delaware

Software Engineering
Study Trip Berlin 2020

Scaling micro-service architectures up and out:
a slightly opinionated review

.l)
g SOFTWARE

VUB Q' ANGUAGEs coen De Roover
| T | LAB cderoove@vub.ac.be

mailto:cderoove@vub.ac.be

Brussels

Dutch
6.23 million

rman
illion

Germany

emburg

60

T e .

if Foe o
5 i

Atomium Zinneke pis

Waffles (from Brussels) Waffles (from Liege)

Software Languages Lab @ Vrije Universiteit Brussel

languages tools
Design, implement, and formalize

for developing
in a less effort-intensive and less error-prone manner.

Program analysis as tool enabler

e0e Untitled - DrRacket
Untitiedw ~ (define ..) v up(E) Check Syntax ¢ Debug @[> Macro Stepper &P Run[> Stop [l
(letrec ((count
(lambda (n)
(if (= n 0)
"done"
(count (- n 1))))))

(count 200))

Emmhwwn-\

\

-,

Welcome to DrRacket, version 7.2 [3m].
Language: R5RS [custom]; memory limit: 128 MB.

"done"
>

RSRS custom v 4:2 297.84MB[| ¢

Program analysis as tool enabler

Semsk € 2orpsk = Control x Env x Store x Addr _ﬁ_)()=>{ x=truye: 'F() . }
Control = Fxp + Val v ’ ’

p € Env = Var — Addr .,
o € Store = Addr — Val

. A
val € Val = Clo + Kont I I
k € Kont ::= halt | ar(e, p,a) | fn(clo, a) I . ' oo

clo € Clo ::= (M\v.e) x Env

a,b e Addr an infinite set of addresses
(0.0.7,0,8) = (o(p(0)), . 7,0, O 'O 'O g @ g O > ..
) .)

X—=true

concrete interpretation

=
((\v.e),p,o,a,t) — (((\v.e),p),p,o,a,u).
<(60 el),p,a,a,t> - <60ap, [b = ar(€17:07)],b7u> ‘.
(clo, p,o,a,t) — (e, p/,alb— fn(clo,d’)],b,u) if k = ar(e,p',d’), cee fieO=>{ x=3; 1 Xi>3
(val, p,o,a,t) — (e, p'lv+— b],o[b > val],d',u) if k = f((\v.e),p),d).

L —

Semsk € ECESK — Control x Env x Store x m“
¢ € Control = Exp + Val
ﬁem:Var—\m
&e%:mﬂép(m)
val € Val = Clo + Kont
i € Kont ::= halt | ar(e, p,a) | fn(clo, d)

val € Val == Qw.e) x Env
a,be Addr a finite set of addresses Q * O*@ / X Bool edan,

abstract interpretation

Number }
(v, p, 6,4,y = (clo, pl,6,a,0)
where clo € 5(p(v)).
) fi> =>{ x=true; fQ);

(Ow.e),p,6,a,8) = (\v.e),p), p, 6,4, 1) {O=>1 > FO5 3
(Ceo €13, 7, 6,8,8) 5 (0,4, U [b > ax(en, p,)], b,) O=>{ x=3; }

(clo, p,5,a,%) = (e,p/,6 U b fn(clo,d)],b,a) if & =ar(e,p,d),

(al, p,&,a,1) = (e, p'lv s b],6 U[b— val],d’,a) if & =((Owv.e),)),d).

Example program transformation tool

public class BreakStatement extends Statement {
@EntityProperty(value = SimpleName.class)

private Entityldentifier label;

public EntityIdentifier getlLabel()
return label;

¥

public void setLabel(EntityIdentifier label) {
this.label = label;

}

¥

Find:

Replace:

return label;
ks

public class BreakStatement extends Statement {
@EntityProperty(value = SimpleName.class)
private EntitylIdentifier<SimpleName> label;
public EntityIdentifier<SimpleName> getlLabel() {

public void setLabel(EntityIdentifier<SimpleName> label) {
this.label = label;

¥
} to be used as type parameter

O @ Plug-in Development - /Users/cderoove/git/damp.ekeko.snippets/damp.ekeko.snippets.plugin.test/resources/EkekoX-Specifications/scam_demc

Wi O Qi

R C D W=W AR

v ¥

==l &JJava <J=Plug-in De

e o

FE Pack X % Plug-i

|

E'.

= ~
» 77> lestCase-JD - bomposnteWsutor |¢
v '::,j> TestCase-TypeParameters Ekeko
v if#src
» {4 be.ac.chaqg.change
v er be.ac.chaq.model.ast.java
P> []j AbstractTypeDeclaration.ja
» [J] Annotation.java
P> [_j,j AnnotationTypeDeclaration
P> f!,j, AnnotationTypeMemberDec
B [_T,j AnonymousClassDeclaratic
» |1} ArrayAccess.java
» |J] ArrayCreation.java
» |1} Arraylnitializer.java
» 1) ArrayType.java
» |1} AssertStatement.java
» [J] Assignment.java
» |1} ASTIdentifier.java
» |1} ASTNode.java
» [J] Block.java
» |1} BlockComment.java
» [J) BodyDeclaration.java
» |1} BooleanLiteral.java
» |J) BreakStatement.java
= []j CastExpression.java
» |J] CatchClause.java
E CharacterLiteral.java
Ej ClassinstanceCreation.java
» [J) Comment.java
» |1} CompilationUnit.java
4 |_7,j ConditionalExpression.java
4 []j Constructorinvocation.java
2 |]j ContinueStatement.java
|J| DoStatement.java
|} EmptyStatement.java

Executes search-and-replace. Code will be changed.

?modList class ?className {

L [@..

return [?returned]@[

}

public void 7setterName([Entityl

[?assignee]@[
}

e[1}

=>

[EntityIdentifier<?annoType>|@[-
[EntitylIdentifier<?annoType>|@[

[EntitylIdentifier<?annoType>|@[

.(value=7annoType.class) priv
public [EntityIdentifier]@[

\J| ArrayCreation.java £3 \

package be.ac.chad.model.ast.java;
- import java.util.List;
import be.ac.chaq.model.entity.Entityldentifier;
import be.ac.chaqg.model.entity.EntitylListProperty
] import be.ac.chaq.model.entity.EntityProperty;
public class ArrayCreation extends Expression {
B @EntityProperty(value = ArrayType.class)
private Entityldentifier type;

@EntityListProperty(value = Expression.class)
private List<Entityldentifier> dimensions;

= @EntityProperty(value = ArrayInitializer.clas
private Entityldentifier initializer;

> public EntityIdentifier getType() {

g >
. Overview | || Search Templates

return type;

) console 2%

. [7] Ekeko Query Results

Current courses

Compilatie van if-expressies

(define (compile-if exp target linkage)
(let ((t-branch (make-label 'true-branch))

Procedure apply implementeert lexicaal bereik%

od
« Stop-en-Ropieer algoritme

¢ initialisatie: verplaats inhoud van paar op root adres van oud geheugen naar nieuw geheugen
i

“gebroken hart": geeft aan dat inhoud

ob van paar reeds verplaatst werd
n
¢

0 1 2 3 4 5/6 7 8
thecars | {0 €9 @ 03 n1 @ n2 ps @
thecdrs @ po @ €0 p6 @ e0 p3 @

