Delaware-Barco SE Study Trip Amsterdam 2019

Scaling micro-service architectures up and out:
an application perspective

infrastructure perspective
in the afternoon!

Coen De Roover
cderoove@vub.ac.be
http://soft.vub.ac.be/~cderoove/

VRIJE
UNIVERSITEIT
BRUSSEL

mailto:cderoove@vub.ac.be
http://soft.vub.ac.be/~cderoove/

Brussels

Dutch
6.23 million

rman
illion

Germany

emburg

60

T e .

if Foe o
5 i

Atomium Zinneke pis

Waffles (from Brussels) Waffles (from Liege)

Software Languages Lab @ Vrije Universiteit Brussel

languages tools

Design, implement, and formalize
that enables
constructing
In @ more economic, more robust,
and more reusable manner.

function Rect(w, h) {

Program analysis as tool enabler this width = v

this.height = h;

}
. . . . Rect.prototype.toString = function() {
Which functions are applied at a call site? return "a Rectangle”;
3

function defAccessors(prop) {
Rect.prototype["get" + prop.cap()]
function() { return this[prop]; };

}

var props ["width", "height"];
for (var 1=P; 1 < props.length; i1++)
defAccesqors(props[i1])y

operational semantics encoded as abstract machine

fCESK € 2CESK - le X m X ;S%?@ X A/dE“

var r = new Rect(20, 30);

¢ € Control = Exp + Val N r.getWidthQ; JavaScript
ﬁ € m = VCL’F — m <,U71676-7&7t> /—>\ <0l05ﬁ,7&7da &>
& € Store = Addr — P(Val) + where clo € 6(p(v)).
17671 E m: EE—F@ <(>\U'€)7ﬁ7a—7&7£> _> <((>\v'e)7ﬁ)7ﬁ’5—7d7,&'>
= @ = halt ’ ar(€7ﬁ7 d) | fn(c/\lo,d) <(80 81),ﬁ,5’, d, t) /—>\ <€0,ﬁ,5’ L [b — ar(el,ﬁ, fl)],b, ’EL>
vl € Val «= Ow.e) x Eno (clo, p,6,a,t) =5 (e, pl,6 U b fn(clo,d)],b,a) if & = ar(e, §/,a'),
a.b€ Addr a finite set of addresses (val, p,6,a,1) = (e, p'[v > b],6 U [b— val],d,d) if & = fn((Ov.e),p'),d").
when configured for concrete interpretation when configured for abstract interpretation

O-0O-0

Vol
N

Repository analysis for evidence-based SE ;

Facts and Fallacies of
Software Engineering

How to make informed decisions about a project?
What can we learn from existing project repositories?

Pattern #projs #refs #elems #derives -
& org.jd 6 2391 84 uepkd ey
« # org.jdom . A Oay
snapshot mining
» @ Element 5 1912 44
» @ Namespace 4 82 6 0
» @ Attribute 4 70 6 0 OPEN -LMIS
» @ Text 4 67 4 2
» ® JDOMException 6 54 4 0 T
» @ Content 3 21 6 0
» @ CDATA 3 9 1 0 ChangeType
» @ DocType 2 4 1 0 00, * added-regular
added-selenium
» @ ProcessinglInstruction 2 4 1 0 = delete-regular
» @ IllegalDataException 1 2 1 0 + delete-selenium
» ® Comment 1 2 1 0 “ edit-regular
J * edit-selenium
» @ EntityRef 1 2 1 0 o0
» ®@ Verifier 1 1 1 0
» @ Default)DOMFactory 1 1 1 1
» ## org.jdom.input 6 103 10 0 od
» # org.jdom.output 5 101 24 2 0 1000 2000 3000 4000
» ## org.jdom.xpath 2 50 8 0
Are test scripts abandoned over
How much of a library is used in the wild? time or are they maintained as
How often are libraries subclassed? the application evolves?

Program transformation for automating changes

public class BreakStatement extends Statement {
@EntityProperty(value = SimpleName.class)

private Entityldentifier label;

public EntityIdentifier getlLabel()
return label;

¥

public void setLabel(EntityIdentifier label) {
this.label = label;

}

¥

Find:

Replace:

return label;
ks

public class BreakStatement extends Statement {
@EntityProperty(value = SimpleName.class)
private EntitylIdentifier<SimpleName> label;
public EntityIdentifier<SimpleName> getlLabel() {

public void setLabel(EntityIdentifier<SimpleName> label) {
this.label = label;

¥
} to be used as type parameter

oo

O @ Plug-in Development - /Users/cderoove/git/damp.ekeko.snippets/damp.ekeko.snippets.plugin.test/resources/EkekoX-Specifications/scam_demc

Wi O Qi

R C D W=W AR

v ¥

==l &JJava <J=Plug-in De

e o

FE Pack X % Plug-i

|

E'.

= ~
» 77> lestCase-JD - bomposnteWsutor |¢
v '::,j> TestCase-TypeParameters Ekeko
v if#src
» {4 be.ac.chaqg.change
v er be.ac.chaq.model.ast.java
P> []j AbstractTypeDeclaration.ja
» [J] Annotation.java
P> [_j,j AnnotationTypeDeclaration
P> f!,j, AnnotationTypeMemberDec
B [_T,j AnonymousClassDeclaratic
» |1} ArrayAccess.java
» |J] ArrayCreation.java
» |1} Arraylnitializer.java
» 1) ArrayType.java
» |1} AssertStatement.java
» [J] Assignment.java
» |1} ASTIdentifier.java
» |1} ASTNode.java
» [J] Block.java
» |1} BlockComment.java
» [J) BodyDeclaration.java
» |1} BooleanLiteral.java
» |J) BreakStatement.java
= []j CastExpression.java
» |J] CatchClause.java
E CharacterLiteral.java
Ej ClassinstanceCreation.java
» [J) Comment.java
» |1} CompilationUnit.java
4 |_7,j ConditionalExpression.java
4 []j Constructorinvocation.java
2 |]j ContinueStatement.java
|J| DoStatement.java
|} EmptyStatement.java

Executes search-and-replace. Code will be changed.

