep it in sync with other replicas.

The repliq that is first created is called the master object
and a repliq created by replication is called a replica. By
construction an actor can always treat a repliq object as if
it were a normal, local object. Repliqs are kept consistent
by eventually executing all operations in the same order, as
determined by the master, on all replicas. This requires the
operations to be reordered and puts certain restrictions on a
repliq object. Furthermore, reordering is only made visible
in between message processing such that the programmer’s
code always works on a consistent snapshot of the replicas.

Although this work can be applied to most of the ac-
tor models, this paper focuses on the Communicating Event
Loop Actor model by using an implementation in the Am-
bientTalk programming language.

In the next section we first briefly explain the communi-
cating event loop model implemented by AmbientTalk. Af-
terwards, we introduce the the novel repliq object by im-
plementing a distributed chat application that works while
disconnected. In section 3 we go into the specifics of the se-
mantics, guarantees and restrictions of the model. Chapter
4 elaborates on the consistency model used by repliq objects
and motivates the use of eventual consistency. Finally, we
discuss future and related work.

2. COMMUNICATING EVENT LOOP
The Communicating Event-Loop (CEL) Actor model was

first introduced by the E programming language [10] as a
object oriented programming model for secure distributed
computing. In this model actors are represented by vats.
Throughout the rest of this paper the terms actor, event-
loop actor and vat are used interchangeably and always refer
to an actor as defined by the CEL model. In the CEL model
each vat has a single thread of control (the event loop), an
event queue and an object heap (See Figure 1).

Each object in the heap of a vat is owned by that vat
and is only synchronously accessible by that vat. This re-
striction ensures that actors are strictly isolated from one
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Figure 1: The communicating event-loop model

another. Within a single vat, objects can hold references
to other objects and those references are called near refer-
ences. A near reference can be used as in the traditional
object oriented style to synchronously invoke methods on
the referenced object. Objects can also hold references to
objects within another vat and those references are called
eventual references. An eventual reference cannot be the
target of a synchronous method invocation and any attempt
to synchronously access an eventual reference will result in
a runtime exception. However, an eventual reference can
be used for asynchronous communication. Sending an asyn-
chronous message to an eventual reference enqueues that
message as an event in the event queue of the actor that
owns the target object. Once the event is ready to be pro-
cessed it is removed from the event queue of the owner by
its event loop and is passed to the target object as a syn-
chronous method invocation. This ensures that a vat can
only synchronously access objects owned by that vat and
that vats remain fully isolated.

Any reference that crosses actor boundaries, for example
as the argument of an asynchronous message, are passed
as an eventual reference. This pass by eventual reference se-
mantics distinguishes the CEL model from other actor mod-
els where actors typically only have a single entry point or
address. In the CEL model a vat can export any number of
references to its own objects with potentially different inter-
faces to other vats. Each of those references shares the same
event queue and event loop and serves as an entry point to
that vat.

The CEL model was later adopted by AmbientTalk [14].
AmbientTalk is designed as an ambient-oriented program-
ming [6] (AmOP) language. It adds to the CEL model new
primitives to deal with disconnecting nodes in a peer-to-
peer network where connections are volatile (e.g. a network
of cell phones). However, in this paper we do not focus on
that aspect of AmbientTalk but rather use it as a vehicle to
implement our language abstractions on top of.

Different actor models employ different message passing
semantics to ensure isolation. Traditionally, any object that
is transmitted across actor boundaries is either copied (e.g.
SALSA [15]), proxied (e.g. E [10]) or immutable (e.g. Er-
lang [1]). Other approaches employ techniques based on
ownership types [?] to ensure that any reference to a mu-
table object is globally unique, regardless of whether it is
passed between different actors [?]. This paper proposes
an alternative and novel message passing semantics where
certain objects are passed by replication.