“doorstuur-adres": adres
waarnaar paar verhuisd werd

= | root free
Vo

012 3 /45 6|7 8

new-cars| p4
new-cdrs, p7

Rl verwijst naar een net verplaatst paar, maar waarvan de
inhoud nog naar het oude geheugen verwijst

n

Interpretation |

meta-interpreters,
compilers,
garbage collection

Model-View-Controller in / play

Asynchronous Messaging Patterns

— Patterns Impact

A& akka Streams: back-pressure

10 messages

Tsecon

\/Em

please send 2 more
please send 2 more
o data elements flow downstream, demand flows upstream
o data elements flow only when there is demand
o datain flight is bounded by signalled demand
o upstream can batch demands together
(e.g. a demand immediately followed by another demand)
o downstream is in control of maximal incoming data rate
terminolo o back-pressure is contagious: propagates back to source
—

© demand and data are duals at junctions . 2= D\l:l

o splitting data means merging demand X
o merging data means splitting demand o l:l = l:l 7/

one-to-many many-to-one

3

Software Architecture

architectural patterns
message-based systems,
reactive architectures

ICT project failures: a positive note /—__

/ o —

| “The Soehnyy cCasts i
oS Do 7 el
me s CONtinuous delivery sont
Chaos

1
Software development discipline where you build software in such a way
that the software can be released to production at any time:

oSoﬁr; r . . o e
ok . . S—
ﬁ;} i Tool support: visualization ol v

—packege #Atrbutes

)

=

high

Methods

\ o color
class itcally

X TR ()

| |

Software Engineering

continuous delivery,
design patterns
design & test metrics

Comparing SAST tools by abstractions used

true positive
false posi

Cubic framework

test rul

production ru)
test rul

Visualisation of commit history proposed by Zaidman et al. [ICST2008]

production ru)

OPEN-LMIS

~ o Simple data stn

© map each c¢ 2w
o eachnodeh g
© represen 3
© constrait 8 ChangeType
m o bitsr = + acoc-requtr
o atge ey
o alist caoe-solonm
—
- | * edit-selenium
- -

commits sorted by date

Similar Change History Views for others projects suggest that Selenium
files co-evolve with the rest of the application.

Software Quality

mining software repositories,
program analysis,
automated testing

éﬂ LI-services architecture

FTGO monolithic architecture

Invoked by mobile applications

° | Cloud services
. . |
w FTGO application | [Richardson 2019]
|
|
|
|

Courier REST Twilio Twilio

— ™| messaging

API Restaurant adapter . service
® management :
Order Delivery |
management || management |
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AWS SES |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Consumer Payments
Amazon
Notification SES ermail
adapter | | :
Web / Billing v P | service
» ul ~ |
l
|
|

T Stripe
w adapter
MySQL \ Stripe
Restaurant adapter / | payment

|

|

|

|

service

Adapters invoke
MySQL cloud services.

one large, but nicely modularised application

12

FTGO monolithic: development process

[Richardson 2019]

FTGO development Large Single codg ba:se creates Large, com.pI.ex
development communication and unreliable, difficult
Order management team organization coordination overhead. to maintain

. h.f
m. ’I"i\’l‘ \/ ____________

Restaurant management team o
Deployment pipeline

|

|

|

|

|

w |
o |
Jenkins Manual FTGO |

’m >§-< Cl Erielien testing () application !
|

|

|

|

|

|

|

|

/ Source
Delivery management team code

|
|
|
repository .
|
|

[] w [] w []

’H‘ . 'I‘ . ’I‘ The path from code commit to
T 70 production is arduous.
Changes sit in a queue until
they can be manually tested.

entire executable needs to be redeployed entirely upon smallest change
13

FTGO monolithic: scaling options

Route requests using a

:) N identical application !
load balancing algorithm. !

instances

Application

|
|
|
I
|
|
: instance 1

Request Load

Cli _ Application
lent balancer

instance 2

y

Application
instance 3

uniform replication
(X-axis scaling)

FTGO monolithic: scaling options

Uses the userld to decide

N identical application
where to route requests

instances

Application

|
|
|
|
|
|
| instance 1

Users: a-h

Request:
GET /...

Authorization: userId:password

instance 2

Users: i-p

|
|
|
|
Client > Router I -
|
|
|
|
|

Application

|

: instance 3
Each instance is responsible : Users: r-z

|

for a subset of the users.

|
|
|
|
|
|
|
|
|
|
|
|
|
Application !
|
|
|
|
|
|
|
|
|
|
|
|
|

shard-based replication
(Z-axis scaling)

FTGO p-services: scaling options

Y-axis scaling functionality decomposes
an application into services.

Order service

|
|
Order :
o ___l_____. Service |
. Application * | instance 1 :
| | I
| | |
: Request Load - S(Z:l/iecre :
order I balancer ' instance 2 |
requests | | :
|
' |
!) Order !
| i |
Client Customer | | Customer ! _Service |
requests | Service | instance 3 !
| .
| T e a
I |
Review ! :
requests | Review |
! Service :
I o o [o
| ! Each service is typically scaled using
e I X-axis and possibly Z-axis scaling.

each service can be scaled
independently

|6

FTGO p-services architecture

The APl Gateway routes
requests from the mobile
applications to services.

[J
REST
API

Courier API
Gateway
' REST
w API

Consumer

o

Restaurant
Web Ul

Restaurant

Services have APlIs.

Services corresponding
to business capabilities/

REST
API

REST
API

Restaurant

REST
API

REST
API

domain-driven design
(DDD) subdomains

/

REST
API

Stripe
Adapter

Service

Accounting
Service

REST
API

/ \

Twilio
Adapter

Kitchen
Service

Delivery
Service

AN

)

Notification
,\ Service

Amazon
SES
Adapter

A service’s data is private.

o monolith distributed vertically into services that are deployed independently
o each service provides and consumes functionality as a mini-application on its own

[Richardson 2019]

|7

FTGO p-services: REST calls (1/2)

Mobile
app

How to handle each
unresponsive service?

Get/orders/xyz
>

Get
order
endpoint

API
gateway

A/

Order
Service

proxy

GET/orders/xyz

Unresponsive
service

Kitchen
Service

proxy

GET/tickets?orderId=xyz

Delivery
Service

proxy

L

GET/deliveries?orderId-xyz

Service
proxy

-

o simple and familiar, synchronous request/response cycle of HTTP
o exposes business objects as resources at a URI

o four primary HTTP operations on those resources: POST, GET, PUT, DELETE

o not prone to fallacy of transparent distribution

Order
Service

Kitchen
Service

Delivery
Service

Service

[Richardson 2019]

18

FTGO p-services: REST calls (2/2)

Circuit breaker

Request

Open Closed

Half open

\/ Periodic sample

Fail fast

y

Service

blocking calls require protection against unresponsive services to prevent cascading failures

19

FTGO p-services: messaging (1/2)

Client sends message containing
msgld and a reply channel.

([Richardson 2019]

Request Request channel

Sends Reads

MessageId: msgIld
ReturnAddress: ReplyChannel

Body \ Service

\
| Specifies
Reads !

Client

Sends

CorrelationId:msgld
Body

Reply channel

Service sends reply to the specified reply
channel. The reply contains a correlationld,
which is the request’s msgld.

o asynchronicity
o sender does not have to wait for the receiver to receive and process the message
o requires a send-and-forget approach to communication

o variable timing
o messaging system queues up requests until the receiver is ready to process them
o enables sender and receiver to produce and consume messages at their own pace

20

FTGO p-services: messaging (2/2

=
=
(D
oQ
Q
Q)
= 5
O
=

Ju3

asiudia

Twenty Years of
Patterns’ Impact

Gregor Hohpe, Rebecca Wirfs-Brock, Joseph W. Yoder, and Olaf Zimmermann

Editor: Michiel van Genuchten
MTOnyx
genuchten@ieee.org

Editor: Les Hatton
Kingston University
Lhatton@kingston.ac.uk

This column celebrates the 20th year of software patterns. IEEE
Software advisory board members teamed up with members of the
Hillside Group, a nonprofit organization that promotes the use of
patterns and pattern languages, to reflect on the state of the practice
and impact of patterns. —Michiel van Genuchten and Les Hatton

GOOD ADVICE IN software design can go a long way in helping us avoid working solution to a problem that

is difficult to come by. General design reinventing the whet
principles can guide us, but reality of lesser-skilled developers cffortlessly

bur the vision

occurs repeatedly in a given context.