?modList class ?className {

L [@..

return [?returned]@[

}

public void 7setterName([Entityl

[?assignee]@[
}

e[1}

=>

[EntityIdentifier<?annoType>|@[-
[EntitylIdentifier<?annoType>|@[

[EntitylIdentifier<?annoType>|@[

.(value=7annoType.class) priv
public [EntityIdentifier]@[

\J| ArrayCreation.java £3 \

package be.ac.chad.model.ast.java;
- import java.util.List;
import be.ac.chaq.model.entity.Entityldentifier;
import be.ac.chaqg.model.entity.EntitylListProperty
] import be.ac.chaq.model.entity.EntityProperty;
public class ArrayCreation extends Expression {
B @EntityProperty(value = ArrayType.class)
private Entityldentifier type;

@EntityListProperty(value = Expression.class)
private List<Entityldentifier> dimensions;

= @EntityProperty(value = ArrayInitializer.clas
private Entityldentifier initializer;

> public EntityIdentifier getType() {

g >
. Overview | || Search Templates

return type;

) console 2%

. [7] Ekeko Query Results

éy Service-oriented architecture

Evolution of web application architectures

HTTP Request

>
T * ; [

entirely new page

19AJ3s uo uonjedijdde Jiyyouow

multi-page application

Evolution of web application architectures

XML HTTP Request

data and code

1

application distributed vertically across tiers

single-page application

-
-
o

Evolution of web application architectures

1

)
N
-

v

replicated data and state

rich internet application

Evolution of web application architectures

application distributed horizontally
between instances of the same tier

U-services on server tier

Beyond web applications: Taxi platform

Monolithic [Richardson 2016]
MYSQL Architecture
ADAPTER
REST ‘ TWILIO
PASSENGER
‘ MANAGEMENT .

i Y S

BILLING NOTIFICATION PAYMENTS

~ O &

TRIP DRIVER ‘
MANAGEMENT MANAGEMENT
SENDGRID
‘ ADAPTER
Q STRIPE
ADAPTER

o one large, but modular application
o needs to be redeployed entirely upon smallest change
o difficult to accommodate components with different resource requirements

|5

Taxi platform: decomposition in services

[Richardson 2016]

STRIPE
ADAPTER

BILLING

TWILIO
CE& ADAPTER

NOTIFICATION

SENDGRID
ADAPTER

o monolith distributed vertically into services that are deployed independently (scaling up)
o each service provides and consumes functionality as a mini-application on its own

|6

Taxi platform: decomposition in services

REST REST @ REST
API Q APl | SO 1OF API @)
[Richardson 2016]
PASSENGER DRIVER TRIP

DATABASE DATABASE DATABASE

ADAPTER ADAPTER ADAPTER

9 = 0

PASSENGER DRIVER TRIP

o every service owns its own data, ensuring loose coupling
o freedom to choose database that best suits its needs (e.g., geo-queries)
o but challenge of distributed data management:

ensuring consistency of updates that span databases

|7

Taxi platform: inter-process communication

PASSENGER .
SMARTPHON

NOTIFICATION

—_|

A03

PASSENGER

|

@

Y

TRIP

REQUEST/RESPONSE

PUB/SUB

PUB/SUB C/
@ D DISPATCHER

PUB/SUB

A94

PASSENGER

C\ NOTIFICATION

NOTIFICATION

- NOTIFICATION

DRIVER

MICROSERVICES

From Design to Deployment

|

[Richardson 2016]

18

Inter-process communication: REST

[Richardson 2016]

POST /trips GET /passengers/<<passengerld>>

PASSENGER | REST @ | REST g 2
API - API

201 CREATED 200 OK
TRIP PASSENGER

simple and familiar, synchronous request/response cycle of HTTP

not prone to fallacy of transparent distribution

exposes business objects as resources at a URI

four primary HTTP operations on those resources: POST, GET, PUT, DELET
19

O O O O

Inter-process communication: async messaging [—_e:

ENTERPRISE 3 %
INTEG RATION ’o,f;, m\i‘
PATTERNS

Sending Application

: 1. Create

Receiving Application

O 5. Process : O Data

O Message with data

Channel 4. Receive

~ j [Hophe et al., 2003]

Message storage

3. Deliver

Computer 1 Computer 2
o Create
o The sender creates the message and populates it with data.
o Send
o The sender adds the message to a channel.
o Deliver

o The messaging system moves the message from the sender’s process to the receiver’s
process, making it available to the receiver.
o Receive
o The receiver reads the message from the channel.
o Process
o The receiver extracts the data from the message.

21

Asynchronous messaging advantages

time time
> >
Process A ..Dlocked I Process A
... v
return message
Process B ‘ I Process B ‘ I
Synchronous Call Asynchronous Message

o Asynchronicity
o Messaging enables a send-and-forget approach to communication.
o The sender does not have to wait for the receiver to receive and process the message.
o Once a message has been stored in the communication channel, the sender is free to perform
other work while the message is transmitted and eventually processed in the background.
o Variable Timing
o The messaging system queues up requests until the receiver is ready to process them.
o Asynchronous messaging allows the sender to submit requests to the receiver at its own pace
and the receiver to consume the requests at its own different pace.

Asynchronous messaging disadvantages

unfortunately, (distributed) communication is inherently unreliable
delivery of a message requires eventual availability of channel and recipient

[
-

rendering messages first-class entities enables implementing delivery guarantees:
o at-most-once delivery:
o no state required at sender nor receiver, a message sent once will either arrive or not
o message will be delivered [0,1] times
o at-least-once:
o Reep state at the sender to ensure that a message will be resent until it has been
acknowledged by the recipient
o message will be delivered [1,o-] times as the acknowledgement message might be lost
o exactly-once:
o as above, with additional state at the receiver to make sure only the first of the same
messages will be processed
o message will be delivered exactly 1 time
(under the assumption of eventual availability of channel and recipient)

NOTE: as a recipient might fail while processing a message, reliability can only be guaranteed by application-level
acknowledgements of message processing, it does not suffice for the messaging system to acknowledge putting the

message in the recipients’ mailbox
22

Taxi platform: containerisation

[Richardson 2016]

¢

LOAD
BALANCER

EC2 INSTANCE / / EC2 INSTANCR
REST REST REST
DOCKER API DOCKER API DOCKER API DOCKER
TRIP TRIP TRIP

o individual service can be replicated horizontally (scaling out), often behind load balancer
o services run in containers (e.g., Docker) that can be provisioned and spun up fast

o containers can be orchestrated (e.g., Kubernetes)
23

Infrastructure-as-code

Build redis from source

Make sure you have the redis source code
checked out in

the same directory as this Dockerfile

FROM ubuntu:12.04
MAINTAINER dockerfiles http://
dockerfiles.github.io

RUN echo "deb http://archive.ubuntu.com
ubuntu precise main universe" > /etc/apt/
sources list

