
Verification of Communication in Web Applications

Nathalie Oostvogels
Vrije Universiteit Brussel
noostvog@vub.ac.be

Joeri De Koster
Vrije Universiteit Brussel
jdekoste@vub.ac.be

Wolfgang De Meuter
Vrije Universiteit Brussel

wdmeuter@vub.ac.be

ABSTRACT
In the current world of web applications, none lives on an is-
land. Current web applications often rely on a myriad of ex-
ternal web APIs and communicate with these external APIs
through various HTTP requests spread throughout the ap-
plication. The specification of those APIs is often described
textually and programmers have to resort to manual ver-
ification of their code in order to verify if their API calls
follow the specification. Next to a correct entry point, the
data provided with the API call must also obey a set of con-
straints. Depending on the complexity of the API and its
constraints this manual verification can become a difficult
task. In this paper we show the need for more expressive
machine-readable web APIs that allow the specification of
more complex constraints. We also investigate where cur-
rent verification tools for web APIs fall short and identify
the challenges for the development of static verification tools
that enable automatic verification of API calls.

Keywords
type system, web API, web application

1. INTRODUCTION
Today it is hard to imagine a web site without cross-

website functionality such as a like button from Facebook, a
video from YouTube or a Twitter feed. This is in high con-
trast with the early days of the web, where web pages were
static, stand-alone and confined to serving information and
media from within a single domain for clients to consume.
JavaScript [7] was first introduced in 1995 with the goal to
make web pages more dynamic, enabling local validation of
forms and simple animations through dynamic manipulation
of HTML. Throughout the years, web sites evolved to real
web applications. Partial page updates were popularized by
Asynchronous JavaScript And XML (AJAX), which rapidly
became the dominant way of interacting with other web ser-
vices from JavaScript. Today, external web services expose

ACM ISBN .

DOI:

their functionality through an Application Programming In-
terface (API) and websites can use those APIs to integrate
that functionality with their own web pages. Web applica-
tions include that functionality by sending information to
and retrieving information from a web service using HTTP
requests. The use of other web services and their APIs is
adopted in almost every web application, which is echoed
by others, such as the OpenAPI Initiative: “APIs form the
connecting glue between modern applications. Nearly ev-
ery application uses APIs to connect with corporate data
sources, third party data services or other applications”.1

Information about the entry points of an API is usually
informally described in a textual API specification, which
is publicly accessible. For every entry point, it lists inputs
(which parameters are accepted and what their values should
be) and its outputs (which are returned to the client). Ad-
ditionally, the specification often lists constraints on the in-
put parameters of each entry point. Examples of such con-
straints are the type of a field, whether a field is required or
optional, which values the field may contain, the maximum
length of the field, etc. Over the years, the constraints found
in web APIs have become increasingly more complex to the
point where some constraints can even span multiple fields.

Because these APIs rely on external resources it is impos-
sible for development environments and tools to automat-
ically verify or aid the programmer in verifying their API
calls without some form of machine-readable API specifi-
cation. Moreover, incorrect usage of web services often re-
sults in unexpected behaviour or vague error messages which
severely limits the possibilities for runtime verification.

There already exist a number of machine-readable web
APIs (see Section 4). However, constraints over multiple
fields have largely been ignored by these existing API spec-
ifications. We argue that this severely limits their usability
for expressing more complex scenarios that are commonly
found in today’s web APIs. Additionally, we also argue that
there currently exist no tools that fully verify the use of
machine-readable web APIs in web applications. In order to
solve these issues we introduce extensions for multi-field re-
quirements for the OpenAPI specification2 and identify the
challenges of static verification of API usage in web appli-
cations.

The contributions of this paper are threefold; we will:

1. Identify a number of multi-field constraints that are
commonly found in existing web APIs (Section 3);

1https://openapis.org/
2https://github.com/OAI/OpenAPI-Specification



2. Show where current machine-readable API specifica-
tions fall short and introduce a machine-readable API
specification based on the OpenAPI specification that
meets the constraints of web APIs in the wild (Sec-
tion 4);

3. Give an overview of current research and technologies
for verification of API usage and explain our vision on
static verification of web applications (Section 5);

2. WEB API CONSTRAINTS IN THE WILD
Hypertext Transfer Protocol (HTTP) is the universally

used protocol for for web communication between different
web services. The challenges of typing web communication
based on the HTTP protocol are threefold.

Firstly, since the HTTP protocol only supports text based
representations, the data that is included with each request
needs to be converted to a string based representation (of-
ten JSON) before being included with the request. This
makes giving any guarantees about the type of data that is
sent along with the request more difficult as the string based
representation of that data can be pieced together from dif-
ferent origins in the code.