Instead of presenting a copy-and-paste-

tends to force trade-offs between scem- wiring together ready-made compo- ready code snippet, patterns discuss

ingly conflicting goals, such as flexibil- nents remains fiction

ity and maintainability against siz

Design patterns have helped nar-

complexity. Likewise, code libraries row this gap by documenting a well

88 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY

forces impacting the solution design.
Examples of such forces are perfor-
b applica
tions: encryption and decryption algo

mance and security in W

rithms improve security but introduce
processing overhead. Ward Cunning-
ham once described the best patterns as
your older brother teaching you how to
do something right.!

Although patterns have become
popular, their impact as a design tech-
nique is more difficult to quantify than
the impact of a specific software prod
uct (which is what previous install
ments of this column have examined)
This installment highlights both the
breadth of patterns available after 20

years of pattern-writing conferences
and the depth of impact some patterns
have had on open source software.

continued on p. 84

INSIGHTS

Editor: Cesare Pautasso
versity of Lugano
x

of Applied Scien
n Switzerland, Rap
ch

ozimmerm@

A Decade of Enterprise
Integration Patterns

A Conversation with the Authors

Olaf Zimmermann, Cesare Pautasso, Gregor Hohpe, and Bobby Woolf

IN AN INDUSTRY that thri
con:

ant change, few books
vive the test of time. Enterprise In-
tegration Patterns (EIP)'—with its
highly influential collection of mes-
saging patterns—is definitely one of
those few. So, we interviewed the
authors Gregor Hohpe and Bobby

Bobby Woolf: Martin Fowler was

the matchmaker. When he wrote

Patterns of Enterprise Application
Architecture, Kyle Brown pointed
out that his pattern language was
not addressing asynchronous mes-
saging. Martin felt that he already
had plenty of patterns to write,

Each pattern represents a decision, so
the language walks the reader through
the decisions that need to be made.

olf; here, we have the pleasure
of sharing their reflections with you.
You can discover the inside story of
their book project as well as their
views on pattern language design
and on integration technology’s evo-
lution. We also thank them for their
precious advice for the next genera-
tion of pattern authors and integra-
tion solution designers

A General Retrospective

Olaf Zimmermann: How did your
book come to be? How did you get
together, and how did you find your
contributors and review

which motivated Kyle and me to sub-
mit a collection of 27 patterns to the
2002 Pattern Language of Programs
[PLoP| conference under the title,
“Patterns of System Integration with
Enterprise Messaging™

Gregor Hohpe: 1 was based some
3,000 miles away, using enterprise
application integration [EAI] tools,
such as TIBCO and Vitria, in my
consulting job. I had a nagging feel-
ing that these tools share underlying
concepts, which are obfuscated by
different terminology. Martin en-
couraged me to document my find-

ings in the form of patterns, also to
be submitted to PLoP 2002,* where I
first met Bobby and Kyle.

Bobby: So Kyle brought me into the
effort he'd started with Martin, then
Martin brought Gregor in. While
Martin and Kyle contributed a lot
of material and guidance, th
tually lessened their involvement,
leaving Gregor and me to write and
complete the book. Gregor and
hadn’t known cach other befor, so

it was a crash getting-to-know-you
opportunity.

With encouragement from Martin
and Kyle, we decided to combine our
papers with the goal to turn them
into a book. While there was some
merging to be done, the two papers
complemented each other well. We
only had a handful of patterns that
overlapped: Kyle's and my paper de-
seribed message patterns (“message
construction” in the book) and me
sage client patterns (later “messag-
ing endpoints”).

Gregor: Coming from the EAT per-
spective, my 17 patterns focused on
what was “between” the endpoints:
message routing, message transfor-
mation, and message management.
It also contained

1 carly version of

the pattern icons.

JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 13

[Zimmermann et al., IEEE Software 2016] [Hophe et al., IEEE Software 2013]

21

FTGO p-services: development process

Small, autonomous,
loosely coupled teams

N

FTGO development

Order management team

Each service has
its own source
code repository.

ALY
T 0

Restaurant management team

AL

Order Service
source code
repository

1

Delivery management team

Restaurant Service
source code
repository

ALY
T 1

Delivery Service
source code
repository

Each service has
its own automated
deployment pipeline.

Deployment pipeline

Small, simple,
reliable, easy to
maintain services

Jenkins Cl

Deployment pipeline

Order Service

Jenkins Cl

Deployment pipeline

Restaurant Service

Jenkins Cl

Delivery Service

o each team develops, tests, and deploys their services independently

[Richardson 2019]

22

FTGO p-services: development process

Melvin Conway

In 1967 I submitted a paper called "How Do Committees Invent?"
to the Harvard Business Review. HBR rejected it on the grounds that I
had not proved my thesis. I then submitted it to Datamation, the
major IT magazine at that time, which published it April 1968. The
text of the paper is here.

Here is one form of the paper's thesis:

Any organization that designs a system
(defined broadly) will produce a design
whose structure is a copy of the
organization's communication structure.

reverse application: organize teams so

that they mirror the ideal architecture

23

FTGO H-services: containerization

RUN tar -zvzf /redis/redis-stable.tar.gz

server
oD ["--dir", "/

Dockerfile

FROM openjdk:8ul71-jre-alpine
RUN apk =-=no-cache add curl
CMD java ${JAVA_OPTS} -jar ftgo-restaurant-service.jar

build

Image

Docker Image

Docker Container

[Richardson 2019]

HEALTHCHECK --start-period=30s --interval=5s CMD curl -f http://localhost:8080/actuator/health || exit 1

COPY build/libs/ftgo-restaurant-service.jar .

o service executables and dependencies are packaged into a container image
o multiple containers can be spun up from a container image

24

Containerization insights

B3ase Images & Sizes

[Cito et al., MSR17]

busybox -
fedora -
php -

scratch -

ruby -

nginx -

java -

4 M3 alpine -

golang -

"nnr-TvqT

dockerfile/nodejs -

I
python - =
195 MR centos =
debian - E
125 M | [e

5 10 15 20 25
% of Projects with Base Image Referenced in FROM Statements

O -

¥ Reduce Image Size

@ Base Image Recommendation .

Containerization insights

Distribution of Instructions [Gito et al., MSR17]
Instruction All Top-1000 Top-100
RUN A% 4% 4%

COMMENT 16% 14% 15%
ENV 6% 7% 9%
FROM 7% 8% %
ADD 6% 5% 2%
CMD 4% 4% 3%
COPY 3% 4% 3%
EXPOSE 4% 4% 3%
MAINTAINER 4% 4% 3%
WORKDIR 3% 3% 3%
ENTRYPOINT 2% 2% 1%
VOLUME 2% 2% 1%
USER 1% 1% 1%

20

Containerization insights

Distribution of RUN Instructions [Cito et al, MSR17]
Category Examples All Top-1000 Top-100

Dependencies apt-get, yum, npm _
File System mkdir, cd, cp, rm 30.4% 29.3% 29.4%
Permissions chmod, chown 7.3% 5.2% 2.3%
Build / Execute make, install 5.3% 8.3% 13.5%
Environment set, export, source 0.6% 1.0% 0.2%
Other 11.3% 11.5% 9.4%

@ Abstraction for Dependencies
07

FTGO p-services: resource provisioning

[Richardson 2019]