RUN apt-get update

RUN apt-get upgrade -y

RUN apt-get install -y gcc make g++ build-
essential libcé-dev tcl wget

RUN wget http://download.redis.io/redis-
stable.tar.gz -0 - | tar -xvz

RUN mkdir - e
VOLUME ["/redis-data
EXPOSE 6379

ENTRYPOINT ["/redis-stable/src/redis-

CMD ["--dir", "/redis-data"]

Dockerfile

Base Image

"Dependemci,es

Inskall

Volume
Opem Port

Start Server

Image

build

Docker Image Docker Container

FROM ubuntu:12.04 Base Image can be an 05 (Ubuntu)
MAINTAINER John Doe or a different, existing image

RUN echo "deb http://archive.ubuntu.com/ubuntu precise main universe" > /etc/apt/
sources.list

RUN apt-get update Runs commands as if you were byping

RUN apt-get upgrade -y . .
them in the command Line

RUN apt-get install -y gcc make g++ build-essential libc6-dev tcl wget
RUN sudo -E pip install scipy:0.18.1

RUN tar -zvzf /redis/redis-stable.tar.gz

RUN (cd /redis-stable && make)

RUN (cd /redis-stable && make test) . .
Copies Local files from

build conkext into conkainer

ADD redis.conf /var/www/redis.conf

RUN mkdir -p /redis-data
VOLUME ["/redis-data"]
EXPOSE 6379

ENTRYPOINT ["/redis-stable/src/redis-server"]
CMD ["--dir", "/redis-data"]

[Cito et al., MSR17]

24

Infrastructure-as-code

B3ase Images & Sizes

[Cito et al., MSR17]

busybox -
fedora -
php -

scratch -

ruby -

nginx -

java -

4 M3 alpine -

golang -

"nnr-TvqT

dockerfile/nodejs -

I
python - =
195 MR centos =
debian - E
125 M | [e

5 10 15 20 25
% of Projects with Base Image Referenced in FROM Statements

O -

¥ Reduce Image Size

@ Base Image Recommendation .

Infrastructure-as-code

Distribution of Instructions [Gito et al., MSR17]
Instruction All Top-1000 Top-100
RUN A% 4% 4%

COMMENT 16% 14% 15%
ENV 6% 7% 9%
FROM 7% 8% %
ADD 6% 5% 2%
CMD 4% 4% 3%
COPY 3% 4% 3%
EXPOSE 4% 4% 3%
MAINTAINER 4% 4% 3%
WORKDIR 3% 3% 3%
ENTRYPOINT 2% 2% 1%
VOLUME 2% 2% 1%
USER 1% 1% 1%

20

Infrastructure-as-code

Distribution of RUN Instructions [Cito et al, MSR17]
Category Examples All Top-1000 Top-100

Dependencies apt-get, yum, npm _
File System mkdir, cd, cp, rm 30.4% 29.3% 29.4%
Permissions chmod, chown 7.3% 5.2% 2.3%
Build / Execute make, install 5.3% 8.3% 13.5%
Environment set, export, source 0.6% 1.0% 0.2%
Other 11.3% 11.5% 9.4%

@ Abstraction for Dependencies
07

Scaling up
using concurrent actors

Scaling up through concurrent programming

+3 Kristopher Micinski Retweeted

“Scalability is the measure to which a

el Sommers | system can adapt to a change in demand
' 2 ellabyte e °

& CeE for resources, without negatively

| spent 4 hours debugging a multi-threaded lock impacting performance.

contention bug in a CLI tool.

Then | watched 2 rockets land up right on their

assigned landing pads at the exact same time after . . oo
launching a vehicle in space. Concurrency is a means to achieve scalability:

add more threads to server when needed,
| quit. which the application automatically starts using

6 Feb 22:08

1.437 RETWEETS 4.025 LIKES

Introduction to concurrent actor programming

The Actor Model
A common semantic approach to

modeling objects is to view the
behavior of objects as functions of in-
coming communications. This is the
approach taken in the actor model
[21]. Actors are self-contained, in-
teractive, independent components
of a computing system that com-
municate by asynchronous message
passing. The basic actor primitives
are (see Figure 4):

create: creating an actor from a
behavior description and a set of
parameters, possibly including ex-
isting actors;

send to: sending a message to an ac-
tor; and

become: an actor replacing its own
behavior by a new behavior.

These primitives form a simple
but powerful set upon which to build
a wide range of higher-level abstrac-
tions and concurrent programming
paradigms [3]. The actor creation

. . .
urivvisdrera 10 A AMen Asssmmasd S s suea s Vs

quential style sharing to concurrent
computation. The send to primitive
is the asynchronous analog of func-
tion application. It is the basic com-
munication primitive causing a
message to be put in an actor’s mail-
box (message queue). It should be
noted that each actor has a unique
mail address determined at the time
of its creation. This address is used to
specify the recipient (target) of a
message.

In the actor model, state change 1s
specified using replacement behav-
iors. Each time an actor processes a
communication, it also computes its
behavior in response to the next
communication it may process. The
replacement behavior for a purely
functional actor is identical to the
original behavior. In other cases, the
behavior may change. The change in
the behavior may represent a simple
change of state variables, such as
change in the balance of an account,
or it may represent changes in the
operations (methods) which are car-
ried out in response to messages.

The ability to specify a replace-

ment hehaviar refaing an imnartant

CONCURRENT
OBJECT-ORIENTED
PROGRAMMING

[Hewitt et al., 1973]

[Agha 1990]

30

Introduction to concurrent actor programming

quential style sharing to concurrent
computation. The send to primitive
is the asynchronous analog of func-
tion application. It is the basic com-
munication primitive causing a
message to be put in an actor’s mail-
box (message queue). It should be
noted that each actor has a unique
mail address determined at the time
of its creation. This address is used to
specify the recipient (target) of a
message.

o An actor can only:

o process messages one-by-one from a mailbox

31

Introduction to concurrent actor programming

quential style sharing to concurrent
computation. The send to primitive
is the asynchronous analog of func-
tion application. It is the basic com-
munication primitive causing a
message to be put in an actor’s mail-
box (message queue). It should be
noted that each actor has a unique
mail address determined at the time
of its creation. This address is used to
specify the recipient (target) of a
message.

o An actor can only:
o process messages one-by-one from a mailbox

o create other actors

32

Introduction to concurrent actor programming

quential style sharing to concurrent

computation. The send to primitive o An actor can On|y2

is the asynchronous analog of func- .

tion application, It is the basic com- o process messages one-by-one from a mailbox
municatiorll)epri:r.litivc cau,sing 'la o create other actors

m (0 an tors maiul-

bofs(arieessage l:::::e). It should be o send messages to other actors asynchronously

noted that each actor has a unique
mail address determined at the time
of its creation. This address i1s used to
specify the recipient (target) of a
message.