Secondly, the most basic way of sending an HTTP re-
quest in JavaScript is making use of an XMLHTTPRequest ob-
ject. Unfortunately, working with XMLHTTPRequest objects
is cumbersome: the developer needs to set up the request
and its associated data and send it, use a callback for mon-
itoring the different status codes, and then deserialize the
response (typically JSON) into a JavaScript object. Fortu-
nately, modern web applications rarely use XMLHTTPRequest
directly: instead they make use of JavaScript frameworks
such as jQuery, Prototype and Dojo, or Node.js packages
such as request. These frameworks define helpers which
simplify the use of HTTP requests. For this reason we aim
to provide type information about web communication on
the level of these helper functions.

For example, listing 1 shows how to send a private message
on Twitter using the request.post helper function.3

Listing 1: Request to Twitter
1 request.post(
2 {url: ‘api.twitter.com/1.1/direct_messages/new.json’,
3 form: {user_id: 123, text: "Hi Twitter"}},
4 function(error,r,result){ console.log(result) });

In this example we use the post method of the request
package to send a POST request to the twitter API. The
first argument of the method call contains the form data, in
our case a url which indicates the entry point of the Twitter
API that will be used, and the data that accompanies the
request. In this example, we send the ID of the user we want
to send the message to, along with the message itself. The
second argument of the method call to request.post is a
callback function that takes as arguments an error code (if
any), the response header and the deserialized result. Pro-
viding type information on this level makes sense because
the types of the different input parameters and the result
value are exposed by the request package. The serialization
of the form data and the deserialization of the result value
are hidden within the package.

3For simplicity, we emit user authentication and error check-
ing in this and later examples.

Figure 1: Excerpt from the Twitter API specifica-
tion

The third and perhaps most important challenge in typ-
ing web communication originates from the informal and of-
ten incomplete way web APIs are currently specified. Most
web services today offer a specification of their API that de-
scribes the functionality of the API (the entry points). For
every entry point, a list of parameters is provided, together
with a description of the return data. For example, an ex-
cerpt of the description of the Twitter entry point used in
Listing 1 can be found in Figure 1: it lists all possible param-
eters for a request to the entry point direct_messages/new.
In this case, there are three parameters that can accompany
the request: user_id, screen_name and text. Most API
descriptions have several kinds of constraints listed for ev-
ery parameter (type of the parameter, possible values etc),
but Twitter only indicates whether a field is required or op-
tional. The entry point we used above only requires the text
parameter, and either the user ID or their screen name to
indicate the recipient of the private message.

API specifications are often only presented informally,
with examples of valid requests, parameter listings and de-
scriptions. They cannot be verified automatically, forcing
users of these APIs to develop their applications by trial
and error. This also severely limits the amount of tool
support that can be provided for aiding the developer in
verifying the correctness of requests to external APIs. A
machine-readable API specification could enable a develop-
ment environment in aiding the developer by automatically
providing extra information while writing the code for issu-
ing a request. Web applications can contain many requests,
to many different APIs. These requests can be scattered
throughout the entire application code. Manually verifying
every request in a web application is a time-consuming and
error-prone task, but satisfying the constraints set by the
API provider is essential for a request to succeed.

Every request in the application code contains a number
of implicit assumptions the developer needs to keep in mind.
For example, for the request in Listing 1, the following as-
sumptions are made:

1. There is a web service available at the URL
api.twitter.com/1.1/direct_messages/new.json;

2. The web service expects a POST request for this entry
point;



3. The given parameter object satisfies the constraints for
this entry point set by the web service:

(a) the object contains all required fields, in this case:
the text field;

(b) although both user_id and screen_name are in-
dicated as optional, exactly one of them is re-
quired, which means the object must either con-
tain a user_id or a screen_name field;

Another problem with automatically verifying requests
originates from the fact that there is currently no uniform
way in which APIs respond to requests that do not sat-
isfy the necessary constraints. In the above example, if as-
sumption 1 is not met, Twitter returns a custom error mes-
sage as a result. Other web APIs return for example 404
Not found errors (e.g. Facebook Graph API) or 400 Bad
request errors (e.g. YouTube). Unsatisfied single-field con-
straints (assumption 2a) often result in clear error messages
from the server. However, this is a runtime error and if the
request is not covered by a unit test such errors might only
pop up after the application is deployed. Sending requests
that do not fulfil multi-field constraints (assumption 2b) will
often result in bugs that are difficult to find. In our example,
when a request has both the user_id and the screen_name
as arguments, Twitter arbitrarily uses the screen name and
ignores the user ID. Even when the user ID and the screen
name belong to different users, Twitter will silently pick one.

