
Delaware-Barco SE Study Trip Amsterdam 2019

Coen De Roover

cderoove@vub.ac.be

http://soft.vub.ac.be/~cderoove/

Scaling micro-service architectures up and out:  
an application perspective

infrastructure perspective 
 in the afternoon!

mailto:cderoove@vub.ac.be
http://soft.vub.ac.be/~cderoove/

Brussels

Dutch 
6.23 million

French 
3.32 million

German 
0.07 million

Germany

Luxemburg

France

Netherlands

Leuven

Sights

Jeanneke pis

Zinneke pisAtomium

Grote Markt - Grand Place

Manneken pis

Food

Waffles (from Brussels)

Chocolates French Fries

Waffles (from Liège)

languages

Design, implement, and formalize  
novel programming technology that enables 

 constructing future software systems  
in a more economic, more robust,  

and more reusable manner.

Software Languages Lab @ Vrije Universiteit Brussel

tools

Program analysis as tool enabler

…

when configured for concrete interpretation when configured for abstract interpretation

operational semantics encoded as abstract machine

Which functions are applied at a call site?

Which variables will have the same values?

Which procedures have no observable side effects?

Which expressions can be executed in parallel?

First, this program is injected into an initial state:

I(((�x.x) (�y.(�z.y)))) = h((�x.x) (�y.(�z.y))),?, {ahalt 7! halt}, ahalt, 0i

The concrete transition function is then continually applied, leading to the following
states, where we avoid repeating store values that remain the same:

h((�x.x) (�y.(�z.y))),?, {ahalt 7! halt}, ahalt, 0i
! h(�x.x),?, {ahalt, a0 7! ar((�y.(�z.y)),?, ahalt)}, a0, 1i
! h((�x.x),?),?, {ahalt, a0}, a0, 2i
! h(�y.(�z.y)),?, {ahalt, a0, a2 7! fn(((�x.x),?), ahalt)}, a2, 3i
! h((�y.(�z.y)),?),?, {ahalt, a0, a2}, a2, 4i
! hx, {x 7! a4}, {ahalt, a0, a2, a4 7! ((�y.(�z.y)),?)}, ahalt, 5i
! h((�y.(�z.y)),?), {x 7! a4}, {ahalt, a0, a2, a4}, ahalt, 6i

The result of eval(((�x.x) (�y.(�z.y)))) would thus be the set containing all those
states.

3.1.3 Abstract Semantics

Testing membership of a state inside the set eval(e) for a given expression is undecidable
because of the halting problem. To solve this, we need to abstract the machine in order to
compute a finite approximation of the set eval(e). To do so, we need to adapt the state
space so that it becomes finite, and to adapt the transition function to take this change
into account.

State Space In the state space defined in Figure 3.2, the only sources of infiniteness are
the addresses and the timestamps. By making them finite, the resulting state space also
becomes finite (Figure 3.3). Note that the store is now a mapping from addresses to sets
of values, meaning that multiple values can be stored at the same address.

&̂CESK 2 ⌃̂CESK = \Control ⇥ dEnv ⇥ [Store ⇥ [Addr ⇥\Time

ĉ 2 \Control = Exp + dVal

⇢̂ 2 dEnv = V ar * [Addr

�̂ 2 [Store = [Addr * P(dVal)
cval 2 dVal = dClo + [Kont

̂ 2 [Kont ::= halt | ar(e, ⇢̂, â) | fn(cclo, â)
cval 2 dVal ::= (�v.e)⇥ dEnv

â, b̂ 2 [Addr a finite set of addresses

t̂, û 2 \Time a finite set of timestamps

Figure 3.3: State space of the abstract CESK machine.

Transition Function The transition function mainly stays the same, except that values
in the store now have to be joined instead of updated, in order to preserve soundness. The

20

functions tick and alloc are also adapted:

dtick : ⌃̂CESK ! \Time

[alloc : ⌃̂CESK ! [Addr

A typical implementation for these functions consists of remembering the last k call-
sites, where k is called the polyvariance of the analysis. dtick will update this list of

call-sites, while [alloc will use it to generate a new address. This kind of analysis is called
k-CFA (k-Control-Flow-Analysis) [Shi91].

The abstract transition function (c!) : ⌃̂CESK ⇥ ⌃̂CESK is defined as follows, with ̂ 2
�̂(â), b̂ = [alloc(&̂CESK), û = dtick(&̂CESK).

1. Variable evaluation has to take into account the fact that multiple values may live
at the same address, and thus the transition function may leads to multiple states
(one for each value stored at the address of the variable).

hv, ⇢̂, �̂, â, t̂i c! hcclo, ⇢̂0, �̂, â, ûi

where cclo 2 �̂(⇢̂(v)).

2. Application evaluation needs to perform a join on the store to push a new continu-
ation.

h(e0 e1), ⇢̂, �̂, â, t̂i c! he0, ⇢̂, �̂ t [b 7! ar(e1, ⇢̂, â)], b̂, ûi.

3. Abstraction evaluation stays the same and creates a closure by coupling the abstrac-
tion with the current environment.

h(�v.e), ⇢̂, �̂, â, t̂i ! h((�v.e), ⇢̂), ⇢̂, �̂, â, ûi

4. Continuation evaluation also needs to perform a join on the store.

• For an argument continuation:

hcclo, ⇢̂, �̂, â, t̂i c! he, ⇢̂0, �̂ t [b 7! fn(cclo, â0)], b̂, ûi if ̂ = ar(e, ⇢̂0, â0),

• For a function application continuation:

hval, ⇢̂, �̂, â, t̂i c! he, ⇢̂0[v 7! b̂], �̂ t [b̂ 7! val], â0, ûi if ̂ = fn(((�v.e), ⇢̂0), â0).

Example 6 (Abstract CESK evaluation). When we use the abstract interpreter, the
main di↵erence with the concrete interpreter is that an address can be associated with
more than one value. Therefore, an application of the transition function may lead to
multiple reachable states. For example, the transition function leads to two di↵erent
states when applied to the following state, as two values are associated to the address
a2:

hx, {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ti

The two resulting states are:

h((�x.x)),?), {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ui
h((�y.(�z.y)),?), {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ui

21

functions tick and alloc are also adapted:

dtick : ⌃̂CESK ! \Time

[alloc : ⌃̂CESK ! [Addr

A typical implementation for these functions consists of remembering the last k call-
sites, where k is called the polyvariance of the analysis. dtick will update this list of

call-sites, while [alloc will use it to generate a new address. This kind of analysis is called
k-CFA (k-Control-Flow-Analysis) [Shi91].

The abstract transition function (c!) : ⌃̂CESK ⇥ ⌃̂CESK is defined as follows, with ̂ 2
�̂(â), b̂ = [alloc(&̂CESK), û = dtick(&̂CESK).

1. Variable evaluation has to take into account the fact that multiple values may live
at the same address, and thus the transition function may leads to multiple states
(one for each value stored at the address of the variable).

hv, ⇢̂, �̂, â, t̂i c! hcclo, ⇢̂0, �̂, â, ûi

where cclo 2 �̂(⇢̂(v)).

2. Application evaluation needs to perform a join on the store to push a new continu-
ation.

h(e0 e1), ⇢̂, �̂, â, t̂i c! he0, ⇢̂, �̂ t [b 7! ar(e1, ⇢̂, â)], b̂, ûi.

3. Abstraction evaluation stays the same and creates a closure by coupling the abstrac-
tion with the current environment.

h(�v.e), ⇢̂, �̂, â, t̂i ! h((�v.e), ⇢̂), ⇢̂, �̂, â, ûi

4. Continuation evaluation also needs to perform a join on the store.

• For an argument continuation:

hcclo, ⇢̂, �̂, â, t̂i c! he, ⇢̂0, �̂ t [b 7! fn(cclo, â0)], b̂, ûi if ̂ = ar(e, ⇢̂0, â0),

• For a function application continuation:

hval, ⇢̂, �̂, â, t̂i c! he, ⇢̂0[v 7! b̂], �̂ t [b̂ 7! val], â0, ûi if ̂ = fn(((�v.e), ⇢̂0), â0).

Example 6 (Abstract CESK evaluation). When we use the abstract interpreter, the
main di↵erence with the concrete interpreter is that an address can be associated with
more than one value. Therefore, an application of the transition function may lead to
multiple reachable states. For example, the transition function leads to two di↵erent
states when applied to the following state, as two values are associated to the address
a2:

hx, {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ti

The two resulting states are:

h((�x.x)),?), {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ui
h((�y.(�z.y)),?), {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ui

21

functions tick and alloc are also adapted:

dtick : ⌃̂CESK ! \Time

[alloc : ⌃̂CESK ! [Addr

A typical implementation for these functions consists of remembering the last k call-
sites, where k is called the polyvariance of the analysis. dtick will update this list of

call-sites, while [alloc will use it to generate a new address. This kind of analysis is called
k-CFA (k-Control-Flow-Analysis) [Shi91].

The abstract transition function (c!) : ⌃̂CESK ⇥ ⌃̂CESK is defined as follows, with ̂ 2
�̂(â), b̂ = [alloc(&̂CESK), û = dtick(&̂CESK).

1. Variable evaluation has to take into account the fact that multiple values may live
at the same address, and thus the transition function may leads to multiple states
(one for each value stored at the address of the variable).

hv, ⇢̂, �̂, â, t̂i c! hcclo, ⇢̂0, �̂, â, ûi

where cclo 2 �̂(⇢̂(v)).

2. Application evaluation needs to perform a join on the store to push a new continu-
ation.

h(e0 e1), ⇢̂, �̂, â, t̂i c! he0, ⇢̂, �̂ t [b 7! ar(e1, ⇢̂, â)], b̂, ûi.

3. Abstraction evaluation stays the same and creates a closure by coupling the abstrac-
tion with the current environment.

h(�v.e), ⇢̂, �̂, â, t̂i ! h((�v.e), ⇢̂), ⇢̂, �̂, â, ûi

4. Continuation evaluation also needs to perform a join on the store.

• For an argument continuation:

hcclo, ⇢̂, �̂, â, t̂i c! he, ⇢̂0, �̂ t [b 7! fn(cclo, â0)], b̂, ûi if ̂ = ar(e, ⇢̂0, â0),

• For a function application continuation:

hval, ⇢̂, �̂, â, t̂i c! he, ⇢̂0[v 7! b̂], �̂ t [b̂ 7! val], â0, ûi if ̂ = fn(((�v.e), ⇢̂0), â0).

Example 6 (Abstract CESK evaluation). When we use the abstract interpreter, the
main di↵erence with the concrete interpreter is that an address can be associated with
more than one value. Therefore, an application of the transition function may lead to
multiple reachable states. For example, the transition function leads to two di↵erent
states when applied to the following state, as two values are associated to the address
a2:

hx, {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ti

The two resulting states are:

h((�x.x)),?), {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ui
h((�y.(�z.y)),?), {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ui

21

functions tick and alloc are also adapted:

dtick : ⌃̂CESK ! \Time

[alloc : ⌃̂CESK ! [Addr

A typical implementation for these functions consists of remembering the last k call-
sites, where k is called the polyvariance of the analysis. dtick will update this list of

call-sites, while [alloc will use it to generate a new address. This kind of analysis is called
k-CFA (k-Control-Flow-Analysis) [Shi91].

The abstract transition function (c!) : ⌃̂CESK ⇥ ⌃̂CESK is defined as follows, with ̂ 2
�̂(â), b̂ = [alloc(&̂CESK), û = dtick(&̂CESK).

1. Variable evaluation has to take into account the fact that multiple values may live
at the same address, and thus the transition function may leads to multiple states
(one for each value stored at the address of the variable).

hv, ⇢̂, �̂, â, t̂i c! hcclo, ⇢̂0, �̂, â, ûi

where cclo 2 �̂(⇢̂(v)).

2. Application evaluation needs to perform a join on the store to push a new continu-
ation.

h(e0 e1), ⇢̂, �̂, â, t̂i c! he0, ⇢̂, �̂ t [b 7! ar(e1, ⇢̂, â)], b̂, ûi.

3. Abstraction evaluation stays the same and creates a closure by coupling the abstrac-
tion with the current environment.

h(�v.e), ⇢̂, �̂, â, t̂i ! h((�v.e), ⇢̂), ⇢̂, �̂, â, ûi

4. Continuation evaluation also needs to perform a join on the store.

• For an argument continuation:

hcclo, ⇢̂, �̂, â, t̂i c! he, ⇢̂0, �̂ t [b 7! fn(cclo, â0)], b̂, ûi if ̂ = ar(e, ⇢̂0, â0),

• For a function application continuation:

hval, ⇢̂, �̂, â, t̂i c! he, ⇢̂0[v 7! b̂], �̂ t [b̂ 7! val], â0, ûi if ̂ = fn(((�v.e), ⇢̂0), â0).

Example 6 (Abstract CESK evaluation). When we use the abstract interpreter, the
main di↵erence with the concrete interpreter is that an address can be associated with
more than one value. Therefore, an application of the transition function may lead to
multiple reachable states. For example, the transition function leads to two di↵erent
states when applied to the following state, as two values are associated to the address
a2:

hx, {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ti

The two resulting states are:

h((�x.x)),?), {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ui
h((�y.(�z.y)),?), {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ui

21

functions tick and alloc are also adapted:

dtick : ⌃̂CESK ! \Time

[alloc : ⌃̂CESK ! [Addr

A typical implementation for these functions consists of remembering the last k call-
sites, where k is called the polyvariance of the analysis. dtick will update this list of

call-sites, while [alloc will use it to generate a new address. This kind of analysis is called
k-CFA (k-Control-Flow-Analysis) [Shi91].

The abstract transition function (c!) : ⌃̂CESK ⇥ ⌃̂CESK is defined as follows, with ̂ 2
�̂(â), b̂ = [alloc(&̂CESK), û = dtick(&̂CESK).

1. Variable evaluation has to take into account the fact that multiple values may live
at the same address, and thus the transition function may leads to multiple states
(one for each value stored at the address of the variable).

hv, ⇢̂, �̂, â, t̂i c! hcclo, ⇢̂0, �̂, â, ûi

where cclo 2 �̂(⇢̂(v)).

2. Application evaluation needs to perform a join on the store to push a new continu-
ation.

h(e0 e1), ⇢̂, �̂, â, t̂i c! he0, ⇢̂, �̂ t [b 7! ar(e1, ⇢̂, â)], b̂, ûi.

3. Abstraction evaluation stays the same and creates a closure by coupling the abstrac-
tion with the current environment.

h(�v.e), ⇢̂, �̂, â, t̂i ! h((�v.e), ⇢̂), ⇢̂, �̂, â, ûi

4. Continuation evaluation also needs to perform a join on the store.

• For an argument continuation:

hcclo, ⇢̂, �̂, â, t̂i c! he, ⇢̂0, �̂ t [b 7! fn(cclo, â0)], b̂, ûi if ̂ = ar(e, ⇢̂0, â0),

• For a function application continuation:

hval, ⇢̂, �̂, â, t̂i c! he, ⇢̂0[v 7! b̂], �̂ t [b̂ 7! val], â0, ûi if ̂ = fn(((�v.e), ⇢̂0), â0).

Example 6 (Abstract CESK evaluation). When we use the abstract interpreter, the
main di↵erence with the concrete interpreter is that an address can be associated with
more than one value. Therefore, an application of the transition function may lead to
multiple reachable states. For example, the transition function leads to two di↵erent
states when applied to the following state, as two values are associated to the address
a2:

hx, {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ti

The two resulting states are:

h((�x.x)),?), {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ui
h((�y.(�z.y)),?), {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ui

21

+

function Rect(w, h) {
 this.width = w;
 this.height = h;
}

Rect.prototype.toString = function() {
 return "a Rectangle";
};

function defAccessors(prop) {
 Rect.prototype["get" + prop.cap()] =
 function() { return this[prop]; };
}

var props = ["width", "height"];
for (var i=0; i < props.length; i++)
 defAccessors(props[i]);

var r = new Rect(20, 30);
r.getWidth(); JavaScript

 6

Repository analysis for evidence-based SE

How to make informed decisions about a project?

What can we learn from existing project repositories?

How much of a library is used in the wild?

How often are libraries subclassed?

Are test scripts abandoned over

time or are they maintained as

the application evolves?

Fig. 5. JDOM’s API Dispersion in QUAATLAS (project-centric table).

B. The API Dispersion Insight

Intent – Understand an API’s dispersion in a corpus by com-
paring API usage across the projects in the corpus.
Stakeholder – API developer.
API Usage – One API.
View – The listing of projects with associated API-usage met-
rics for quantitative comparison and API facets for qualitative
comparison.
Illustration – Fig. 5 summarizes JDOM’s dispersion quantita-
tively in QUAATLAS. 6 projects in the corpus exercise JDOM.
The projects are ordered by the #ref metric with the other
metrics not aligning. Only 2 projects (jspwiki and velocity)
exercise type derivation at the boundary of API and project.
Intelligence – The insight is about the significance of API
usage across corpus. In the figure, arguably, project jspwiki
shows the most significant API usage because it references the
most API elements. Project jmeter shows the least significant
API usage. Observation of significance helps an API developer
in picking hard and easy projects for compliance testing along
API evolution—an easy one to get started; a hard one for
a solid proof of concept. For instance, development of a
wrapper-based API re-implementation for API migration relies
on suitable ‘test projects’ just like that [6], [7].

