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ABSTRACT
In recent years, stream processing has become the de facto para-
digm to process any kind of real-time data in many kinds of ap-
plications. Different libraries, frameworks and techniques exists
which aim to make it easy to build stream processing applications
in many modern programming languages…Libraries such as Reac-
tive Extensions, Akka Streams, or web frameworks such as React
and Vue are all based on the idea of data streams that are con-
nected to graphs to model the flow of data in applications. To the
best of our knowledge, there exist no formalism which captures
the essential core semantics of these approaches in a straightfor-
ward, easy to understand, manner: namely its graph-based pro-
gram structure and the turn-based propagations of values through
this graph. In this paper, we present Karcharias, a formalisation
of reactive programming (a paradigm that shares many core ideas
found in the various aforementioned libraries and frameworks)
that is built from first principles. Instead of extending an existing
language with a graph-based stream processing framework, and
formalising this integrated language, we formalised the reactive
programming paradigm without relying on a base language (e.g.,
the 𝜆-calculus). Using our formalism, we show how reactive pro-
grams (and thus, stream-based programs in general) need a way
to construct a graph and to propagate events through that graph,
even in the absence of a base language.

CCS CONCEPTS
• Software and its engineering→ Data flow languages; •The-
ory of computation→ Operational semantics.
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1 INTRODUCTION
Stream processing has become a popular paradigm to process data
in various kinds of applications. One approach of stream process-
ing that has gained popularity in recent years is called reactive pro-
gramming (RP) [2, 11]. Reactive programs declare the dependen-
cies (i.e. constraints) between the time-varying signals that make
up the program. Whenever a signal updates its value, all signals
that depend on that signal are updated by recomputing their val-
ues, according to the specified constraints.

In this paper, we make a distinction between two different im-
plementation styles (strains) for reactive programming languages
(RPLs). Function-based reactive programming languages usuallymodel
reactive programs using signal functions1. At each turn (i.e. change
of an external, with respect to the RP program, input source that
causes a re-computation), a value is propagated through a signal
function (which may be composed out of different, smaller, sig-
nal functions) to not only produce an output, but also the signal
function to use in the next turn. Examples of languages that im-
plement function-based RP with signal functions, and variations
thereof, are Yampa [24], SFRP [4], and Dunai [27].

Graph-based reactive programming languagesmodel reactive pro-
grams as graphs. During the evaluation of graph-based reactive
programs, a graph data structure is constructed (often refered to
as the dependency graph) where nodes correspond with the signals
and (directed) edges between the nodes correspond with the data
dependencies between these edges. Instead of applying functions
that produce values and (updated) signal functions, turns in graph-
based RP are performed by propagating values along the edges of
the dependency graph. A node (signal) is updated when one of its
dependent nodes changes. This update is performed once all the
dependent nodes have had a chance to update (to ensure the ab-
sence of glitches [5]), e.g., by performing the updates in the depen-
dency graph in topological order (an approach often used when
the dependency graph is static) or by using a height-ordered pri-
ority queue. Examples of RPLs that implement graph-based RP are
FrTime [5], Frappé [6], REScala [28], and Flapjax [23].

Roughly speaking, each strain finds its origin in a different re-
search community. Function-based RPLs find their origins in the
world of functional programming (and are often implemented in
functional programming languages like Haskell and Agda). They
encourage programmers to compose programs in a pointfree style
using operators like >>>, &&& and *** [4], often by making use

1Before signal functions, many function-based RPLs modeled signals as pure func-
tions that return, given a timestamp [11] (or a list of timestamps, e.g., as in [34]), the
corresponding value(s) of a signal. We ignore their existence in the rest of the paper
since they have been mostly superseded by signal functions [20].

1

https://orcid.org/0000-0002-2100-4559
https://orcid.org/0000-0002-2932-8208
https://orcid.org/0000-0002-5229-5627
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Bjarno Oeyen, Joeri De Koster, and Wolfgang De Meuter

x

y

+

*

o1

o2

Figure 1: Simple graph-based reactive program visualised as
a Directed Acyclic Graph (DAG).

of arrows [14]. Research has been focused on supporting higher-
order reconfigurations of RP programs (via so-called switch oper-
ators, of which there usually exist multiple with subtle differences
in semantics), and using type systems to statically verify (e.g.,) live-
ness [1, 30]. On the other hand, graph-based RPLs often find their
origins in object-oriented programming (e.g., in Scala [21]). Re-
search on graph-based RPLs has been focused on efficiency (e.g.,
Emfrp [29], REScala [10], and ReactiFi [32]), integrating reactive
code with imperative code (e.g., FrTime [15], and Stella [9]) and
making RP work for distributed applications (e.g., XFRP [31], and
AmbientTalk/R [3]). Of course, there exists research that aims to
enhance function-based RPLs on similar fronts, although from a
much more theoretical perspective [19, 35, 36].

In this paper, we aim to formalise graph-based reactive pro-
gramming from a first principle approach. We do this by formalis-
ing Haai, a paradigmatically pure graph-based RPL. Unlike many
other RPLs, Haai programs are constructedwithout relying on non-
reactive base language. In other words, Haai does not have func-
tions, only reactors (first-class graphs that describe (a part of) a
reactive program). Therefore, Haai lacks the notion of lifting.