There is a clear need for machine-readable API specifi-
cations in order to enable compile time verification of API
requests. This in turn would enable tool support for auto-
matically generating and verifying requests during develop-
ment. There are a number of existing machine-readable API
specification languages (See Section 5.1). However, they lack
some expressiveness when it comes to specifying constraints
over multiple fields. In this paper we define these constraints
as multi-field constraints. In the next section we introduce
three types of multi-field constraints and show that they are
commonly found in today’s web APIs.

3. MULTI-FIELD CONSTRAINTS
Traditionally, a web API specifies a number of constraints

on each field included with a request. For example, these
single-field constraints can specify the types of values that
are accepted or whether the field is required or optional.
Single-field constraints are mostly well documented and have
proper error handling. Constraints over different fields are a
bit less common but still prevalent throughout the different
web APIs. However, these multi-field constraints are often
not properly documented and there is no uniform way of
handling errors when they are not satisfied.

In this section we identify the following three kinds of
multi-field constraints found in web APIs today:

1. Exclusive constraints;

2. Dependent constraints; and

3. Group constraints.

We look at how they are currently specified in existing
web APIs and how errors are handled when these kinds of
constraints are not satisfied.

3.1 Exclusive constraints
A multi-field constraint that often occurs in web APIs is

where exactly one of a number of fields is required.
Figure 1 shows an example of an exclusive constraint. Twit-
ter expects that you either send the user_id or screen_name
along with the request to indicate the recipient of the pri-
vate message. The involved fields are tagged as optional in
the API specification. This is not completely true as one of
both must be supplied for the request to succeed.

This exclusive constraint is reflected in the API specifica-
tion with the following line: “One of user id or screen name
are required”.

Exclusive constraints exist in many API specifications,
such as in Facebook4 where “either link, place or message
must be supplied” for publishing a status update, or when
creating a new charge with Stripe5, where “either source
or customer is required”) or when retrieving a playlist from
YouTube6, where you may only provide one filter (“specify
exactly one of the following parameters”).

We investigated how different API providers respond to
requests that do not satisfy exclusive constraints. The fol-
lowing three categories are the most common responses:

1. The API provider returns an error message. This is
how API providers often deal with unsatisfied single-
field constraints as well. However, when the fields do
not satisfy the multi-field constraints, more often than
not this results in vague error messages. Let us take
as an example the Youtube API: when supplying more
than one filter for a playlist, the following vague error
message is returned: “Incompatible parameters speci-
fied in the request.”.

2. The API provider makes a silent choice. For exam-
ple, Twitter does not complain when both the screen
name and user ID are passed along when sending a
direct message. However, when the screen name and
the user ID belong to different users, Twitter chooses
the screen name over the user ID, instead of raising an
error. These kinds of errors are very difficult to debug.

3. The API specification is incorrect: in the case of
Facebook, where their API specification mentions “ei-
ther link, place or message must be supplied” for pub-
lishing a status update, supplying all fields results in
sensible status update, where all provided values are
combined.

3.2 Dependent constraints
We call a multi-field constraint a dependent constraint

when the exclusion of a field (which we call the base
field) precludes the inclusion of another field or a
set of fields. In other words, a set of fields is dependent to
a base field if they should only be included in the request if
the base field is also included in the request.

An example of a dependent constraint can be found in
Figure 2, which shows an excerpt of the Facebook API speci-
fication for publishing a new status update. When posting a
link on someone’s wall, you can also add a picture, name,

4https://developers.facebook.com/docs/graph-api/
reference/v2.6/user/feed#publish
5https://stripe.com/docs/api/node#create charge
6https://developers.google.com/youtube/v3/docs/videos/
list



Figure 2: Dependent fields in the Facebook API

Figure 3: A group constraint in the Twitter API

caption and description for that link. These four fields
only make sense when the link itself is also passed along with
that request. Thus, we say that the link field is the base
field for these four other fields in a dependent constraint.

Dependent fields can be found in other web APIs as well.
For example, in the “add a member to a list” entry point
in the Twitter API7, if you provide the list_slug field, an
owner_screen_name or owner_id is also required.

Just like with the exclusive constraint, every API provider
has a different response when a dependent constraint is not
satisfied and these responses can be similarly categorised.
Twitter returns an error message: “You must specify ei-
ther a list ID or a slug and owner.”, while Facebook just
silently ignores all the dependent fields when the base field
is not provided.