C. The API Distribution Insight

Intent – Understand API distribution across project scopes.
Stakeholder – Project developer.
API Usage – One API.
View – The hierarchical breakdown of the project scopes with
associated API-usage metrics for quantitative comparison and
API facets for qualitative comparison.
Illustration – Remember JHotDraw’s slice of DOM usage in
Fig. 2 in §II. This view was suitable for efficient exploration
of project scopes that directly depend on DOM.
Intelligence – The insight may help a developer to decide on
the feasibility of an API migration, as we discussed in §II.

D. The API Footprint Insight

Intent – Understand what API elements are used in a corpus
or varying project scopes.
Stakeholder – Project developer and API developer.
API Usage – One API.
View – The listing of used API packages, types, and methods.

Fig. 6. JDOM’s API Footprint in QUAATLAS (API-centric table).

Nontrivial JDOM API usage in velocity
org.apache.velocity.anakia.AnakiaJDOMFactory

Scope Tags incl. facets #proj

...
Fig. 7. ‘Non-trivial API’ usage for package org.jdom in QUAATLAS.

Illustration – Remember the tree-based representation of the
API footprint for JHotDraw as shown in Fig. 3 in §II. In
a similar manner, while using a table-based representation,
Fig. 6 summarizes JDOM usage across QUAATLAS. All
JDOM packages are listed. The core package is heavily used
and thus the listing is further refined to show details per API
type. Ordering relies on the #ref metric. Clearly, there is little
usage of API elements outside the core package.
Intelligence – Overall, the footprint describes the (smaller)
‘actual’ API that needs to be understood as opposed to the
full (‘official’) API. For instance, many APIs enable nontrivial,
framework-like usage [1], [28], but in the absence of actual
framework-like usage, the project developer may entertain
a much simpler view on the API. In the context of API
evolution, an API developer consults an API’s footprint to
minimize changes that break actual usage or to make an impact
analysis for changes. In the context of wrapper-based API
re-implementation for API migration, an API developer or a
project developer (who develops a project-specific wrapper)
uses the footprint to limit the effort [6], [7].

E. The Sub-API Footprint Insight

Intent – Understand usage of a sub-API in a corpus or project.
Stakeholder – API developer and, possibly, project developer.
API Usage – One API.

snapshot mining

history mining

●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●

●●

●●●●●●●●●●●
●

●

●●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●

●● ●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●● ●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●

●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●
●

●

●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●
●
●
●
●●
●
●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●

●●●●●● ●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●
●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●
●●●
●●
●●●●● ●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●● ●●●●●●●●●●●

●●●●
●●
●●●●●●●

●

●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

0

500

1000

1500

0 1000 2000 3000 4000
CommitId

Fi
le
Id

ChangeType
● added−regular

added−selenium
delete−regular
delete−selenium
edit−regular
edit−selenium

Change History View
OPEN-LMIS

 7

value of annotation

public class BreakStatement extends Statement {
@EntityProperty(value = SimpleName.class)
private EntityIdentifier<SimpleName> label;

public EntityIdentifier<SimpleName> getLabel() {
return label;

}

public void setLabel(EntityIdentifier<SimpleName> label) {
this.label = label;

}
} to be used as type parameter

public class BreakStatement extends Statement {
@EntityProperty(value = SimpleName.class)
private EntityIdentifier label;

public EntityIdentifier getLabel() {
return label;

}

public void setLabel(EntityIdentifier label) {
this.label = label;

}
}

Program transformation for automating changes

 8

 9

using distributed actors

Service-oriented architecture

Scaling up

Scaling out

introduction and motivation

using concurrent actors

Evolution of web application architectures

HTTP Request

entirely new page

multi-page application

m
o
n

o
lit

h
ic

 a
p

p
lic

a
t
io

n
 o

n
 s

e
r
v
e
r

Evolution of web application architectures

XML HTTP Request

data and code

single-page application

application distributed vertically across tiers

Evolution of web application architectures

rich internet application

replicated data and state

Evolution of web application architectures

µ-services on server tier

application distributed horizontally

between instances of the same tier

Beyond web applications: Taxi platform

 15

2Microservices – From Design to Deployment Ch. 1 – Introduction to Microservices

This new application would have a modular hexagonal architecture, like in Figure 1-1:

At the core of the application is the business logic, which is implemented by modules
that define services, domain objects, and events. Surrounding the core are adapters
that interface with the external world. Examples of adapters include database access
components, messaging components that produce and consume messages, and web
components that either expose APIs or implement a UI

Figure 1-1. A sample taxi-hailing application.

MYSQL

Monolithic
Architecture

PASSENGER
MANAGEMENT

DRIVER
MANAGEMENT

TRIP
MANAGEMENT

BILLING NOTIFICATION PAYMENTS

YOURBANK

0000 0000 0000 0000
00/00

YOUR NAME

TWILIO
ADAPTER

SENDGRID
ADAPTER

STRIPE
ADAPTER

WEB
UI

REST
API

PASSENGER

DRIVER

MYSQL
ADAPTER

[Richardson 2016]

one large, but modular application

needs to be redeployed entirely upon smallest change

difficult to accommodate components with different resource requirements

01

From Design to Deployment

Taxi platform: decomposition in services

 16

monolith distributed vertically into services that are deployed independently (scaling up)

each service provides and consumes functionality as a mini-application on its own

5Microservices – From Design to Deployment Ch. 1 – Introduction to Microservices

For example, a possible decomposition of the system described earlier is shown in
Figure 1-2:

Figure 1-2. A monolithic application decomposed into microservices.

APIGATEWAY PASSENGER
MANAGEMENT

PASSENGER
WEB UI

DRIVER
WEB UI

DRIVER
MANAGEMENT

TRIP
MANAGEMENT

BILLING

NOTIFICATION

PAYMENTS

YOURBANK

0000 0000 0000 0000
00/00

YOUR NAME

TWILIO
ADAPTER

SENDGRID
ADAPTER

STRIPE
ADAPTER

REST
API

REST
API

REST
API

REST
API

REST
API

REST
API

Figure 1-2. A monolithic application decomposed into microservices.

Each functional area of the application is now implemented by its own microservice.
Moreover, the web application is split into a set of simpler web applications – such as
one for passengers and one for drivers, in our taxi-hailing example. This makes it easier
to deploy distinct experiences for specific users, devices, or specialized use cases.

Each backend service exposes a REST API and most services consume APIs provided by
other services. For example, Driver Management uses the Notification server to tell an
available driver about a potential trip The UI services invoke the other services in order to
render web pages Services might also use asynchronous, message-based communication
Inter-service communication will be covered in more detail later in this ebook

[Richardson 2016]

01

From Design to Deployment

Taxi platform: decomposition in services

 17

every service owns its own data, ensuring loose coupling

freedom to choose database that best suits its needs (e.g., geo-queries)

but challenge of distributed data management: 
ensuring consistency of updates that span databases

8Microservices – From Design to Deployment Ch. 1 – Introduction to Microservices

Figure 1-5. Database architecture for the taxi-hailing application.

PASSENGER
MANAGEMENT

PASSENGER
MANAGEMENT
DATABASE

DRIVER
MANAGEMENT
DATABASE

TRIP
MANAGEMENT
DATABASE

REST
API

DRIVER
MANAGEMENT

REST
API

TRIP
MANAGEMENT

REST
API

DATABASE
ADAPTER

DATABASE
ADAPTER

DATABASE
ADAPTER

On the surface, the Microservices Architecture pattern is similar to SOA. With both
approaches, the architecture consists of a set of services. However, one way to think
about the Microservices Architecture pattern is that it’s SOA without the commercialization
and perceived baggage of web service specifications (WS-*) and an Enterprise Service
Bus (ESB). Microservice-based applications favor simpler, lightweight protocols such as
REST, rather than WS-* They also very much avoid using ESBs and instead implement
ESB-like functionality in the microservices themselves. The Microservices Architecture
pattern also rejects other parts of SOA, such as the concept of a canonical schema for
data access

The Benefits of Microservices

The Microservices Architecture pattern has a number of important benefits. First, it
tackles the problem of complexity. It decomposes what would otherwise be a monstrous
monolithic application into a set of services. While the total amount of functionality is
unchanged, the application has been broken up into manageable chunks or services
Each service has a well-defined boundary in the form of a remote procedure call
(RPC)-driven or message-driven API. The Microservices Architecture pattern enforces
a level of modularity that in practice is extremely difficult to achieve with a monolithic
code base. Consequently, individual services are much faster to develop, and much
easier to understand and maintain

[Richardson 2016]

01

From Design to Deployment

Taxi platform: inter-process communication

 18
23Microservices – From Design to Deployment Ch. 3 – Inter-Process Communication

There are the following kinds of one-to-one interactions, both synchronous (request/
response) and asynchronous (notification and request/async response):

• Request/response – A client makes a request to a service and waits for a response.
The client expects the response to arrive in a timely fashion. In a thread-based
application, the thread that makes the request might even block while waiting

• Notification (a.k.a. a one-way request) – A client sends a request to a service but
no reply is expected or sent

• Request/async response – A client sends a request to a service, which replies
asynchronously The client does not block while waiting and is designed with the
assumption that the response might not arrive for a while.

There are the following kinds of one-to-many interactions, both of which are asynchronous:

• Publish/subscribe – A client publishes a notification message, which is consumed by
zero or more interested services

• Publish/async responses – A client publishes a request message, and then waits a
certain amount of time for responses from interested services.

Each service typically uses a combination of these interaction styles. For some services,
a single IPC mechanism is sufficient. Other services might need to use a combination of
IPC mechanisms

Figure 3-2 shows how services in a taxi-hailing application might interact when the user
requests a trip

TRIP
MANAGEMENT

DISPATCHER NOTIFICATION

PASSENGER
MANAGEMENT

REQUEST PICKUP
NOTIFICATION1

2

3
4 5

TRIP CREATED
38%Ǭ68%

NOTIFY PASSENGER
NOTIFICATION

5 NOTIFY PASSENGER
NOTIFICATION

DRIVER PROPOSED
38%Ǭ68%

4 DRIVER PROPOSED
38%Ǭ68%

GET PASSENGER INFO
5(48(67Ǭ5(63216(

PASSENGER
MANAGEMENT

DRIVER
MANAGEMENT

PASSENGER
SMARTPHONE

Figure 3-2. Using multiple IPC mechanisms for service interactions.

[Richardson 2016]

01

From Design to Deployment

Inter-process communication: REST

simple and familiar, synchronous request/response cycle of HTTP

not prone to fallacy of transparent distribution

exposes business objects as resources at a URI

four primary HTTP operations on those resources: POST, GET, PUT, DELET

 19

29Microservices – From Design to Deployment Ch. 3 – Inter-Process Communication

Synchronous, Request/Response IPC

When using a synchronous, request/response-based IPC mechanism, a client sends a
request to a service The service processes the request and sends back a response

In many clients, the thread that makes the request blocks while waiting for a response.
Other clients might use asynchronous, event-driven client code that is perhaps
encapsulated by Futures or Rx Observables However, unlike when using messaging,
the client assumes that the response will arrive in a timely fashion.

There are numerous protocols to choose from. Two popular protocols are REST and Thrift.
Let’s first take a look at REST.

REST

Today it is fashionable to develop APIs in the RESTful style REST is an IPC mechanism
that (almost always) uses HTTP.

A key concept in REST is a resource, which typically represents a business object such
as a Customer or Product, or a collection of such business objects. REST uses the HTTP
verbs for manipulating resources, which are referenced using a URL. For example, a GET
request returns the representation of a resource, which might be in the form of an XML
document or JSON object. A POST request creates a new resource, and a PUT request
updates a resource

To quote Roy Fielding, the creator of REST:

 “REST provides a set of architectural constraints that, when applied as a whole, emphasizes
scalability of component interactions, generality of interfaces, independent deployment of
components, and intermediary components to reduce interaction latency, enforce security,
and encapsulate legacy systems.”
— Roy Fielding, Architectural Styles and the Design of Network-based Software Architectures
Figure 3-5 shows one of the ways that the taxi-hailing application might use REST.

TRIP
MANAGEMENT

3267 Ǭtrips *(7 Ǭpassengers/<<passengerld>>

201 CREATED PASSENGER
MANAGEMENT

PASSENGER
SMARTPHONE

200 OK

REST
API

REST
API

Figure 3-5. A taxi-hailing application uses RESTful interaction.

[Richardson 2016]

01

From Design to Deployment

Inter-process communication: async messaging

Create

The sender creates the message and populates it with data.

Send

The sender adds the message to a channel.

Deliver

The messaging system moves the message from the sender’s process to the receiver’s

process, making it available to the receiver.

Receive

The receiver reads the message from the channel.

Process

The receiver extracts the data from the message.

[Hophe et al., 2003]

xxxii INTRODUCTION

sure each data record is safely persisted, and likewise the main task of a messag-
ing system is to move messages from the sender’s computer to the receiver’s
computer in a reliable fashion.

A messaging system is needed to move messages from one computer to
another because computers and the networks that connect them are inherently
unreliable. Just because one application is ready to send data does not mean
that the other application is ready to receive it. Even if both applications are
ready, the network may not be working or may fail to transmit the data prop-
erly. A messaging system overcomes these limitations by repeatedly trying to
transmit the message until it succeeds. Under ideal circumstances, the message
is transmitted successfully on the first try, but circumstances are often not ideal.

In essence, a message is transmitted in five steps:

1. Create—The sender creates the message and populates it with data.

2. Send—The sender adds the message to a channel.

3. Deliver—The messaging system moves the message from the sender’s com-
puter to the receiver’s computer, making it available to the receiver.

4. Receive—The receiver reads the message from the channel.

5. Process—The receiver extracts the data from the message.

The following figure illustrates these five transmission steps, which computer
performs each, and which steps involve the messaging system:

Sending Application Receiving Application

1. Create 5. Process

2. Send 4. Receive

Computer 1 Computer 2

Channel

Data

Message with data

Message storage
3. Deliver

Message Transmission Step-by-Step

 20

Asynchronous messaging advantages

Asynchronicity

Messaging enables a send-and-forget approach to communication.

The sender does not have to wait for the receiver to receive and process the message.

Once a message has been stored in the communication channel, the sender is free to perform

other work while the message is transmitted and eventually processed in the background.

Variable Timing

The messaging system queues up requests until the receiver is ready to process them.

Asynchronous messaging allows the sender to submit requests to the receiver at its own pace

and the receiver to consume the requests at its own different pace.

xxxviii INTRODUCTION

using asynchronous messaging, the caller uses a send-and-forget approach that
allows it to continue to execute after it sends the message. As a result, the calling
procedure continues to run while the subprocedure is being invoked (see figure).

Asynchronous communication has a number of implications. First, we no
longer have a single thread of execution. Multiple threads enable subprocedures
to run concurrently, which can greatly improve performance and help ensure that
some subprocesses are making progress even while other subprocesses may be
waiting for external results. However, concurrent threads also make debugging
much more difficult. Second, results (if any) arrive via a callback mechanism. This
enables the caller to perform other tasks and be notified when the result is avail-
able, which can improve performance. However, this means that the caller has to
be able to process the result even while it is in the middle of other tasks, and it has
to be able to remember the context in which the call was made. Third, asyn-
chronous subprocesses can execute in any order. Again, this enables one sub-
procedure to make progress even while another cannot. But it also means that
the sub-processes must be able to run independently in any order, and the caller
must be able to determine which result came from which subprocess and combine
the results together. As a result, asynchronous communication has several advan-
tages but requires rethinking how a procedure uses its subprocedures.

Distributed Applications versus Integration

This book is about enterprise integration—how to integrate independent appli-
cations so that they can work together. An enterprise application often incor-
porates an n-tier architecture (a more sophisticated version of a client/server

Synchronous and Asynchronous Call Semantics

time

Process A

Process B
call return

Synchronous Call

time

Process A

Process B
message

Asynchronous Message

blocked

 21

rendering messages first-class entities enables implementing delivery guarantees:

at-most-once delivery:

no state required at sender nor receiver, a message sent once will either arrive or not

message will be delivered [0,1] times

at-least-once:

keep state at the sender to ensure that a message will be resent until it has been

acknowledged by the recipient

message will be delivered [1,∞] times as the acknowledgement message might be lost

exactly-once:

as above, with additional state at the receiver to make sure only the first of the same

messages will be processed

message will be delivered exactly 1 time  
(under the assumption of eventual availability of channel and recipient)

unfortunately, (distributed) communication is inherently unreliable

delivery of a message requires eventual availability of channel and recipient

 22

Asynchronous messaging disadvantages

NOTE: as a recipient might fail while processing a message, reliability can only be guaranteed by application-level

acknowledgements of message processing, it does not suffice for the messaging system to acknowledge putting the

message in the recipients’ mailbox

Taxi platform: containerisation

 23

individual service can be replicated horizontally (scaling out), often behind load balancer

services run in containers (e.g., Docker) that can be provisioned and spun up fast

containers can be orchestrated (e.g., Kubernetes)

7Microservices – From Design to Deployment Ch. 1 – Introduction to Microservices

At runtime, X-axis scaling runs multiple instances of each service behind a load balancer
for throughput and availability. Some applications might also use Z-axis scaling to partition
the services Figure 1-4 shows how the Trip Management service might be deployed
with Docker running on Amazon EC2

Figure 1-4. Deploying the Trip Management service using Docker.