3. OFFLINE AVAILABLE CHAT
Although offline capability can be useful (e.g. working

on an air plane) or even critical (e.g. in disaster-relief sce-
narios where network connectivity is sparse), supporting it
is far from trivial. As a consequence a lot of the modern



distributed/web applications today, often a lack such func-
tionality. Even for example in a simple chat application like
Slack (maintained by a billion dollar company), we can see
that the programmers prefer to not allow disconnected op-
erations:

The reason is that supporting this is actually a very daunt-
ing task. Namely, it requires a deep change from the tra-
ditional, centralized application state to a decentralized ap-
plication state with accompanying complexities. First, state
and computations need to be replicated to the interested
nodes (e.g. the client’s computer). Second, operations need
to be tentatively executed locally and buffered. Then, if
a connection is available, operations need to be synchro-
nized between client and server. Finally, a consistency model
needs to be present to prevent divergence by the concurrent
operations. When using an ad-hoc solution for such appli-
cation, this introduces a tremendous amount of accidental
complexity.

The model we introduce hides all these complexities from
the programmer by pushing them into the programming
model. In order to introduce and demonstrate the repliq
model we implement a simple offline available chat with
multiple rooms/channels. The employed language is Am-
bientTalk [14], to which our model is added using meta pro-
gramming. It is an object oriented language built upon the
principles of prototype-oriented programming [?]. It uses
a combination of curly-brace styled programming languages
and keyword syntax like Smalltalk. Concurrency and dis-
tribution is at the core of the runtime by implementing the
CEL model as described above. Closures are described in
terms of blocks : { | param1, param2 ... | body }. An
object is initialized using the object: { <body> } key-
word and its fields are initialized according to the the vari-
ables (using def name := exp) defined in the body of the
initializer block. By cloning an object (using clone: par-

ent with: { <body> }) a new object can be created that
inherits from the parent object. Finally, AmbientTalk in-
cludes a meta-object protocol that uses mirrors [2] in order
to override and intercept behaviour of an object and an ac-
tor [?]. This will be extensively used in the next section in
order to embed the proposed model.

We now start by implementing the server of the chat ap-
plication in Listing 3, which consists of:

• Creating a repliq object called Channel that contains
all the the data and operations that will be replicated
from the server to the clients. It contains a messages

field that holds the messages of the channel and an
add(msg, user) method that allows a user to post a
message. Sending a message is done by adding a new
repliq object, dedicated to that message, to the list of
messages.

• Creating an object that keeps track of all the different
channels by mapping clones of the Channel repliq to
their name. It starts off with one channel, the main

”general” chat.

• Exporting the API of the server in order to allow clients
to retrieve a channel with getChannel(name) or create
a new one with createChannel(name).

def Channel := repliq: {
def messages := []
def add(msg , user) {

this.messages = insertBy(this.messages ,
repliq: { |text , user|

text: text ,
date: now(),
user: user
}, { |msg| msg.date })

}
}

def channels := Map.new();
channels [" general "] = clone: Channel;
}

export ("chat server", object: {
def getChannel (name) { channels[name] }
def createChannel(name) {

channels[name] = clone: Channel
}

})

Listing 1: Server implementation of the offline available
chat.

Second, we use this server to implement the client in List-
ing 1, which consists of:

• Retrieving a reference to the server API by looking it
up by its name.

• Defining a displayChannel method that displays and
continuously updates the channel with given name as
follows:

– An asynchronous message call to the getChannel

method (using the message send operator <-) re-
trieves the desired channel from the server.

– When the promise of the message resolves, the
repliq that represents the general channel is repli-
cated and made available to the client. The given
closure is executed and from that point on the
channel object can be used like a normal, local
object.

– Using a declarative, reactive rendering system,
the messages from the channel repliq are dis-
played on the screen. In short, the rendering sys-
tem has a render call that starts a process to
display something on the screen. This executes
an accompanying closure that can use the dis-

play method to declare what should be shown
on the screen. The display function can take
any expression that can be rendered into text or
pre-defined HTML objects in this case. The ren-

der method will monitor the given repliqs and re-
execute to closure whenever one of them changes
and adjust the screen accordingly 1

1This works much like Facebook’s React framework (and in
fact uses React underneath). Yet, the advantage here is that
the rendering framework knows exactly when the objects
have changed and thus when to re-render. React has to
rely on the programmer keeping some state and explicitly
notifying the framework when it might have changed.