3.3 Group constraints
Finally, a group constraint occurs when a set of fields

should either be all excluded from a request or all
included. A simple example of a group constraint is shown
in Figure 3, which shows an excerpt of the API specification
of Twitter. When creating a new tweet via the Twitter API,
the user’s current location can be provided via the lat and
long fields. However, it is an error to pass along only lat or
long: both fields must be included in the request in order
for the resulting tweet to have a location.

Group constraints can be found in many APIs including
Flickr8, where all coordinates of a person in a picture (x, y,
width and height) must be provided. Another example can

7https://dev.twitter.com/rest/reference/post/lists/
members/create
8https://www.flickr.com/services/api/flickr.photos.people.
add.html

be found in the Youtube API9 for creating a playlist, where
the onBehalfOfContentOwnerChannel is required when a
request specifies a value for the onBehalfOfContentOwner
field, and it can only be used in conjunction with that field.

When the fields of a request do not satisfy the group
constraint, both Flickr and Youtube return an error mes-
sage. Contrary to how they deal with invalid dependent
constraints, Twitter requires all group fields to be present
and silently ignores incomplete groups.

3.4 Multi-field constraints in the wild
We analysed a number of popular web APIs in order to

investigate how frequent the different multi-field constraints
occur in web APIs in the wild. For this, we analysed the
five most popular APIs on the web services directory of
ProgrammableWeb10 and, for every web API, we searched
for occurrences of the three multi-field constraints. Table 1
summarises our results.

In every API specification, we have looked for keywords
that indicate a multi-field constraint. Exclusive constraints
are often indicated with either or one of, dependent con-
straints can be specified with keywords such as additional
and providing, and keywords for group constraints include
corresponding and providing.

Table 1: Multi-field constraints in web APIs
Exclusive Dependent Group

Google Maps 10 0 2
Twitter 32 14 6
Youtube 11 0 0
Flickr 12 0 1
Facebook 11 5 1

As can be seen from Table 1, every multi-field constraint
occurs in more than one API. Exclusive constraints are the
most common multi-field constraint in web APIs with a to-
tal of 76 occurrences. Out of 98 entry points, Twitter has 32
entry points with an occurrence of an exclusive constraint,
which means that on average, one out of three entry points of
Twitter require some of the fields to be exclusive. All other
APIs also have at least 10 instances of the exclusive con-
straint in their API specification. Although less frequent,
group constraints occur in four of the five APIs we have
investigated. Finally, both Facebook and Twitter have de-
pendent constraints in their API specification.

From this section we can conclude that multi-field con-
straints are omnipresent in modern web APIs and that the
way an API responds to a request that does not satisfy these
constraints is not always well defined. The API will ei-
ther respond with an, often vague, error message or silently
ignore part of the request. This signifies the need for a
machine-readable API specification that enables the speci-
fication and automatic verification of these multi-field con-
straints.

4. MACHINE-READABLE SPECIFICATIONS
FOR WEB APIS

It is not an easy task to verify that every call to an API in
a web application is correct. Most API providers only have
9https://developers.google.com/youtube/v3/docs/
playlists/insert

10http://www.programmableweb.com/apis/directory



a textual version of their specification, which forces devel-
opers to manually verify every call to an API in their appli-
cation. For a tool to verify the correctness of API calls in a
web application, it needs a machine-readable version of the
API specification. Throughout the years, many machine-
readable specifications for APIs have been proposed. In this
section, we look at existing machine-readable specifications
and how they fit for web APIs, including the multi-field con-
straints we identified in the previous section.

Machine-readable specifications for web APIs have been
around for quite some time (such as WSDL[4]), but re-
cently, many new machine-readable web API specification
languages have emerged. These new languages often come
together with tools that improve the development and test-
ing of the documentation and offer code generation. Ta-
ble 2 lists the four most popular specifications on Stackover-
flow, given the list of machine-readable API specifications on
Wikipedia: OpenAPI specification (formerly known as the
Swagger specificaton), MSON (Markdown Syntax for Object
Notation), RAML (RESTful API Modeling Language) and
WADL[11] (Web Application Description Language). We
also include JSON Schema in our discussion, because it will
prove to be an interesting specification for web APIs as well.
Note that JSON Schema is used for describing only one ob-
ject at the time, while the others are specifications for an
entire web API.

Table 2 lists for every specification which constraints it
can express for the parameters of a request. We have lim-
ited the constraints for a single field to those in the first
eight columns of the table, but there are specifications which
support many more single-field constraints such as an exclu-
sive minimum and maximum, the minimum and maximum
length of a string, the minimum and maximum size of an
array, whether an array should have unique items, etc. We
will discuss the last three columns of the table in detail, as
these concern multi-field constraints.