Our formalisation of Haai, which we have named Karcharias,
provides an intuitive understanding of graph-based RP. The small-
step semantics provide a clear formalisation of how RP programs
operate over time (e.g., by recomputing the program with respect
to some current values). By formalising reactive programs as graphs
where nodes have values that change over time, it is easier to rea-
son about the memory allocation and consumption behaviour of
RP programs, compared to most formalisations of function-based
RPLs [16–18] which often relies on recursion and various memory-
intensive operations to model the time-varying nature of signals.

2 A BRIEF INTRODUCTION TO HAAI
We first present a brief informal overview of Haai, the reactive pro-
graming language which we have based our formalisation on. In-
spired by Lisp and Scheme, Haai uses s-expression syntax to de-
note reactors. Reactors are the core abstraction of Haai, they de-
scribe the structure of a reactive program. For example, the reac-
tive program

(defr (sum-and-product x y)
(out (+ x y)

(* x y)))

defines a reactor (as a DAG, see Figure 1) that computes both
the sum and product of two numbers and “returns” both of them
(out is a special syntactic construct used to define multiple sink
nodes; it is similar to values in Scheme). Instead of applying a
procedure or a function as in non-reactive languages, reactors
in Haai are deployed (i.e. instantiated) on signals whose value

may change over time. We call an instantiation of reactor a de-
ployment. For example, assuming that there are two signals time
and velocity, the sum-and-product reactor can be deployed as
(sum-and-product time velocity). This produces two new sig-
nals, containing respectively the sum and product of the two in-
puts, which will be updated whenever either time or velocity
(or both) changes. The exact approach taken to update signals in
an efficient manner is out of the scope of this paper.

Haai is a higher-order reactive language which allows dynamic
reconfigurations of the dependency graph, without the need for
carefully-designed switching operators. For example, in
(defr (twice r x)

(r (r x))

a higher-order reactor is defined which deploys a reactor given
as input twice, connecting the sinks of one deployment to the
sources of the second. As reactors are first-class values, a signal
can carry them as their current value. For example, the expression
(if (even? time) + -) corresponds with a signal whose value
is either the + reactor or the - reactor, depending on whether time
is even or odd. In other words, deployments of higher-order reac-
tors contain holes which, at run-time, are filled in with the deploy-
ment of the reactor carried by the operator signal.

Deployments in Haai are disabled if they are not in use, which
happens if the operator signal carries a different reactor w.r.t. a
previous turn. Deployments are thus re-enabled when the operator
signal carries the same reactor again.We call this kind of semantics
toggle semantics.

Finally, Haai has support for anonymous reactors. For example,
(defr (make-twice r)

(rho (x)
(r (r x))))

uses the rho syntactic form to create an anymous reactor. Reactors
employ lexical scoping. In other words, the two occurrences of r
in (r (r x)) refer to the signal node r as defined in the first line.
When the anonymous reactor is deployed, both rs refer to the r
signal from its lexical scope. We call these reactors with lexical
scope captures as they capture the signals from their environment
(captures are similar to closures in non-reactive languages).

This concludes our brief overview of Haai. We refer to earlier
work on Haai for more details about the language: e.g., the ability
to recursively generate reactive programs is discussed in [25] and
state management with deployments is discussed in [26].

3 OPERATIONAL SEMANTICS
This section presents the small-step operational semantics of
graph-based reactive programming. An implementation of these
semantics, using PLT Redex [12], can be found online2.

3.1 Syntax
Figure 2 presents an overview of the syntax of Karcharias. In Kar-
charias, a reactive program (𝑝) consists of a set of reactor defini-
tions. Each reactor definition gives a name to a graph. In graph-
based reactive programs, the order of the connections in the graph
matters. Inspired by A-Normal Form [13], we encode reactors (i.e.
2https://gitlab.soft.vub.ac.be/boeyen/karcharias/
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𝑝 ∈ Program ∶∶= 𝑅
𝑟 ∈ 𝑅 ⊆ Reactor ∶∶= R⟨𝑥, 𝑁 ⟩
𝑛 ∈ 𝑁 ⊆ Node ∶∶= (𝑖, 𝑛𝑡, 𝑜)
𝑖 ∈ Input Port ∶∶= 𝑥 ∣ 𝑣

𝑛𝑡 ∈ Node Type ∶∶= RHO⟨𝑁 ⟩
∣ DEPLOY

𝑜 ∈ Output Port ∶∶= 𝑥
𝑥 ∈ 𝑋 ⊆ Name

{𝑖𝑛𝑖,𝑗 , 𝑜𝑢𝑡𝑖,𝑗 ∣ ∀𝑖 ∈ N+,∀𝑗 ∈ N} ⊆ 𝑋
𝑣 ∈ 𝑉 ⊆ Domain Value

Figure 2: Syntax of Karcharias.

DAGs) as a set of nodes (𝑁 ) where each node is a triple containing
the inputs (either names refering to signals defined in the lexical
environment or defined locally by another node, or constant val-
ues that are ∈ 𝑉 3), the type of the node 𝑛𝑡 , and the outputs (which
are the names to define new signals with).

The reactive program in Figure 1 can be mod-
elled as only two nodes: one for each deployment
expression (([+, 𝑖𝑛1,0, 𝑖𝑛2,0],DEPLOY , [𝑜𝑢𝑡1,0]) and
([/, 𝑖𝑛1,0, 𝑖𝑛2,0],DEPLOY , [𝑜𝑢𝑡2,0])). The names 𝑖𝑛𝑖, 𝑗 and 𝑜𝑢𝑡𝑖, 𝑗 are
special as they denote the input and output signals of reactors:
the first index denotes the index of the source or sink signal
(1-based indexing), and the second index denotes the scoping
level (similar to De Bruijn Indices which were originally invented
for 𝜆-calculi [8]; using 0-based indexing) in case of nested reactor
definitions (without nested reactor definitions or lexical scoping
there is no need for the second index). Note that the operator
itself is one of the inputs of the DEPLOY , in order to support
dynamic reactive programs (programs whose dependency graph
can change at run-time).