TRIP
MANAGEMENT

DOCKER
CONTAINER

DOCKER
CONTAINER

DOCKER
CONTAINER

DOCKER
CONTAINER

EC2 INSTANCE

TRIP
MANAGEMENT

EC2 INSTANCE

TRIP
MANAGEMENT

REST
API

REST
API

REST
API

LOAD
BALANCER

At runtime, the Trip Management service consists of multiple service instances. Each
service instance is a Docker container In order to be highly available, the containers are
running on multiple Cloud VMs. In front of the service instances is a load balancer such
as NGINX that distributes requests across the instances The load balancer might also
handle other concerns such as caching, access control, API metering, and monitoring

The Microservices Architecture pattern significantly impacts the relationship between the
application and the database Rather than sharing a single database schema with other
services, each service has its own database schema On the one hand, this approach is
at odds with the idea of an enterprise-wide data model. Also, it often results in duplication
of some data. However, having a database schema per service is essential if you want
to benefit from microservices, because it ensures loose coupling. Figure 1-5 shows the
database architecture for the sample application.

Each of the services has its own database. Moreover, a service can use a type of database
that is best suited to its needs, the so-called polyglot persistence architecture For example,
Driver Management, which finds drivers close to a potential passenger, must use a
database that supports efficient geo-queries.

[Richardson 2016]

01

From Design to Deployment

[Cito et al., MSR17]

An Empirical Analysis of the
Docker Container Ecosystem on GitHub

Jürgen Cito∗, Gerald Schermann∗, John Erik Wittern†, Philipp Leitner∗, Sali Zumberi∗, Harald C. Gall∗

∗ Software Evolution and Architecture Lab
University of Zurich, Switzerland

{lastname}@ifi.uzh.ch

† IBM T. J. Watson Research Center
Yorktown Heights, NY, USA

witternj@us.ibm.com

Abstract—Docker allows packaging an application with its
dependencies into a standardized, self-contained unit (a so-called
container), which can be used for software development and to
run the application on any system. Dockerfiles are declarative
definitions of an environment that aim to enable reproducible
builds of the container. They can often be found in source code
repositories and enable the hosted software to come to life in
its execution environment. We conduct an exploratory empirical
study with the goal of characterizing the Docker ecosystem,
prevalent quality issues, and the evolution of Dockerfiles. We base
our study on a data set of over 70000 Dockerfiles, and contrast
this general population with samplings that contain the Top-100
and Top-1000 most popular Docker-using projects. We find that
most quality issues (28.6%) arise from missing version pinning
(i.e., specifying a concrete version for dependencies). Further, we
were not able to build 34% of Dockerfiles from a representative
sample of 560 projects. Integrating quality checks, e.g., to issue
version pinning warnings, into the container build process could
result into more reproducible builds. The most popular projects
change more often than the rest of the Docker population, with
5.81 revisions per year and 5 lines of code changed on average.
Most changes deal with dependencies, that are currently stored
in a rather unstructured manner. We propose to introduce an
abstraction that, for instance, could deal with the intricacies of
different package managers and could improve migration to more
light-weight images.

Keywords-empirical software engineering; GitHub; Docker

I. INTRODUCTION

Containerization has recently gained interest as a light-
weight virtualization technology to define software infras-
tructure. Containers allow to package an application with its
dependencies and execution environment into a standardized,
self-contained unit, which can be used for software develop-
ment and to run the application on any system. Due to their
rapid spread in the software development community, Docker
containers have become the de-facto standard format [1]. The
contents of a Docker container are declaratively defined in a
Dockerfile that stores instructions to reach a certain infrastruc-
ture state [2], following the notion of Infrastructure-as-Code
(IaC) [3]. Source code repositories containing Dockerfiles,
thus, potentially enable the execution of program code in an
isolated and fast environment with one command. Since its
inception in 2013, repositories on GitHub have added 70197
Dockerfiles to their projects (until October 2016).

Given the fast rise in popularity, its ubiquitous nature in
industry, and its surrounding claim of enabling reproducibil-

ity [4], we study the Docker ecosystem with respect to quality
of Dockerfiles and their change and evolution behavior within
software repositories. We developed a tool chain that trans-
forms Dockerfiles and their evolution in Git repositories into
a relational database model. We mined the entire population
of Dockerfiles on GitHub as of October 2016, and summarize
our findings on the ecosystem in general, quality aspects,
and evolution behavior. The results of our study can inform
standard bodies around containers and tool developers to
develop better support to improve quality and drive ecosystem
change.

We make the following contributions through our ex-
ploratory study:

Ecosystem Overview. We characterize the ecosystem of
Docker containers on GitHub by analyzing the distribution of
projects using Docker, broken down by primary programming
language, project size, and the base infrastructure (base image)
they inherit from. We learn, among other things, that most
inherited base images are well-established, but heavy-weight
operating systems, while light-weight alternatives are in the
minority. However, this defeats the purpose of containers to
lower the footprint of virtualization. We envision a recom-
mendation system that analyzes Dockerfiles and transforms its
dependency sources to work with light-weight base images.

Quality Assessment. We assess the quality of Dockerfiles
on GitHub by classifying results of a Dockerfile Linter [5].
Most of the issues we encountered considered version pinning
(i.e., specifying a concrete version for either base images or
dependencies), accounting for 28.6% of quality issues. We also
built the Dockerfiles for a representative sample of 560 repos-
itories. 66% of Dockerfiles could be built successfully with
an average build time of 145.9 seconds. Integrating quality
checks into the “docker build” process to warn developers
early about build-breaking issues, such as version pinning, can
lead to more reproducible builds.

Evolution Behavior. We classify different kinds of changes
between consecutive versions of Dockerfiles to characterize
their evolution within a repository. On average, Dockerfiles
only changed 3.11 times per year, with a mean 3.98 lines of
code changed per revision. However, more popular projects
revise up to 5.81 per year with 5 lines changed. Dependencies
see a high rate of change over time, reinforcing our findings
to improve dependency handling from the analysis of the

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE
DOI 10.1109/MSR.2017.67

13

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE
DOI 10.1109/MSR.2017.67

323

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE
DOI 10.1109/MSR.2017.67

323

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE
DOI 10.1109/MSR.2017.67

323

Research finding

Infrastructure-as-code

Dockerfile (Overview)

5

FROM ubuntu:12.04
MAINTAINER John Doe

RUN echo "deb http://archive.ubuntu.com/ubuntu precise main universe" > /etc/apt/
sources.list
RUN apt-get update
RUN apt-get upgrade -y

RUN apt-get install -y gcc make g++ build-essential libc6-dev tcl wget
RUN sudo -E pip install scipy:0.18.1

RUN tar -zvzf /redis/redis-stable.tar.gz
RUN (cd /redis-stable && make)
RUN (cd /redis-stable && make test)

ADD redis.conf /var/www/redis.conf

RUN mkdir -p /redis-data
VOLUME ["/redis-data"]
EXPOSE 6379

ENTRYPOINT ["/redis-stable/src/redis-server"]
CMD ["--dir", "/redis-data"]

Dependencies

Base Image

Install

Open Port

Start Server

Volume

Base Image can be an OS (Ubuntu)
or a different, existing image

Runs commands as if you were typing
them in the command line

Copies local files from
build context into container

Defines the infrastructure and dependencies of a container through instructions

 24

4

Container Workflow

Build redis from source
Make sure you have the redis source code
checked out in
the same directory as this Dockerfile

FROM ubuntu:12.04
MAINTAINER dockerfiles http://
dockerfiles.github.io

RUN echo "deb http://archive.ubuntu.com/
ubuntu precise main universe" > /etc/apt/
sources.list
RUN apt-get update
RUN apt-get upgrade -y

RUN apt-get install -y gcc make g++ build-
essential libc6-dev tcl wget

RUN wget http://download.redis.io/redis-
stable.tar.gz -O - | tar -xvz

RUN tar -zvzf /redis/redis-stable.tar.gz
RUN (cd /redis-stable && make)
RUN (cd /redis-stable && make test)

RUN mkdir -p /redis-data
VOLUME ["/redis-data"]
EXPOSE 6379

ENTRYPOINT ["/redis-stable/src/redis-
server"]
CMD ["--dir", "/redis-data"]

Dockerfile

build

Image

Docker Image Docker Container

run

[Cito et al., MSR17]

An Empirical Analysis of the
Docker Container Ecosystem on GitHub

Jürgen Cito∗, Gerald Schermann∗, John Erik Wittern†, Philipp Leitner∗, Sali Zumberi∗, Harald C. Gall∗

∗ Software Evolution and Architecture Lab
University of Zurich, Switzerland

{lastname}@ifi.uzh.ch

† IBM T. J. Watson Research Center
Yorktown Heights, NY, USA

witternj@us.ibm.com

Abstract—Docker allows packaging an application with its
dependencies into a standardized, self-contained unit (a so-called
container), which can be used for software development and to
run the application on any system. Dockerfiles are declarative
definitions of an environment that aim to enable reproducible
builds of the container. They can often be found in source code
repositories and enable the hosted software to come to life in
its execution environment. We conduct an exploratory empirical
study with the goal of characterizing the Docker ecosystem,
prevalent quality issues, and the evolution of Dockerfiles. We base
our study on a data set of over 70000 Dockerfiles, and contrast
this general population with samplings that contain the Top-100
and Top-1000 most popular Docker-using projects. We find that
most quality issues (28.6%) arise from missing version pinning
(i.e., specifying a concrete version for dependencies). Further, we
were not able to build 34% of Dockerfiles from a representative
sample of 560 projects. Integrating quality checks, e.g., to issue
version pinning warnings, into the container build process could
result into more reproducible builds. The most popular projects
change more often than the rest of the Docker population, with
5.81 revisions per year and 5 lines of code changed on average.
Most changes deal with dependencies, that are currently stored
in a rather unstructured manner. We propose to introduce an
abstraction that, for instance, could deal with the intricacies of
different package managers and could improve migration to more
light-weight images.

Keywords-empirical software engineering; GitHub; Docker

I. INTRODUCTION

Containerization has recently gained interest as a light-
weight virtualization technology to define software infras-
tructure. Containers allow to package an application with its
dependencies and execution environment into a standardized,
self-contained unit, which can be used for software develop-
ment and to run the application on any system. Due to their
rapid spread in the software development community, Docker
containers have become the de-facto standard format [1]. The
contents of a Docker container are declaratively defined in a
Dockerfile that stores instructions to reach a certain infrastruc-
ture state [2], following the notion of Infrastructure-as-Code
(IaC) [3]. Source code repositories containing Dockerfiles,
thus, potentially enable the execution of program code in an
isolated and fast environment with one command. Since its
inception in 2013, repositories on GitHub have added 70197
Dockerfiles to their projects (until October 2016).

Given the fast rise in popularity, its ubiquitous nature in
industry, and its surrounding claim of enabling reproducibil-

ity [4], we study the Docker ecosystem with respect to quality
of Dockerfiles and their change and evolution behavior within
software repositories. We developed a tool chain that trans-
forms Dockerfiles and their evolution in Git repositories into
a relational database model. We mined the entire population
of Dockerfiles on GitHub as of October 2016, and summarize
our findings on the ecosystem in general, quality aspects,
and evolution behavior. The results of our study can inform
standard bodies around containers and tool developers to
develop better support to improve quality and drive ecosystem
change.

We make the following contributions through our ex-
ploratory study:

Ecosystem Overview. We characterize the ecosystem of
Docker containers on GitHub by analyzing the distribution of
projects using Docker, broken down by primary programming
language, project size, and the base infrastructure (base image)
they inherit from. We learn, among other things, that most
inherited base images are well-established, but heavy-weight
operating systems, while light-weight alternatives are in the
minority. However, this defeats the purpose of containers to
lower the footprint of virtualization. We envision a recom-
mendation system that analyzes Dockerfiles and transforms its
dependency sources to work with light-weight base images.

Quality Assessment. We assess the quality of Dockerfiles
on GitHub by classifying results of a Dockerfile Linter [5].
Most of the issues we encountered considered version pinning
(i.e., specifying a concrete version for either base images or
dependencies), accounting for 28.6% of quality issues. We also
built the Dockerfiles for a representative sample of 560 repos-
itories. 66% of Dockerfiles could be built successfully with
an average build time of 145.9 seconds. Integrating quality
checks into the “docker build” process to warn developers
early about build-breaking issues, such as version pinning, can
lead to more reproducible builds.

Evolution Behavior. We classify different kinds of changes
between consecutive versions of Dockerfiles to characterize
their evolution within a repository. On average, Dockerfiles
only changed 3.11 times per year, with a mean 3.98 lines of
code changed per revision. However, more popular projects
revise up to 5.81 per year with 5 lines changed. Dependencies
see a high rate of change over time, reinforcing our findings
to improve dependency handling from the analysis of the

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE
DOI 10.1109/MSR.2017.67

13

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE
DOI 10.1109/MSR.2017.67

323

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE
DOI 10.1109/MSR.2017.67

323

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE
DOI 10.1109/MSR.2017.67

323

Research finding

14

ubuntu

debian

node

centos

python

dockerfile/nodejs

golang

alpine

java

nginx

ruby

scratch

php

fedora

busybox

0 5 10 15 20 25
% of Projects with Base Image Referenced in FROM Statements

All
Top−100
Top−1000

Base Images & Sizes

125 MB

195 MB

4 MB

Reduce Image Size

Base Image Recommendation
 25

Infrastructure-as-code

15

Distribution of Instructions

Instruction All Top-1000 Top-100
RUN 40% 41% 48%

COMMENT 16% 14% 15%
ENV 6% 7% 9%
FROM 7% 8% 7%
ADD 6% 5% 2%
CMD 4% 4% 3%
COPY 3% 4% 3%
EXPOSE 4% 4% 3%

MAINTAINER 4% 4% 3%
WORKDIR 3% 3% 3%

ENTRYPOINT 2% 2% 1%
VOLUME 2% 2% 1%
USER 1% 1% 1%

 26

[Cito et al., MSR17]

An Empirical Analysis of the
Docker Container Ecosystem on GitHub

Jürgen Cito∗, Gerald Schermann∗, John Erik Wittern†, Philipp Leitner∗, Sali Zumberi∗, Harald C. Gall∗

∗ Software Evolution and Architecture Lab
University of Zurich, Switzerland

{lastname}@ifi.uzh.ch

† IBM T. J. Watson Research Center
Yorktown Heights, NY, USA

witternj@us.ibm.com

Abstract—Docker allows packaging an application with its
dependencies into a standardized, self-contained unit (a so-called
container), which can be used for software development and to
run the application on any system. Dockerfiles are declarative
definitions of an environment that aim to enable reproducible
builds of the container. They can often be found in source code
repositories and enable the hosted software to come to life in
its execution environment. We conduct an exploratory empirical
study with the goal of characterizing the Docker ecosystem,
prevalent quality issues, and the evolution of Dockerfiles. We base
our study on a data set of over 70000 Dockerfiles, and contrast
this general population with samplings that contain the Top-100
and Top-1000 most popular Docker-using projects. We find that
most quality issues (28.6%) arise from missing version pinning
(i.e., specifying a concrete version for dependencies). Further, we
were not able to build 34% of Dockerfiles from a representative
sample of 560 projects. Integrating quality checks, e.g., to issue
version pinning warnings, into the container build process could
result into more reproducible builds. The most popular projects
change more often than the rest of the Docker population, with
5.81 revisions per year and 5 lines of code changed on average.
Most changes deal with dependencies, that are currently stored
in a rather unstructured manner. We propose to introduce an
abstraction that, for instance, could deal with the intricacies of
different package managers and could improve migration to more
light-weight images.

Keywords-empirical software engineering; GitHub; Docker

I. INTRODUCTION

Containerization has recently gained interest as a light-
weight virtualization technology to define software infras-
tructure. Containers allow to package an application with its
dependencies and execution environment into a standardized,
self-contained unit, which can be used for software develop-
ment and to run the application on any system. Due to their
rapid spread in the software development community, Docker
containers have become the de-facto standard format [1]. The
contents of a Docker container are declaratively defined in a
Dockerfile that stores instructions to reach a certain infrastruc-
ture state [2], following the notion of Infrastructure-as-Code
(IaC) [3]. Source code repositories containing Dockerfiles,
thus, potentially enable the execution of program code in an
isolated and fast environment with one command. Since its
inception in 2013, repositories on GitHub have added 70197
Dockerfiles to their projects (until October 2016).

Given the fast rise in popularity, its ubiquitous nature in
industry, and its surrounding claim of enabling reproducibil-

ity [4], we study the Docker ecosystem with respect to quality
of Dockerfiles and their change and evolution behavior within
software repositories. We developed a tool chain that trans-
forms Dockerfiles and their evolution in Git repositories into
a relational database model. We mined the entire population
of Dockerfiles on GitHub as of October 2016, and summarize
our findings on the ecosystem in general, quality aspects,
and evolution behavior. The results of our study can inform
standard bodies around containers and tool developers to
develop better support to improve quality and drive ecosystem
change.

We make the following contributions through our ex-
ploratory study:

Ecosystem Overview. We characterize the ecosystem of
Docker containers on GitHub by analyzing the distribution of
projects using Docker, broken down by primary programming
language, project size, and the base infrastructure (base image)
they inherit from. We learn, among other things, that most
inherited base images are well-established, but heavy-weight
operating systems, while light-weight alternatives are in the
minority. However, this defeats the purpose of containers to
lower the footprint of virtualization. We envision a recom-
mendation system that analyzes Dockerfiles and transforms its
dependency sources to work with light-weight base images.