Only OpenAPI and JSON Schema support multi-field con-
straints. The allOf constraint is present in both OpenAPI
and JSON Schema: it expresses that every constraint in a
set of constraints must be valid. This can range from simple
constraints such as “the parameter must be a string and its
length must be 5” to combining multiple constraints on the
same object. For example, Listing 2 shows a snippet of an
JSON Schema where we are defining a schema for an object
that must have a name field and an age field, where name
must be a string and age must be a number. However, the
allOf is not suited for any of the multi-field constraints we
have identified in the previous section.

Listing 2: allOf constraint
1 {"allOf" :
2 [{ "type": "object",
3 "properties": {"name":{"type":"string"}}},
4 { "type": "object",
5 "properties": {"age":{"type":"number"}}}]};

The second multi-field constraint found in JSON Schema
is dependencies, which can be used for expressing both the
dependent constraints and the group constraints from the
previous section. Dependencies require that certain other
properties must be present if a given property is present.
They are well suited for dependent constraints, as can be
seen in Listing 3. It shows the JSON Schema for an object
with three fields: a picture along with accompanying name

and date. The intention behind the JSON Schema is that
when the picture itself is not provided, the fields pic_name
and pic_date should not be present either.

For group constraints we can have a mutual dependency
as shown in Listing 4, where the long and lat fields should
only occur together.

Listing 3: Dependencies for dependent constraints
1 { type: ’object’,
2 properties: {
3 pic : { type : ’image’},
4 pic_name : { type : ’string’},
5 pic_date : { type : ’date’}},
6 dependencies : {
7 ’pic_name’ : [’pic’],
8 ’pic_date’ : [’pic’]}};

Listing 4: Dependencies for group constraints
1 { type: ’object’,
2 properties: {
3 long : { type : ’number’},
4 lat : { type : ’number’}},
5 dependencies : {
6 ’long’ : [’lat’],
7 ’lat’ : [’long’]}};

The final multi-field constraint in Table 2 is oneOf, which
is used to express that exactly one of the provided con-
straints must be valid for a given object. An example can
be found in Listing 5, where an object is considered valid
against this schema if it is valid against exactly one of the
properties. oneOf seems like a good fit for the exclusive
constraint we have introduced in Section 3, but there are
some design choices for JSON Schema that do not corre-
spond with an exclusive constraint. Consider the example
of Listing 5: we would like to have either the field a (with
type string) or b (with type number). However, an object
{a:42, b:42} would be accepted as well because a is not a
string, and therefore the first schema is not considered valid.
For the exclusive constraints found in web APIs, this is not
a good fit: even though the type is incorrect, we want to
ensure that exactly one of those fields is present.

Listing 5: oneOf for exclusive constraints
1 {"oneOf":[{"type":"object",
2 "properties":{"a":{"type":"string",
3 required:true}}},
4 {"type":"object",
5 "properties":{"b":{"type":"number",
6 required:true}}}]}

At first sight, JSON Schema seems like a good fit for de-
scribing web APIs in a machine-readable way. However, on
top of the previously mentioned differences between JSON
Schema and web API specifications JSON Schema always
accepts fields that were not described in the schema. This
is not desirable behaviour for validating web APIs: the list
of parameters should be an exhaustive list and any other
parameter should be rejected. For example, a verification
tool using JSON Schema would not be able to detect a pa-
rameter with an incorrect parameter name, as the incorrect
name would not be described in the JSON Schema and thus
be accepted.

In Sections 5.2 and 5.3, we introduce our view on the static
verification of APIs in web applications and show a proof of



Table 2: Constraints in web API specifications
Type Min Max Pattern Required Enum AllOf Dependencies OneOf

OpenAPI Spec X X X X X X X
MSON X X X
RAML X X X X X X
WADL X X X
JSON Schema X X X X X X X X X

concept by means of a runtime verification tool. To do so,
we first define our extension of the OpenAPI specification,
such that it supports multi-field constraints as well. The
OpenAPI initiative is aiming to be a vendor-neutral API
specification for web services, and is supported by many
companies such as Google and Microsoft and will likely be
used by many API providers.

5. VERIFICATION OF WEB APIS
Manually checking if every request in a web application is

correct, is a very tedious task. In this section we will discuss
current tools that try to alleviate developers from this task
by automatically verifying API requests, discuss how they do
not suffice for real-world web APIs and introduce our view
on the static verification of web APIs. Our current proto-
type tool is not yet able to statically verify API constrains
but is able to verify requests with multi-field constraints at
runtime.