@ el

33

Introduction to concurrent actor programming

quential style sharing to concurrent

computation. The send to primitive o An actor can Only:
is the asynchronous analog of func- .
process messages one-by-one from a mailbox

tion application. It is the basic com-

O
munication primitive causing a o create other actors
message to be put in an actor’s mail- d h h l
box (message queue). It should be G sen mgssages to other actprs async . ronousty
o change its message processing behavior

noted that each actor has a unique
mail address determined at the time
of its creation. This address i1s used to
specify the recipient (target) of a
message.

AC

34

Introduction to concurrent actor programming

B
5

DM (DA

o An actor is effectively single-threaded
o messages are received and processed sequentially,
the actor invoRes its behaviour one-by-one on every message that is received
o processing one message is the atomic unit of execution,
it cannot be interleaved with the processing of another message
o changes in behaviour (i.e., become) are in effect for the processing of the next message

o But message processors of separate actors can be executed concurrently!

35

Introduction to Aakka : defining actor types

Messages exchanged in our example Actor trait describes behayj
or
object CounterMessages { type Receive - Parti
, : alF :
case object Incr trait Actor { {NctionfAny, Unit
case object Get g / F : parameter-less method
e ° '
} FE€Celve : Receive rlslflr:?t]?oﬁ pfitr)trﬁl
Counter actor with assignment :’m?lidt val self : » CtorRef messages to unit
€T se . - €
class Counter extends Actor { 1 nder : ActorRef

import CounterMessages._ an actor’s address is
address of the sender accessible through

of the current message variable “self”
being processed

var count =

def receive = {
case Incr => count = count +
case Get => |sender|! count implicit val self defined in Actor trait

} + implicit parameter in method
Messages are sent to actor addresses => the sender’s address is picked up implicitly

¥ bstract class ActorRef { : :
abs def 1(msg : Any)(implicit sender : ActorRef = Actor.noSender) : Unit

def tell(msg : Any, sender : ActorRef) = this.!(msg)(sender)

36

Introduction to i Akka : creating actors

trait Actorc
ont
Yy ext {

other actors je: actorOf e: Sty
€T stop(q + Otring) : A
1 C Unit CtorRef

class CounterClient extends Act;;\E‘\\\\‘\\\"\\\\"‘“\“"--—~\\\\\\\\ﬁ\\“\\\h

import CounterMessages._

actors can be created by

(PI Pr'()ps , ham
: ActorRef) -

val counter : ActorRef = context.actorOf(Props[Counter], "counter™)
counter ! Incr

counter ! Incr
counter ! Get

def receive = {
case count: Int => {
println(s"count was $count™)
context.stop(counter)
context.stop(self)

1 object CounterTest extends App { or by the actor
val actorSystem : ActorSystem = system
} ActorSystem("counterActorSystem™)
i val client : ActorRef =

actorSystem.actorOf(Props[CounterClient], "client")

actorSystem.terminate()
> count was 2}

37

GoTicks.com: REST API

Description

HTTP

method

CRUD operations on resources as HTTP request-response cycles

Request body

Status code

Response example

Create an
event

Get all
events

Buy tickets

Cancel
an event

POST

GET

POST

DELETE

/events/RHCP

/events

/events/RHCP/
tickets

/events/RHCP

{ "tickets"

N/A

{ "tickets"

N/A

: 2

: 250}

}

201 Created

200 OK

201 Created

200 OK

"name": "RHCP",
"tickets": 250

[{ event : "RHCP",
tickets 249 3}, |
event : "Radiohead",
tickets 130 } 1]

{ "event" "RHCP",
"entries" : [{ "id"
-1}y, { "id" : 2 }]
}

{ event "RHCP",
tickets 249 1}

38

[Roestenburg et al. 2016]

http://GoTicks.com

GoTicks.com: REST API

create a Red Hot Chilli Peppers event with 10 tickets

:~ cderoove$ http POST localhost:5000/events/RHCP tickets:=10
HTTP/ 1.1 201 Created [Roestenburg et al. 2016]
Content-Length: 28

Content-Type: application/json

Date: Tue, 06 Feb 2018 12:07:30 GMT

Server: GoTicks.com REST API

{

"name": "RHCP", . . .
tickets's 10 list available tickets for all events
} :~ cderoove$ http GET localhost:5000/events/
HTTP/1.1 200 OK
TContent-Length: 74
Content-Type: application/json
Date: Tue, 06 Feb 2018 12:18:46 GMT
Server: GoTicks.com REST API

{
"events": |

{
"name": "DJIMadLib",
"tickets": 15

I

{
"name": "RHCP",
"tickets'": 10

¥

http://GoTicks.com

GoTicks.com: REST API

purchase two tickets for Red Hot Chilli Peppers event

:~ cderoove$ http POST localhost:5000/events/RHCP/tickets tickets:=2
HTTP/1.1 201 Created [Roestenburg et al. 2016]
Content-Length: 46

Content-Type: application/json

Date: Tue, 06 Feb 2018 12:20:53 GMT

Server: GoTicks.com REST API

{ list remaining tickets for all events
"entries": |
{ :~ cderoove$ http GET localhost:5000/events/
"id": 1 HTTP/1.1 200 OK
}, Content-Length: 73
{ Content-Type: application/json
"id": 2 Date: Tue, 06 Feb 2018 12:23:14 GMT
} Server: GoTicks.com REST API
1,
"event": "RHCP" {
} "events": |
{
"name": "DJIMadLib",
"tickets": 15
F
{
"name": "RHCP",
"tickets": 8
s
]
I3

40

http://GoTicks.com

GoTicks.com: REST API

HTTP JSON © Resthpi]
estApi responds
(7 with |SON tickets
"event" : "RHCP",
"entries": [
{via» : 13}, [Roestenburg et al. 2016]
{rid" : 2}
] HTTP request
) {"tickets" : 2}

@ RestApi receives
POST /events/RHCP/tickets

|

O TicketSeller responds
to original sender
with the Tickets

actor per event!