Quality Assessment. We assess the quality of Dockerfiles
on GitHub by classifying results of a Dockerfile Linter [5].
Most of the issues we encountered considered version pinning
(i.e., specifying a concrete version for either base images or
dependencies), accounting for 28.6% of quality issues. We also
built the Dockerfiles for a representative sample of 560 repos-
itories. 66% of Dockerfiles could be built successfully with
an average build time of 145.9 seconds. Integrating quality
checks into the “docker build” process to warn developers
early about build-breaking issues, such as version pinning, can
lead to more reproducible builds.

Evolution Behavior. We classify different kinds of changes
between consecutive versions of Dockerfiles to characterize
their evolution within a repository. On average, Dockerfiles
only changed 3.11 times per year, with a mean 3.98 lines of
code changed per revision. However, more popular projects
revise up to 5.81 per year with 5 lines changed. Dependencies
see a high rate of change over time, reinforcing our findings
to improve dependency handling from the analysis of the

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE
DOI 10.1109/MSR.2017.67

13

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE
DOI 10.1109/MSR.2017.67

323

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE
DOI 10.1109/MSR.2017.67

323

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE
DOI 10.1109/MSR.2017.67

323

Research finding

Infrastructure-as-code

16

Distribution of RUN Instructions

Category Examples All Top-1000 Top-100

Dependencies apt-get, yum, npm 45.2% 44.7% 45.2%

File System mkdir, cd, cp, rm 30.4% 29.3% 29.4%

Permissions chmod, chown 7.3% 5.2% 2.3%

Build / Execute make, install 5.3% 8.3% 13.5%

Environment set, export, source 0.6% 1.0% 0.2%

Other 11.3% 11.5% 9.4%

Abstraction for Dependencies
 27

[Cito et al., MSR17]

An Empirical Analysis of the
Docker Container Ecosystem on GitHub

Jürgen Cito∗, Gerald Schermann∗, John Erik Wittern†, Philipp Leitner∗, Sali Zumberi∗, Harald C. Gall∗

∗ Software Evolution and Architecture Lab
University of Zurich, Switzerland

{lastname}@ifi.uzh.ch

† IBM T. J. Watson Research Center
Yorktown Heights, NY, USA

witternj@us.ibm.com

Abstract—Docker allows packaging an application with its
dependencies into a standardized, self-contained unit (a so-called
container), which can be used for software development and to
run the application on any system. Dockerfiles are declarative
definitions of an environment that aim to enable reproducible
builds of the container. They can often be found in source code
repositories and enable the hosted software to come to life in
its execution environment. We conduct an exploratory empirical
study with the goal of characterizing the Docker ecosystem,
prevalent quality issues, and the evolution of Dockerfiles. We base
our study on a data set of over 70000 Dockerfiles, and contrast
this general population with samplings that contain the Top-100
and Top-1000 most popular Docker-using projects. We find that
most quality issues (28.6%) arise from missing version pinning
(i.e., specifying a concrete version for dependencies). Further, we
were not able to build 34% of Dockerfiles from a representative
sample of 560 projects. Integrating quality checks, e.g., to issue
version pinning warnings, into the container build process could
result into more reproducible builds. The most popular projects
change more often than the rest of the Docker population, with
5.81 revisions per year and 5 lines of code changed on average.
Most changes deal with dependencies, that are currently stored
in a rather unstructured manner. We propose to introduce an
abstraction that, for instance, could deal with the intricacies of
different package managers and could improve migration to more
light-weight images.

Keywords-empirical software engineering; GitHub; Docker

I. INTRODUCTION

Containerization has recently gained interest as a light-
weight virtualization technology to define software infras-
tructure. Containers allow to package an application with its
dependencies and execution environment into a standardized,
self-contained unit, which can be used for software develop-
ment and to run the application on any system. Due to their
rapid spread in the software development community, Docker
containers have become the de-facto standard format [1]. The
contents of a Docker container are declaratively defined in a
Dockerfile that stores instructions to reach a certain infrastruc-
ture state [2], following the notion of Infrastructure-as-Code
(IaC) [3]. Source code repositories containing Dockerfiles,
thus, potentially enable the execution of program code in an
isolated and fast environment with one command. Since its
inception in 2013, repositories on GitHub have added 70197
Dockerfiles to their projects (until October 2016).

Given the fast rise in popularity, its ubiquitous nature in
industry, and its surrounding claim of enabling reproducibil-

ity [4], we study the Docker ecosystem with respect to quality
of Dockerfiles and their change and evolution behavior within
software repositories. We developed a tool chain that trans-
forms Dockerfiles and their evolution in Git repositories into
a relational database model. We mined the entire population
of Dockerfiles on GitHub as of October 2016, and summarize
our findings on the ecosystem in general, quality aspects,
and evolution behavior. The results of our study can inform
standard bodies around containers and tool developers to
develop better support to improve quality and drive ecosystem
change.

We make the following contributions through our ex-
ploratory study:

Ecosystem Overview. We characterize the ecosystem of
Docker containers on GitHub by analyzing the distribution of
projects using Docker, broken down by primary programming
language, project size, and the base infrastructure (base image)
they inherit from. We learn, among other things, that most
inherited base images are well-established, but heavy-weight
operating systems, while light-weight alternatives are in the
minority. However, this defeats the purpose of containers to
lower the footprint of virtualization. We envision a recom-
mendation system that analyzes Dockerfiles and transforms its
dependency sources to work with light-weight base images.

Quality Assessment. We assess the quality of Dockerfiles
on GitHub by classifying results of a Dockerfile Linter [5].
Most of the issues we encountered considered version pinning
(i.e., specifying a concrete version for either base images or
dependencies), accounting for 28.6% of quality issues. We also
built the Dockerfiles for a representative sample of 560 repos-
itories. 66% of Dockerfiles could be built successfully with
an average build time of 145.9 seconds. Integrating quality
checks into the “docker build” process to warn developers
early about build-breaking issues, such as version pinning, can
lead to more reproducible builds.

Evolution Behavior. We classify different kinds of changes
between consecutive versions of Dockerfiles to characterize
their evolution within a repository. On average, Dockerfiles
only changed 3.11 times per year, with a mean 3.98 lines of
code changed per revision. However, more popular projects
revise up to 5.81 per year with 5 lines changed. Dependencies
see a high rate of change over time, reinforcing our findings
to improve dependency handling from the analysis of the

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE
DOI 10.1109/MSR.2017.67

13

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE
DOI 10.1109/MSR.2017.67

323

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE
DOI 10.1109/MSR.2017.67

323

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE
DOI 10.1109/MSR.2017.67

323

Research finding

Infrastructure-as-code

using distributed actors

Service-oriented architecture

Scaling up

Scaling out

introduction and motivation

using concurrent actors

Scaling up through concurrent programming

 29

“Scalability is the measure to which a

system can adapt to a change in demand

for resources, without negatively

impacting performance.”

Concurrency is a means to achieve scalability:  
add more threads to server when needed, 
which the application automatically starts using

Introduction to concurrent actor programming

A r t i f i c i a l In te l l i gence

A Universal Modular ACTOR Formalism
for A r t i f i c i a l Intelligence

Carl Hewitt
Peter Bishop
Richard Steiger
Abstract

This paper proposes a modular ACTOR architecture and definit ional method for a r t i f i c i a l
intelligence that is conceptually based on a single kind of object: actors [or, if you w i l l ,
v i r tual processors, activation frames, or streams]. The formalism makes no presuppositions
about the representation of primitive data structures and control structures. Such structures
can be programmed, micro­coded, or hard wired 1n a uniform modular fashion. In fact it is
impossible to determine whether a given object is "really" represented as a l i s t , a vector, a
hash table, a function, or a process. The architecture w i l l e f f ic ient ly run the coming
generation of PLANNER­like a r t i f i c i a l intelligence languages including those requiring a high
degree of parallelism. The efficiency is gained without loss of programming generality because
it only makes certain actors more e f f ic ient ; it does not change their behavioral
characteristics. The architecture is general with respect to control structure and
does not have or need goto, interrupt, or semaphore primitives. The formalism achieves the goals that
the disallowed constructs are intended to achieve by other more structured methods.

PLANNER Progress

"Programs should not only work,
but they should appear to work as wel l . "

PDP­1X Dogma

The PLANNER project is continuing research in natural and effective means for embedding
knowledge in procedures. In the course of this work we have succeeded in unifying the
formalism around one fundamental concept: the ACTOR. Intu i t ive ly , an ACTOR is an active agent
which plays a role on cue according to a script" we" use the ACTOR metaphor to emphasize the
inseparability of control and data flow in our model. Data structures, functions, semaphores,
monitors, ports, descriptions, Quillian nets, logical formulae, numbers, ident i f iers, demons,
processes, contexts, and data bases can a l l be shown to be special cases of actors. Al l of the
above are objects with certain useful modes of behavior. Our formalism shows how al l of the
modes of behavior can be defined in terms of one kind of behavior: sending messages to actors.
An actor is always invoked uniformly in exactly the same way regardless of whether 1t behaves
as a recursive function, data structure, or process.

" I t is vain to multiply Entities beyond need."
William of Occam

"Monotheism is the Answer."

The unif ication and simplif ication of the formalisms for the procedural embedding of
knowledge has a great many benefits for us:

FOUNDATIONS: The concept puts procedural semantics [the theory of how things
operate] on a firmer basis. It w i l l now be possible to do cleaner theoretical studies of the
relation between procedural semantics and set­theoretic semantics such as model theories of
the quantificational calculus and the lambda calculus.

LOGICAL CALCULAE: A procedural semantics is developed for the quantificational
calculus. The logical constants FOR­ALL, THERE­EXISTS, AND, OR, NOT, and IMPLIES
are defined as actors.

KNOWLEDGE BASED PROGRAMMING is programming in an environment which has a
substantial knowledge base in the application area for which the programs are intended.
The actor formalism aids knowledge based programming in the following ways

­
. PROCEDURAL

EMBEDDING of KNOWLEDGE, TRACING BEHAVIORAL DEPENDENCIES, and SUBSTANTIATING that ACTORS
SATISFY their INTENTIONS.

INTENTIONS: Furthermore the confirmation of properties of procedures is made
easier and more uniform. Every actor has an INTENTION which checks that the prerequisites
and the context of the actor being sent the message are satisf ied. The intention is the
CONTRACT that the actor has with the outside world. How an actor f u l l f l l l s i ts contract is
i ts own business. By a SIMPLE BUG we mean an actor which does not satisfy i ts intention.
We would l ike to eliminate simpTedebugging of actors by the META­EVALUATION of actors to show
that they satisfy their Intentions. Suppose that there is an external audience of actors E
which satisfy the intentions of the actors to which they send messages. In tu i t ive ly , the
principle of ACTOR INDUCTION states that the intentions of a l l actions caused by E are
in turn satisf ied provided that the following condition holds:

If for each actor A
the intention of A is satisf ied =>
that the intentions of a l l actors sent messages by A are satisf ied.

Computational induction [Manna], structural induction [Bursta l l] , and Peano induction
are a l l special cases of ACTOR induction. Actor based intentions have the following
advantages: The intention is decoupled from the actors it describes. Intentions of
concurrent actions are more easily disentangled. We can more elegantly write intentions
for dialogues between actors. The intentions are written 1n the same formalism as the
procedures they describe. Thus for example intentions can have intentions. Because
protection is an intr insic property of actors, we hope to be able to deal with protection
issues in the same straight forward manner as more conventional intentions. Intentions
of data structures are handled by the same machinery as for a l l other actors.

COMPARATIVE SCHEHATOLOGY: The theory of comparative power of control structures is

235

[Hewitt et al., 1973]

Three significant trends have under-
scored the central role of concurrency
in computing. First, there is in-
creased use of interacting processes
by individual users, for example, ap-
plication programs running on X
windows. Second, workstation net-
works have become a cost-effective

CONCURRENT
OBJECT-ORIENTED

mechanism for resource sharing and
distributed problem solving. For ex-
ample, loosely coupled problems,
such as finding all the factors of large
prime numbers, have been solved by
utilizing ideal cycles on networks of
hundreds of workstations. A loosely
coupled problem is one which can be
easily partitioned into many smaller
subproblems so that interactions
between the subproblems is quite limited. Finally, multiprocessor tech-

CCYY”NlCITlCYICCT”EACCY/September 199O/Vol.33, No.9 125

[Agha 1990]

 30

An actor can only:

process messages one-by-one from a mailbox

A

✉✉✉

 31

Introduction to concurrent actor programming

An actor can only:

process messages one-by-one from a mailbox

create other actors

BA

✉✉

 32

Introduction to concurrent actor programming

An actor can only:

process messages one-by-one from a mailbox

create other actors

send messages to other actors asynchronously

BA

✉✉
✉

 33

Introduction to concurrent actor programming

An actor can only:

process messages one-by-one from a mailbox

create other actors

send messages to other actors asynchronously

change its message processing behavior

✉✉ ✉

BAC

 34

Introduction to concurrent actor programming

An actor is effectively single-threaded

messages are received and processed sequentially,  
the actor invokes its behaviour one-by-one on every message that is received

processing one message is the atomic unit of execution,  
it cannot be interleaved with the processing of another message

changes in behaviour (i.e., become) are in effect for the processing of the next message 

But message processors of separate actors can be executed concurrently!

B

✉✉

 35

Introduction to concurrent actor programming

object CounterMessages {
 case object Incr
 case object Get
}

Messages exchanged in our example

class Counter extends Actor {
 import CounterMessages._

 var count = 0

 def receive = {
 case Incr => count = count + 1
 case Get => sender ! count
 }

}

Counter actor with assignment

type Receive = PartialFunction[Any, Unit]trait Actor {
 //...
 def receive : Receive
 implicit val self : ActorRef def sender : ActorRef}

Actor trait describes behavior

parameter-less method

returns a partial

function from

messages to unit

an actor’s address is

accessible through

variable “self”

address of the sender

of the current message

being processed

abstract class ActorRef {
 def !(msg : Any)(implicit sender : Act

orRef = Actor.noSender) : Unit

 def tell(msg : Any, sender : ActorRef)
 = this.!(msg)(sender)

}

Messages are sent to actor addresses

implicit val self defined in Actor trait

+ implicit parameter in method

=> the sender’s address is picked up implicitly 

Introduction to : defining actor types

 36

class CounterClient extends Actor {
 import CounterMessages._

 val counter : ActorRef = context.actorOf(Props[Counter], "counter")
 counter ! Incr
 counter ! Incr
 counter ! Get

 def receive = {
 case count: Int => {
 println(s"count was $count")
 context.stop(counter)
 context.stop(self)
 }
 }
}
}

trait ActorContext { //...
 def actorOf(p: Props, name: String) : ActorRef
 def stop(a : ActorRef) : Unit}

actors can be created by

other actors

object CounterTest extends App {
 val actorSystem : ActorSystem =
 ActorSystem("counterActorSystem")
 val client : ActorRef =
 actorSystem.actorOf(Props[CounterClient], "client")
 actorSystem.terminate()
}> count was 2

or by the actor

system

Introduction to : creating actors

 37

GoTicks.com: REST API

 38

[Roestenburg et al. 2016]

31Clone, build, and test interface

build file set up, we can compile the code, run the tests, and build the JAR file. Run
the following command in the chapter-up-and-running directory.

sbt clean compile test

If any dependencies still need to be downloaded, sbt will do that automatically. Now
that we have the build file in place, let’s take a closer look at what we’re trying to
achieve with this example in the next section.

2.1.2 Fast-forward to the GoTicks.com REST server

Our ticket-selling service will allow customers to buy tickets to all sorts of events, con-
certs, sports games, and the like. Let’s say we’re part of a startup called GoTicks.com,
and in this first iteration we’ve been assigned to build the backend REST server for the
first version of the service. Right now we want customers to get a numbered ticket to a
show. Once all the tickets are sold for an event, the server should respond with a 404
(Not Found) HTTP status code. The first thing we’ll implement in the REST API will
have to be the addition of a new event (since all other services will require the pres-
ence of an event in the system). A new event only contains the name of the event—say
"RHCP" for the Red Hot Chili Peppers—and the total number of tickets we can sell for
the given venue.

 The requirements for the RestApi are shown in table 2.1.