There are two supported node types (𝑛𝑡 ) in Karcharias. The
aforementioned DEPLOY nodes denote deployments of DAGs (i.e.
holes in one graph that have to be filled in, at run-time, by another
DAG). RHO⟨𝑁 ⟩ nodes denotes in-line DAG (reactor) definitions
that have access to their lexical scope. I.e. a signal defined in the
right-hand side of a node 𝑛 is also accessible by the RHO⟨𝑁 ⟩s of
the same reactor. To disambiguate between the source signals of
the nested and the surrounding DAGs, the source signal accessible
as 𝑖𝑛1,0 in the surrounding DAG is accessible as 𝑖𝑛1,1 in the nested
DAG.The same applies to sink signals (𝑜𝑢𝑡1,0 becomes 𝑜𝑢𝑡1,1 in the
nested DAG).

In the rest of the paper, we assume that programs are well-
formed: we assume that the inputs and outputs are correct for ev-
ery node4, that reactors are acyclic, that there are no free variables
(except for globally-defined signals and operators such as time and
+, which are discussed later), and that each reactor has at least one
sink node (i.e. 𝑜𝑢𝑡1,0 has to be defined in everyR⟨𝑥, 𝑁 ⟩).

3.2 Semantic Entities
Reactive programs in Karcharias are executed in turns. In each
turn, the values of a certain set of output signals are computed in
terms of the values of certain external time-varying signals (such
as time). We first explain the intra-turn semantics in Sections 3.2
3Our formalisation is agnostic to the types of the domain (base) values. One can think
of𝑉 as being the set of numbers, booleans, strings…
4At least one input (the operator) and one output for each DEPLOY . All captured
signals of 𝑁 in RHO are present in the inputs of the nodes, and exactly one output
(of which the capture will be stored).

𝑘 ∈ 𝐾 ⊆ Configuration ∶∶= K⟨𝐸, 𝐼𝑑 ,𝑊 , 𝑆, 𝐷⟩
𝑤 ∈𝑊 ⊆ Deployment Wiring ∶∶= W⟨𝜄𝑑 , 𝑁 , Σ⟩
𝑠 ∈ 𝑆 ⊆ Deployment Snapshot ∶∶= S⟨𝜄𝑑 , Σ⟩

𝑐 ∈ Capture ∶∶= C⟨𝜄𝑐 , 𝑁 , Σ⟩
𝜎 ⊆ Signal ∶∶= 𝑣

∣ SGLB ⟨𝑥⟩
∣ SREF ⟨𝜎, 𝑥⟩
∣ SDEP ⟨𝜄𝑏 , 𝜎, 𝜎⟩

𝑖 ∶∶= . . . ∣ 𝜎
𝑣 ∶∶= . . . ∣ 𝑝 ∣ 𝑐 ∣ 𝜄𝑑 ∣ 𝑣

𝐸 ⊆ Σ ⊆ Value Environment ∶∶= {𝑥 ↦ 𝑣, . . .}
Σ ⊆ Signal Environment ∶∶= {𝑥 ↦ 𝜎, . . .}
𝐷 ⊆ Toggle Environment ∶∶= {(𝜄𝑏 , 𝜄𝑐)↦ 𝜄𝑑 , . . .}

𝜄𝑏 ∈ 𝐼𝑏 ⊆ Branching Point Id, 𝜄𝑐 ∈ 𝐼𝑐 ⊆ Capture Id, 𝜄𝑑 ∈ 𝐼𝑑 ⊆ Deployment Id
𝑝 ∈ Primitives, 𝛿𝑝 ∶ 𝑉∗→ 𝑉∗ (for every 𝑝)

Figure 3: The semantic entities of Karcharias used in the op-
erational semantics.

to 3.4, and later use the intra-turn semantics to define in the inter-
turn semantics in Section 3.5.

The semantic entities needed to express the intra-turn seman-
tics are shown in Figure 3. Remember that, at run-time, a reactive
program (i.e. a capture) is instantiated into a number of deploy-
ments, which has (usually) created new signals.These signals can
then produce values in every turn. We describe these semantic en-
tities in order, before discussing the configurations and the prim-
itive operations.

3.2.1 Captures. Captures are represented as a tuple containing a
unique identifier 𝜄𝑐 , a set of nodes 𝑁 , and a lexical environment Σ,
which contains the bindings for the captures signals. Named reac-
tors (those defined in 𝑝) have, among other entities, the external
signals (such as time) in scope. We will explain this in further de-
tail in Section 3.3.

3.2.2 Deployments. Deployments are represented by two seper-
ate entities: a deployment wiring, and a deployment snapshot. In-
formation about the structure of the reactive program’s depen-
dency graph is maintained in a deployment wiring. Each wiring
consist of an unique identifier 𝜄𝑑 (which identifies the deployment),
a set of uninstantiated nodes 𝑁 and a signal environment Σ. Infor-
mation about the current values of the signals of a deployment are
stored in a deployment snapshot. Each snapshot consist of a unique
identifier 𝜄𝑑 (which is always shared with a deployment wiring)
and a signal environment Σ. In Section 3.4, we will describe the re-
duction rules that operate on these wirings (i.e. to go from a set of
nodes 𝑁 to a signal environment Σ) and snapshots (i.e. to convert
the signal environment Σ into a value environment 𝐸). The main
idea here is that the deployment wirings can be retained across
turns as they represent the structure of the dependency graph, in-
dependent of the values of the time-varying values.