– This first displays a loading screen.

Then, when the channel is replicated a list of
all the messages and an input field and button
to send a new message is displayed. A message
contains the time, sender and text and uses the
msg.confirmed field to display the message in
black when it is confirmed by the server or grey
when it is still tentative.

– Sending a new message is done by simply calling
the add method. It uses a built-in method cur-

rent_user that evaluates to a special repliq ob-
ject that represents the currently logged in user.

def server := import ("chat server ")

def DisplayChannel(name) {

render ({ display (" loading ...") });

server <-getChannel(name).then ({| channel |
// stateless display of the messages
render ({

def ul := UL: channel.messages.map({ msg |
LI: "(#{ msg.time})

#{msg.sender} :
#{msg.text}"

color: msg.confirmed ?
Colors.black
Colors.gray });

def inpt := INPUT: "type your message ";
def btn := BUTTON: "send"

click: {
list.add(inpt.value , current_user )};

display(ul, inpt , btn);
}, channel)

});
}
DisplayChannel (" general ")

Listing 2: Client implementation of the offline available chat.

While this is all the code required to write a simple chat
application that works while disconnected, a lot is going on
in the runtime. The following section describes how the
replication algorithm works.

4. REPLIQ SEMANTICS
A repliq object represents a part of the program (fields +
methods) that can be replicated to other actors. These ob-
jects have a number of key characteristics:

Isolated The normal object heap is not accessible from
within a repliq object. Repliqs can only reference built-
in immutable data types (such as int, string, list, etc.)
and other repliq objects. On the other hand, normal
objects can have references to repliq objects.

Pass-By-Replication When the repliq object crosses ac-
tor boundaries (when it is used as an argument to a
message call), it is said to be passed by replication.

The isolation of the repliq objects is enforced by the fol-
lowing two properties:

1. A repliq object has no lexical scope and fields can only
be manipulated from within the repliq its own meth-
ods. This means that values can only flow into the
object when they are used as arguments to a method
call.

2. Normal objects cannot be used as arguments to mes-
sage calls. Only immutable data types and pointers to
other repliq objects of which the master repliq lives on
the same actor as the target’s master.

These restrictions are required in order to maintain the
guarantee of always being able to execute repliq operations
locally and maintaining eventual consistency without
requiring consensus between actors. This will be further
elaborated in the next section.

The pass-by-replication semantics are defined as follows:

1. The repliq object is (recursively) deeply copied to the
receiving actor, including the entire transitive reach of
referenced repliq objects. Such a copied object is called
a replica. The original repliq created using the repliq:
{ body } construct is called the master object2.

2. The receiving actor keeps track of the master object
for each replica it creates.

In order to visualize this, we give an example of how the
object heaps of actors implementing the chat application
could look like in Figure 2. The rectangles represent actor
object heaps: blue circles are normal objects, purple objects
are master repliqs and green objects are replica repliqs.
A solid arrow represents a local pointer, a dashed arrow
a far reference and a dotted arrow a hidden link from
the replica repliq to its master. The purple objects on
the server represent the different chat rooms and their
messages. Each client has a replica of a different thread, i.e.
they are both visiting a different chat room. The normal
(blue) objects represent pure actor-local state. For the
clients this could for example be the text they are currently
typing. In the server’s case this could be client meta or
session data. The repliq (purple/green) objects represent
the data and operations that are shared between the actors
for collaboration.

The key property that the repliq model guarantees is
that local pointers are always locally and synchronously
accessible, even if it is a repliq object. This means repliq
objects can be acted on as if they were just local, like in
the channel.add(current_user, msg) example. On the
other hand, far references always need to be accessed asyn-
chronously using the <- operator and promises. In order to
maintain this property it is thus of utmost importance that
normal objects can never be accessed by repliqs. Otherwise,
when a repliq is replicated to another actor, this object
pointer could be translated into a far reference (at best)
and operations would no longer be guaranteed to be local.