41

/ActorSystem <_/ N request
——— Ador . rocessing tickets and
—— @) RestApi creates Y .
RestApi | TI:ckfstg;quest from ; answerlng REST calls
the request an
/ sends it to tcll1e BoiOfﬁce happens Concurrently
Message
TicketRequest
("RHCP", 2)
A © The BoxOffice finds child
— e BoxOffice finds chi
BoxOffice — with name "RHCP" and
Message forwards the Buy message
to it. The sender of the oue .
rickets (vestor message as seen from the Actors facilitate fine-grained
Ticket (1), Message TicketSeller is the RestApi.
mickes (2 upscaling within a container
)) Buy (2)
L Ac‘:;or
TicketSeller separate TicketSeller

http://GoTicks.com

GoTicks example: scaling upwards

TicketSeller actor

class TicketSeller(event: String) extends Actor { [Roestenburg et al. 2016]
import TicketSeller._

var tickets = Vector.empty[Ticket] vector of numbered tickets

def receive = {

case Add(newTickets) =>
tickets = tickets ++ newTickets populated by the BoxOffice actor

case Buy(nrOfTickets) =>
val entries = tickets.take(nrOfTickets)
if(entries.size >= nrOfTickets) {
sender() ! Tickets(event, entries)
tickets = tickets.drop(nrOfTickets) : "
: answers with the remaining
} else sender() ! Tickets(event) tickets for the event
case GetEvent =>
sender() ! Some(BoxOffice.Event(event, tickets.size))
case Cancel =>
sender() ! Some(BoxOffice.Event(event, tickets.size))
self ! PoisonPill

answers with the requested number of
tickets, or an empty message

1 terminates the TicketSeller actor
when the event is canceled

42

GoTicks example: scaling upwards

BOXOfﬁ ce aCtOI' [Roestenburg et al. 2016]

class BoxOffice(implicit timeout: Timeout) extends Actor {

def createTicketSeller(name: String) =
context.actorOf(TicketSeller.props(name), name)

def receive = {
case CreateEvent(name, tickets) =>
def create() = {
val eventTickets = createTicketSeller(name)

val newTickets = (1 to tickets).map { ticketId => adds a vector of numbered
TicketSeller.Ticket(ticketId) tickets to the seller’s

}.toVector inventory
eventTickets 1 TicketSeller.Add(newTickets)

, : communicates success
, sender() ! EventCreated(Event(name, tickets)) back to RestAP| actor

context.child(name).fold(create())(_ => sender() ! EventExists)

creates a TicketSeller for the
given event as a child actor

// ... checks whether a TicketSeller for
the given event already exists,

and creates one otherwise

GoTicks example: scaling upwards

[Roestenburg et al. 2016]

// ..
case GetTickets(event, tickets) =>
def notFound() = sender() ! TicketSeller.Tickets(event)
def buy(child: ActorRef) =
child. forward(TicketSeller.Buy(tickets)) m:‘s’;;"gf‘t‘g {ﬁghae;ptr*;?)':iﬁg‘fﬁif‘dBa‘LYtor
context.child(event).fold(notFound())(buy)

this ensures responses will go to the
case GetEvent(event) => RESTApi Actor

def notFound() = sender() ! None
def getEvent(child: ActorRef) = child forward TicketSeller.GetEvent
context.child(event).fold(notFound())(getEvent)

case CancelEvent(event) =>
def notFound() = sender() ! None
def cancelEvent(child: ActorRef) = child forward TicketSeller.Cancel

context.child(event).fold(notFound())(cancelEvent)
// ..

44

GoTicks example: scaling upwards

[Roestenburg et al. 2016]

// ..
case GetEvents =>
import akka.pattern.ask

import akka.pattern.pipe asks sends a message and returns
a future for the response
def getEvents = context.children.map { child =>

self.ask(GetEvent(child.path.name)).mapTo[Option[Event]]
¥

def convertToEvents(f: Future[Iterable[Option[Event]]]) =
f.map(_.flatten).map(l=> Events(l.toVector))

pipe(convertToEvents(Future.sequence(getEvents))) to sender()

pipe forwards the value the future resolves

to, as soon as it becomes available

but of course, asynchronous programming needs some getting used to!

45

Scaling out
using distributed actors

Scaling out through distributed programming

Distribution is another means to achieve scalability:

add threads from different network nodes to the application

-~

Single node

Single-node ActorSyste

HTTP routes

RestApi

Actor

BoxOffice

Actor

TicketSeller

0

\

~

Frontend node

~

/ Frontend ActorSyste
HTTP routes
RestApi
\
\ %
\\

Backend node

7

Actor

BoxOffice

Backend ActorSyste

Actor

TicketSeller

47

\

vy
= - ¥ J (;
\ “\ b @ J /'/
| J ¥

e @
@ 0

X

Introduction to distributed actor programming

o actor systems are distributable by design
o strong encapsulation: no shared data
o location-transparent communication through addresses (ActorRefs):
same ! for sending asynchronous message to local and to remote ActorRef

o actor systems are resilient by design
o strong encapsulation: failures don’t cascade to other parts
o actors are created by a supervisor, to whom failure handling is delegated:
enables decoupling business logic from failure handling
o flexible supervision strategies: stop, escalate, restart...

Services can always send messages to each other... | Seryer-2
) Server-2
References to services are stable.
Server-1 B __
//’I /_f' ref-a | Service A
Service A Service H P ref-a |~]
Server - 1] s
d ¢] \@* ref - a \ |
2 oyl ref-a | > o 7 Service B
- ervice
Service =¥ ref-a L — E
\@* ref-a Server - 4 Server-3
\B\ Server-3
[Bonér 2017] E E
=) P =
Service C | Service C

...even as the recipient is on the move!

48

Scaling out: word counting cluster

Job receptionists Job masters are
receive job requests /Node 1: Job master role started per job. Hoestenburg et 2016)
and forward the jobs Job masters are

to job masters. superv.ise.d by
receptionists.

2/

/Node 2: Job worker rol /Node 3: Job worker role\

Cluster
(node 1, node 2, node 3, node 4)

/ \/Node 4: Job worker role\

Job workers
are watched
by job masters.

Job workers find
a master with a
job in the cluster
and request work.