Listing 2.4 Running tests

Table 2.1 REST API

Description
HTTP

method
URL Request body Status code Response example

Create an
event

POST /events/RHCP { "tickets" : 250} 201 Created {
 "name": "RHCP",
 "tickets": 250
}

Get all
events

GET /events N/A 200 OK [{ event : "RHCP",
tickets : 249 }, {
event : "Radiohead",
tickets : 130 }]

Buy tickets POST /events/RHCP/
tickets

 { "tickets" : 2 } 201 Created { "event" : "RHCP",
"entries" : [{ "id"
: 1 }, { "id" : 2 }]
}

Cancel
an event

DELETE /events/RHCP N/A 200 OK { event : "RHCP",
tickets : 249 }

Delete target; then compile and run tests

Licensed to Coen De Roover <cderoove@vub.ac.be>

CRUD operations on resources as HTTP request-response cycles

http://GoTicks.com

[Roestenburg et al. 2016]

:~ cderoove$ http POST localhost:5000/events/RHCP tickets:=10
HTTP/1.1 201 Created
Content-Length: 28
Content-Type: application/json
Date: Tue, 06 Feb 2018 12:07:30 GMT
Server: GoTicks.com REST API

{
 "name": "RHCP",
 "tickets": 10
} :~ cderoove$ http GET localhost:5000/events/

HTTP/1.1 200 OK
Content-Length: 74
Content-Type: application/json
Date: Tue, 06 Feb 2018 12:18:46 GMT
Server: GoTicks.com REST API

{
 "events": [
 {
 "name": "DJMadLib",
 "tickets": 15
 },
 {
 "name": "RHCP",
 "tickets": 10
 }
]
}

create a Red Hot Chilli Peppers event with 10 tickets

list available tickets for all events

GoTicks.com: REST API

 39

http://GoTicks.com

[Roestenburg et al. 2016]

:~ cderoove$ http POST localhost:5000/events/RHCP/tickets tickets:=2
HTTP/1.1 201 Created
Content-Length: 46
Content-Type: application/json
Date: Tue, 06 Feb 2018 12:20:53 GMT
Server: GoTicks.com REST API

{
 "entries": [
 {
 "id": 1
 },
 {
 "id": 2
 }
],
 "event": "RHCP"
}

purchase two tickets for Red Hot Chilli Peppers event

:~ cderoove$ http GET localhost:5000/events/
HTTP/1.1 200 OK
Content-Length: 73
Content-Type: application/json
Date: Tue, 06 Feb 2018 12:23:14 GMT
Server: GoTicks.com REST API

{
 "events": [
 {
 "name": "DJMadLib",
 "tickets": 15
 },
 {
 "name": "RHCP",
 "tickets": 8
 }
]
}

list remaining tickets for all events

GoTicks.com: REST API

 40

http://GoTicks.com

[Roestenburg et al. 2016]

37Explore the actors in the app

import akka.actor.{ ActorSystem , Actor, Props }
import akka.event.Logging
import akka.util.Timeout

import akka.http.scaladsl.Http

Listing 2.11 Main class import statements

Actor

RestApi

Message

TicketRequest
("RHCP", 2)

HTTP request

{"tickets" : 2}

HTTP JSON

{
 "event" : "RHCP",
 "entries":[
 {"id" : 1},
 {"id" : 2}
]
}

Message

Buy(2)

Actor

BoxOffice

Actor

TicketSeller

Message

Tickets(Vector(
 Ticket(1),
 Ticket(2)
))

RestApi receives
POST /events/RHCP/tickets
request

RestApi responds
with JSON tickets

TicketSeller responds
to original sender
with the Tickets

RestApi creates
TicketRequest from
the JSON request and
sends it to the BoxOffice

The BoxOffice finds child
with name "RHCP" and
forwards the Buy message
to it. The sender of the
message as seen from the
TicketSeller is the RestApi.

ActorSystem

Figure 2.3 Buying a ticket

Actor-related code is located
in akka.actor package

Logging extension
Asking requires timeout

HTTP-related code is located
in akka.http package

Licensed to Coen De Roover <cderoove@vub.ac.be>

separate TicketSeller

actor per event!

processing tickets and

answering REST calls

happens concurrently

GoTicks.com: REST API

 41

Actors facilitate fine-grained

upscaling within a container

http://GoTicks.com

[Roestenburg et al. 2016]class TicketSeller(event: String) extends Actor {
 import TicketSeller._

 var tickets = Vector.empty[Ticket]

 def receive = {
 case Add(newTickets) =>  
 tickets = tickets ++ newTickets
 case Buy(nrOfTickets) =>
 val entries = tickets.take(nrOfTickets)
 if(entries.size >= nrOfTickets) {
 sender() ! Tickets(event, entries)
 tickets = tickets.drop(nrOfTickets)
 } else sender() ! Tickets(event)
 case GetEvent =>  
 sender() ! Some(BoxOffice.Event(event, tickets.size))
 case Cancel =>
 sender() ! Some(BoxOffice.Event(event, tickets.size))
 self ! PoisonPill
 }
} terminates the TicketSeller actor

when the event is canceled

GoTicks example: scaling upwards

 42

answers with the remaining

tickets for the event

vector of numbered tickets

populated by the BoxOffice actor

answers with the requested number of

tickets, or an empty message

TicketSeller actor

[Roestenburg et al. 2016]

class BoxOffice(implicit timeout: Timeout) extends Actor {

 def createTicketSeller(name: String) =
 context.actorOf(TicketSeller.props(name), name)

 def receive = {
 case CreateEvent(name, tickets) =>
 def create() = {
 val eventTickets = createTicketSeller(name)
 val newTickets = (1 to tickets).map { ticketId =>
 TicketSeller.Ticket(ticketId)
 }.toVector
 eventTickets ! TicketSeller.Add(newTickets)
 sender() ! EventCreated(Event(name, tickets))
 }
 context.child(name).fold(create())(_ => sender() ! EventExists)

 //…

creates a TicketSeller for the

given event as a child actor

checks whether a TicketSeller for

the given event already exists,

and creates one otherwise

adds a vector of numbered

tickets to the seller’s

inventory

communicates success

back to RestAPI actor

GoTicks example: scaling upwards

 43

BoxOffice actor

[Roestenburg et al. 2016]

 //…  
 case GetTickets(event, tickets) =>
 def notFound() = sender() ! TicketSeller.Tickets(event)
 def buy(child: ActorRef) =
 child.forward(TicketSeller.Buy(tickets))
 context.child(event).fold(notFound())(buy)
  
 case GetEvent(event) =>
 def notFound() = sender() ! None
 def getEvent(child: ActorRef) = child forward TicketSeller.GetEvent
 context.child(event).fold(notFound())(getEvent)

 case CancelEvent(event) =>
 def notFound() = sender() ! None
 def cancelEvent(child: ActorRef) = child forward TicketSeller.Cancel
 context.child(event).fold(notFound())(cancelEvent)
 //…

forwards, rather than sends, a Buy

message to the appropriate child actor 
 

this ensures responses will go to the

RESTApi Actor

GoTicks example: scaling upwards

 44

[Roestenburg et al. 2016]

 //…
 case GetEvents =>
 import akka.pattern.ask
 import akka.pattern.pipe

 def getEvents = context.children.map { child =>
 self.ask(GetEvent(child.path.name)).mapTo[Option[Event]]
 }  

 def convertToEvents(f: Future[Iterable[Option[Event]]]) =
 f.map(_.flatten).map(l=> Events(l.toVector))

 pipe(convertToEvents(Future.sequence(getEvents))) to sender()
}

GoTicks example: scaling upwards

 45

but of course, asynchronous programming needs some getting used to!

asks sends a message and returns

a future for the response

pipe forwards the value the future resolves

to, as soon as it becomes available

using distributed actors

Service-oriented architecture

Scaling up

Scaling out

introduction and motivation

using concurrent actors

Scaling out through distributed programming

 47

Distribution is another means to achieve scalability: 
add threads from different network nodes to the application

122 CHAPTER 6 Your first distributed Akka app

 We’ll show you that this choice provides a solid foundation for building both local
and distributed applications that are fit for the challenges of today. Akka provides a sim-
ple API for asynchronous programming as well as the tools you need to test your applica-
tions locally and remotely. Now that you understand the reasoning behind a distributed
programming model for both local and distributed systems, in the following sections
we’ll look at how we can scale out the GoTicks.com App that we built in chapter 2.

6.2 Scaling out with remoting
Since this is an introduction to scaling out, we’ll use the relatively simple example
GoTicks.com app from chapter 2. In the next sections, we’ll change the app so it runs
on more than one node. Although the GoTicks.com app is an oversimplified exam-
ple, it will give you a feel for the changes you need to make to an app that hasn’t made
any accommodations for scaling.

 We’ll define a static membership between two nodes using a client-server network
topology, since it’s the easiest path from local to distributed. The roles for the two
nodes in this setup are frontend and backend. The REST interface will run on a front-
end node. The BoxOffice and all TicketSellers will run on a backend node. Both
nodes have a static reference to each other’s network addresses. Figure 6.2 shows the
change that we’ll make.

HTTP routes

RestApi

Actor

BoxOffice

Actor

TicketSeller

Single node

Single-node ActorSystem

HTTP routes

RestApi

Actor

TicketSeller

Frontend node

Frontend ActorSystem

Actor

BoxOffice

Backend node

Backend ActorSystem

Figure 6.2 From single node
to client-server

Licensed to Coen De Roover <cderoove@vub.ac.be>

Introduction to distributed actor programming

actor systems are distributable by design

strong encapsulation: no shared data

location-transparent communication through addresses (ActorRefs):  
same ! for sending asynchronous message to local and to remote ActorRef

actor systems are resilient by design

strong encapsulation: failures don’t cascade to other parts

actors are created by a supervisor, to whom failure handling is delegated: 
enables decoupling business logic from failure handling

flexible supervision strategies: stop, escalate, restart…

 48

Figure 5-8. Services should be referenced through virtual stable refer‐
ences

Second, an address needs to be virtual in the sense that it can, and
often does, represent not just one, but an entire set of runtime
instances that together defines the service. Here are some of the rea‐
sons why this can be advantageous:

Embrace Reactive Systems | 39

Figure 5-8. Services should be referenced through virtual stable refer‐
ences

Second, an address needs to be virtual in the sense that it can, and
often does, represent not just one, but an entire set of runtime
instances that together defines the service. Here are some of the rea‐
sons why this can be advantageous:

Embrace Reactive Systems | 39

[Bonér 2017]

Scaling out: word counting cluster

 49

[Roestenburg et al. 2016]

324 CHAPTER 14 Clustering

� Node partitioning—A node can be given a specific role in the cluster. Routers can
be configured to only send messages to nodes with a specific role.

� Partition points—An actor system can be partitioned into actor subtrees that are
located on different nodes.

We’ll dive into the details of these features in this chapter and focus primarily on clus-
ter membership and routing. Chapter 15 details mechanisms for replication of state
and automatic failover.

 A single-purpose data processing application is a good example of a candidate
application for using clusters, for example, data processing tasks like image recogni-
tion or real-time analysis of social media. Nodes can be added or removed when more
or less processing power is required. Processing jobs are supervised: if an actor fails,
the job is restarted and retried on the cluster until it succeeds. We’ll look at a simple
example of this type of application in this chapter. Figure 14.2 shows an overview for
this type of application; don’t worry about the details here, because we’ll introduce
the terms you may not be familiar with later in this chapter.

 Let’s move on to writing the code to compile our clustered word count applica-
tion. In the next section, we’ll dig into the details of cluster membership so that the
job masters and workers can find each other to work together.

Cluster
(node 1, node 2, node 3, node 4)

Node 1: Job master role

User

Job
receptionist

Job
master

Job
master

Job receptionists
receive job requests
and forward the jobs
to job masters.

Job workers
are watched
by job masters.

Job workers find
a master with a
job in the cluster
and request work.

Job masters are
started per job.
Job masters are
supervised by
receptionists.

Node 2: Job worker role

User

Job
worker

Job
worker

Node 4: Job worker role

User

Job
worker

Job
worker

Node 3: Job worker role

User

Job
worker

Job
worker

Figure 14.2 Processing jobs

Licensed to Coen De Roover <cderoove@vub.ac.be>

Words cluster: starting JVM nodes

 50

[Roestenburg et al. 2016]

java -DPORT=2551
 -Dconfig.resource=/seed.conf
 -jar target/words-node.jar  

java -DPORT=2554
 -Dconfig.resource=/master.conf
 -jar target/words-node.jar
 
java -DPORT=2555
 -Dconfig.resource=/worker.conf
 -jar target/words-node.jar
 
java -DPORT=2556
 -Dconfig.resource=/worker.conf
 -jar target/words-node.jar

object Main extends App {
 val config = ConfigFactory.load()
 val system = ActorSystem("words", config)

 println(s"Starting node with roles: ${Cluster(system).selfRoles}”)

 if(system.settings.config.getStringList("akka.cluster.roles")  
 .contains("master")) {
 Cluster(system).registerOnMemberUp {
 val receptionist = system.actorOf(Props[JobReceptionist], "receptionist")
 println("Master node is ready.")

 val text = List("this is a test", "of some very naive word counting",  
 "but what can you say", "it is what it is")  

 receptionist ! JobRequest("the first job",  
 (1 to 100000).flatMap(i => text ++ text).toList)
 }
 }
}

Words cluster: entry point for each JVM

 51

[Roestenburg et al. 2016]

start up JobReceptionist actor if this node

has been assigned the master role

send the receptionist a very large

text to count words in

join the “words” cluster,  
using the given role configuration

trait CreateWorkerRouter {
 this: Actor =>

 def createWorkerRouter: ActorRef = {
 context.actorOf(
 ClusterRouterPool(BroadcastPool(10),  
 ClusterRouterPoolSettings(totalInstances = 100,  
 maxInstancesPerNode = 20,
 allowLocalRoutees = false,  
 useRole = None))  
 .props(Props[JobWorker]),
 name = "worker-router")
 }
}

Words cluster: router for work distribution

 52

[Roestenburg et al. 2016]

so-called self-type: 
expresses that this trait can only be

mixed in with Actor types

type of the created

actor children

creates an actor of a built-in router

type that will create at pool of 10

JobWorker children in the cluster

no workers on

this node

and only on nodes

with this role

class JobMaster extends Actor
 with ActorLogging
 with CreateWorkerRouter {
 //…
 val router = createWorkerRouter

 override def supervisorStrategy: SupervisorStrategy =
 SupervisorStrategy.stoppingStrategy

 def receive = idle

 def idle: Receive = {
 case StartJob(jobName, text) =>
 textParts = text.grouped(10).toVector
 val cancellable =  
 context.system.scheduler.schedule(0 millis, 1000 millis,  
 router, Work(jobName, self))  
 context.setReceiveTimeout(60 seconds)
 become(working(jobName, sender, cancellable))
 }
 //…

Words cluster: master in idle state

 53

[Roestenburg et al. 2016]

address of newly-created router actor

initial message-processing

function

upon receiving a new job

from the receptionist

schedules a new Work

message to the worker

actors pool every second,

in case new workers have

joined the pool since the

job was started

transitions to the working

state, with a new message

processing function

expect worker

to enlist /

submit results

before timeout

class JobMaster extends Actor
 with ActorLogging
 with CreateWorkerRouter {
 //…
 val router = createWorkerRouter

 override def supervisorStrategy: SupervisorStrategy =
 SupervisorStrategy.stoppingStrategy

 def receive = idle

 def idle: Receive = {
 case StartJob(jobName, text) =>
 textParts = text.grouped(10).toVector
 val cancellable =  
 context.system.scheduler.schedule(0 millis, 1000 millis,  
 router, Work(jobName, self))  
 context.setReceiveTimeout(60 seconds)
 become(working(jobName, sender, cancellable))
 }
 //…

 54

[Roestenburg et al. 2016]

address of newly-created router actor

initial message-

processing function

upon receiving a new job

from the receptionist

schedules a new Work

message to the router

every second

transitions to the working

state, with a new message

processing function

Words cluster: master in idle state

343Clustered job processing

def receive = idle

def idle: Receive = {
case StartJob(jobName, text) =>

textParts = text.grouped(10).toVector
val cancel = system.scheduler.schedule(0 millis,

1000 millis,
router,
Work(jobName, self))

become(working(jobName, sender(), cancel))
}
// more code

The code snippet in listing 14.15 also shows something else. The JobMaster actor is a
state machine and uses become to go from one state to the next. It starts in the idle
state until the job receptionist sends it a StartJob message. Once the JobMaster
receives this message, it splits up the text into parts of 10 lines and schedules the Work
messages without delay to the workers. It then transitions to the Working state to start
handling responses from the workers. The Work message is scheduled in case other
worker nodes join the cluster after the job has been started. State machines make a
distributed coordinated task more comprehensible. In fact, both the JobMaster and
JobWorker actors are state machines.

 There’s also a ClusterRouterGroup, which has ClusterRouterGroupSettings sim-
ilar to how the ClusterRouterPool is set up. The actors that are being routed to need
to be running before a group router can send messages to them. The words cluster can
have many master role nodes. Every master role node starts up with a JobReceptionist
actor. In the case where you want to send messages to every JobReceptionist,
you could use a ClusterRouterGroup, for instance, sending a message to the Job-
Receptionists to cancel all currently running jobs in the cluster. Listing 14.16

Schedules a
message to
router

2. Deploy workers,
 broadcast Work

1. Create a master,
 send StartJob

Job
receptionist

Create master

Job
master

JobRequest

StartJob
Job

worker
Job

worker

Job
worker

Job
worker

Job
master

Work

WorkWork

Work Deploy workers

Figure 14.13 Deploying JobWorkers and broadcasting Work messages

Licensed to Coen De Roover <cderoove@vub.ac.be>

343Clustered job processing

def receive = idle

def idle: Receive = {
case StartJob(jobName, text) =>

textParts = text.grouped(10).toVector
val cancel = system.scheduler.schedule(0 millis,

1000 millis,
router,
Work(jobName, self))

become(working(jobName, sender(), cancel))
}
// more code

The code snippet in listing 14.15 also shows something else. The JobMaster actor is a
state machine and uses become to go from one state to the next. It starts in the idle
state until the job receptionist sends it a StartJob message. Once the JobMaster
receives this message, it splits up the text into parts of 10 lines and schedules the Work
messages without delay to the workers. It then transitions to the Working state to start
handling responses from the workers. The Work message is scheduled in case other
worker nodes join the cluster after the job has been started. State machines make a
distributed coordinated task more comprehensible. In fact, both the JobMaster and
JobWorker actors are state machines.

