
through a set of questions and suggests which
type of configuration language you need.

2. The configuration language formulator allows
you to design a configuration language that uses
the terms and concepts of your software. This
tool strives to find the balance between easy but
not simplistic and expressive but not complex.

Configuration languages are all around us: they support
the email rules to better manage your mailbox, decide
when to take action in home automation systems and
temperature control in regulation systems, etc. Their
benefits have been recognized widely.

In Belgium, several companies use them and new pilot
cases are starting. Join us!

Contact:

Dr.-Ing. Sebastian Günther
sgunther@vub.ac.be

Dr. Thomas Cleenewerck
tcleenewerck@gmail.com

Vrije Universiteit Brussel
Department of Computer Science
SOFT Research Group
Pleinlaan 2
1050 Brussels
BELGIUM

Website: soft.vub.ac.be/varibru

www.varibru.be

Configuration Languages

Serve	
 more	
 customers	
 with	
 less	
 programming	

Software provides the opportunity for customer-tailored
configuration. However, conventional software
engineering techniques lack the necessary power to
facilitate the configuration – quite the opposite, more
variability often means more pain.

Configuration languages are specifically crafted domain-
specific languages built to hide the technical difficulties
of programming and offering sufficient expressive
power to easily describe how to customize your product
for your customers.

Configuration languages offer several benefits against
conventional software engineering:

Conventional
Software Engineering

Configuration Languages

 Slow delivery times
 Maintenance of

existing variations
prevents the creation
of new product
variants

 High development
costs

 Significant risk of
breaking your product
by adding new variants

ü Faster delivery times
ü Company growth by

serving more
customers

ü Reduce the costs of
adapting your product

ü Strengthen your
market position by
anticipating customer
demands and increase
your market share by
using new distribution
channels

Applying Configuration Languages

 Step Example Results
1 Analysis

In the first meeting,
we discuss and help
you understanding
how your variability
challenges can be
addressed to attain
your business goals.

- Business challenge: "How to
serve more customers with
minimal adaptation to existing
software."
- Technical opportunity: “It is
impossible to maintain dozens
of products, but it is feasible
to maintain dozens of
configurations.”

2 Design
Using our tools for
designing your per-
sonal configuration
language, we will
propose a custom
variability solution
for your specific
needs.

An architectural reference
frame and design decisions to
guide you.

3 Implementation

Implement and
deploy your confi-
guration language or
tools in a lightweight
approach that seam-
lessly integrates with
your development
needs.

A configuration language
embedded in your deployment
method, to facilitate adapting
your product or to create new
product variations.

Why to use Configuration Languages?

A	
 scaleable	
 approach	
 to	
 facilitate	
 providing	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

customer-­‐specific	
 functionality	

Software companies working on a product start out with
a handful of prototypical customers for whom the
product was intended. The product is right on target
and serves those customers well. In the beginning, as a
company grows, dealing with special customer needs is
relatively easy. The development team manages to
support the differences among these clients very well:
some clients got separate product code bases and
parameters covered the basic configuration needs. Very
soon after the number of clients grow and their
requests for customer specific functionality increase,
the company realizes that conventional software
engineering doesn’t scale and that customer specific
functionality outgrows simple parameters.

What can they do to solve this?

Configuration languages simplify the software
customization. They provide a dedicated language to
specify software configuration. Not only are the
configurations easy to maintain and extend, but the
deployment of a configured program happens fast.

To design, implement, and apply configuration
languages, we provide:

1. The configuration language decider to reduce
the risk of accidently implementing the wrong
kind of configuration language. It guides you