49

Words cluster: starting JVM nodes

java

java

java

java

~-DPORT=2551

-Dconfig.resource=

/seed.conf

-jar target/words-node. jar

-DPORT=2554

-Dconfig.resource=

/master.conf

-jar target/words-node. jar

-DPORT=2555

-Dconfig.resource=

/worker .conf

-jar target/words-node. jar

-DPORT=2556

-Dconfig.resource=

/worker .conf

-jar target/words-node. jar

50

[Roestenburg et al. 2016]

Words cluster: entry point for each JVM

join the “words” cluster,

object Main extends App { using the given role configuration
val config = ConfigFactory.load()

val SYStem = ACtorsyStem("Words", Con-F'i_g) [Roestenburg et al. 2016]

println(s"Starting node with roles: ${Cluster(system).selfRoles}”)

1f(system.settings.config.getStringlList("akka.cluster.roles™)
.contains("master")) {
Cﬁuster(system).registerOnMemberUp {
Y%

al receptionist = system.actorOf(Props[JobReceptionist], "receptionist")
println("Master node is ready.™)

start up JobReceptionist actor if this node

has been assigned the master role

val text = List("this 1s a test"”, "of some very naive word counting",
"but what can you say", "it is what 1t 1s")

receptionist ! JobRequest("the first job",
(1 to 100000).flatMap(1 => text ++ text).tolist)

send the receptionist a very large

¥ text to count words in

51

Words cluster: router for work distribution

[Roestenburg et al. 2016]

so-called self-type:

expresses that this trait can only be

trait CreateWorkerRouter { mixed in with Actor types

this: Actor =>

creates an actor of a built-in router
def createWorkerRouter: ActorRef = { type that will create at pool of 10

context.actor0f(JobWorker children in the cluster
ClusterRouterPool(BroadcastPool(10),

ClusterRouterPoolSettings(totalInstances = 100,

maxInstancesPerNode = 20,
allowLocalRoutees = false,
this node useRole = None))

.props(Props[JobWorker]),

name = "worker-router") and only on nodes
1 with this role

type of the created

actor children

52

Words cluster: master in idle state

class JobMaster extends Actor
Wlth AC'tOI"Logg"L ng [Roestenburg et al. 2016]
with CreateWorkerRouter {

// ..
val router = createlWorkerRouter address of newly-created router actor

override def supervisorStrategy: SupervisorStrategy =
SupervisorStrategy.stoppingStrategy

def receive = idle initial message-processing
function

def idle: Receive = { upon receiving a new job
case StartJob(jobName, text) => from the receptionist
textParts = text.grouped(10).toVector
val cancellable =
expect worker context.system.scheduler.schedule(® millis, 1000 milltis,

to enlist / :
submit results router, Work(jobName, self))

1| context. setReceiveTimeout(60 seconds) el A e e
become(working(jobName, sender, cancellable)) message to the worker

actors pool every second,
in case new workers have

before timeou

7/ transitions to the working
state, with a new message
processing function

joined the pool since the
job was started

Words cluster: master in idle state

JobRequest

Create master

Job
receptionist

e [—————

Work

StartJob

Job
master

Work

Words cluster: master in working state

def working(jobName: String, receptionist: ActorRef,
cancellable: Cancellable): Receive = {
case Enlist(worker) =>

workers = workers + worker

case NextTask =>
1f(textParts.i1sEmpty) {
sender() ! WorkLoadDepleted
} else {

workGiven = workGiven + 1
textParts = textParts.tail

h

intermediateResult = intermediateResult :+ countMap
workReceived = workReceived + 1

1f(textParts.isEmpty && workGiven == workReceived) {
cancellable.cancel ()
become(finishing(jobName, receptionist, workers))

setReceiveTimeout(Duration.Undefined)]
self ! MergeResults start merging
1 results

watch(worker) watch for termination of, and Reep track of

workers that enlist with this job master

sender() ! Task(textParts.head, self) giveworktqwquers
requesting it

cc_)llect intermediate results
case TaskResult(countMap) => in a vector of countMaps

transition to

finishing state

[Roestenburg et al. 2016]

55

Words cluster: master in working state

i master AN master

Enlist Enlist
/ \ Task Watch workers Task
NextTask NextTask / \
Enlist Enlist Task Task

Job Job Job Job
worker worker worker worker

NextTask NextTask

Job Job
worker worker worker worker

Words cluster: managing worker termination

JobMaster stops itself in

// ... case no workers have
case ReceiveTimeout => enlisted before timeout

1f(workers.isEmpty) {
log.info(s"No workers responded in time. Cancelling job $jobName.™)
stop(self)

} else setReceiveTimeout(Duration.Undefined)

case Terminated(worker) =>
log.info(s"Worker $worker got terminated. Cancelling job $jobName.™)
stop(self)
} JobMaster stops as soon

watching workers =>

as one if its workers fails notified of termination

def finishing(jobName: String,
receptionist: ActorRef,
workers: Set[ActorRef]): Receive = {

case MergeResults = stop all child send the merged results
val mergedMap = merge() back to the receptionist
workers.foreach(stop(_))

receptionist ! WordCount(jobName, mergedMap)

case Terminated(worker) => ’
log.info(s"Job $jobName is finishing.
Worker ${worker.path.name} is stopped.™)

57

Words cluster: managing worker termination

Job
receptionist

WordCount
Job Job
master \ master
MergeResults
Kill workers
/" Job X 7 Job ™
_worker / _worker /

___” ___”

/,—-——\\ /,—-——\\

\\‘__’/ \\‘__’/

Words cluster: worker in idle state

class JobWorker extends Actor
with ActorlLogging {

[Roestenburg et al. 2016]

var processed = 0

def receive = idle initial message-processing
function
def idle: Receive = { enlist for job,
change state

case Work(jobName, master) =>
become(enlisted(jobName, master))
log.info(s"Enlisted, will start requesting work for job '${jobName}'.™)
master ! Enlist(self)

master ! NextTask
request task and watch
watch(master) JobMaster for termination

setReceiveTimeout(30 seconds)

expect a task from the

JobMaster within 30 seconds

// ...