 There’s also a ClusterRouterGroup, which has ClusterRouterGroupSettings sim-
ilar to how the ClusterRouterPool is set up. The actors that are being routed to need
to be running before a group router can send messages to them. The words cluster can
have many master role nodes. Every master role node starts up with a JobReceptionist
actor. In the case where you want to send messages to every JobReceptionist,
you could use a ClusterRouterGroup, for instance, sending a message to the Job-
Receptionists to cancel all currently running jobs in the cluster. Listing 14.16

Schedules a
message to
router

2. Deploy workers,
 broadcast Work

1. Create a master,
 send StartJob

Job
receptionist

Create master

Job
master

JobRequest

StartJob
Job

worker
Job

worker

Job
worker

Job
worker

Job
master

Work

WorkWork

Work Deploy workers

Figure 14.13 Deploying JobWorkers and broadcasting Work messages

Licensed to Coen De Roover <cderoove@vub.ac.be>

def working(jobName: String, receptionist: ActorRef,
 cancellable: Cancellable): Receive = {
 case Enlist(worker) =>
 watch(worker)
 workers = workers + worker

 case NextTask =>
 if(textParts.isEmpty) {
 sender() ! WorkLoadDepleted
 } else {
 sender() ! Task(textParts.head, self)
 workGiven = workGiven + 1
 textParts = textParts.tail
 }

 case TaskResult(countMap) =>
 intermediateResult = intermediateResult :+ countMap
 workReceived = workReceived + 1

 if(textParts.isEmpty && workGiven == workReceived) {
 cancellable.cancel()
 become(finishing(jobName, receptionist, workers))
 setReceiveTimeout(Duration.Undefined)
 self ! MergeResults
 }

Words cluster: master in working state

 55

[Roestenburg et al. 2016]watch for termination of, and keep track of

workers that enlist with this job master

give work to workers

requesting it

start merging

results

transition to

finishing state

collect intermediate results

in a vector of countMaps

def working(jobName: String, receptionist: ActorRef,
 cancellable: Cancellable): Receive = {
 case Enlist(worker) =>
 watch(worker)
 workers = workers + worker

 case NextTask =>
 if(textParts.isEmpty) {
 sender() ! WorkLoadDepleted
 } else {
 sender() ! Task(textParts.head, self)
 workGiven = workGiven + 1
 textParts = textParts.tail
 }

 case TaskResult(countMap) =>
 intermediateResult = intermediateResult :+ countMap
 workReceived = workReceived + 1

 if(textParts.isEmpty && workGiven == workReceived) {
 cancellable.cancel()
 become(finishing(jobName, receptionist, workers))
 setReceiveTimeout(Duration.Undefined)
 self ! MergeResults
 }

 56

[Roestenburg et al. 2016]

keeps track of workers that

enlist with this job master

give work to workers

requesting it

transition to

finishing state

collect intermediate results

in a vector of countMaps

start merging

results

Words cluster: master in working state

344 CHAPTER 14 Clustering

shows how you can create a router that looks up JobReceptionists on master role
nodes in the cluster (an example can be found in src/main/scala/aia/cluster/words
/ReceptionistRouterLookup.scala).

val receptionistRouter = context.actorOf(
ClusterRouterGroup(

BroadcastGroup(Nil),
ClusterRouterGroupSettings(

totalInstances = 100,
routeesPaths = List("/user/receptionist"),
allowLocalRoutees = true,
useRole = Some("master")

)
).props(),
name = "receptionist-router")

Now you’ve seen how the JobMaster distributes the Work message to the JobWorkers.
In the next section, we’ll look at how the JobWorkers request more work from the
JobMaster until the work is done, and how the cluster recovers from failure during
job processing.

14.3.3 Resilient jobs

The JobWorker receives the Work message and
sends a message back to the JobMaster that it wants
to enlist itself for work. It also immediately sends
the NextTask message to ask for the first task to pro-
cess. Figure 14.14 shows the flow of messages. List-
ing 14.17 shows how the JobWorker transitions
from the idle state to the enlisted state.

 The JobWorker indicates to the JobMaster that
it wants to take part in the job by sending an
Enlist message. The Enlist message contains the
JobWorker’s ActorRef so that the JobMaster can
use it later. The JobMaster watches all the Job-
Workers that enlist, in case one or more of them
crashes, and stops all the JobWorkers once the job
is finished.

def receive = idle

def idle: Receive = {
case Work(jobName, master) =>

become(enlisted(jobName, master))

log.info(s"Enlisted, will start working for job '${jobName}'.")

Listing 14.16 Sending messages to all JobReceptionists in the cluster

Listing 14.17 JobWorker transitions from idle to enlisted state

ClusterRouterGroup
Number of instances is overridden
by cluster group settings

Path for looking up
(top-level)
receptionist actor

Routes to master
nodes only

Starts as idle
Receives the Work message

Becomes enlisted

3. Workers send Enlist
 and NextTask

Job
worker

Job
worker

Job
worker

Job
worker

Job
master

Enlist Enlist

Enlist Enlist

NextTask NextTask

NextTask NextTask

Figure 14.14 JobWorker enlists
itself and requests NextTask

Licensed to Coen De Roover <cderoove@vub.ac.be>

345Clustered job processing

master ! Enlist(self)
master ! NextTask

watch(master)
setReceiveTimeout(30 seconds)

def enlisted(jobName:String, master:ActorRef): Receive = {
case ReceiveTimeout =>

master ! NextTask
case Terminated(master) =>

setReceiveTimeout(Duration.Undefined)
log.error(s"Master terminated for ${jobName}, stopping self.")
stop(self)

...
}

The JobWorker switches to the Enlisted state and
expects to receive a Task message from the master
to process. The JobWorker watches the JobMaster
and sets a ReceiveTimeout. If the JobWorker
receives no messages within the ReceiveTimeout,
it will ask the JobMaster again for a NextTask, as
shown in the enlisted Receive function. The
JobWorker stops itself if the JobMaster dies. As
you can see, there’s nothing special about the
watch and Terminated messages; DeathWatch
works just like in nonclustered actor systems. The
JobMaster is in the working state in the mean-
time, shown in figure 14.15 and the next listing.

// inside the JobMaster..

import SupervisorStrategy._
override def supervisorStrategy: SupervisorStrategy = stoppingStrategy

def working(jobName:String,
receptionist:ActorRef,
cancellable:Cancellable): Receive = {

case Enlist(worker) =>
watch(worker)
workers = workers + worker

case NextTask =>
if(textParts.isEmpty) {

sender() ! WorkLoadDepleted
} else {

sender() ! Task(textParts.head, self)
workGiven = workGiven + 1

Listing 14.18 JobMaster enlists worker and sends Tasks to JobWorkers

Sends Enlist message to master

Sends NextTask
to master

Uses StoppingStrategy

Watches worker that
enlisted and keeps track
of workers in a list

Receives NextTask request
from worker and sends
back a Task message

4. Watch enlisted workers,
 send Task

Job
worker

Job
worker

Job
worker

Job
worker

Task

TaskTask

Task Watch workers

Job
master

Figure 14.15 JobMaster sends Tasks
to JobWorkers and watches them

Licensed to Coen De Roover <cderoove@vub.ac.be>

 //…
 case ReceiveTimeout =>
 if(workers.isEmpty) {
 log.info(s"No workers responded in time. Cancelling job $jobName.")
 stop(self)
 } else setReceiveTimeout(Duration.Undefined)

 case Terminated(worker) =>
 log.info(s"Worker $worker got terminated. Cancelling job $jobName.")
 stop(self)
}

def finishing(jobName: String,
 receptionist: ActorRef,
 workers: Set[ActorRef]): Receive = {
 case MergeResults =>
 val mergedMap = merge()
 workers.foreach(stop(_))
 receptionist ! WordCount(jobName, mergedMap)

 case Terminated(worker) =>
 log.info(s"Job $jobName is finishing.  
 Worker ${worker.path.name} is stopped.")
}

Words cluster: managing worker termination

 57

stop all child

workers

send the merged results

back to the receptionist

watching workers =>

notified of termination

watching workers =>

notified of termination

watching workers =>

notified of termination

JobMaster stops as soon

as one if its workers fails

[Roestenburg et al. 2016]

JobMaster stops itself in

case no workers have

enlisted before timeout

 //…
 case ReceiveTimeout =>
 if(workers.isEmpty) {
 log.info(s"No workers responded in time. Cancelling job $jobName.")
 stop(self)
 } else setReceiveTimeout(Duration.Undefined)

 case Terminated(worker) =>
 log.info(s"Worker $worker got terminated. Cancelling job $jobName.")
 stop(self)
}

def finishing(jobName: String,
 receptionist: ActorRef,
 workers: Set[ActorRef]): Receive = {
 case MergeResults =>
 val mergedMap = merge()
 workers.foreach(stop(_))
 receptionist ! WordCount(jobName, mergedMap)

 case Terminated(worker) =>
 log.info(s"Job $jobName is finishing.  
 Worker ${worker.path.name} is stopped.")
}

 58

stop all child

workers

send the merged results

back to the receptionist

watching workers =>

notified of termination

watching workers =>

notified of termination

watching workers =>

notified of termination

JobMaster stops as soon

as one if its workers fails

[Roestenburg et al. 2016]

JobMaster stops itself in

case no workers have

enlisted before timeout

Words cluster: managing worker termination

348 CHAPTER 14 Clustering

self ! MergeResults
}

}
...
def finishing(jobName: String,

receptionist: ActorRef,
workers: Set[ActorRef]): Receive = {

case MergeResults =>
val mergedMap = merge()
workers.foreach(stop(_))
receptionist ! WordCount(jobName, mergedMap)

case Terminated(worker) =>
log.info(s"Job $jobName is finishing, stopping.")

}
...

The JobReceptionist finally receives the WordCount and kills the JobMaster, which
completes the process. The JobWorker crashes when it encounters a text with the word
FAIL in it to simulate failures by throwing an exception. The JobReceptionist watches
the JobMasters it creates. It also uses a StoppingStrategy in case the JobMaster
crashes. Let’s look at the supervision hierarchy for this actor system and how Death-
Watch is used to detect failure in figure 14.18.

 We use ReceiveTimeout to detect that the actors aren’t receiving messages in time
so that we can take action. The JobReceptionist keeps track of the jobs it has sent
out. When it receives a Terminated message, it checks if the job has been completed.
If not, it sends itself the original JobRequest, which results in the process starting over
again. The JobReceptionist simulates the resolution of the failure simulated with the
FAIL text by removing the text from the job after a number of retries, as shown next.

Sends MergeResults to self so that
results are merged in the finishing state

Receiving MergeResults
message the JobMaster
sent to itself

Merging
all results Kills all workers; job is done

Sends final result
to JobReceptionist

6. Master kills workers,
 merges results

Job
worker

Job
worker

Job
worker

Job
worker

Kill workers

Job
master

7. Master sends WordCount
 to receptionist

Job
receptionist

MergeResults
WordCount

Job
master

Figure 14.17 JobWorker processes tasks and sends back TaskResult

Licensed to Coen De Roover <cderoove@vub.ac.be>

348 CHAPTER 14 Clustering

self ! MergeResults
}

}
...
def finishing(jobName: String,

receptionist: ActorRef,
workers: Set[ActorRef]): Receive = {

case MergeResults =>
val mergedMap = merge()
workers.foreach(stop(_))
receptionist ! WordCount(jobName, mergedMap)

case Terminated(worker) =>
log.info(s"Job $jobName is finishing, stopping.")

}
...

The JobReceptionist finally receives the WordCount and kills the JobMaster, which
completes the process. The JobWorker crashes when it encounters a text with the word
FAIL in it to simulate failures by throwing an exception. The JobReceptionist watches
the JobMasters it creates. It also uses a StoppingStrategy in case the JobMaster
crashes. Let’s look at the supervision hierarchy for this actor system and how Death-
Watch is used to detect failure in figure 14.18.

 We use ReceiveTimeout to detect that the actors aren’t receiving messages in time
so that we can take action. The JobReceptionist keeps track of the jobs it has sent
out. When it receives a Terminated message, it checks if the job has been completed.
If not, it sends itself the original JobRequest, which results in the process starting over
again. The JobReceptionist simulates the resolution of the failure simulated with the
FAIL text by removing the text from the job after a number of retries, as shown next.

Sends MergeResults to self so that
results are merged in the finishing state

Receiving MergeResults
message the JobMaster
sent to itself

Merging
all results Kills all workers; job is done

Sends final result
to JobReceptionist

6. Master kills workers,
 merges results

Job
worker

Job
worker

Job
worker

Job
worker

Kill workers

Job
master

7. Master sends WordCount
 to receptionist

Job
receptionist

MergeResults
WordCount

Job
master

Figure 14.17 JobWorker processes tasks and sends back TaskResult

Licensed to Coen De Roover <cderoove@vub.ac.be>

class JobWorker extends Actor
 with ActorLogging {

 var processed = 0

 def receive = idle

 def idle: Receive = {
 case Work(jobName, master) =>
 become(enlisted(jobName, master))

 log.info(s"Enlisted, will start requesting work for job '${jobName}'.")
 master ! Enlist(self)
 master ! NextTask
 watch(master)

 setReceiveTimeout(30 seconds)
 }

 //…

Words cluster: worker in idle state

 59

[Roestenburg et al. 2016]

initial message-processing

function

enlist for job,

change state

request task and watch

JobMaster for termination

expect a task from the

JobMaster within 30 seconds

def enlisted(jobName: String, master: ActorRef): Receive = {
 case ReceiveTimeout =>
 master ! NextTask

 case Task(textPart, master) =>
 val countMap = processTask(textPart)
 processed = processed + 1
 master ! TaskResult(countMap)
 master ! NextTask

 case WorkLoadDepleted =>
 log.info(s"Work load ${jobName} is depleted, retiring...")
 setReceiveTimeout(Duration.Undefined)
 become(retired(jobName))

 case Terminated(master) =>
 setReceiveTimeout(Duration.Undefined)
 log.error(s"Master terminated that ran Job ${jobName}, stopping self.")
 stop(self)

}

Words cluster: worker in enlisted state

 60

[Roestenburg et al. 2016]request another task

again upon timeout

process the received task, send the result to

the JobMaster, and request another task

job finished: switches of ReceiveTimeout

and transition to retired state

stop when master terminated

def enlisted(jobName: String, master: ActorRef): Receive = {
 case ReceiveTimeout =>
 master ! NextTask

 case Task(textPart, master) =>
 val countMap = processTask(textPart)
 processed = processed + 1
 master ! TaskResult(countMap)
 master ! NextTask

 case WorkLoadDepleted =>
 log.info(s"Work load ${jobName} is depleted, retiring...")
 setReceiveTimeout(Duration.Undefined)
 become(retired(jobName))

 case Terminated(master) =>
 setReceiveTimeout(Duration.Undefined)
 log.error(s"Master terminated that ran Job ${jobName}, stopping self.")
 stop(self)

}

 61

[Roestenburg et al. 2016]request another task

again upon timeout

process the received task, send the result to

the JobMaster, and request another task

job finished: switches of ReceiveTimeout

and transition to retired state

stop when master terminated

346 CHAPTER 14 Clustering

textParts = textParts.tail
}

case ReceiveTimeout =>
if(workers.isEmpty) {

log.info(s"No workers responded in time. Cancelling $jobName.")
stop(self)

} else setReceiveTimeout(Duration.Undefined)

case Terminated(worker) =>
log.info(s"Worker $worker got terminated. Cancelling $jobName.")
stop(self)

//more code to follow..

The listing shows that the JobMaster registers and
watches the workers that want to take part in the
work. The JobMaster sends back a WorkLoad-
Depleted to the JobWorker if there’s no more
work to be done.

 The JobMaster also uses a ReceiveTimeout
(which is set when the job is started) just in case no
JobWorkers ever report to enlist. The JobMaster
stops itself if the ReceiveTimeout occurs. It also
stops itself if any JobWorker is stopped. The Job-
Master is the supervisor of all the JobWorkers it
deployed (the router automatically escalates prob-
lems). Using a StoppingStrategy makes sure that
a failing JobWorker is automatically stopped,
which triggers the Terminated message that the
JobMaster is watching out for.