5.1 Related Work

Statically Typed JavaScript.
In recent years, many statically typed versions of JavaScript

have emerged, such as TypeScript, Flow, and Tejas [14], as
well as specialised type systems for JavaScript such as [1,
12, 16]. These approaches all add a form of static typ-
ing to JavaScript, with the aim of helping developers find
type errors faster. However, none of these support thorough
type checking for web API requests. At most, they check
whether web API requests are conform to the interface for
the request library being used. For the code in Listing 1,
TypeScript only checks that a URI or URL parameter is
provided with as type string, and that the callback func-
tion has three arguments. None of the constraints imposed
by the API providers are taken into account, which means
that mistakes in API requests are not caught by the type
checker.

JavaScript Alternatives.
There is a field of research that aims to replace JavaScript

by more easily typechecked languages, which are very differ-
ent from JavaScript but can compile down to JavaScript
code. Examples of such languages are ClojureScript and
Scala. Existing JavaScript web applications will still need
to be maintained, however, and there is no clear migration
strategy proposed. Furthermore, their respective type sys-
tems do not take into account any of the multi-field con-
straints we have identified in this paper.

In a similar vein, other researchers propose to remove the
boundaries between clients and server. Languages such as
Links [6], Hop [15], Opa11, Ocsigen [3] and Ur/Web [5] allow

11http://opalang.org

developers to write web applications using a single language.
Special syntax and primitive functions define where code is
executed (either on the client or on the server) and commu-
nication between the two is abstracted away. Web applica-
tions written in this style are very easy to verify completely,
since the entire flow of requests and responses is available
to the type checker. For example, in Ocsigen you represent
interactions with the remote server using static types (and
subsequently sharing types between client and server). This
way they can ensure all HTTP requests send data of the
correct type and that all responses are likewise type safe.
We level a similar remark against these “melded” web appli-
cations, namely that they do not help in maintaining and
developing the web applications we have now. Additionally,
they also do not take into account constraints for multiple
fields.

Specifications.
In Section 4, we discussed how specification languages for

web APIs deal with multi-field constraints. We have looked
at the five most used specification languages and concluded
that here is very minimal support for multi-field constraints.
There exist many more specifications for web APIs such as
WSDL [4], WifL [8], Web IDL [2] and hRests [13]. However,
to the best of our knowledge, none of these deal with multi-
field constraints.

Security.
In [10], Guha et al. analyze how dynamic web applica-

tions interact with web services. Their approach builds up a
control-flow graph (using a context-sensitive control-flow al-
gorithm) that matches a normal usage profile for a given web
application. Every request chain that does not match this
control-flow graph is considered suspected behavior, which
is detected and blocked by a proxy they insert between client
and server. The focus of this research is on ensuring requests
are made in the correct order, rather than checking if the
constraints of a request are satisfied.

SAFEWAPI [2] is a tool that statically analyses web API re-
quests in web applications. Given an API specification in the
Web Interface Description Language, SAFEWAPI statically
checks that all arguments required are provided and that
the parameters have the correct type. However, SAFEWAPI

only checks a limited set of constraints: types of parameters,
and whether they are required or optional.

There exist many tools for the verification of requests in
web applications at runtime, both on the client- and server
side. The OpenAPI specification (based on the Swagger
specification), provides many tools that aid the developer in
writing machine-readable API documentation. An example
of such a tool is swagger-js which, given an OpenAPI spec-
ification, constructs a proxy object which the programmer
can use to communicate with the provided external API.



When a request is made, swagger-js first verifies whether
all required fields are included.

[8] introduces WIfL tools, which generates an API val-
idator from the API specifications. Contrary to our tool,
this tool is targeted for testing and developing APIs and
their documentation instead of validating requests in a web
application.

None of these tools use specifications that can express
multi-field requirements, which means they are not taken
into account by SAFEWAPI, swagger-js and the Wifl tools.

JSON Schema express is middleware for the Node.js Ex-
press framework which verifies whether the parameters of
incoming HTTP requests match a JSON Schema specifica-
tion. However, it does not automatically match entry points
to JSON schemas: the programmer needs to indicate which
schema is expected for every request in the web application.
Moreover, we have already discussed how JSON Schema is
not a good fit for web APIs in Section 4.

5.2 Static Verification of Web APIs
We envision a static type system as a means for a web

developer to statically ensure every request to a web API
happens correctly. Such type systems have traditionally
been used to enforce type safety, but nowadays they cover
other invariants as well. Verifying that all requests are cor-
rect at compile has many advantages: requests are scattered
across the entire web application and called at arbitrary
times, which means malformed request code may remain
undetected for a long time.