59

Words cluster: worker in enlisted state

def enlisted(jobName: String, master: ActorRef): Receive = {

case ReceiveTimeout =>
master ! NextTask

request another task
again upon timeout

case Task(textPart, master) =>

processed = processed + 1
master ! TaskResult(countMap)
master ! NextTask

val countMap = processTask(textPart)

process the received task, send the result to
the JobMaster, and request another task

case WorkLoadDepleted =>

become(retired(jobName))

log.info(s"Work load ${jobName} is depleted, retiring...")
setReceiveTimeout(Duration.Undefined)

[Roestenburg et al. 2016]

job finished: switches of ReceiveTimeout

and transition to retired state

case Terminated(master) =>

stop(self)
}

setReceiveTimeout(Duration.Undefined)
log.error(s"Master terminated that ran Job ${jobName}, stopping self.™)

60

Words cluster: worker in enlisted state

t
/ master \
skResult

TaskResul;/// \\\;a

Job Job
worker worker

TaskResult| [TaskResult

Job Job
worker worker

Words cluster: worker in retired state

// terminate When [Roestenburg et al. 2016]
def retired(jobName: String): Receive = { master has terminated

case Terminated(master) =>
log.error(s"Master terminated that ran Job ${jobName}, stopping self.™)

stop(self)
should no longer receive
case _ => log.error("I'm retired.™) messages in retired state

def processTask(textPart: List[String]): Map[String, Int] = {
textPart.flatMap(_.split("\\W+"))
.foldLeft(Map.empty[String, Int]) {
(count, word) =>
1f (word == "FAIL") throw new RuntimeException("SIMULATED FAILURE!™)
count + (word -> (count.getOrElse(word, @) + 1))

}

crash when the text for the given

task contains the word FAIL

62

Words cluster: receptionist

class JobReceptionist extends Actor
with ActorlLogging
with CreateMaster {

def receive = { create a new JobMaster for the
case jr @ JobRequest(name, text) => newly-received job request
log.info(s"Received job $name™)
val masterName = "master-"+URLEncoder.encode(name, "UTF8")

val jobMaster = createMaster(masterName)

jobs = jobs + job (and its sender)
jobMaster ! StartJob(name, text)

case WordCount(jobName, map) =>
log.info(s"Job $jobName complete.™)
log.info(s"result:${map}")
jobs.find(_.name == jobName).foreach { job =>
job.respondTo ! JobSuccess(jobName, map)

stop(job. jobMaster)
jobs = jobs - job stop the JobMaster
¥

63

// ...

[Roestenburg et al. 2016]

val job = Job(name, text, sender, jobMaster) remember this job request

watch(jobMaster) watch the JobMaster for termination

send back the result to the
sender of the job request

Words cluster: receptionist with resilient jobs

upon termination of one of the

watched JobMasters

case Terminated(jobMaster) =>
jobs.find(_. jobMaster == jobMaster).foreach { failedlob => [Roestenburg et al. 2016]

log.error(s"Job Master $jobMaster terminated before finishing job.™)

val name = failedJob.name
log.error(s"Job ${name} failed.")
val nrOfRetries = retries.getOrElse(name, 0)

if(maxRetries > nrOfRetries) { sfir[llulatetresolvilgg si:':nulatted
1f(nrOfRetries == maxRetries -1) { arure at penuitimate retry

val text = failedJob.text.filterNot(_.contains("FAIL"™))
self.tell(JobRequest(name, text), failedlob.respondTo)

} else
self.tell(JobRequest(name, failedlob.text), failedJob.respondTo)

re-send job request to self, with the original requestor’s address as sender

retries = retries + retries.get(name).map(r=> name ->
(r + 1)).getOrElseCname -> 1)

64

Words cluster: receptionist with resilient jobs

The receptionist creates
a new job master when

it notices that a master \
has died (up to x retries).

Job
/ receptionist

Terminated Watch

The job master stops /—>
itself when it notices /

that a job worker
Job
master

StoppingStrategy

Exception can crash JobMaster

StoppingStrategy

Exception on “FAIL” text in JobWorker

. Terminated
has died. =

Cluster in the cloud: Akka + Kubernetes

Actors

JVM

Akka node Akka Cluster

|
I
I
I
I
I
I
I
|
I
|
I
I
Pods :
I

VM
Kubernetes node

Fabio Triticco 2019: “Scala and Kubernetes: Reactive from Code to Cloud”

https://www.lightbend.com/blog/akka-and-kRubernetes-reactive-from-code-to-cloud

Scale of resilience

{ Akka } [Kubernetes] aws 3

JVM Errors

Skynet attack
Meteorite hits

JVM Exceptions Hardware failure

Fabio Triticco 2019: “Scala and Kubernetes: Reactive from Code to Cloud”
https://www.lightbend.com/blog/akka-and-kRubernetes-reactive-from-code-to-cloud

TakRe-away 1: programming language matters

“Any general-purpose language
hastobea lable nguage”

released in 2003 by Martin Odersky
professor at EPFL

Unifies and generalizes functional and object-oriented programming
Features a strong static type system for safety

Hosts multiple domain-specific languages

Offers a read-eval-print loop for interactive prototyping

Compatible with existing languages for the JVM

o O O O O

68

TakRe-away 2: programming model matters

BUild powerful reactive, Simpler Concurrent & Distributed Systems [HEWItt et al-: 1973]

Actors and Streams let you build systems that scale up, using the

concurre nt, an d d iSt I‘i b Uted resources of a server more efficiently, and out, using multiple
applications more easily

[Agha 1990]

Resilient by Design
. . U 3 R Building on the principles of The Reactive Manifesto Akka allows you
Akka is a toolkit for building highly concurrent, distributed, and

to write systems that self-heal and stay responsive in the face of
resilient message-driven applications for Java and Scala failures.

High Performance
Up to 50 million msg/sec on a single machine. Small memory
footprint; ~2.5 million actors per GB of heap.

Elastic & Decentralized
Akka is the implementation of the Actor Model on the JVM. Distributed systems without single points of failure. Load balanci CONCURRENT

and adaptive routing across nodes. Event Sourcing and CQRS with OBIECT'OMENTED

Cluster Sharding. Distributed Data for eventual consistency using PROGRAMMING

CRDTs.

Reactive Streaming Data

Asynchronous non-blocking stream processing with backpressure. [P ————— 12s

actor model

Fully async and streaming HTTP server and client provides a great
platform for building microservices. Streaming integrations with
Alpakka.