 The JobWorker receives a Task, processes the
Task, sends back a TaskResult, and asks for the NextTask. Figure 14.16 and the fol-
lowing listing show the enlisted state of the JobWorker.

def enlisted(jobName:String, master:ActorRef): Receive = {
case ReceiveTimeout =>

master ! NextTask

case Task(textPart, master) =>
val countMap = processTask(textPart)
processed = processed + 1
master ! TaskResult(countMap)
master ! NextTask

case WorkLoadDepleted =>
log.info(s"Work load ${jobName} is depleted, retiring...")
setReceiveTimeout(Duration.Undefined)
become(retired(jobName))

Listing 14.19 JobWorker processes Task and sends back TaskResult

JobMaster stops if no
workers have enlisted
within a ReceiveTimeout

JobMaster stops if any
of the JobWorkers fail

Processes task

Sends result to JobMaster
Asks for next task

Switches off ReceiveTimeout
and retires; job is done

5. Workers do work
 and send back result

Job
worker

Job
worker

Job
worker

Job
worker

Job
master

TaskResult TaskResult

TaskResult TaskResult

Figure 14.16 JobWorker processes
Task and sends back TaskResult

Licensed to Coen De Roover <cderoove@vub.ac.be>

Words cluster: worker in enlisted state

 //…
 def retired(jobName: String): Receive = {
 case Terminated(master) =>
 log.error(s"Master terminated that ran Job ${jobName}, stopping self.")
 stop(self)

 case _ => log.error("I'm retired.")
 }

 def processTask(textPart: List[String]): Map[String, Int] = {
 textPart.flatMap(_.split("\\W+"))
 .foldLeft(Map.empty[String, Int]) {
 (count, word) =>
 if (word == "FAIL") throw new RuntimeException("SIMULATED FAILURE!")
 count + (word -> (count.getOrElse(word, 0) + 1))
 }
 }
}

Words cluster: worker in retired state

 62

[Roestenburg et al. 2016]

crash when the text for the given

task contains the word FAIL

should no longer receive

messages in retired state

terminate when

master has terminated

class JobReceptionist extends Actor
 with ActorLogging
 with CreateMaster {
 def receive = {
 case jr @ JobRequest(name, text) =>
 log.info(s"Received job $name")
 val masterName = "master-"+URLEncoder.encode(name, "UTF8")
 val jobMaster = createMaster(masterName)
 val job = Job(name, text, sender, jobMaster)
 jobs = jobs + job
 jobMaster ! StartJob(name, text)
 watch(jobMaster)

 case WordCount(jobName, map) =>
 log.info(s"Job $jobName complete.")
 log.info(s"result:${map}")
 jobs.find(_.name == jobName).foreach { job =>
 job.respondTo ! JobSuccess(jobName, map)
 stop(job.jobMaster)
 jobs = jobs - job
 }
 //…

Words cluster: receptionist

 63

[Roestenburg et al. 2016]

create a new JobMaster for the

newly-received job request

watch the JobMaster for termination

remember this job request  
(and its sender)

send back the result to the

sender of the job request

stop the JobMaster

 case Terminated(jobMaster) =>
 jobs.find(_.jobMaster == jobMaster).foreach { failedJob =>
 log.error(s"Job Master $jobMaster terminated before finishing job.")

 val name = failedJob.name
 log.error(s"Job ${name} failed.")
 val nrOfRetries = retries.getOrElse(name, 0)

 if(maxRetries > nrOfRetries) {
 if(nrOfRetries == maxRetries -1) {
 val text = failedJob.text.filterNot(_.contains("FAIL"))
 self.tell(JobRequest(name, text), failedJob.respondTo)
 } else  
 self.tell(JobRequest(name, failedJob.text), failedJob.respondTo)

 retries = retries + retries.get(name).map(r=> name ->  
 (r + 1)).getOrElse(name -> 1)
 }
 }
 }
}

Words cluster: receptionist with resilient jobs

 64

[Roestenburg et al. 2016]

re-send job request to self, with the original requestor’s address as sender

simulate resolving simulated

failure at penultimate retry

upon termination of one of the

watched JobMasters

 case Terminated(jobMaster) =>
 jobs.find(_.jobMaster == jobMaster).foreach { failedJob =>
 log.error(s"Job Master $jobMaster terminated before finishing job.")

 val name = failedJob.name
 log.error(s"Job ${name} failed.")
 val nrOfRetries = retries.getOrElse(name, 0)

 if(maxRetries > nrOfRetries) {
 if(nrOfRetries == maxRetries -1) {
 val text = failedJob.text.filterNot(_.contains("FAIL"))
 self.tell(JobRequest(name, text), failedJob.respondTo)
 } else  
 self.tell(JobRequest(name, failedJob.text), failedJob.respondTo)

 retries = retries + retries.get(name).map(r=> name ->  
 (r + 1)).getOrElse(name -> 1)
 }
 }
 }
}

 65

[Roestenburg et al. 2016]

re-send job request to self, with the original requestor’s address as sender

simulate resolving simulated

failure at penultimate retry

upon termination of one of the

watched JobMasters

349Clustered job processing

case Terminated(jobMaster) =>
jobs.find(_.jobMaster == jobMaster).foreach { failedJob =>

log.error(s"$jobMaster terminated before finishing job.")

val name = failedJob.name
log.error(s"Job ${name} failed.")
val nrOfRetries = retries.getOrElse(name, 0)

if(maxRetries > nrOfRetries) {
if(nrOfRetries == maxRetries -1) {

// Simulating that the Job worker
// will work just before max retries

val text = failedJob.text.filterNot(_.contains("FAIL"))
self.tell(JobRequest(name, text), failedJob.respondTo)

} else self.tell(JobRequest(name, failedJob.text),
failedJob.respondTo)

updateRetries
}

}
}

We’ll use this simulation of failures in the next section where we’ll test the words cluster.

14.3.4 Testing the cluster

You can use the sbt-multi-jvm plugin and the multi-node-testkit module just like
the akka-remote module. It’s also still convenient to test the actors locally, which is
easily done if we isolate the creation of actors and routers into traits. Listing 14.22
shows how test versions of the Receptionist and the JobMaster are created for the

Listing 14.21 JobReceptionist retries JobRequest on JobMaster failure

Sends
JobRequest
without
simulated
failure

Sends JobRequest again

Job
receptionist

Watch

Job
master

The receptionist creates
a new job master when
it notices that a master
has died (up to x retries).

The job master stops
itself when it notices
that a job worker
has died.

Watch

Exception can crash JobMaster

Exception on “FAIL” text in JobWorker

Job
master

Terminated

StoppingStrategy

StoppingStrategy

Terminated

Figure 14.18 Supervision hierarchy for the words actor system

Licensed to Coen De Roover <cderoove@vub.ac.be>

Words cluster: receptionist with resilient jobs

@ticofab
ticofab.ioThe Akka-Kubernetes Stack

JVM JVM

Pod Pod Pod

VM VM

Actor Actor ActorActor ActorActors

JVM

Akka node

Pods

VM

Kubernetes node

JVM Akka Cluster

Cluster in the cloud: Akka + Kubernetes

Fabio Triticco 2019: “Scala and Kubernetes: Reactive from Code to Cloud”

https://www.lightbend.com/blog/akka-and-kubernetes-reactive-from-code-to-cloud

Scale of resilience @ticofab
ticofab.ioScale of Resilience

JVM Exceptions JVM Errors Hardware failure Skynet attack

Meteorite hits

Akka{ } Kubernetes[] …

Fabio Triticco 2019: “Scala and Kubernetes: Reactive from Code to Cloud”

https://www.lightbend.com/blog/akka-and-kubernetes-reactive-from-code-to-cloud

 68

Unifies and generalizes functional and object-oriented programming

Features a strong static type system for safety

Hosts multiple domain-specific languages

Offers a read-eval-print loop for interactive prototyping

Compatible with existing languages for the JVM

“Any general-purpose language

has to be a scalable language”

released in 2003 by Martin Odersky

professor at EPFL

Take-away 1: programming language matters

Take-away 2: programming model matters

 69

A r t i f i c i a l In te l l i gence

A Universal Modular ACTOR Formalism
for A r t i f i c i a l Intelligence

Carl Hewitt
Peter Bishop
Richard Steiger
Abstract

This paper proposes a modular ACTOR architecture and definit ional method for a r t i f i c i a l
intelligence that is conceptually based on a single kind of object: actors [or, if you w i l l ,
v i r tual processors, activation frames, or streams]. The formalism makes no presuppositions
about the representation of primitive data structures and control structures. Such structures
can be programmed, micro­coded, or hard wired 1n a uniform modular fashion. In fact it is
impossible to determine whether a given object is "really" represented as a l i s t , a vector, a
hash table, a function, or a process. The architecture w i l l e f f ic ient ly run the coming
generation of PLANNER­like a r t i f i c i a l intelligence languages including those requiring a high
degree of parallelism. The efficiency is gained without loss of programming generality because
it only makes certain actors more e f f ic ient ; it does not change their behavioral
characteristics. The architecture is general with respect to control structure and
does not have or need goto, interrupt, or semaphore primitives. The formalism achieves the goals that
the disallowed constructs are intended to achieve by other more structured methods.

PLANNER Progress

"Programs should not only work,
but they should appear to work as wel l . "

PDP­1X Dogma

The PLANNER project is continuing research in natural and effective means for embedding
knowledge in procedures. In the course of this work we have succeeded in unifying the
formalism around one fundamental concept: the ACTOR. Intu i t ive ly , an ACTOR is an active agent
which plays a role on cue according to a script" we" use the ACTOR metaphor to emphasize the
inseparability of control and data flow in our model. Data structures, functions, semaphores,
monitors, ports, descriptions, Quillian nets, logical formulae, numbers, ident i f iers, demons,
processes, contexts, and data bases can a l l be shown to be special cases of actors. Al l of the
above are objects with certain useful modes of behavior. Our formalism shows how al l of the
modes of behavior can be defined in terms of one kind of behavior: sending messages to actors.
An actor is always invoked uniformly in exactly the same way regardless of whether 1t behaves
as a recursive function, data structure, or process.

" I t is vain to multiply Entities beyond need."
William of Occam

"Monotheism is the Answer."

The unif ication and simplif ication of the formalisms for the procedural embedding of
knowledge has a great many benefits for us:

FOUNDATIONS: The concept puts procedural semantics [the theory of how things
operate] on a firmer basis. It w i l l now be possible to do cleaner theoretical studies of the
relation between procedural semantics and set­theoretic semantics such as model theories of
the quantificational calculus and the lambda calculus.

LOGICAL CALCULAE: A procedural semantics is developed for the quantificational
calculus. The logical constants FOR­ALL, THERE­EXISTS, AND, OR, NOT, and IMPLIES
are defined as actors.

KNOWLEDGE BASED PROGRAMMING is programming in an environment which has a
substantial knowledge base in the application area for which the programs are intended.
The actor formalism aids knowledge based programming in the following ways

­
. PROCEDURAL

EMBEDDING of KNOWLEDGE, TRACING BEHAVIORAL DEPENDENCIES, and SUBSTANTIATING that ACTORS
SATISFY their INTENTIONS.

INTENTIONS: Furthermore the confirmation of properties of procedures is made
easier and more uniform. Every actor has an INTENTION which checks that the prerequisites
and the context of the actor being sent the message are satisf ied. The intention is the
CONTRACT that the actor has with the outside world. How an actor f u l l f l l l s i ts contract is
i ts own business. By a SIMPLE BUG we mean an actor which does not satisfy i ts intention.
We would l ike to eliminate simpTedebugging of actors by the META­EVALUATION of actors to show
that they satisfy their Intentions. Suppose that there is an external audience of actors E
which satisfy the intentions of the actors to which they send messages. In tu i t ive ly , the
principle of ACTOR INDUCTION states that the intentions of a l l actions caused by E are
in turn satisf ied provided that the following condition holds:

If for each actor A
the intention of A is satisf ied =>
that the intentions of a l l actors sent messages by A are satisf ied.

Computational induction [Manna], structural induction [Bursta l l] , and Peano induction
are a l l special cases of ACTOR induction. Actor based intentions have the following
advantages: The intention is decoupled from the actors it describes. Intentions of
concurrent actions are more easily disentangled. We can more elegantly write intentions
for dialogues between actors. The intentions are written 1n the same formalism as the
procedures they describe. Thus for example intentions can have intentions. Because
protection is an intr insic property of actors, we hope to be able to deal with protection
issues in the same straight forward manner as more conventional intentions. Intentions
of data structures are handled by the same machinery as for a l l other actors.

COMPARATIVE SCHEHATOLOGY: The theory of comparative power of control structures is

235

[Hewitt et al., 1973]

Three significant trends have under-
scored the central role of concurrency
in computing. First, there is in-
creased use of interacting processes
by individual users, for example, ap-
plication programs running on X
windows. Second, workstation net-
works have become a cost-effective

CONCURRENT
OBJECT-ORIENTED

mechanism for resource sharing and
distributed problem solving. For ex-
ample, loosely coupled problems,
such as finding all the factors of large
prime numbers, have been solved by
utilizing ideal cycles on networks of
hundreds of workstations. A loosely
coupled problem is one which can be
easily partitioned into many smaller
subproblems so that interactions
between the subproblems is quite limited. Finally, multiprocessor tech-

CCYY”NlCITlCYICCT”EACCY/September 199O/Vol.33, No.9 125

[Agha 1990]

abstractions for concurrent and distributed programming:

strongly-encapsulated, location-transparent, resilient

actor model

Take-away 3: architecture matters

 70

86 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

IMPACT

(integrated development environment)
or Mule Studio. Unlike prior, some-
what contrived “visual programming”
attempts, the simple pipes-and-filters
architectural style of asynchronous
messaging solutions makes this visual
composition of patterns natural. Fig-
ure 2 shows a visual Camel route that
directs an incoming message to one of
two possible message endpoints via a
message router. ESB developers can
now think, design, communicate, and
implement their solutions using the
EIP vocabulary, even if they’re using
different runtime platforms.

The EIP playing-card deck handed
out at the inaugural CamelOne confer-
ence is likely the most creative pattern
adaptation to date (see Figure 3). Each
card shows a pattern from the pattern
language together with the solution
statement. It’s satisfying to see design
patterns, which were created to improve
human communication and collabora-
tion, finding their way (literally) into
the hands of architects and engineers in
such an approachable, useful way.

T he statistics we presented
here indicate that pattern lan-
guages have had a broad im-

pact on the software design community
over the past 20 years. Many research
questions around patterns remain

FIGURE 2. Creating messaging solutions
using the visual pattern language from
Enterprise Integration Patterns (EIPs)7 inside
the Redhat Fuse IDE (integrated development
environment). Messages arriving from a
file-based message endpoint are routed
by a content-based router to one of two
potential message endpoints based on the
city specified inside the message content.
The content-based router pattern describes
a reusable design for routing messages to a
correct recipient based on message content.

FIGURE 3. Playing cards based on Enterprise Integration Patterns. The visual pattern
language allows for an interactive, almost playful usage of the patterns. Each card displays the
pattern icon together with the name and solution statement.

88 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

IMPACT

GOOD ADVICE IN software design
is difficult to come by. General design
principles can guide us, but reality
tends to force trade-offs between seem-
ingly conflicting goals, such as flexibil-
ity and maintainability against size and
complexity. Likewise, code libraries

can go a long way in helping us avoid
reinventing the wheel, but the vision
of lesser-skilled developers effortlessly
wiring together ready-made compo-
nents remains fiction.

Design patterns have helped nar-
row this gap by documenting a well-

working solution to a problem that
occurs repeatedly in a given context.
Instead of presenting a copy-and-paste-
ready code snippet, patterns discuss
forces impacting the solution design.
Examples of such forces are perfor-
mance and security in Web applica-
tions: encryption and decryption algo-
rithms improve security but introduce
processing overhead. Ward Cunning-
ham once described the best patterns as
your older brother teaching you how to
do something right.1

Although patterns have become
popular, their impact as a design tech-
nique is more difficult to quantify than
the impact of a specific software prod-
uct (which is what previous install-
ments of this column have examined).
This installment highlights both the
breadth of patterns available after 20
years of pattern-writing conferences
and the depth of impact some patterns
have had on open source software.

Twenty Years of
Patterns’ Impact
Gregor Hohpe, Rebecca Wirfs-Brock, Joseph W. Yoder, and Olaf Zimmermann

This column celebrates the 20th year of software patterns. IEEE
Software advisory board members teamed up with members of the
Hillside Group, a nonprofit organization that promotes the use of
patterns and pattern languages, to reflect on the state of the practice
and impact of patterns. —Michiel van Genuchten and Les Hatton

Editor: Michiel van Genuchten
MTOnyx
genuchten@ieee.org

Editor: Les Hatton
Kingston University
l.hatton@kingston.ac.uk

continued on p. 84

[Hophe et al., IEEE Software 2013]

0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 13

Editor: Cesare Pautasso
University of Lugano
c.pautasso@ieee.org

Editor: Olaf Zimmerman
University of Applied Sciences
of Eastern Switzerland, Rapperswil

ozimmerm@hsr.ch

INSIGHTS

A Decade of Enterprise
Integration Patterns
A Conversation with the Authors

Olaf Zimmermann, Cesare Pautasso, Gregor Hohpe, and Bobby Woolf

IN AN INDUSTRY that thrives on
constant change, few books can sur-
vive the test of time. Enterprise In-
tegration Patterns (EIP)1—with its
highly infl uential collection of mes-
saging patterns—is defi nitely one of
those few. So, we interviewed the
authors Gregor Hohpe and Bobby

Woolf; here, we have the pleasure
of sharing their refl ections with you.
You can discover the inside story of
their book project as well as their
views on pattern language design
and on integration technology’s evo-
lution. We also thank them for their
precious advice for the next genera-
tion of pattern authors and integra-
tion solution designers.

A General Retrospective
Olaf Zimmermann: How did your
book come to be? How did you get
together, and how did you fi nd your
contributors and reviewers?