When the program is running, the DEPLOY nodes will need
to be replaced with instantiated deployments. To avoid needlessly
re-creating parts of the dependency graph, it is important that the
deployments that have filled in the holes introduced DEPLOY are
kept in-between turns. Thus, every instantiated deployment node
is represented by a branching points from 𝐼𝑏 , and all information
regarding the location is stored in 𝐷 (a toggle environment).

3.2.3 Signals. There are four types of signals in Karcharias. 1) 𝑣
signals are constant signals whose value never changes over time,
which does not only include the domain values from Section 3.1,
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but also primitive operation objects (see Section 3.2.5), captures,
deployment identifiers (𝜄𝑑 ) as well as sequences of values (which
is used to represent the sink values of any of the primitive opera-
tions). 2) SGLB⟨𝑥⟩ signals are references to external signals, whose
current value is stored in the configuration. 3) SREF ⟨𝜎, 𝑥⟩ refer-
ences a signal with a particular name (second element) as stored in
a deployment’s (first element5) signal environment. 4) And finally,
SDEP ⟨𝜄𝑏 , 𝜎, 𝜎⟩ correspondswith an (internal) signal that represents
the creation of a new deployment (the 𝜄𝑏 represents a unique iden-
tifier for every branching point, 𝜎 represents the operator signal,
and 𝜎 the operand signals).

3.2.4 Configurations. The state of a turn of a reactive program is
thus modelled as a configuration 𝑘 which consists of a value en-
vironment 𝐸 containing the values of the external signals, a set of
deployment identifiers that are active in the current turn 𝐼𝑑 (i.e.
to model toggle semantics), a set of deployment wirings𝑊 , a set
of deployment snapshots 𝑆 (of the active deployments) and a tog-
gle environment 𝐷 (which stores, for every branching point 𝜄𝑏 the
captures, as identified by 𝜄𝑐 that it has already instantiated into a
deployment 𝜄𝑑 ).

3.2.5 Primitive Operations. Finally, we assume a set of primitives
that are available to the operational semantics. Every primitive (de-
noted as a 𝑝), has a corresponding function 𝛿𝑝 . We assume that
every 𝛿𝑝 is total (w.r.t. the values ∈ 𝑉 ).

3.3 Initial Configuration
Figure 4 shows how the initial configuration is constructed, given
a reactive program 𝑝 . The initial configuration 𝑘𝑖𝑛𝑖𝑡 contains an
initial wiring in 𝑊𝑖𝑛𝑖𝑡 that deploys the main reactor (as defined
in 𝑝) to bootstrap the reactive program. It also contains a value
environment, which contains the bindings for the captures for the
reactors defined in 𝑝 (these are created by applying the function
ntoc on each 𝑁𝑖 ), as well as the initial values of the external signals
(such as time, …). The mechanism that determines the later values
will be defined later as described in Section 3.5.

In the definition of𝑊𝑖𝑛𝑖𝑡 and ntoc an initial signal environment
Σ𝑖𝑛𝑖𝑡 is used. This environment contains bindings for: 1) The prim-
itive operations. To disambiguate between the symbol + and the
object representing its computation, the latter is typeset as ⌈+⌉. We
only provide +, but this set can easily be extended with more. 2)
The primitive reactors in 𝑝 (binding their name to an SGLB . And
3) the external time-varying signals. Similar to the primitive oper-
ations, we only assume the existence of 𝑡𝑖𝑚𝑒 . However, this can
also easily be extended.

3.4 Reduction Rules
After having presented the syntax and the semantic entities, we
present the small-step operational intra-turn semantics.Wemake a
distinction between two types of rules: wiring rules (or w-rules for
short) that reconfigure the dependency graph and snapshot rules
(or s-rules for short) that determine the values of the signals in a
deployment during a given turn. Semantically, both kinds of rules
can be executed non-deterministically in different regions of the
5This is also encoded as a signal to support higher-order deployments: i.e. the deploy-
ment (in which a named signal is referenced by) can be time-varying.

reactive programs graph. Thus, there is only one reduction rela-
tion describing the intra-turn semantics (→𝑘 ). However, as most
w-rules only operate onW objects, and a large part of the s-rules
only on S objects: we define two helper reduction relations (→𝑤
and→𝑠 ) that operate only on a singleW or S object.

3.4.1 Wiring Rules. The reduction rules that perform wiring-level
operations are presented in Figure 5. In short, the goal of these
rules is to go from a set of nodes (𝑁 ) to a signal environment (Σ)
containing all the signals available to a deployment of a capture.

The w-Ref rule replaces one of the named inputs of a node (left-
hand side) with the actual signal as stored in Σ. This rule ensures
that all the other rules can operate with only signals (including
constant signals) as inputs..