Through this guarantee, the programmer can always
syntactically see which code will be executed locally,
synchronously and which code will execute remotely,
asynchronously. This is important, because they have
significantly different behaviour [8]

Now, the idea is that replicas are changed locally, making
them diverge from the master repliq. Yet, whenever contact

2The word master will be used for both the actor that owns
the original object and the original object itself, depending
on the context.
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Figure 2: An example of three actors and their object heap
for the chat application. Blue = normal object, purple =
master repliq, green = replica repliq, solid arrow = local
points, dashed arrow = far reference, dotted arrow = replica-
master link.

is made between the concerning actors, they will exchange
the changes that were performed in order to converge again.
This means that changes performed on a replica will even-
tually be visible on all replicas of the same master repliq.
This is what is called optimistic data replication or eventual
consistency [11]. How changes are propagated and replicas
converge is discussed next.

5. EVENTUAL CONSISTENCY
As mentioned earlier, the fields of a repliq can only be
changed by a method of the repliq itself. On top of that
repliq objects have no lexical scope and can perform
no side-effecting operations other than altering its own
fields or calling another repliq method. Because of this
restriction, the entire state of a repliq can be determined
by the accumulation of all repliq method invocations. In
order to use and reason about the replication model it is
key to understand this concept. When reasoning about a
normal object it is common to only think of the object its
current state. Operations on that object are just temporary
computations, executed once to change the object its state.
In contrast, when reasoning about a repliq it is important
to know that its state is made up of a sequential ordering
(and execution) of repliq methods. It might namely happen
that the ordering of methods changes or methods get added
externally, thus changing the state of the repliq.

In order to achieve eventual consistency between all the
replicas of a repliq it suffices to establish the same order
of method invocations on that repliq. It is the job of the
actor that owns the master object to determine the order of
the method invocations. The replication protocol relies on
the GSP algorithm (Global Sequence Protocol) [5] in order
to achieve global ordering of the repliq methods, as deter-
mined by the master repliq. While the entire algorithm is
out of scope of this paper, we give a simplified, yet sufficient
version. It consists of the following key parts:

Log Every actor has a log of method invocations for each
actor of which it it has replicas. This log is called the

tentative log3.

Versioning Every field of an object has two versions: the
committed state and the tentative state. The com-
mitted state is the value of that field as confirmed by
the master object. The tentative state is the state of
that field after applying all the tentative operations on
confirmed state.

Reading The default behaviour of reading a field (using
object.field) is returning the tentative state. Using
a dedicated object..field operator, the committed
value can be retrieved.

Recording The runtime intercepts every root method in-
vocation, adds it to the tentative log and executes it.
Root method invocations are defined by calls initiated
from within a normal object, and not from within a
repliq method. Repliq methods invoked from within
another repliq method are evaluated without record-
ing.

Replay A synchronization algorithm will use the previous
building blocks to establish eventual consistency be-
tween the master and replica repliq objects. At the
heart this consists of:

1. The replica repliq notifies the master repliq of in-
vocations performed on the replica.

2. The master object invokes the invocation locally
and broadcasts this to all the replicas.

3. In the actors of the replicas the received oper-
ation will be removed from the tentative opera-
tions (if it was there), reset the tentative states
to the committed state, replay the received invo-
cation, commit the tentative state and replay the
remaining tentative operations.

Using the extensive meta object model we were able to em-
bed first class repliq objects, employing this algorithm, into
AmbientTalk. The crux of this implementation relies on
implementing mirrors, allowing us to change the behaviour
of reading/assigning fields and invoking methods. We now
use the core of this implementation in order to elaborate on
the semantics of the model. Note that some of the specifics
of the implementation (for example creating and installing
the mirrors and creating/copying a repliq) are left out for
conciseness, but they should not harm the correctness of
the algorithm and the understanding of the algorithm.

First, whenever a field is created for a repliq, we intercept
this call and create a special kind of field. This is done
by overriding the makeField(name, value) method in the
mirror of a repliq (see Listing 5).

