
Configuration Languages?
Find out what, why and how in 5 steps.

Dr. Thomas Cleenewerck
Dr.-Ing. Sebastian Günther



The power of configuration languages



1 2 3 4 5

6 7 8 9
Illustrated origami instructions www.origami-instructions.com

 Evolving from basic instructions..



Fold any figure with paper using Crease Pattern

 To a powerful notation



Fold any figure with paper using Crease Pattern



Fold any figure with paper using Crease Pattern

It has become a language to configure a 
sheet of paper to any shape



Applying this power in software
via a configuration language

yields...



pricing rules:
totalprice += 23 * workshop1
(bad ∈ articles) totalprice -= bad.price/2

email rules:
subject = ‘*varibru*’ => inbox

new customer-specific 
functionality

unit conversions:
m -> km : x/1000
km -> m : x*1000 

report data:
event:group:concert event:locaton:balzaal

... ...



Step 1:
Turn your configuration challenge into an opportunity



“how to reduce costly in-depth programmer expertise”
cost reduction



“how to reduce costly in-depth programmer expertise”

“how to offer better products”
better products

cost reduction



“how to reduce costly in-depth programmer expertise”

“how to offer better products”
better products

cost reduction

faster delivery
“how to avoid long development cycles”



“how to reduce costly in-depth programmer expertise”

“how to scale your development team”
grow by serving more customers

“how to offer better products”
better products

cost reduction

faster delivery
“how to avoid long development cycles”



“how to reduce costly in-depth programmer expertise”

“how to provide customer-specific functionality”

improve market position by 
stronger customer intimacy

“how to scale your development team”
grow by serving more customers

“how to offer better products”
better products

cost reduction

faster delivery
“how to avoid long development cycles”



“how to reduce costly in-depth programmer expertise”

“how to provide customer-specific functionality”

improve market position by 
stronger customer intimacy

“how to scale your development team”
grow by serving more customers

“how to offer better products”
better products

cost reduction

“how to outsource customer tailoring”

increase market share by 
distribution channels

faster delivery
“how to avoid long development cycles”



Step 2: 
Identify configuration problems in 

your product



time consuming
hard to get it right

varying antenna length:
cleary this antenna does not fit

customers needs

adequate parameters?

adequate process?adequate user interface?

complex rebuilds that are
easy to corrupt



non reproducable
step by step

manual

skins, accessories 

predefined 
functionality

tech
nica

l

no bus
ines

s
laws required to 
compose parts

parameters are inadequate

process  is inadequateuser interface is inadequate



Step 3:
Learn why not to vary radios

like we vary software...



rebuild process is  complex 
and easy to corrupt

the software does not fit
customers needs

time consuming
hard to get it right

adequate parameters?

adequate process?adequate user interface?



non reproducable
step by step

wizard

parameters, yes-know

predefined 
functionality

tech
nica

l

no bus
ines

s components, libraries, ...

parameters are inadequate

process  is inadequateuser interface is inadequate



Step 4:
How to vary with 

configuration languages



Programming 
language

components api lib

embedded configuration 
language

transactions

protocols
error handling

persistence
business assets

& logic

customer-
specific 

functionality 
script 

product-specific 
vocabulary

language primitives

hide technical complexity 
of programming

create a layer of common 
functionality



Step 5:
Enjoy the value of

configuration languages



“in-depth programming expertise is not cheap”
high cost



“no longer require in-depth programming expertise”
cost reduction



“no longer require in-depth programming expertise”
cost reduction

“product is not flexible”
rigid products



“offer richer functionality”
better products

“no longer require in-depth programming expertise”
cost reduction



“offer richer functionality”
better products

“no longer require in-depth programming expertise”
cost reduction

“requests for custom functionality is a time consuming business”
slow delivery



“configurations are concise and easy to write and adapt”
faster delivery

“offer richer functionality”
better products

“no longer require in-depth programming expertise”
cost reduction



“configurations are concise and easy to write and adapt”
faster delivery

“offer richer functionality”
better products

“no longer require in-depth programming expertise”
cost reduction

“every customer requires detailed HR planning”
cannot easily serve new customers



“no need to scale the whole team”
grow by serving more customers

“configurations are concise and easy to write and adapt”
faster delivery

“offer richer functionality”
better products

“no longer require in-depth programming expertise”
cost reduction



“no need to scale the whole team”
grow by serving more customers

“configurations are concise and easy to write and adapt”
faster delivery

“offer richer functionality”
better products

“no longer require in-depth programming expertise”
cost reduction

“customers favor a more flexible and tailored solution”

loosing market position by 
weak customer intimacy



“ship new behavior and respond to specific requests”

improve market position by 
stronger customer intimacy

“no need to scale the whole team”
grow by serving more customers

“configurations are concise and easy to write and adapt”
faster delivery

“offer richer functionality”
better products

“no longer require in-depth programming expertise”
cost reduction



“ship new behavior and respond to specific requests”

improve market position by 
stronger customer intimacy

“no need to scale the whole team”
grow by serving more customers

“configurations are concise and easy to write and adapt”
faster delivery

“offer richer functionality”
better products

“no longer require in-depth programming expertise”
cost reduction

“every new customers requires your time”

no partner to increase 
market share



“ship new behavior and respond to specific requests”

improve market position by 
stronger customer intimacy

“no need to scale the whole team”
grow by serving more customers

“configurations are concise and easy to write and adapt”
faster delivery

“offer richer functionality”
better products

“no longer require in-depth programming expertise”
cost reduction

“subcontract integrators to serve customers”

increase market share by 
distribution channels



Summary



A thin layer tailored on top of your business 
assets to script customer-specific functionality 
using your product-specific vocabulary. It hides 
the complexity of programming.

what:

how: Embed in your programming language a new 
language abstraction layer on top of your 
business assets.  It’s cheap, light weight and 
requires no special programming skills.

benefit: Adapt your product without in-depth technical 
expertise. It’s quick, less error-prone, easy to 
write and easy to change.



Dr-Ing. Sebastian Günther 
sgunther@vub.ac.be

dr. Thomas Cleenewerck
tcleenew@vub.ac.be