The purpose of the w-deploy rule is to create a hole that
will be filled in by the s-rules with the actual deployment. In
summary, w-deploy makes the following changes to Σ. First,
it binds SDEP ⟨𝜄𝑏 , 𝜎, 𝜎⟩ to a unique name 𝑥 . This 𝑥 will be re-
duced, by the s-rules, into a 𝜄𝑑 . The 𝜄𝑏 uniquely identifies the
hole. And secondly, for every output 𝑜𝑖 in 𝑜 , 𝑜𝑖 will be bound to
SREF ⟨SREF ⟨𝜄𝑑 , 𝑥⟩, 𝑜𝑢𝑡𝑖,0⟩. The inner SREF will later be reduced to
the 𝜄𝑑 that the SDEP bound to 𝑥 reduces to, and the outer SREF

will then be reduced into the correct outgoing (sink) value of that
deployment.

The w-Rho rule creates a new capture (with a fresh, unique, 𝜄𝑐 )
that contains the current environment (with bindings for the sig-
nals that 𝑁 depends on). To let the nested DAGs have access to
the sources and sinks of the surrounding environment, the w-Rho
rule renames all input and output signals in Σ by incrementing its
second index (which denotes the nesting level).

Finally, thew-congRuence rule connects the local w-rules (→𝑤 )
to the global reduction relation (→𝑘 ). This is the only global w-rule
as the purpose of the w-rules is to configure the dependency graph
without using the current values of any signals, and that no w-rule
needs to interact with another deployment. Thus, there is no need
for other global w-rules.

3.4.2 Snapshot Rules. Figure 6 shows the snapshot reduction
rules. These rules describe how a signal environment of a deploy-
ment is reduced into a value environment. Most of these rules
make use of E which defines an evaluation context for signal envi-
ronments. I.e. the reduction rules listed in Figure 6 are performing
a kind of graph reduction. The evaluation context E therefore looks
for a (sub)expression for a signal present in Σ which can then be
reduced using the s-rules.

The s-self-Ref rule replaces a SREF refering to a local name
with the result of looking up that name in its own environment
(only if it is a value, and not a yet-to-be-reduced signal).

The s-deploy-pRimitive and s-tuple-Ref rules are used for the
primitive operations.The functions that model the primitive opera-
tions (i.e. the 𝛿𝑝 functions) always return multiple values.Thus the
s-deploy-pRimitive rule produces a list of values (∈ 𝑉∗) and, the s-
tuple-Ref is therefore used to get a value from the list (depending
on the index 𝑖 of 𝑜𝑢𝑡𝑖,0).

Similar to w-congRuence, the s-congRuence rule connects the
local s-rules to the global reduction relation→𝑘 .
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Given 𝑝 = {R⟨𝑥1, 𝑁1⟩, . . . ,R⟨𝑥∣𝑝∣, 𝑁∣𝑝∣⟩} (∣𝑝∣ is the total number of user-defined reactor definitions):
𝑘𝑖𝑛𝑖𝑡 = K⟨𝐸𝑖𝑛𝑖𝑡 , {𝜄𝑑,𝑚𝑎𝑖𝑛},𝑊𝑖𝑛𝑖𝑡 ,∅,∅⟩
𝐸𝑖𝑛𝑖𝑡 = {𝑥𝑖 ↦ ntoc(𝑁𝑖) ∣∀𝑖 ∈ [1..∣𝑝∣]} ∪ {𝑡𝑖𝑚𝑒 ↦ 0, . . .}
𝑊𝑖𝑛𝑖𝑡 = {W⟨𝜄𝑑,𝑚𝑎𝑖𝑛 , {([𝑚𝑎𝑖𝑛],DEPLOY , [𝑜𝑢𝑡(𝑖,0) ∣∀𝑖 ∈ [1..∣𝑜∣𝑚𝑎𝑖𝑛]])}, Σ𝑖𝑛𝑖𝑡 ⟩}
Σ𝑖𝑛𝑖𝑡 = {+↦ ⌈+⌉, . . .} ∪ {𝑥𝑖 ↦ SGLB ⟨𝑥𝑖 ⟩ ∣∀𝑖 ∈ [1..∣𝑝∣]} ∪ {𝑡𝑖𝑚𝑒 ↦ SGLB ⟨𝑡𝑖𝑚𝑒⟩, . . .}

Where ∣𝑜∣𝑚𝑎𝑖𝑛 is the number of outputs defined in the main reactor in 𝑝 , and ntoc(𝑁) = C⟨𝜄𝑐 , 𝑁 , Σ𝑖𝑛𝑖𝑡 ⟩ (where 𝜄𝑐 fresh)

Figure 4: Initial configuration, given a reactive program 𝑝.

Local Wiring Rules (→𝑤 ):

(w-Ref)
W⟨𝜄𝑑 , {(𝑖𝑙 § [𝑥] § 𝑖𝑟 , 𝑛𝑡, 𝑜)} ⊍ 𝑁, Σ⟩

→𝑤 W⟨𝜄𝑑 , {(𝑖𝑙 § [Σ(𝑥)] § 𝑖𝑟 , 𝑛𝑡, 𝑜)} ∪ 𝑁, Σ⟩

(w-deploy)
𝑥, 𝜄𝑏 fresh

Σ
′ = Σ[𝑥 ↦ SDEP ⟨𝜄𝑏 , 𝜎, 𝜎⟩][𝑜𝑖 ↦ SREF ⟨SREF ⟨𝜄𝑑 , 𝑥⟩, 𝑜𝑢𝑡𝑖,0⟩ ∣∀𝑖 ∈ [1..∣𝑜∣]]