// included into the mirror of a repliq
def makeField(nam , val) {

object: {
def name := nam;
def committed := val;
def tentative := val;
def readField () {

tentative

3In the context of a replica, “the tentative log” will refer to
the tentative log of the actor to which the master of the
replica belongs.



};
def writeField(val) {

tent := newVal
};
def resetToCommit () {

tent := comm
};
def commit () {

comm := tent
}

}
}

Listing 3: The code that intercepts the creation of a field in
a repliq object (by implementing this method in the mirror
of a repliq).

This includes keeping track of the committed and tentative
value and providing some methods to manipulate these
values. Whenever a field is read, the readField() method
is called on the mirror, which will return the tentative value
in this case.

Using these versioned fields we can now implement record-
ing, exchanging and replaying of method invocations in
order to obtain eventual consistency. This is all imple-
mented in the mirror of an actor that uses repliq objects
(see Listing 3).

At the hearth of this algorithm lies the invoke(rec,

inv) method, which overrides the behaviour of a method
invocation, providing the receiver object and a reification
of the invocation itself. First we check whether the receiver
of the invocation is a master repliq or not. This is done
by getting the mirror of the object using the reflect:

object construct. On the mirror we can use the isRepliq

and isMaster field, which will be set appropriately upon
creation of the repliq object.

When the object is a replica, the invokeReplica method
will check whether a repliq method is already being evalu-
ated by checking the recording field. If not, this means a
repliq method is being invoked from within a normal object.
This results in the following:

1. The actor is marked as being in ”record” mode by set-
ting the recording field.

2. The invocation is recorded by adding it to the ten-
tative log of the master actor of the receiver, using
logReplica.

3. The actual invocation of the method is performed on
the receiver object, using the application operator rec
<+ inv.

4. The actor is no longer marked as being in ”record”
mode.

5. The result of the invocation is returned.

If another repliq method is already being evaluated, this
means this method is a result of that evaluation. As a
result, this invocation does not need to be recorded and it
is normally executed. Because a repliq object can only get
access to repliq objects that have the same master actor, it
suffices to only record the root call. If this restriction would
not apply, all method invocations would need to be recorded

and sent to the other actors. Yet, then these two actors
would need to coordinate with each other in order to agree
on the order of execution, requiring a consensus algorithm.
That in turn would drastically complicate the consistency
algorithm. This is the reason the repliq referencing rule is
in place.

When the object is a master repliq, the recording field
is again used to check whether this is an invocation from a
normal object or from within a repliq. If it is invoked from
within a normal object, the context is first set to recording,
so other invocations know they are already part of a repliq
invocation. Then the algorithm proceeds as follows:

1. markReplicas: for each replica (of this receiver) its
actor, it is checked whether it already has an entry
in the marked HashMap. If it has not, the current
invocation is put in there.

2. The actual method is executed.

3. unmarkAndBroadcast: for each actor that was marked,
it is checked whether it is marked for the current invo-
cation. If it is, that actor is notified of the confirmation
of this invocation and it is unmarked.

4. The recording state is set to the state before this in-
vocation.

// Mirror of the actors that use repliq
{

def recording := null;
def tentative := [];
def marked := HashMap.new();
def tentative := HashMap.new();

def invoke(rec , inv) {
def om := reflect: rec
if: om.isRepliq.and: om.isMaster then: {

invokeReplica(rec , inv)
} else: {

invokeMaster(rec , inv)
}

}

def invokeReplica(rec , inv) {
if: (! recording) then: {

recording = inv;
self.logReplica(rec , inv);
def result := rec <+ inv;
recording = nil;
result

} else: {
rec <+ inv;

}
}

def logReplica(rec , inv) {
def master := (reflect: rec). masterActor;
tentative[master] += [rec , inv]

}

def invokeMaster(rec , inv) {
def wasRecording := recording;
if: (! recording) then: {

recording := inv;
}
markReplicas(rec , inv);
def result := rec <+ inv;
unmarkAndBroadcast(rec , inv);
recording := wasRecording;
result