Bobby Woolf: Martin Fowler was
the matchmaker. When he wrote
Patterns of Enterprise Application
Architecture,2 Kyle Brown pointed
out that his pattern language was
not addressing asynchronous mes-
saging. Martin felt that he already
had plenty of patterns to write,

which motivated Kyle and me to sub-
mit a collection of 27 patterns to the
2002 Pattern Language of Programs
[PLoP] conference under the title,
“Patterns of System Integration with
Enterprise Messaging.”3

Gregor Hohpe: I was based some
3,000 miles away, using enterprise
application integration [EAI] tools,
such as TIBCO and Vitria, in my
consulting job. I had a nagging feel-
ing that these tools share underlying
concepts, which are obfuscated by
different terminology. Martin en-
couraged me to document my fi nd-

ings in the form of patterns, also to
be submitted to PLoP 2002,4 where I
fi rst met Bobby and Kyle.

Bobby: So Kyle brought me into the
effort he’d started with Martin, then
Martin brought Gregor in. While
Martin and Kyle contributed a lot
of material and guidance, they even-
tually lessened their involvement,
leaving Gregor and me to write and
complete the book. Gregor and I
hadn’t known each other before, so
it was a crash getting-to-know-you
opportunity.

With encouragement from Martin
and Kyle, we decided to combine our
papers with the goal to turn them
into a book. While there was some
merging to be done, the two papers
complemented each other well. We
only had a handful of patterns that
overlapped: Kyle’s and my paper de-
scribed message patterns (“message
construction” in the book) and mes-
sage client patterns (later “messag-
ing endpoints”).

Gregor: Coming from the EAI per-
spective, my 17 patterns focused on
what was “between” the endpoints:
message routing, message transfor-
mation, and message management.
It also contained an early version of
the pattern icons.

Each pattern represents a decision, so
the language walks the reader through
the decisions that need to be made.

[Zimmermann et al., IEEE Software 2016]

patterns for asynchronous messaging

Take-away 4: application-level before infrastructure-level

 71

@ticofab
ticofab.ioReview of the Akka-Kubernetes Stack

Kubernetes is a great
infrastructure choice for your

clustered application

⚙

It provides location
transparency with
cluster formation

'

It introduces resilience at
an infrastructure level

(

Akka has a cloud-native
programming model,

ready to scale from day 1

)

It enables transparent
communication between

different nodes of a service

*

Resilience is built in
your service with
granular control

+

Fabio Triticco 2019: “Scala and Kubernetes: Reactive from Code to Cloud”

https://www.lightbend.com/blog/akka-and-kubernetes-reactive-from-code-to-cloud

13

Taxi platform: decomposition in services

[Richardson 2016]

monolith distributed vertically into services that are deployed independently (scaling up)
each service provides and consumes functionality as a mini-application on its own

01

From Design to Deployment

5Microservices – From Design to Deployment Ch. 1 – Introduction to Microservices

For example, a possible decomposition of the system described earlier is shown in
Figure 1-2:

Figure 1-2. A monolithic application decomposed into microservices.

APIGATEWAY PASSENGER
MANAGEMENT

PASSENGER
WEB UI

DRIVER
WEB UI

DRIVER
MANAGEMENT

TRIP
MANAGEMENT

BILLING

NOTIFICATION

PAYMENTS

YOURBANK

0000 0000 0000 0000
00/00

YOUR NAME

TWILIO
ADAPTER

SENDGRID
ADAPTER

STRIPE
ADAPTER

REST
API

REST
API

REST
API

REST
API

REST
API

REST
API

Figure 1-2. A monolithic application decomposed into microservices.

Each functional area of the application is now implemented by its own microservice.
Moreover, the web application is split into a set of simpler web applications – such as
one for passengers and one for drivers, in our taxi-hailing example. This makes it easier
to deploy distinct experiences for specific users, devices, or specialized use cases.

Each backend service exposes a REST API and most services consume APIs provided by
other services. For example, Driver Management uses the Notification server to tell an
available driver about a potential trip The UI services invoke the other services in order to
render web pages Services might also use asynchronous, message-based communication
Inter-service communication will be covered in more detail later in this ebook

20

[Richardson 2016]

individual service can be replicated horizontally (scaling out), often behind load balancer
services run in containers (e.g., Docker) that can be provisioned and spun up fast
containers can be orchestrated (e.g., Kubernetes)

01

From Design to Deployment

7Microservices – From Design to Deployment Ch. 1 – Introduction to Microservices

At runtime, X-axis scaling runs multiple instances of each service behind a load balancer
for throughput and availability. Some applications might also use Z-axis scaling to partition
the services Figure 1-4 shows how the Trip Management service might be deployed
with Docker running on Amazon EC2

Figure 1-4. Deploying the Trip Management service using Docker.

TRIP
MANAGEMENT

DOCKER
CONTAINER

DOCKER
CONTAINER

DOCKER
CONTAINER

DOCKER
CONTAINER

EC2 INSTANCE

TRIP
MANAGEMENT

EC2 INSTANCE

TRIP
MANAGEMENT

REST
API

REST
API

REST
API

LOAD
BALANCER

At runtime, the Trip Management service consists of multiple service instances. Each
service instance is a Docker container In order to be highly available, the containers are
running on multiple Cloud VMs. In front of the service instances is a load balancer such
as NGINX that distributes requests across the instances The load balancer might also
handle other concerns such as caching, access control, API metering, and monitoring

The Microservices Architecture pattern significantly impacts the relationship between the
application and the database Rather than sharing a single database schema with other
services, each service has its own database schema On the one hand, this approach is
at odds with the idea of an enterprise-wide data model. Also, it often results in duplication
of some data. However, having a database schema per service is essential if you want
to benefit from microservices, because it ensures loose coupling. Figure 1-5 shows the
database architecture for the sample application.

Each of the services has its own database. Moreover, a service can use a type of database
that is best suited to its needs, the so-called polyglot persistence architecture For example,
Driver Management, which finds drivers close to a potential passenger, must use a
database that supports efficient geo-queries.

Taxi platform: containerisation

Scaling up through concurrent programming
“Scalability is the measure to which a
system can adapt to a change in demand
for resources, without negatively
impacting performance.”

Concurrency is a means to achieve scalability:  
add more threads to server when needed, 
which the application automatically starts using

Scaling out through distributed programming
Distribution is another means to achieve scalability: 
add threads from different network nodes to the application

122 CHAPTER 6 Your first distributed Akka app

 We’ll show you that this choice provides a solid foundation for building both local
and distributed applications that are fit for the challenges of today. Akka provides a sim-
ple API for asynchronous programming as well as the tools you need to test your applica-
tions locally and remotely. Now that you understand the reasoning behind a distributed
programming model for both local and distributed systems, in the following sections
we’ll look at how we can scale out the GoTicks.com App that we built in chapter 2.

6.2 Scaling out with remoting
Since this is an introduction to scaling out, we’ll use the relatively simple example
GoTicks.com app from chapter 2. In the next sections, we’ll change the app so it runs
on more than one node. Although the GoTicks.com app is an oversimplified exam-
ple, it will give you a feel for the changes you need to make to an app that hasn’t made
any accommodations for scaling.

 We’ll define a static membership between two nodes using a client-server network
topology, since it’s the easiest path from local to distributed. The roles for the two
nodes in this setup are frontend and backend. The REST interface will run on a front-
end node. The BoxOffice and all TicketSellers will run on a backend node. Both
nodes have a static reference to each other’s network addresses. Figure 6.2 shows the
change that we’ll make.

HTTP routes

RestApi

Actor

BoxOffice

Actor

TicketSeller

Single node

Single-node ActorSystem

HTTP routes

RestApi

Actor

TicketSeller

Frontend node

Frontend ActorSystem

Actor

BoxOffice

Backend node

Backend ActorSystem

Figure 6.2 From single node
to client-server

Licensed to Coen De Roover <cderoove@vub.ac.be>

 68

Unifies and generalizes functional and object-oriented programming
Features a strong static type system for safety
Hosts multiple domain-specific languages
Offers a read-eval-print loop for interactive prototyping
Compatible with existing languages for the JVM

“Any general-purpose language
has to be a scalable language”

released in 2003 by Martin Odersky
professor at EPFL

Take-away 1: programming language matters

Take-away 2: programming model matters

 69

A r t i f i c i a l In te l l i gence

A Universal Modular ACTOR Formalism
for A r t i f i c i a l Intelligence

Carl Hewitt
Peter Bishop
Richard Steiger
Abstract

This paper proposes a modular ACTOR architecture and definit ional method for a r t i f i c i a l
intelligence that is conceptually based on a single kind of object: actors [or, if you w i l l ,
v i r tual processors, activation frames, or streams]. The formalism makes no presuppositions
about the representation of primitive data structures and control structures. Such structures
can be programmed, micro­coded, or hard wired 1n a uniform modular fashion. In fact it is
impossible to determine whether a given object is "really" represented as a l i s t , a vector, a
hash table, a function, or a process. The architecture w i l l e f f ic ient ly run the coming
generation of PLANNER­like a r t i f i c i a l intelligence languages including those requiring a high
degree of parallelism. The efficiency is gained without loss of programming generality because
it only makes certain actors more e f f ic ient ; it does not change their behavioral
characteristics. The architecture is general with respect to control structure and
does not have or need goto, interrupt, or semaphore primitives. The formalism achieves the goals that
the disallowed constructs are intended to achieve by other more structured methods.

PLANNER Progress

"Programs should not only work,
but they should appear to work as wel l . "

PDP­1X Dogma

The PLANNER project is continuing research in natural and effective means for embedding
knowledge in procedures. In the course of this work we have succeeded in unifying the
formalism around one fundamental concept: the ACTOR. Intu i t ive ly , an ACTOR is an active agent
which plays a role on cue according to a script" we" use the ACTOR metaphor to emphasize the
inseparability of control and data flow in our model. Data structures, functions, semaphores,
monitors, ports, descriptions, Quillian nets, logical formulae, numbers, ident i f iers, demons,
processes, contexts, and data bases can a l l be shown to be special cases of actors. Al l of the
above are objects with certain useful modes of behavior. Our formalism shows how al l of the
modes of behavior can be defined in terms of one kind of behavior: sending messages to actors.
An actor is always invoked uniformly in exactly the same way regardless of whether 1t behaves
as a recursive function, data structure, or process.

" I t is vain to multiply Entities beyond need."
William of Occam

"Monotheism is the Answer."

The unif ication and simplif ication of the formalisms for the procedural embedding of
knowledge has a great many benefits for us:

FOUNDATIONS: The concept puts procedural semantics [the theory of how things
operate] on a firmer basis. It w i l l now be possible to do cleaner theoretical studies of the
relation between procedural semantics and set­theoretic semantics such as model theories of
the quantificational calculus and the lambda calculus.

LOGICAL CALCULAE: A procedural semantics is developed for the quantificational
calculus. The logical constants FOR­ALL, THERE­EXISTS, AND, OR, NOT, and IMPLIES
are defined as actors.

KNOWLEDGE BASED PROGRAMMING is programming in an environment which has a
substantial knowledge base in the application area for which the programs are intended.
The actor formalism aids knowledge based programming in the following ways

­
. PROCEDURAL

EMBEDDING of KNOWLEDGE, TRACING BEHAVIORAL DEPENDENCIES, and SUBSTANTIATING that ACTORS
SATISFY their INTENTIONS.

INTENTIONS: Furthermore the confirmation of properties of procedures is made
easier and more uniform. Every actor has an INTENTION which checks that the prerequisites
and the context of the actor being sent the message are satisf ied. The intention is the
CONTRACT that the actor has with the outside world. How an actor f u l l f l l l s i ts contract is
i ts own business. By a SIMPLE BUG we mean an actor which does not satisfy i ts intention.
We would l ike to eliminate simpTedebugging of actors by the META­EVALUATION of actors to show
that they satisfy their Intentions. Suppose that there is an external audience of actors E
which satisfy the intentions of the actors to which they send messages. In tu i t ive ly , the
principle of ACTOR INDUCTION states that the intentions of a l l actions caused by E are
in turn satisf ied provided that the following condition holds:

If for each actor A
the intention of A is satisf ied =>
that the intentions of a l l actors sent messages by A are satisf ied.

Computational induction [Manna], structural induction [Bursta l l] , and Peano induction
are a l l special cases of ACTOR induction. Actor based intentions have the following
advantages: The intention is decoupled from the actors it describes. Intentions of
concurrent actions are more easily disentangled. We can more elegantly write intentions
for dialogues between actors. The intentions are written 1n the same formalism as the
procedures they describe. Thus for example intentions can have intentions. Because
protection is an intr insic property of actors, we hope to be able to deal with protection
issues in the same straight forward manner as more conventional intentions. Intentions
of data structures are handled by the same machinery as for a l l other actors.

COMPARATIVE SCHEHATOLOGY: The theory of comparative power of control structures is

235

[Hewitt et al., 1973]

Three significant trends have under-
scored the central role of concurrency
in computing. First, there is in-
creased use of interacting processes
by individual users, for example, ap-
plication programs running on X
windows. Second, workstation net-
works have become a cost-effective

CONCURRENT
OBJECT-ORIENTED

mechanism for resource sharing and
distributed problem solving. For ex-
ample, loosely coupled problems,
such as finding all the factors of large
prime numbers, have been solved by
utilizing ideal cycles on networks of
hundreds of workstations. A loosely
coupled problem is one which can be
easily partitioned into many smaller
subproblems so that interactions
between the subproblems is quite limited. Finally, multiprocessor tech-

CCYY”NlCITlCYICCT”EACCY/September 199O/Vol.33, No.9 125

[Agha 1990]

abstractions for concurrent and distributed programming:

strongly-encapsulated, location-transparent, resilient

actor model

Take-away 3: architecture matters

 70

[Hophe et al., IEEE Software 2013]

0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 13

Editor: Cesare Pautasso
University of Lugano
c.pautasso@ieee.org

Editor: Olaf Zimmerman
University of Applied Sciences
of Eastern Switzerland, Rapperswil

ozimmerm@hsr.ch

INSIGHTS

A Decade of Enterprise
Integration Patterns
A Conversation with the Authors

Olaf Zimmermann, Cesare Pautasso, Gregor Hohpe, and Bobby Woolf

IN AN INDUSTRY that thrives on
constant change, few books can sur-
vive the test of time. Enterprise In-
tegration Patterns (EIP)1—with its
highly infl uential collection of mes-
saging patterns—is defi nitely one of
those few. So, we interviewed the
authors Gregor Hohpe and Bobby

Woolf; here, we have the pleasure
of sharing their refl ections with you.
You can discover the inside story of
their book project as well as their
views on pattern language design
and on integration technology’s evo-
lution. We also thank them for their
precious advice for the next genera-
tion of pattern authors and integra-
tion solution designers.

A General Retrospective
Olaf Zimmermann: How did your
book come to be? How did you get
together, and how did you fi nd your
contributors and reviewers?

Bobby Woolf: Martin Fowler was
the matchmaker. When he wrote
Patterns of Enterprise Application
Architecture,2 Kyle Brown pointed
out that his pattern language was
not addressing asynchronous mes-
saging. Martin felt that he already
had plenty of patterns to write,

which motivated Kyle and me to sub-
mit a collection of 27 patterns to the
2002 Pattern Language of Programs
[PLoP] conference under the title,
“Patterns of System Integration with
Enterprise Messaging.”3

Gregor Hohpe: I was based some
3,000 miles away, using enterprise
application integration [EAI] tools,
such as TIBCO and Vitria, in my
consulting job. I had a nagging feel-
ing that these tools share underlying
concepts, which are obfuscated by
different terminology. Martin en-
couraged me to document my fi nd-

ings in the form of patterns, also to
be submitted to PLoP 2002,4 where I
fi rst met Bobby and Kyle.

Bobby: So Kyle brought me into the
effort he’d started with Martin, then
Martin brought Gregor in. While
Martin and Kyle contributed a lot
of material and guidance, they even-
tually lessened their involvement,
leaving Gregor and me to write and
complete the book. Gregor and I
hadn’t known each other before, so
it was a crash getting-to-know-you
opportunity.

With encouragement from Martin
and Kyle, we decided to combine our
papers with the goal to turn them
into a book. While there was some
merging to be done, the two papers
complemented each other well. We
only had a handful of patterns that
overlapped: Kyle’s and my paper de-
scribed message patterns (“message
construction” in the book) and mes-
sage client patterns (later “messag-
ing endpoints”).

Gregor: Coming from the EAI per-
spective, my 17 patterns focused on
what was “between” the endpoints:
message routing, message transfor-
mation, and message management.
It also contained an early version of
the pattern icons.

Each pattern represents a decision, so
the language walks the reader through
the decisions that need to be made.

[Zimmermann et al., IEEE Software 2016]

patterns for asynchronous messaging

Take-away 4: application-level before infrastructure-level

 71

@ticofab
ticofab.ioReview of the Akka-Kubernetes Stack

Kubernetes is a great
infrastructure choice for your

clustered application

⚙

It provides location
transparency with
cluster formation

'

It introduces resilience at
an infrastructure level

(

Akka has a cloud-native
programming model,

ready to scale from day 1

)

It enables transparent
communication between

different nodes of a service

*

Resilience is built in
your service with
granular control

+

Fabio Triticco 2019: “Scala and Kubernetes: Reactive from Code to Cloud”

https://www.lightbend.com/blog/akka-and-kubernetes-reactive-from-code-to-cloud