W⟨𝜄𝑑 , {([𝜎] §𝜎,DEPLOY , 𝑜)} ⊍ 𝑁, Σ⟩→𝑤 W⟨𝜄𝑑 , 𝑁 , Σ
′⟩

(w-Rho)
𝜄𝑐 fresh Σ𝑐 = shift_io(Σ) 𝑐 = C⟨𝜄𝑐 , 𝑁𝑖𝑛𝑛𝑒𝑟 , Σ𝑐 ⟩

W⟨𝜄𝑑 , {(𝜎, RHO⟨𝑁𝑖𝑛𝑛𝑒𝑟 ⟩, [𝑜])} ⊍ 𝑁, Σ⟩→𝑤 W⟨𝜄𝑑 , 𝑁 , Σ[𝑜 ↦ 𝑐]⟩

Where shift_io(Σ) = {𝑥′ ↦ 𝜎 ∣∀𝑥 ↦ 𝜎 ∈ Σ, 𝑥′ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑖𝑛𝑖,𝑗+1 𝑥 = 𝑖𝑛𝑖,𝑗
𝑜𝑢𝑡𝑖,𝑗+1 𝑥 = 𝑜𝑢𝑡𝑖,𝑗
𝑥 otherwise

}

Global Rules (→𝑘 ):

(w-congRuence)
𝑤 →𝑤 𝑤

′

K⟨𝐸, 𝐼𝑑 , {𝑤} ⊍𝑊,𝑆, 𝐷⟩→𝑘 K⟨𝐸, 𝐼𝑑 , {𝑤
′} ∪𝑊,𝑆, 𝐷⟩

Figure 5: Wiring (graph construction) rules of Karcharias.
The § symbol denotes concatenation.

In the presence of toggle semantics, deployments can only be ac-
tivated (i.e. creating an S from aW) if and only if the correspond-
ingW is complete (i.e. its signal environment Σ has been fully pop-
ulated, which is the case once 𝑁 is empty) and the deployment is
supposed to be active in the current turn.The s-activate rule does
exactly that: when 𝜄𝑑 ∈ 𝐼𝑑 (the set of active deployments), and no
existing S exists for 𝜄𝑑 (in the current turn), a new S is created and
added to 𝑆 if the correspondingW is complete. Note that it is im-
possible for a 𝜄𝑑 to be in 𝐼𝑑 without there being a correspondingW
(see the description of the s-deploy-new and s-deploy-existing
rules).

The s-Ref rule (the global counterpart of s-self-Ref) replaces a
SREF with a value from a different deployment.

The s-global rule replaces a SGLB with its value as stored in 𝐸.
The s-deploy-new is the most important rule of our formalisa-

tion. Its purpose is to deploy: i.e. create a newW for a SDEP that
is present in a signal. It does so by first checking if the capture
has already been deployed earlier for the same branching point
(i.e. (𝜄𝑏 , 𝜄𝑐) ∈ dom(𝐷)). If so, the s-deploy-existing rule will be
used instead (which is explained next). If not, it is going to extend
the lexical environment stored in the capture with bindings for the
source signals as present in SDEP and then use it to create aW for
that deployment. 𝐷 is also updated to remember the deployment.

The final rule is the s-deploy-existing which is used if there ex-
ists already a deployment given the branching point and capture

Evaluation Contexts:

E ::= {𝑥 ↦ E𝜎} ⊍ Σ
E𝜎 ∶∶= ◻

∣ SREF ⟨E𝜎 , 𝑥⟩
∣ SDEP ⟨𝜄𝑏 ,E𝜎 , 𝜎⟩
∣ SDEP ⟨𝜄𝑏 , 𝑝, 𝜎 § [E𝜎 ] §𝜎⟩

Local Snapshot Rules (→𝑠 ):

(s-self-Ref)
Σ = E[SREF ⟨𝜄𝑑 , 𝑥⟩] 𝑣 = Σ(𝑥)
S⟨𝜄𝑑 , Σ⟩→𝑠 S⟨𝜄𝑑 ,E[𝑣]⟩

(s-deploy-pRimitive)
S⟨𝜄𝑑 ,E[SDEP ⟨𝜄𝑏 , 𝑝, 𝑣⟩]⟩
→𝑠 S⟨𝜄𝑑 ,E[𝛿𝑝(𝑣)]⟩

(s-tuple-Ref)
S⟨𝜄𝑑 ,E[SREF ⟨𝑣, 𝑜𝑢𝑡(0,𝑖)⟩]⟩

→𝑠 S⟨𝜄𝑑 ,E[𝑣𝑖 ]⟩

Global Rules (→𝑘 ):

(s-congRuence)
𝑠 →𝑠 𝑠

′

K⟨𝐸, 𝐼𝑑 ,𝑊 , {𝑠} ⊍ 𝑆, 𝐷⟩
→𝑘 K⟨𝐸, 𝐼𝑑 ,𝑊 , {𝑠′} ∪ 𝑆, 𝐷⟩

(s-activate)
W⟨𝜄𝑑 ,∅, Σ⟩ ∈𝑊 𝜄𝑑 ∈ 𝐼𝑑
∀𝑠 ∈ 𝑆 ∶ 𝑠 = S⟨𝜄′𝑑 , Σ

′⟩, 𝜄𝑑 ≠ 𝜄
′
𝑑

K⟨𝐸, 𝐼𝑑 ,𝑊 , 𝑆, 𝐷⟩
→𝑘 K⟨𝐸, 𝐼𝑑 ,𝑊 , {S⟨𝜄𝑑 , Σ⟩} ∪ 𝑆, 𝐷⟩

(s-Ref)
Σ = E[SREF ⟨𝜄

′
𝑑 , 𝑥⟩] 𝑣 = Σ

′(𝑥) Σ
′′ = E[𝑣]