Kubernetes master
manages cluster
() Scheduler
Kubecti
w > CLI API Server
Developer / .
management API management
Deployment
pipeline o
etcd w
distributed Rey-value store Configuration Aplication
commands user
Application
requests
Kubernetes node / / Kubernetes nod&‘ ’/
man ages Kubelet Kube-proxy Kubelet Kube-proxy
containers / /
Pod B Pod B

routes requests
to pods

runs containers
called pods

28

FTGO P-services: infrastructure as code

(Chris Richardson

apiVersion: extensions/vlbetal = name: SPRING_DATASOURCE_USERNAME
kind: Deployment valueFrom:
metadata: secretKeyRef:
name: ftgo-restaurant-service name: ftgo-db-secret
labels: key: username [Richardson 2019]
application: ftgo - name: SPRING_DATASOURCE_PASSWORD
svc: ftgo-restaurant-service valueFrom:
spec: secretKeyRef:
replicas: 1 number of containers name: ftgo-db-secret environment
strategy: to maintain key: password Val'iables
rollingUpdate: -~ name: SPRING_DATASOURCE_DRIVER_CLASS_NAME
maxUnavailable: @ value: com.mysql.jdbc.Driver
template: - name: EVENTUATELOCAL_KAFKA_BOOTSTRAP_SERVERS
metadata: value: ftgo-kafka:9092
labels: - name: EVENTUATELOCAL_ZOOKEEPER_CONNECTION_STRING
svc: ftgo-restaurant-service value: ftgo-zookeeper:2181
application: ftgo livenessProbe:

spec: . : :
. container image httpGet: .
containers: . g path: /actuator/health determines whether
- name: ftgo-restaurant-service port: 8080 container iS ready to

image: msapatterns/ftgo-restaurant-service: latest
imagePullPolicy: Always
ports:
- containerPort: 8080
name: httpport

initialDelaySeconds: 60 accept trafﬁc

periodSeconds: 20
readinessProbe:
httpGet:
path: /actuator/health

S _ oprs port: 8080 .
= Rames JAVA . initialDelaySeconds: 60 dEtermlnes WhEther
value: "-Dsun.net.inetaddr.tt1=30") .
periodSeconds: 20 container should be

- name: SPRING_DATASOURCE_URL .
value: jdbc:mysql://ftgo-mysql/eventuate terminated and restarted

Kubernetes

29

FTGO U-services: infrastructure as code

TABLE VIII:

The Seven Sins: Security Smells in
Code Scripts

Akond Rahman, Chris Parnin, and Laurie Williams
North Carolina State University, Raleigh, North Carolina

Email: su.edu, cjp:

Abstract—Practitioners use infrastructure as code (IaC) scripts
to provision servers and development environments. While de-
veloping 1aC scripts, practitioners may inadvertently introduce

(y smells. Security smells are recurring coding patterns that
are indicative of security weakness and can potentially lead to
security breaches. The goal of this paper is to help practitioners
avoid insecure coding practices while developing infrastructure as
code (IaC) seripts through an empirical study of security smells in
1aC seripts.

We apply qualitative analysis on 1,726 1aC scripts to identify
seven security smells. Next, we implement and validate a static

s tool called Security Linter for Infrastructure as Code

t 15232
TaC ser e repositories. We
identify 21,201 occurrences of security smells that include 1,326
occurrences of hard-coded passwords. We submitted bug reports
for 1, y-selected securi ceurrences. We obtain
104 responses to these bug reports, of which 67 occurrences
were accepted by the development teams to be fixed. We observe
security smells can have a long lifetime, c.g., a hard-coded secret
can persist for as long as 98 months, with a median lifetime of
20 months.

Index Terms—devops, infrastructure as code, security smell

1. INTRODUCTION

Infrastructure as code (IaC) scripts help practitioners to
provision and configure their development environment and
servers at scale [1]. TaC scripts are also known as configuration
seripts [2] [1] or configuration as code scripts [1] [3]. Commer-
cial TaC tool vendors, such as Chef ! and Puppet [4], provide

specify configuration and dependency information as scripts.

Fortune 500 companies 2, such as Intercontinental Exchange
(ICE) %, use IaC scripts to maintain their development envi-
ronments. For example, ICE, which runs millions of financial
transactions daily *, maintains 75% of its 20,000 servers using
1aC scripts [5). The use of TaC scripts has helped ICE decrease
the time needed to provision development environments from
1~2 days to 21 minutes [5]

However, 1aC scripts can be susceptible to security weak-
ness. Let us consider Figure 1 as an example. In Figure 1,
we present a Puppet code snippet extracted from the ‘acolus-
configure’ open source software (OSS) repository *. In this

hitps:/iwwwchef.iofchef]
htp/Hfortune.com/fortuneS00/isy/

Ships:/iwww theice com/index

“hitps:/iwww theice.com/publicdocs ICE_at_a_glance. paf
Shups:/github.com/aeolusproject/acolus-configure

su.edu, ed:

code snippet, we observe a hard-coded password usin®
“password” attribute. A hard-coded string ‘v23zj59%an’ is a
signed as password for user “acolus’. Hard-coded passwords in
software artifacts is considered as a software security weakness
(‘CWE-798: Use of Hard-coded Credentials’) by Common
Weakness Enumerator (CWE) [6]. According to CWE [6],
“If hard-coded passwords are used, it is almost certain that
malicious users will gain access to the account in question”.

1aC scripts similar to Figure 1, which contain hard-coded
credentials o other security smells, can be susceptible to
security breaches. Security smells are recurring coding patterns
that are indicative of security weakness. A security smell does
not always lead to a security breach, but deserves attention
and inspection. Existence and persistence of these smells in
1aC seripts leave the possibility of another programmer using
these smelly scripts, potentially propagating use of insecure
coding practices. We hypothesize through systematic empirical
analysis, we can identify security smells and the prevalence
of the identified security smells.

The goal of this paper is to help practitioners avoid insecure
coding practices while developing infrastructure as code (laC)
scripts through an empirical study of security smells in laC
scripts.

We answer the following research questions;

« RQI: What sceurity smells occur in infrastructure as code

seripts? (Section 11T

« RQ2: How frequently do security smells occur in infras-
tructure as code scripts? (Section VI)

« RQ3: What is the lifetime of the identified security smell
occurrences for infrastructure as code scripts? (Section VI)

« RQ4: Do practitioners agree with security smell occur-
rences? (Section V1)

We answer our research questions by analyzing TaC scripts
collected from OSS repositories. We apply qualitative anal-
ysis [7] on 1,726 scripts to determine security smells. Next,
we construct a static analysis tool called Security Linter for
Infrastructure as Code scripts (SLIC) to automatically identify
the occurrence of these security smells in 15,232 1aC scripts
collected by mining 293 OSS repositories from four sources;
Morilla %, Openstack ’, Wikimedia Commons ¥, and GitHub *

Chutps:/ihg mozilla.org/
hups:/git openstack.orglcgit
Shups/igerrit wikimedia org/

“htps:lgithub.com/

[Rahman et al.

ICSE 2019]

mell Occurrences, Smell Density, and Proportion of Scripts for the Four Datasets

Occurrences

Smell Density (per KLOC)

Proportion of Scripts (Script%)

Smell Name

GH

MOZ

OST

WIK

GH

MOZ

OST

WIK

GH MOZ OST WIK

Admin by default

52

4

35

6

0.1

0.06

0.1

0.04

0.6 0.2

1.1 0.2

Empty password

136

18

21

36

0.3

0.2

0.1

0.2

1.4 0.4

0.5 0.3

Hard-coded secret

10,892

792

3,552

1,716

25.6

11.9

16.5

12.7

21.9 9.9

24.8 17.0

Invalid IP address binding

188

20

114

41

0.4

0.3

0.5

0.3

1.7 0.7

2.9 1.4

Suspicious comment

758

202

305

343

1.7

3.0

1.4

2.5

5.9 8.5

7.2 9.1

Use of HTTP without TLS

1,018

57

460

164

2.4

0.8

2.1

1.2

6.3 1.6

8.5 3.7

Use of weak crypto algo.