In order to fulfill this vision, two requirements must be
met. First of all, the type checker must have access to
machine-readable specifications of all the APIs which are
accessed by the web application. These specifications need
to describe the following for every entry point of the API:
all the parameters expected for every entry point, and any
constraints that are imposed on those parameters. These
constraints can describe both single fields (ie. type, required
or optional) and multiple fields. As we have indicated in
Section 3, constraints over multiple fields occur in many
web APIs and thus must be included in the specification
as well. We envision that API specifications are stored in a
public repository similar to the“DefinitelyTyped”repository
for TypeScript, which provides type definitions for common
JavaScript libraries. Such a public repository has two key
advantages for developers: first of all, they can save work by
reusing already existing specifications. Secondly, developers
can improve existing specifications in order to refine them
or to cope with API changes.

The second requirement for our vision is a static type sys-
tem and corresponding type checker. This type checker de-
termines the validity of every request in the web application.
To do so, it needs to check the following:

1. Whether the request is sent to an existing entry point;

2. Whether the correct HTTP method is used;

3. Whether all constraints imposed on the parameters are
met.

We would like to extend the type checker of an existing
statically typed version of JavaScript, for example Type-
Script. TypeScript is already a popular type-checked alter-
native for JavaScript, which has as advantage that defini-
tions have been written for many existing libraries, while

existing JavaScript code can be gradually transformed to
TypeScript.

To check all three bullet points, we need information about
the entry point used, which is determined by the request
method and path, both represented as parameters in the
program text. This is not easy for regular type systems,
as they often abstract these parameters to their types, even
though their values might be statically known. Dependent
types can be used as an inspiration, although these require
significant effort from the developer.

The third constraint can be partly solved by state of the
art type systems and -checkers, most notably verifying pa-
rameter types and enumeration values. Next to these sim-
ple constraints, however, there are other kinds of constraints
which need to be checked. Required and optional field con-
straints are related to the current research in nullable and
optional types [9, 17], which our type system can incorpo-
rate. Finally, the multi-field constraints we listed in Sec-
tion 3 (the exclusive constraint, the dependent constraint
and the group constraint) need to be verified as well. For
this, we envision the type checker to encompass a validation
on the structure of the request parameters.

Both requirements for verifying web APIs can be tackled
independently.

5.3 Prototype of a Runtime Verification Tool
In this section we describe a prototype runtime verifica-

tion tool, as a first step towards the static verification of web
APIs. We use this tool for exploring the design space of web
API verification in web applications, as it allows to faster
iterate over API specifications. However, we will show how
the runtime verification tool is also already useful by itself.

We have developed a prototype tool which verifies the
usage of APIs at runtime by intercepting method calls on
the well-known request library of Node.js. The code is
written in such a way that it can easily be adapted for other
request-making libraries as well, such as jQuery. Before any
request can be verified, the developer needs to provide a
specification for the APIs he intends to use:

request.addDefinition(twitterDefinition);

These specifications are JSON objects which embody the
OpenAPI specification, extended with multi-field constraints.
Listing 6 contains an abbreviated specification for the
/direct_messages/new entry point, extended with a multi-
field constraint. Lines 13 and 14 demand that exactly one
of the user_id or the screen_name parameters should be
provided.

Listing 6: OpenAPI specification of a part of the
Twitter API

1 "/direct_messages/new": {
2 "post": {
3 "parameters": [
4 { "name": "user_id",
5 "type": "integer",
6 "required": false },
7 { "name": "screen_name",
8 "type": "string",
9 "required": false },

10 { "name": "text",
11 "type": "string",
12 "required": true } ],
13 "constraints": {
14 "xor": [["user_id", "screen_name"]] },
15 "responses": { ... }}},



When the program now sends a GET or POST request,
our wrapper verifies whether all the constraints are satisfied.
If this is the case, the call is forwarded to the original re-
quest module. If not, our tool raises an error, alerting the
programmer. For example, when a developer provides both
user_id and screen_name in a request to /direct_messages/new,
the request will succeed and Twitter will silently choose A
over B without the runtime tool. However, with the runtime
tool, the developer will get notified of his mistake with a de-
tailed warning such as: Error: in a request to
https://api.twitter.com/1.1/direct_messages/new.json:
exclusive constraint not satisfied (user_id and
screen_name cannot be included together within the
same request).