}

def markReplicas(rec , inv) {



foreach: { | rep |
def actor := (reflect: rep). actor
if: (marked[actor] != nil) then: {

marked[actor] = [rep , inv];
}

} in: (reflect: rec). replicas
}

def unmarkAndBroadcast(rec , inv) {
foreach: { | actor |

[mrec , minv] = marked[actor];
if: (minv == inv) then: {

actor <- confirmed(rec , inv) ;
marked[actor] = nil;

}
} in: marked.keys

}

def confirmed(rec , inv) {
def om := (reflect: rec);
self.recording := [rec , inv];
om.resetToCommit ();
rec <+ inv;
om.commit ();
tentative[om.masterActor ]. remove(inv);
foreach: { |[rec , inv]|

rec <+ inv
} in: tentative[om.masterActor]
self.recording := nil;

}
}

Listing 4: The code that intercepts the creation of a field in
a repliq object (by implementing this method in the mirror
of a repliq).

When an actor receives a confirmed notification, it proceeds
as follows:

1. All the fields their tentative values are reset to the com-
mitted value using resetToCommit() on the receiver’s
mirror, which on its turn will call this on all its fields.

2. The actual invocation is executed.

3. All the receiver’s fields their committed values are set
to the current tentative value using commit().

4. The invocation is removed from the tentative invoca-
tions, if it was there.

5. The tentative operations of the receiver’s master actor
are re-executed.

6. The recording mode is exited again.

The algorithm makes sure that whenever an actor executes
an invocation on a master object, it will broadcast the top-
most invocations to the effected replicas. In other words,
whenever a master method is invoked that method will be
broadcast to all the actors that have a reference to a replica
of this repliq. If they don’t have a reference to this repliq,
the invocations that resulted from this invocation will have
the same recursive behaviour until a top-most invocation
is found of which the actor does have a reference. This
behaviour is achieved by the interplay of invokeMaster and
marked.
To exemplify this with the chat application, say that a
client got each message of a channel separately, without
the actual channel object. If a method is now invoked on
a channel object that has pointers to these objects, this
method will not be propagated to that client because it has
no reference to that repliq. Yet, if this method performs

other method invocations on the messages of the channel
(for example increasing all the timestamps), the client does
need to get these individual invocations. Otherwise, the
message replicas will not converge with the master message
repliqs. On the other hand, if another client does have a
reference to the channel object, it should not receive all the
individual invocations on the messages. Instead it should
only receive the invocation of the channel object, i.e. the
top-most invocation of which it has a reference.

Using a combination of the GSP protocol and some proofs
over the delivery of messages from masters to replicas
and vice-versa we can proof eventual consistency between
master and replica repliqs is attained. The proof itself is
outside of the scope of this paper.

6. DISCUSSION
Some important remarks need to be made about the
presented algorithm/model.

First, the given implementation of the algorithm is not
fault tolerant or robust, i.e. when actors crash and
recover or when messages are lost eventual consistency can
no longer be guaranteed. Also, the given algorithm assumes
reliable broadcast to maintain eventual consistency, which
is a strong requirement on the underlying communication
model. In order to provide fault-tolerance and not require
reliable broadcast, the implementation needs to employ the
GSP protocol. This includes using more different types
of logs, propagation in numbered rounds and persisting
some state. Also, where GSP describes a master-replica
relationship between two entities, this implementation
requires each actor to perform both the master and the
replica part (depending on which object it is acting for).
Including all of this in the paper would be too repetitive
w.r.t. the GSP protocol and would render it less algorithm.
The algorithm described in this paper is a semantically
much easier to understand and really demonstrates the core.
Furthermore, given this algorithm and the original GSP
protocol, the reader should be able to easily reconstruct the
fault-tolerant version.

Second, given how the algorithm is structured in this paper,
invocations that are performed in the same method are
not atomically propagated. This means that whenever a
master method performs multiple other invocations and
these sub-invocations are propagated, an actor can observe
state where one of these invocations is applied but others
aren’t yet. Instead, it is better to provide the programmer
with a snapshot isolation model [7], where these up-
dates are all applied transactionally. This is again achieved
by the batching of operations in rounds as explained in GSP.