177

48

20

26

0.4

0.7

0.1

0.2

0.9 1.1

0.5 0.4

Combined

13,221

1,141

4,507

2,332

31.1

17.2

21.0

17.2

29.3 17.9

329 26.7

30

Cloud-native applications

1990°s

SPAGHETTI-ORIENTED
ARCHITECTURE
(aka Copy & Paste)

LASAGNA-ORIENTED
ARCHITECTURE
(aka Layered Monolith)

RAVIOLI-ORIENTED
ARCHITECTURE
(aka Microservices)

architecture process

OPerate at glopg) scale

are}?t qt?main responsiye
and (Sllient against failur
are elastic yn €s,

der load Variations

) Google Cloud

infrastructure

31

Scaling up
using concurrent actors

Scaling up through concurrent programming

Concurrency is a means to realise elasticity:
add more threads to server when needed, which the application automatically starts using

33

Concurrent actor programming

The Actor Model
A common semantic approach to

modeling objects is to view the
behavior of objects as functions of in-
coming communications. This is the
approach taken in the actor model
[21]. Actors are self-contained, in-
teractive, independent components
of a computing system that com-
municate by asynchronous message
passing. The basic actor primitives
are (see Figure 4):

create: creating an actor from a
behavior description and a set of
parameters, possibly including ex-
isting actors;

send to: sending a message to an ac-
tor; and

become: an actor replacing its own
behavior by a new behavior.

These primitives form a simple
but powerful set upon which to build
a wide range of higher-level abstrac-
tions and concurrent programming
paradigms [3]. The actor creation

. . . .
urivvisdrera 10 A AMen Asssmmasd S s suea s Vs

quential style sharing to concurrent
computation. The send to primitive
is the asynchronous analog of func-
tion application. It is the basic com-
munication primitive causing a
message to be put in an actor’s mail-
box (message queue). It should be
noted that each actor has a unique
mail address determined at the time
of its creation. This address is used to
specify the recipient (target) of a
message.

In the actor model, state change is
specified using replacement behav-
iors. Each time an actor processes a
communication, it also computes its
behavior in response to the next
communication it may process. The
replacement behavior for a purely
functional actor is identical to the
original behavior. In other cases, the
behavior may change. The change in
the behavior may represent a simple
change of state variables, such as
change in the balance of an account,
or it may represent changes in the
operations (methods) which are car-
ried out in response to messages.

The ability to specify a replace-

ment hehaviar refaing an imnartant

CONCURRENT
OBJECT-ORIENTED
PROGRAMMING

[Hewitt et al., 1973]

[Agha 1990]

34

Concurrent actor programming

drawal request. In response, as soon
as it has computed the new balance
in the account, it is free to process the
next request—even if other actions
implied by the withdrawal request
are still being carried out. To put it
another way, the concurrent specifi-
cation of replacement behaviors
guarantees noninterference of state
changes with potentially numerous
threads running through an actor
under a multiple-readers, single-
writer constraint.

o An actor can only:

o process messages one-by-one from a mailbox

35

Concurrent actor programming

[21]. Actors are self-contained, in-
teractive, independent components
of a computing system that com-
municate by asynchronous message
passing. The basic actor primitives
are (see Figure 4):

create: creating an actor from a
behavior description and a set of
parameters, possibly including ex-
Isting actors;

tl
cl

0l
0]
r1

at
IT
Vi

o An actor can only:

o process messages one-by-one from a mailbox
o create other actors

36

Concurrent actor programming

quential style sharing to concurrent
computation. The send to primitive
is the asynchronous analog of func-
tion application. It is the basic com-
munication primitive causing a
message to be put in an actor’s mail-
box (message queue). It should be
noted that each actor has a unique
mail address determined at the time
of its creation. This address is used to
specify the recipient (target) of a
message.

o An actor can only:

o process messages one-by-one from a mailbox
o create other actors
o send messages to other actors asynchronously

37

Concurrent actor programming

message.

In the actor model, state change is
specified using replacement behav-
iors. Each time an actor processes a
communication, it also computes its
behavior in response to the next
communication it may process. The
replacement behavior for a purely
functional actor is identical to the

AC

o An actor can only:
process messages one-by-one from a mailbox

O
o
(@)
O

create other actors

send messages to other actors asynchronously

change its message processing behavior

38

Concurrent actor programming

B
5

DM (DA

o An actor is effectively single-threaded
o messages are received and processed sequentially,
the actor invoRes its behaviour one-by-one on every message that is received
o processing one message is the atomic unit of execution,
it cannot be interleaved with the processing of another message
o changes in behaviour (i.e., become) are in effect for the processing of the next message

o But message processors of separate actors can be executed concurrently!

39

A& akka actors

Build powerful reactive,
concurrent, and distributed
applications more easily

Akka is a toolkit for building highly concurrent, distributed, and
resilient message-driven applications for Java and Scala

Akka is the implementation of the Actor Model on the JVM.

we will focus on
concurrent actors first

Simpler Concurrent & Distributed Systems
Actors and Streams let you build systems that scale up, using the
resources of a server more efficiently, and out, using multiple
servers.

Resilient by Design

Building on the principles of The Reactive Manifesto Akka allows you
to write systems that self-heal and stay responsive in the face of
failures.

High Performance
Up to 50 million msg/sec on a single machine. Small memory
footprint; 2.5 million actors per GB of heap.

Elastic & Decentralized

Distributed systems without single points of failure. Load balancing
and adaptive routing across nodes. Event Sourcing and CQRS with
Cluster Sharding. Distributed Data for eventual consistency using
CRDTs.

Reactive Streaming Data

Asynchronous non-blocking stream processing with backpressure.

Fully async and streaming HTTP server and client provides a great
platform for building microservices. Streaming integrations with
Alpakka.

Proven in production

Organizations with extreme requirements rely on Akka and other Lightbend technologies. Read about their experiences in our case

= and learn more about how Lightbend can contribute to success with its commercial offerings.

iHeart
MEDIA

QUPSIDE Walmart '
PayPal

QE CapitalOne creditkarma (lntel) \§ Hootsuite" NorwEGIAN

CRUISE LINE

amazoncom Z3lando weightwe

akka.net

40

A akka actors
& Contme

It had to be done, Running @AkkaDotNET from
VB.NET, and yes it works fine..
cc @rolandkuhn

< y stem.ActorOf (

le.ReadlLine()

OnReceive(

e.Writeline("Hello {0}",

message

- 120 + message

e.WritelLine(

9:51PM - Apr 12, 2015 - Twitter Web Client a k ka n e t
[]

Scala for Java programmers

“Any general-purpose language
hastobea lable nguage”

released in 2003 by Martin Odersky
professor at EPFL

Unifies and generalizes functional and object-oriented programming
Features a strong static type system for safety

Hosts multiple domain-specific languages

Offers a read-eval-print loop for interactive prototyping

o O O O O

Compatible with existing languages for the JVM

42

Functional basics: expressions

var X =
> X : Int = 3

var y = types are inferred

>y : Int =4

1f(x > y)
println(x)

else
println(Cy)

4 :
every expression has a value

println(if(x>y) x else y)

4 : : :
functions can be assigned to variables

var max = (x : Int, y : Int) = 1f(x>y) x else y
> max : (Int, Int) => Int = <functionZ>

max(~,")
> res@ : Int = 4

def max(x : Int, y : Int) =
1f(x>y) x else y

functions are values

43

Functional basics: pattern matching

def process(input : Any) : String =

input match { :
case input : Int => { matching on type
println("match!™)

input.toString(Q)

¥
case (a : Int, b : Int) = "Int tuple”
case (a : Double, b : Double) => "Double tuple"

case _ => "Unknown input"
}

List("apple™, 2, (V.5,), (&,4), List()).map(process)
match!