6. CONCLUSION AND FUTURE WORK
In recent years, JavaScript has been the driver for respon-

sive web applications, which often communicate with ex-
ternal servers using HTTP requests. Every request needs
to match certain constraints of the API that is used. These
constraints are usually defined in a, often textual, public API
specification. In this paper we have shown the limitations
of textual API specifications in automatically verifying re-
quests. Moreover, we have shown that these constraints are
not always unambiguously defined and that some constraints
can be hidden within the description. In addition, there is
no designated way in which services respond to incorrect use
of an API. Either the API returns an error or silently ignores
part of the request or returns a custom response. All these
limitations severely limit debugging incorrect use of an API.
Furthermore, every time the API changes, developers have
to manually verify and transition their code to fit the new
API description. We have shown that there is a need for
a machine-readable API specification in order to enable ad-
vanced tool support for aiding developers in correctly using
web APIs.

Currently existing API specification languages already en-
able the specification of single-field constraints within an
API. However, in this paper we looked into several web
APIs in the wild and identified three kinds of multi-field
constraints that are commonly used. We also show the limi-
tations of existing API specification languages in expressing
these multi-field constraints.

In this paper we presented our vision for a novel API spec-
ification language based on the OpenAPI specification. Our
API specification language is a first step towards expressing
multi-field constraints. We also envision accompanying tool
support for automatic verification of API calls. We have
identified challenges for the development of a static verifi-
cation tool and presented our prototype for the automatic
verification of the use of APIs in web applications at run-
time. Going further, we intend to integrate this analysis into
TypeScript, with the aim of checking API requests at com-
pile time (given an extended API specification). Its type
system is already capable of checking single-field constraints
such as parameter types and optional or required parame-
ters, but we want to improve TypeScript such that it can
also statically type check the multi-field constraints of web
APIs.

7. REFERENCES
[1] C. Anderson, P. Giannini, and S. Drossopoulou.

Towards type inference for javascript. In ECOOP

2005-Object-Oriented Programming, pages 428–452.
Springer, 2005.

[2] S. Bae, H. Cho, I. Lim, and S. Ryu. Safewapi: Web api
misuse detector for web applications. In Proceedings of
the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2014,
pages 507–517, New York, NY, USA, 2014. ACM.

[3] V. Balat, J. Vouillon, and B. Yakobowski. Experience
report: Ocsigen, a web programming framework. ACM
Sigplan Notices, 44(9):311–316, 2009.

[4] R. Chinnici, J.-J. Moreau, A. Ryman, and
S. Weerawarana. Web services description language
(wsdl) version 2.0 part 1: Core language. W3C
recommendation, 26:19, 2007.

[5] A. Chlipala. Ur/web: A simple model for
programming the web. ACM SIGPLAN Notices,
50(1):153–165, 2015.

[6] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links:
Web programming without tiers. In Formal Methods
for Components and Objects, pages 266–296. Springer,
2007.

[7] D. Crockford. JavaScript: The Good Parts: The Good
Parts. ” O’Reilly Media, Inc.”, 2008.

[8] P. J. Danielsen and A. Jeffrey. Validation and
interactivity of web api documentation. In 2013 IEEE
20th International Conference on Web Services
(ICWS), pages 523–530. IEEE, 2013.

[9] M. Fähndrich and K. R. M. Leino. Declaring and
checking non-null types in an object-oriented
language. In ACM SIGPLAN Notices, volume 38,
pages 302–312. ACM, 2003.

[10] A. Guha, S. Krishnamurthi, and T. Jim. Using static
analysis for ajax intrusion detection. In Proceedings of
the 18th international conference on World wide web,
pages 561–570. ACM, 2009.

[11] M. J. Hadley. Web application description language
(wadl). 2006.

[12] P. Heidegger and P. Thiemann. Recency types for
analyzing scripting languages. In ECOOP
2010–Object-Oriented Programming, pages 200–224.
Springer, 2010.

[13] J. Kopecky, K. Gomadam, and T. Vitvar. hrests: An
html microformat for describing restful web services.
In Web Intelligence and Intelligent Agent Technology,
2008. WI-IAT’08. IEEE/WIC/ACM International
Conference on, volume 1, pages 619–625. IEEE, 2008.

[14] B. S. Lerner, J. G. Politz, A. Guha, and
S. Krishnamurthi. Tejas: retrofitting type systems for
javascript. In ACM SIGPLAN Notices, volume 49,
pages 1–16. ACM, 2013.

[15] M. Serrano, E. Gallesio, and F. Loitsch. Hop: a
language for programming the web 2.0. In OOPSLA
Companion, pages 975–985, 2006.

[16] P. Thiemann. Towards a type system for analyzing
javascript programs. In Programming Languages and
Systems, pages 408–422. Springer, 2005.

[17] S. Tobin-Hochstadt. Practical optional types for
clojure. In Programming Languages and Systems: 25th
European Symposium on Programming, volume 9632,
page 68. Springer, 2016.