K⟨𝐸, 𝐼𝑑 ,𝑊 , {S⟨𝜄𝑑 , Σ⟩,S⟨𝜄
′
𝑑 , Σ
′⟩} ⊍ 𝑆, 𝐷⟩

→𝑘 K⟨𝐸, 𝐼𝑑 ,𝑊 , {S⟨𝜄𝑑 , Σ
′′⟩,S⟨𝜄′𝑑 , Σ

′⟩} ∪ 𝑆, 𝐷⟩

(s-global)
Σ = E[SGLB ⟨𝑥⟩] Σ

′ = E[𝐸(𝑥)]
K⟨𝐸, 𝐼𝑑 ,𝑊 , {S⟨𝜄𝑑 , Σ⟩} ⊍ 𝑆, 𝐷⟩

→𝑘 K⟨𝐸, 𝐼𝑑 ,𝑊 , {S⟨𝜄𝑑 , Σ
′⟩} ∪ 𝑆, 𝐷⟩

(s-deploy-new)
Σ = E[SDEP ⟨𝜄𝑏 ,C⟨𝜄𝑐 , 𝑁 , Σ𝑐 ⟩, 𝜎⟩] (𝜄𝑏 , 𝜄𝑐) ∉ dom(𝐷) 𝜄

′
𝑑 fresh

𝑤 =W⟨𝜄′𝑑 , 𝑁 , Σ𝑐 [𝑖𝑛𝑖,0 ↦ 𝜎𝑖 ∣∀𝑖 ∈ [1..∣𝜎 ∣]]⟩ Σ
′ = E[𝜄′𝑑 ]

𝐷
′ = 𝐷[(𝜄𝑏 , 𝜄𝑐)↦ 𝜄

′
𝑑 ]

K⟨𝐸, 𝐼𝑑 ,𝑊 , {S⟨𝜄𝑑 , Σ⟩} ⊍ 𝑆, 𝐷⟩
→𝑘 K⟨𝐸, {𝜄

′
𝑑} ∪ 𝐼𝑑 , {𝑤} ∪𝑊, {S⟨𝜄𝑑 , Σ

′⟩} ∪ 𝑆, 𝐷′⟩

(s-deploy-existing)
Σ = E[SDEP ⟨𝜄𝑏 ,C⟨𝜄𝑐 , 𝑁 , Σ𝑐 ⟩, 𝜎⟩] 𝜄

′
𝑑 = 𝐷(𝜄𝑏 , 𝜄𝑐) Σ

′ = E[𝜄′𝑑 ]
K⟨𝐸, 𝐼𝑑 ,𝑊 , {S⟨𝜄𝑑 , Σ⟩} ⊍ 𝑆, 𝐷⟩

→𝑘 K⟨𝐸, {𝜄
′
𝑑} ∪ 𝐼𝑑 ,𝑊 , {S⟨𝜄𝑑 , Σ

′⟩} ∪ 𝑆, 𝐷⟩

Figure 6: Snapshot reduction (propagation) rules of Kar-
charias.

stored in the operator position. Instead of allocating a new deploy-
ment, it looks up the old deployment 𝜄𝑑 . The old wiring and any
accumulated state will thus be reused.

In these last two rules, we show that deployments are instanti-
ated with the argument signals (𝜎) and not the current values of
these signals. This mechanism ensures that in a next turn, no ad-
ditional work is necessary to ensure that a deployment is reacting
to the correct values, as in the new turn the lookup is performed
again if the deployment is active. Note that this is not the case for
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Semantic Entities:
𝑘𝑖𝑛𝑡𝑒𝑟 ∈ Inter-Turn Configuration ∶∶= K𝑖𝑛𝑡𝑒𝑟 ⟨𝜏, 𝑘⟩
𝜏 ⊆ Primitive Time-Varying Sources ∶∶= {𝑥 ↦ 𝑣, . . .}

�̃� ∈ 𝐾 ⊂ 𝐾 where �̃� /→𝑘

Initial Configuration:
𝑘
𝑖𝑛𝑡𝑒𝑟
𝑖𝑛𝑖𝑡 = K𝑖𝑛𝑡𝑒𝑟 ⟨𝜏𝑖𝑛𝑖𝑡 , 𝑘𝑖𝑛𝑖𝑡 ⟩

𝜏𝑖𝑛𝑖𝑡 = {𝑡𝑖𝑚𝑒 ↦ [0, 1, 2, 3, . . .], . . .}
Reduction Relation (↝):

(intRa-tuRn)
𝑘 →𝑘 𝑘

′

K𝑖𝑛𝑡𝑒𝑟 ⟨𝜏, 𝑘⟩↝ K𝑖𝑛𝑡𝑒𝑟 ⟨𝜏, 𝑘′⟩

(next-tuRn)
𝑘 = K⟨𝐸, 𝐼𝑑 ,𝑊 , 𝑆, 𝐷⟩ ∈ 𝐾

𝑘
′ = K⟨𝐸[𝑥𝑖 ↦ 𝑣𝑖,𝑛𝑜𝑤 ∣∀𝑖 ∈ [1..∣𝜏 ∣]], {𝜄𝑚𝑎𝑖𝑛,𝑑},𝑊 ,∅, 𝐷⟩

K𝑖𝑛𝑡𝑒𝑟 ⟨{𝑥𝑖 ↦ [𝑣𝑖,𝑛𝑜𝑤] § 𝑣𝑖 ∣∀𝑖 ∈ [1..∣𝜏 ∣]}, 𝑘⟩
↝ K𝑖𝑛𝑡𝑒𝑟 ⟨{𝑥𝑖 ↦ 𝑣𝑖 ∣∀𝑖 ∈ [1..∣𝜏 ∣]}, 𝑘

′⟩

Figure 7: The Inter-Turn Semantics of Karcharias.

primitive operators (using s-deploy-pRimitive and s-tuple-Ref)
as primitive deployments do not create newWs.