Proven in production

Organizations with extreme requirements rely on Akka and other Lightbend technologies. Read about their experiences in our
and learn more about how Lightbend can contribute to success with its

iigt CapitalOne credit karma inte' @Hootsuite NORWEGIAN
MEDIA CRUISE LINE
QUPSIDE Walmart ' amazoncom Z3alando weight A akka

PayPal

abstractions for concurrent and distributed programming:
strongly-encapsulated, location-transparent, resilient

Editor: Les Hatton
Kingston University
Lhatton@kingston.ac.uk

Take-away 3: architecture matters P =

Twenty Years of
Patterns’ Impact

Gregor Hohpe, Rebecca Wirfs-Brock, Joseph W. Yoder, and Olaf Zimmermann

This column celebrates the 20th year of software patterns. IEEE
Software advisory board members teamed up with members of the
Hillside Group, a nonprofit organization that promotes the use of
patterns and pattern languages, to reflect on the state of the practice
and impact of patterns. —Michiel van Genuchten and Les Hatton

Ju3

GOOD ADVICE IN software design can go a long way in helping us avoid working solution to a problem that
is difficult to come by. General design reinventing the wheel, but the vision occurs repeatedly in a give
principles can guide us, but reality of lesser-skilled developers effortlessly Instead of presenting a copy-a
scem- wiring together ready-made compo- ready code snippet, patterns

tends to force trade-offs between
ingly conflicting goals, such as flexibil- nents remains fiction. forces impacting the solution design.
Examples of such forces are perfor-

ity and maincainability againstsizeand Design parterns have helped nar-
complexity. Likewise, code libraries row this gap by documenting a well- mance and security in Web. applica-
tions: encryption and decryption algo-
rithms improve sccurity but introduce
d Cunning-
ham once described the best patterns as
your older brother teaching you how to
do something right.!

Although patterns have become

processing overhead. W

asiudia

popular, their impact as a design tech-

=
—+
D
oQ
-
Q)
o
®)
-’

nique is more difficult to quantify than

ments of this column have
This installmene highlights both the
breadth of patterns available after 20
years of pattern-writing conferences
and the depth of impact some patterns

have had on open source software.

continued on p. 84

88 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY

Hophe et al., IEEE Software 2013]

Editor: Cesare Pautasso
University of Lugano

INSIGHTS e

Editor: Olaf Zimmerman

A Decade of Enterprise
Integration Patterns

A Conversation with the Authors

Olaf Zimmermann, Cesare Pautasso, Gregor Hohpe, and Bobby Woolf

IN AN INDUSTRY that thrives on Bobby Woolf: Martin Fowler was ings in the form of patterns, also to
constant change, few books can sur- the marchmaker. When he wrote be submitted to PLoP 2002,% where I
vive the test of time. Enterprise In- Patterns of Enterprise Application first met Bobby and Kyle

tegration Patterns (EIP)'—with its Architecture,” Kyle Brown pointed
highly influential collection of mes- out that his pattern language was y y
saging patterns—is definitely one of not addressing asynchronous mes- effort he'd started with Martin, then
those few. So, we interviewed the saging. Martin felt that he already Martin brought Gregor in. While
authors Gregor Hohpe and Bobby had plenty of patterns to write, Martin and Kyle contributed a lot
of material and guidance, they even-
lessened their involvement,

brought me into the

aving Gregor and me to write and
Each pattern represents a decision, so ~ mplete the book. Gregor and 1

hadn’t known each other before, so
the language walks the reader through

as a crash gerting-to-know-you

the decisions that need to be made. opportunity.

‘With encouragement from Martin
and Kyle, we decided to combine our

papers with the goal to turn them
ino a book. While there was some
the pleasure which motivated Kyle and me to sub- merging to be done, the two papers

Woolf; here, we hav
of sharing their reflections with you. mit a collection of 27 patterns to the complemented cach other well. We
andful of patterns that

You can discover the inside story of 2002 Pattern Language of Programs only had a
their book project as well as their [PLoP] conference under the title, overlapped: Kyle's and my paper de-

views on pattern language design “Patterns of System Integration with scribed message patterns (“message

and on integration technology’s evo- Enterprise Messaging.” construction” in the book) and mes-

lution. We also thank them for their sage client patterns (later “messag-

precious advice for the next genera- Gregor Hohpe: T was based some ing endpoints”).

tion of pattern authors and integra- 3,000 miles away, using enterprise

tion solution designers. application integration [EAI] tools, Gregor: Coming from the EAI per-
such as TIBCO and Vitria, in my spective, my 17 patterns focused on

A General Retrospective consulting job. I had a nagging fecl- what was “between” the endpoints:

Olaf Zimmermann: How did your ing that these tools share underlying message routing, message transfor-

book come to be? How did you get concepts, which are obfuscated by mation, and message management.
together, and how did you find your different terminology. Martin en- It also contained an early version of
contributors and reviewers? couraged me to document my find- the pattern icons,

JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 13

[Zimmermann et al., IEEE Software 2016]
patterns for asynchronous messaging

70

Take-away 4: application-level before infrastructure-level

Akka has a cloud-native It enables transparent Resilience is built in
programming model, communication between your service with
| ready to scale from day 1 different nodes of a service granular control
Kubernetes is a great It provides location It introduces resilience at
infrastructure choice for your transparency with an infrastructure level
clustered application cluster formation

s‘ 48

Fabio Triticco 2019: “Scala and Kubernetes: Reactive from Code to Cloud”

https://www.lightbend.com/blog/akka-and-kRubernetes-reactive-from-code-to-cloud

71

Taxi platform: decomposition in services

(@)
Taxi platform: containerisation

3>

LOAD
BALANCER

N
EC2 INSTANCE EC2 INSTANCE
REST REST REST
DOCKER API DOCKER API DOCKER API DOCKER
CONTAINER CONTAINER CONTAINER CONTAINER

o monolith dis et
o each service ARG ENT MANAGEMENT A

o individual service can be replicated horizontally (scaling out), often behind load balancer

o services run in containers (e.g., Docker) that can be provisioned and spun up fast
o containers can be orchestrated (e.g., Kubernetes)

Scaling up through concurrent programming

43 Kristopher Micinski Retweeted

“Scalabilitv is the measure to which a

o Scaling out through distributed programming

o
o
o
o
o

| spent

contenl
Distribution is another means to achieve scalability:

Thenlv add threads from different network nodes to the application

assigne

launchi

aunch /Smg\ ode Frontend node

| qUIt Frontend Actorsysten

6 Feb 22:0¢

1.437 RETV

—

HTTP routes

RRRRR p:

HTTP routes

Take-away 1: programming language matters

Scala

Take-away 2: programming model matters

[Hewitt

Take-away 3: architecture matters

Build powerful reactive,
concurrent, and distributed

applications more easily

uonessaju|

Take-away 4: application-level be

l UPSIDE
Akka has a cloud-native It enabl
. programming model, commun
abstractio ready to scale from day 1 different n
strongly-e .
Kubernetes is a great It proy
infrastructure choice for your trans,

pattems clustered application clust
S

ét1/\/ 3 é

I~ o

Fabio Triticco 2019: “Scala and Kubernetes:

https://www.lightbend.com/blog/akka-and-Rube

71