> res@: List[String] =
List(“Fruit”, “2", “Double tuple, “Int tuple, “Unknown input”)

def factorial(n: Int): Int = n match {
case 0 =>
case _ => n * factorial(n-1)

¥

44

00 basics: inheritance

class Animal {
def makeSound() = "Sound!"

¥
.
class Dog extends Animal {
override def makeSound() = "Bark!"
¥
class Duck extends Animal { overrides inherited definition
override def makeSound() = "Quack!"
¥

class DecoyDuck extends Duck {
override def makeSound() =

}

var animals = List(new Dog, new Duck, new DecoyDuck)
> animals : List[Animal] = List(Dog@21bcffb, Duck@380fb434, DecoyDuck@668bc3d5)

animals.map(a => a.makeSound()) inferred parametric type

> res@: List[String] = List(Bark!, Quack!, "")

polymorphic method invocations are supported as expected

45

46

00 basics: traits

trait Loud extends Animal {
override def makeSound() = super.makeSound().toUpperCase()

will differ depending on which class the trait is “mixed in”

}

trait Tired extends Animal {
var count = 0; reusable state and behavior

override def makeSound = {
count = count +
1fCcount > 1) "" else super.makeSound()

-class LoudDog |extends Dog with Loud
var fifi = new LoudDog

> fifi : LoudDog = LoudDog$1@73f792cf
fifi.makeSound()

> resl: String = BARK!

class TiredLoudDuck |extends Duck with Loud with Tired
var donald = new TiredLoudDuck

> donald : TiredLoudDuck = TiredLoudDuck$1@Z2ed94a8b
donald.makeSound()

> resZ: String = QUACK!

. donald.makeSound()
classes can be composed with . res3: String = "

reusable pieces of state and donald. count
behavior (no equivalent in Java) . res4: Tnt = 2

00 basics: case classes

trait Expr

case class Var(name: String) extends Expr

case class Number(num: Double) extends Expr

case class UnOp(operator: String, arg: Expr) extends Expr

case class BinOp(operator: String, left: Expr, right: Expr) extends Expr

val v = Var(“x"™)
> v: Var = Var(x)
val addop = BinOp("+", Number(l), v)

> addop: BinOp = BinOp(+,Number(1.0),Var(x))
val 1 = addop.left

> 1: Expr = Number(1.0) compiler has generated
println(addop) toString methods

BinOp(+,Number(1.0),Var(x))

compiler has generated factory

method in each companion object

. compiler has generated equals
addop.right == Var("x") and hashCode methods
> resl: Boolean = true

val subop = addop.copy(operator = compiler has generated copy methods
> subop: BinOp = BinOp(-,Number(1.0),Var(x)) for “changing” constructor arguments

def simplifyTop(expr: Expr): Expr = expr match {
case UnOp("-", UnOp("-", e)) => e
case BinOp("+", e, Number(?)) => e
case BinOp("*", e, Number(l)) => e
case _ => expr

Iy
simplifyTop(UnOp("-", UnOp("-", VD))

> resZ: Expr = Var(x) 47

For those who would like to know more

Start a new group Login Signup

Belgian Scala User

Group cwursera [ENE n For Enterprise o

@ Brussels, Belgium

o X n Management and Master of Computer Science Master of Data Science @}
d) 665 members - Public grou| < Leurshlp MasterTrack m Arizona State University HSE University v,
= AR STATE ol C
CO) Organized by Renato C. anc ey Bou
Showing 380 total results for "scala”
Filter Language Level Skills Partner Learning Product
By

share:] W [

Functional Programming in Scala

About Events Members Photos Discussions Request to join Ecole Polytechnique Fédérale de Lausanne
SPECIALIZATION | .1 Intermediate
46 (8,823) 210K students
What we're about Organizers

Functional Programming Principles in Scala

Ecole Polytechnique Fédérale de Lausanne

The Belgian Scala User Group Renato C. and 4

Message COURSE | 5 Intermediate

4.8 (6,879) 160K students

Upcoming events (1 See all
P g 1 Members (665)

EiiRnstion with the Lonc Lata 1ype

Parallel progra mmi ng A comprehensive step-by-step guide

Ecole Polytechnique Fédérale de Lausanne

THU, FEB 13, 6:00 PM Programming in

Scala

Big Data Analysis with Scala and Spark Fourth Edition

Ecole Polytechnique Fédérale de Lausanne

COURSE | .1 Intermediate

R

First experiences with Akka Typed and Scala 3
/ Akka Persistence Typed

ING - COURS SAINT-MICHEL @

45 (1,663) 47K students

Tonight we have two speakers, Eric Loots and Renato Cavalcanti.
Agenda: 18:00 - Doors open / Pizza & Drinks 19:00 - First
experiences with Akka Typed and Scala 3 The release of Akka 2.6...

COURSE | Mixed

4.7 (2,162) 70K students

PR -

W :
@

‘wﬁo 45 attendees ‘ Attend ‘ - e em——

Martin Odersky
. Lex Spoon
artima Bill Venners

48

A& akka actors

Build powerful reactive,
concurrent, and distributed
applications more easily

Akka is a toolkit for building highly concurrent, distributed, and
resilient message-driven applications for Java and Scala

Akka is the implementation of the Actor Model on the JVM.

we will focus on
concurrent actors first

Simpler Concurrent & Distributed Systems
Actors and Streams let you build systems that scale up, using the
resources of a server more efficiently, and out, using multiple
servers.

Resilient by Design

Building on the principles of The Reactive Manifesto Akka allows you
to write systems that self-heal and stay responsive in the face of
failures.

High Performance
Up to 50 million msg/sec on a single machine. Small memory
footprint; 2.5 million actors per GB of heap.

Elastic & Decentralized

Distributed systems without single points of failure. Load balancing
and adaptive routing across nodes. Event Sourcing and CQRS with
Cluster Sharding. Distributed Data for eventual consistency using
CRDTs.

Reactive Streaming Data

Asynchronous non-blocking stream processing with backpressure.

Fully async and streaming HTTP server and client provides a great
platform for building microservices. Streaming integrations with
Alpakka.

Proven in production

Organizations with extreme requirements rely on Akka and other Lightbend technologies. Read about their experiences in our case

= and learn more about how Lightbend can contribute to success with its commercial offerings.

iHeart
MEDIA

QUPSIDE Walmart '
PayPal

QE CapitalOne creditkarma (lntel) \§ Hootsuite" NorwEGIAN

CRUISE LINE

amazoncom Z3lando weightwe

akka.net

49

Aakka actors: Ping Pong example
object PingPong extends App {

case class StartPingPong(partner : ActorRef)

case object Ball . ,
address at which an actor lives

class Paddle extends Actor {
var counter : Integer = 0

method returning message processor
def receive = {

case StartPiﬁgPong(partner : ActorRef) =>
counter = 0
partner ! Ball

case Ball =>
counter += 1
println(s"Count of ${self.path.name}: ${counter}™)
Thread.sleep(1000)

sender ! Ball
1 return ball to sender

val system = ActorSystem("PingPong™)

val ping = system.actorOf(Props[Paddle], "ping")
val pong = system.actorOf(Props[Paddle], "pong")
ping ! StartPingPong(pong)