3.5 Inter-Turn Semantics
We now focus our attention to the inter-turn semantics. In short,
the inter-turn semantics describe how the values of the external
source signals are supplied and consequently used by the intra-
turn semantics to reduce a configuration to one where all deploy-
ments ∈ 𝐼𝑑 have a corresponding S that whose signal environ-
ments contain only values.

The inter-turn semantics are presented in Figure 7 as an exten-
sion to our current formalisation. We first define an inter-turn con-
figuration which contains all the future values of the time-varying
signals (𝜏), and an intra-turn configuration6. Furthermore, we de-
fine 𝐾 as the set of complete configurations, these are configura-
tions in which all deployments snapshots in 𝐼𝑑 have been activated
and whose signal environment contains only values. Assuming
that a configuration does not get stuck prematurily, this is the case
when a 𝑘 is irreducible by→𝑘 . Run-time errors (such as update er-
rors, type errors, arity errors…) are currently not detected in our
formalisation.

Just as with the intra-turn semantics, we define an initial inter-
turn configuration 𝑘𝑖𝑛𝑡𝑒𝑟𝑖𝑛𝑖𝑡 which contains 𝑘𝑖𝑛𝑖𝑡 from Figure 4 and a
mapping for the time-varying signals 𝜏𝑖𝑛𝑖𝑡 . In practice, the values
contained in 𝜏𝑖𝑛𝑖𝑡 cannot usually be determined a priori. However,
for the sake of simplicity we assume that all values of these signals
can be determined beforehand.

The small-step inter-turn semantics are formalised by ↝. Just
as the intra-turn semantics, the inter-turn semantics are modelled
as small-step operational semantics. The intRa-tuRn rule makes
the semantics of a turn (→𝑘 ) available to the inter-turn seman-
tics. It reduces an incomplete configuration 𝑘 to a configuration 𝑘′.
The next-tuRn rule inserts the new values of the external time-
varying values from 𝜏 into the current turn’s final configuration 𝑘 ,
in order to create a new 𝑘′ in which all deployment snapshots have
6Remember from Section 3.3 that the initial values of the external time-varying
sources (such as time) is already encoded in 𝐸, thus only the next values of these
signals has to be encoded in 𝜏 .

been removed, and where 𝐼𝑑 is reset to contain only the bootstrap
deployment (as created in Section 3.3).

In short, starting from 𝑘𝑖𝑛𝑡𝑒𝑟𝑖𝑛𝑖𝑡 , the reactive program is evaluated
by reducing intRa-tuRn as much steps as necessary to reach a
complete confugration 𝑘 , followed by one reduction using next-
tuRn, and then repeating this (possibly) ad infinitum. Remark that
the outputs of the main reactor are not used by↝. While an actual
implementation would need to use these as output (e.g., to actu-
ate), this has not been formalised as we do not consider it part of
Karcharias’ core computational model.

4 DISCUSSION
Our formalisation of graph-based RP provides a clear semantic for
deployments: i.e. instantiated parts of (dependency) graphs. De-
ployment nodes in the dependency graph, which can be filled in at
run-time, make it possible for a developer to compose reactive pro-
grams out of smaller programs, similar to the composition of signal
functions in function-based RP. An interesting future research av-
enue is to further compare the semantics of graph-based RP with
the semantics (and implementations) of function-based RP: e.g., to
establish whether or not they are computationally equivalent (i.e.
can they implement the same RP programs).

Our work presented here does not formalise all possible aspects
of an RPL. One noteworthy omission are conditional deployments
created using if. We argue that semantics are already captured
by the higher-order deployments. By “delaying” a graph using
RHO⟨𝑁 ⟩ and providing an eager 𝛿𝑖 𝑓 , one can easily model condi-
tionals (and thus, conditional deployments) using our current for-
malisation. In the future, we may prove this formally.

Another noteworthy omission is the support for stateful comp-
tuations (e.g., using operators like foldp [7] or using other state
management mechanisms [26]). We argue that doing so is rather
trivial. In short, such functionality can be formalised by providing
a heap-like store to store turn-transient information in.

Finally, graph-based RPLs usually update their signals incremen-
tally: only signals affected by an (external) change are usually re-
computed. This is completely absent from our formalisation as at
the start of each turn the next-tuRn rule throws away allSs. How-
ever, incrementality is, in essence, only an optimisation. It thus
should have no impact on the semantics. Hencewe argue that there
was also no need to explicitely formalise this.

5 CONCLUSION
This paper presented Karcharias, a small-step operational seman-
tics of a graph-based reactive programming language. While our
formalisation, as presented in this paper, mainly focuses on the
reactive programming paradigm, we have observed many similar-
ities with other streaming-based solutions (e.g., Reactive Exten-
sions [22] and Akka Streams [33]). We hypothesise that our formal-
isation can be generalised such that it also captures other graph-
based reactive-like languages.
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