Third, up till now the model assumed that the master
repliq always has a list of all actors that have a replica
of this repliq. This is easily constructed by notifying the
master actor whenever such replica is constructed. Yet, one
has to be careful, because this replica can now be missing
out on updates from the master while the notification is
in-flight/process. Again, by numbering the rounds, these
anomalies can be easily detected and restored. What is
more interesting though is the deconstruction of this list.



That is, when does the master repliq knows that an actor is
no longer interested in updates of this repliq. In our current
implementation we use a keep-alive mechanism for this.
For every replica that is alive in the object heap, it will
poll the master actor every X seconds. Thus, if the actor
crashes or it garbage collects this replica, stops polling the
master actor. On the other side, if the master actor has not
heard from a particular replica for Y seconds, it will discard
this replica as a dependency. If an actor recovers its object
state after a crash, it can start polling the master replica
again. Using the numbered rounds, a recovery procedure
can be execute to let the replicas catch up with the current
state. As an effect, the proposed replication model embeds
a robust, automatic pub/sub system between the
master and replica repliqs, by means of object presence in
the heap. To demonstrate the power of this feature, take
for example a web applications. When a particular page is
being displayed on the screen, the actor will be subscribed
to changes of that screen, because the render function is
using those repliqs that constitute the page. Then, when
another page is displayed, the previous repliqs are no longer
used and garbage collected. This also means the master
actor will automatically know that the client does no longer
require updates for this data, but now needs updates for
the next page. In contrast, using current technologies one
would need to manually maintain these subscriptions.

Finally, we haven’t discussed this in the paper, but the fact
that invocations are replayed by the server and other
replicas can be exploited for security and other applica-
tions. When a method is replayed, it can be replayed in con-
text of the user that originally invoked it. This means that
whenever the current_user method is used within a repliq
method, it evaluates to a special user object that represents
the user that invoked the method. In order to demonstrate
this, we can add functionality to the chat application that
allows users to edit their messages. Of course, you do not
want other people to be able to edit your message, only the
owner of the message can. By adding a update method that
will only update the text if the current_user (i.e. the user
that invokes the update method) is the owner of the message
(see Listing 6).

def createMessage(text , user) {
repliq: { |text , user|

text: text ,
date: now(),
user: user ,
update(newText) {

if (current_user == self.user) {
self.text = newText;

}
}

}
}

Listing 5: Example of how the replaying of invocations can
be used for adding security checks.

7. RELATED WORK
TODO Eventual Consistency models
Existing eventual consistency models such as cloud types [3],
crdt’s [12] etc. have no complete integration with an asyn-
chronous programming model and thus provide no guaran-
tees/semantics what happens when the two are combined

(e.g. when replica’s are sent over the wire etc.)
TODO Shared State in Actor Models
Here focus on distribution, but also useful for concurrency.
Similar to concurrent revisions [4]

8. CONCLUSION
In this paper we presented a way to add shared state to
the actor model. This is done by optimistically replicating
a special type of object, called a repliq. By doing so, we
introduced optimistic replication as a first class value to an
actor language. Because the shared state and operations are
replicated and can always be accessed and executed locally,
the isolated properties of the actor model are maintained.
We demonstrated how this reduces the overhead of program-
ming offline available applications by implementing a chat
example. Furthermore, we provided the core of the imple-
mentation using the meta protocol in AmbientTalk. This
implementation demonstrates how to handle logging, order-
ing and replaying of operations in order to maintain eventual
consistency of the replicated objects. It also solves a com-
mon problem with optimistic replication, which is the com-
position of replicated objects. Although the composition is
restricted to repliq objects of which the master object is the
same actor. By embedding replication into the object heap,
an automatic pub/sub system can be maintained such that
replicas receive updates as long as a reference to that replica
exists. Finally, we also showed that the replay of invocation
model can be used to add security by adding access control
checks in the repliq methods.
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