}

}

50

Pong:
Ping:
Pong:
Ping:
Pong:
Ping:
Pong:
Ping:
Pong:
Ping:
Pong:
Ping:

oo unmTul P WWNNEERE

A akka actors: strong encapsulation

o No direct access possible to the actor state

o state can only be accessed through messages sent to known addresses
(represented by an ActorRef)

o Three ways to obtain an address:
o every actor knows its own address (self),
useful for sending messages to other actors and informing them where to reply to
o actor creation returns an address (an ActorRef),

it is not possible to call methods directly on the newly created actor
o addresses can be exchanged through messages
(cf. automatically captured sender in ARRa)

o Actors are completely independent agents of computation, more isolated from each
other than regular objects

o all actors run fully concurrently to each other
© message-passing primitive is asynchronous

51

GoTicks.com: REST API

Description

HTTP

method

CRUD operations on resources as HTTP request-response cycles

Request body

Status code

Response example

Create an
event

Get all
events

Buy tickets

Cancel
an event

POST

GET

POST

DELETE

/events/RHCP

/events

/events/RHCP/
tickets

/events/RHCP

{ "tickets"

N/A

{ "tickets"

N/A

: 2

: 250}

}

201 Created

200 OK

201 Created

200 OK

"name": "RHCP",
"tickets": 250

[{ event : "RHCP",
tickets 249 3}, |
event : "Radiohead",
tickets 130 } 1]

{ "event" "RHCP",
"entries" : [{ "id"
-1}y, { "id" : 2 }]
}

{ event "RHCP",
tickets 249 1}

52

[Roestenburg et al. 2016]

http://GoTicks.com

GoTicks.com: REST API

create a Red Hot Chilli Peppers event with 10 tickets

:~ cderoove$ http POST localhost:5000/events/RHCP tickets:=10
HTTP/1.1 201 Created

Content-Length: 28

Content-Type: application/json

Date: Tue, 06 Feb 2018 12:07:30 GMT

Server: GoTicks.com REST API

{

"name": "RHCP", ‘ : "
tickets's 10 list available tickets for all events

} :~ cderoove$ http GET localhost:5000/events/
HTTP/1.1 200 OK

1Content-Length: 74

Content-Type: application/json

Date: Tue, 06 Feb 2018 12:18:46 GMT

Server: GoTicks.com REST API

{
"events": |

{
"name": "DJIMadLib",
"tickets": 15

I

{
"name": "RHCP",
"tickets'": 10

¥

http://GoTicks.com

GoTicks.com: REST API

purchase two tickets for Red Hot Chilli Peppers event

:~ cderoove$ http POST localhost:5000/events/RHCP/tickets tickets:=2
HTTP/1.1 201 Created

Content-Length: 46

Content-Type: application/json

Date: Tue, 06 Feb 2018 12:20:53 GMT

Server: GoTicks.com REST API

{ list remaining tickets for all events
"entries": |
{ :~ cderoove$ http GET localhost:5000/events/
"id": 1 HTTP/1.1 200 OK
}, Content-Length: 73
{ Content-Type: application/json
"id": 2 Date: Tue, 06 Feb 2018 12:23:14 GMT
} Server: GoTicks.com REST API
1,
"event": "RHCP" {
} "events": |
{
1 "name": "DJIMadL1ib",
"tickets": 15
F
{
"name": "RHCP",
"tickets": 8
s
]
I3

54

http://GoTicks.com

GoTicks.com: REST API

HTTP JSON © Resthpi]
estApi responds
(7 with |SON tickets
"event" : "RHCP",
"entries": [
{via» : 13}, [Roestenburg et al. 2016]
{rid" : 2}
] HTTP request
) {"tickets" : 2}

@ RestApi receives
POST /events/RHCP/tickets

|

O TicketSeller responds
to original sender
with the Tickets

actor per event!

55

/ActorSystem <_/ N request
——— Ador . rocessing tickets and
—— @) RestApi creates Y .
RestApi | TI:ckfstg;quest from ; answerlng REST calls
the request an
/ sends it to tcll1e BoiOfﬁce happens Concurrently
Message
TicketRequest
("RHCP", 2)
A © The BoxOffice finds child
— e BoxOffice finds chi
BoxOffice — with name "RHCP" and
Message forwards the Buy message
to it. The sender of the oue .
rickets (vestor message as seen from the Actors facilitate fine-grained
Ticket (1), Message TicketSeller is the RestApi.
mickes (2 upscaling within a container
)) Buy (2)
L Ac‘:;or
TicketSeller separate TicketSeller

http://GoTicks.com

GoTicks example: scaling upwards

class TicketSeller(event: String) extends Actor {

var tickets : List[Ticket] = List() list of numbered tickets

def receive = {
case Add(newTickets) =>

populated by the BoxOffice actor
tickets = tickets ++ newTickets

case Buy(nrOfTickets) 1f nrOfTickets <= tickets.size =>
val entries = tickets.take(nrOfTickets)

tickets = tickets.drop(nrOfTickets) answer the requested
sender() ! Tickets(event, entries)

number of tickets

case Buy(L) =>

sender() ! Tickets(event, List()) or an empty list of tickets

case GetEvent =>
sender() ! BoxOffice.Event(event, tickets.size)

answer the remaining

tickets for the event

case Cancel =>
sender() ! BoxOffice.Event(event, tickets.size)
self ! PoisonPill

1 terminates the TicketSeller actor
when the event is canceled

GoTicks example: scaling upwards

class BoxOffice extends Actor with ActorlLogging {
import BoxOffice._

creates a TicketSeller for the

def createTicketSeller(name: String) = given event as a child actor
context.actorOf(TicketSeller.props(name), name)

def receive : Receive = { | checks whether a TicketSeller for
case CreateEvent(name, tickets) => the given event already exists,
context.child(name) match { and creates one otherwise

case None =>
val newSellerRef = createTicketSeller(name)
val newTickets = (1 to tickets).map(ticketId => TicketSeller.Ticket(ticketId))

newSellerRef ! TicketSeller.Add(newTickets.tolList) dds a list of bered ticket
sender ! EventCreated(Event(name, tickets)) AL Gl LI] SIS g
) to the seller’s inventory
case Some(_) => sender ! EventExists

ks communicates success
back to RestAPI actor

case GetTickets(event, tickets) =>
context.child(event) match {
case None => sender ! TicketSeller.Tickets(event, Nil)
case Some(seller : ActorRef) => seller.forward(TicketSeller.Buy(tickets))

}

forwards, rather than sends, a Buy message to the

appropriate child actor
this ensures responses will go to the REST API

57

GoTicks example: scaling upwards

case GetEvent(event) =>
context.child(event) match {
case None => sender ! None
case Some(seller : ActorRef) => seller.forward(TicketSeller.GetEvent)

h

case CancelEvent(event) =>
context.child(event) match {
case None => sender ! None
case Some(seller: ActorRef) => seller.forward(TicketSeller.Cancel)

Iy
how to collect responses?
case GetEvents => 9

context.children.foreach(seller => seller ! TicketSeller.GetEvent) ‘?&,
context.setReceiveTimeout(100 microseconds)
context.become(receiveResponses(sender, Nil))

h

switch to another message processing
function to accumulate responses!

