
Language	
 Design	
 Tools	

The following three design tools offer a safe and reliable step-wise approach into obtaining a custom
configuration language that addresses your customers needs, yields a significant & measurable
business value and that seamlessly fits with your product.

1.	
 Decider	

The configuration language decider reduces the risk of accidently implementing the wrong kind of
configuration language.

Building a configuration language is expensive; there are many decisions to be made all resulting in
very different architectures and implementation strategies. What purpose does your language serve?
How frequently does your product change and along side its configuration language?

The result of the decider is an architectural reference frame and design decisions to guide you in
selecting the proper implementation techniques ranging from:

1. Interface of the configuration language to determine the abstract representation of a
configuration

2. Mechanism to create a new product variant that will determine the engine of the
configuration language

3. Language origin of the configuration language to determine the syntactic and semantic
abstraction level of the configuration and its relationship with the implementation
language.

4. Artifact type to determine the output(s) of a configuration.
5. Artifact model to determine the semantic density of configuration.
6. Specification time to determine the relationship of the configuration language with the

development cycle
7. Extensibility of the configuration language to determine the required maintainability in the

face of changing requirements.

Offer:	

- Analyze your existing language architecture with respect to the language space.
- Identify problems and pitfalls to propose the best fitting language architecture

2.	
 Formulator	

The configuration language formulator allows you to realize the full potential of your configuration
language by finding the balance between easy but not simplistic, expressive but not complex.

For building the right configuration language you need to balance expressiveness between
specificness of your application domain (easier, reliable) and freedom of generic programming
languages (extensible, not constrained). Too specific, you canʼt express sufficient variations and there
is constant maintenance. Too generic, you involve too much complexity and there are plenty of
existing languages already.

The result of the formulator is a formal description of the syntax of your configuration language such
that your configuration language is a (1) small, (2) concise programming languages or executable
specification languages containing the (3) appropriate notations and (4) abstractions, (5) expressive power
(6) tailored and (7) optimized towards the specific problem domain or application area.

To form the language, we use a set of design patterns that occur in several existing configuration
languages:

- Block Scope shapes your configurations into clear structures.
- Method Chaining shapes your configurations as readable sentences.
- Keyword Arguments turns a method into a list of properties
- Seamless Constructor hides the technicalities of object creations
- Entity Alias allows us to use application domain concepts
- Operator Expressions us to use application domain operations
- Clean Method Calls renders a human friendly syntax
- Custom Return Objects supports configurations as readable sentences.

Offer:	

- Help you to understand the delicate trade offs when formulating a configuration language
- Analyze your existing language design with respect to our design principles
- Shape your code configurations into a configuration language
- Assist you with common patterns distilled from a large body of already existing languages.
- Finetune an existing configuration (language) implementation

Contact:	

Dr.-Ing. Sebastian Günther Dr. Thomas Cleenewerck
sebastian.gunther@vub.ac.be tcleenewerck@gmail.com

Vrije Universiteit Brussel | Department of Computer Science | SOFT Research Group

Pleinlaan 2 | 1050 Brussels | Belgium

Photos courtesy of Martijn Nijenhuis, Noel C. Hankamer