GoTicks example: scaling upwards

destination for accumulation responses accumulated so far

def receiveResponses(replyTo : ActorRef, responses : List[Event]) : Receive
case response : Event =>
context.become(receiveResponses(replyTo, response ::
case ReceiveTimeout =>
replyTo ! Events(responses)
context.setReceiveTimeout(Duration.Undefined)
context.become(receive)

Il
~

responses))

continue accumulating " §

send accumulation

} change back to regular upon response timeout

message processing

actually an ad-hoc implementation of Aggregator pattern!
could also use built-in support for futures

59

Scaling out
using distributed actors

Scaling out through distributed programming

Distribution is another means to achieve elasticity:
add threads from different network nodes to the application

Single node \ Frontend node \
/ Single-node ActorSystem \ / Frontend ActorSystem
HTTP routes HTTP routes
RestApi RestApi
Actor
BoxOffice
/Backend node \
[Actor \
Actor
BoxOffice
TicketSeller
\\» 4// Backend ActorSystem
|
Actor
TicketSeller

61

Distributed actor programming

O ActorSystem

Actor Q ActorSystem

Actor
‘

Actor

actor systems are distributable by design

o actors are strongly-encapsulated: no shared data

o communication through addresses (ActorRefs) is location-transparent:
same ! for sending asynchronous message to local and to remote ActorRef

62

Reality strikes

A distributed system is
one in which the failure of a
computer you didn't even
Rnow existed can render
your own computer
unusable.”

Leslie Lamport,
2013 Turing Award winner

63

Resilience against delivery failures

unfortunately, (distributed) communication is inherently unreliable
delivery of a message requires eventual availability of channel and recipient

[
-

rendering messages first-class entities enables implementing delivery guarantees:
o at-most-once delivery:
o no state required at sender nor receiver, a message sent once will either arrive or not
o message will be delivered [0,1] times
o at-least-once:
o Reep state at the sender to ensure that a message will be resent until it has been
acknowledged by the recipient
o message will be delivered [1,o-] times as the acknowledgement message might be lost
o exactly-once:
o as above, with additional state at the receiver to make sure only the first of the same
messages will be processed
o message will be delivered exactly 1 time
(under the assumption of eventual availability of channel and recipient)

NOTE: as a recipient might fail while processing a message, reliability can only be guaranteed by application-level
acknowledgements of message processing, it does not suffice for the messaging system to acknowledge putting the

message in the recipients’ mailbox
64

Resilience against unexpected exceptions

every actor is a supervisor
of its child actors

messages sent to address will
be processed by new actor

Application-level resilience against node failures

A Every node contains an
actor system. The actor

The cluster is e systems need to have the
a ring of nodes. Node 1 / same name to be part of

™

\ @ «— the same cluster.
/ (2) () \

(Node 2 \ a ° j / Node 3 \

a a Cluster
(node 1, node 2, node 3, node 4)

_ e Node 4 I
A list of member nodes
a ° e is maintained in a current
cluster state. The actor
& J systems gossip to each

other about this state.

o decentralised peer-to-peer cluster membership: gossip protocol and failure detection
o message routing: load balancing, topic-based publish/subscribe

66

Infrastructure-level resilience against node failures

Actors

JVM

Akka node Akka Cluster

Pods

VM
Kubernetes node

[https://www.lightbend.com/blog/akka-and-kubernetes-reactive-from-code-to-cloud]

https://www.lightbend.com/blog/akka-and-kubernetes-reactive-from-code-to-cloud

Al ubernetes:
A Symbiotic Love Story

Application-level + infrastructure-level

[Hugh McKee 2019]

57" \ hard L3

persistent
REST API Sctors

L 5 .
vp00® $0e¢
L]

< e e
e °
(Y o
° .
'Y ‘ ‘ IS
o e P b Jd o
Y .
Load Balancer Load Balancer e e § o
K \.,o ° K o
“® o e
e o o e, o
»g 3 ® :
= o - .
- o . S :
T W
%@ lste, P ® ﬂ'msm. o
=@ \<"if:”"@l @ ° ® ® W) !m
e e o 3 ° ® 3
& <Y
“@ e % . L}
e (. ° ° g
@
0@ ‘ o
b L) @
o (. ° »®

(] 9,
(S @, { o,
% o
% 4. 9 ‘ " e f ~ ‘ o
(J ’ LN (T o,
" o o
o ® L™ ® °
[J [K X
® % & .
'?u,.. ...a(& (]
8) s @ o
e LR Se °
Yy eeeee 9%° Ts9e 0% ®
“ 8 8 38 o 8 g gggg.ﬁ 2 =

68

@)

Application-level + infrastructure-level

[Hugh McKee 2019]

@ Chrome File [dit View Mistory Bookmarks People Window Help Y e OV AR 2 JUUUNUUU® % % « won@s Monjun24 134820 Q @

Openshift Wet LA akka-chaster-demo-akka-chus X +
OpenSt

B Di skUs O A nNot C O O NotSecure | akka-cluster-demo-akka-cluster-1192.168.6 7 O © /g™ BB) A B N N | LN

Cachel

MacB«

Applications

Bullds

Monitoring

But resilience remains difficult to get right ...

\\

S
[

Home

PUBLIC

& Stack Overflow
Tags
Users

Jobs

TEAMS What's this?

[}, Free 30 Day Trial

Akka persistence with confirmed delivery gives inconsistent results

Asked 5years, 1 monthago Active 5 years, 1 monthago Viewed 2k times

| have been playing around with Akka Persistence and have written the following program to test
my understanding. The problem is that | get different results each time | run this program. The
correct answer is 49995000 but | don't always get that. | have cleaned out the journal directory
between each run but it does not make any difference. Can anyone see what's going wrong? The
program simply sums all the numbers from 1 to n (where n is 9999 in the code below).

The correct answer is : (n * (n+1)) / 2. For n=9999 that's 49995000.

EDIT: Seems to work more consistently with JDK 8 than with JDK 7. Should | be using JDK 8
only?

package io.github.ourkid.akka.aggregator.guaranteed

import akka.actor.Actor

import akka.actor.ActorPath

import akka.actor.ActorSystem

import akka.actor.Props

import akka.actor.actorRef2Scala

import akka.persistence.AtlLeastOnceDelivery
import akka.persistence.PersistentActor

case class ExternalRequest(updateAmount : Int)
case class CountCommand(deliveryId : Long, updateAmount : Int)
case class Confirm(deliveryId : Long)

sealed trait Evt
case class CountEvent(updateAmount : Int) extends Evt
case class ConfirmEvent(deliveryId : Long) extends Evt

class TestGuaranteedDeliveryActor(counter : ActorPath) extends PersistentActor wit
override def persistenceld = "persistent-actor-ref-1"

override def receiveCommand : Receive = {
case ExternalRequest(updateAmount) => persist(CountEvent(updateAmount)) (update
case Confirm(deliveryId) => persist(ConfirmEvent(deliveryId)) (updateState)

}

override def receiveRecover : Receive = {
case evt : Evt => updateState(evt)

}

def updateState(evt:Evt) = evt match {
case CountEvent(updateAmount) => deliver(counter, id => CountCommand(id, updat
case ConfirmEvent(deliveryId) => confirmDelivery(deliveryId)
Y
}

SBT file

resolvers ++= Seq(
"Typesafe Repository" at "http://repo.typesafe.com/typesafe/releases/"
)

Blog

) Does your web app need a front-end
framework?

) Podcast: Your Buddy is Typing
Featured on Meta

D Planned Maintenance scheduled for
Wednesday, February 5, 2020 for Data
Explorer

2 In case you missed it: Shog9 and Robert
Cartaino are no longer staff members...

S An account of my meeting with the Stack
Overflow management team

https://stackoverflow.com/questions/27592304/akka-persistence-with-confirmed-delivery-gives-inconsistent-results

But resilience remains difficult to get right ...

4 trait Event
5 case class Plus(amount: Int)
6 case class PlusEvent(amount : Int) extends Event
7 case class CountCommand(id : Long, amount : Int)
8 case class ConfirmEvent(id : Long) extends Event
9 case class Confirm(id : Long)
10
11 class GuaranteedDeliveryActor(ref: ActorRef)
12 extends| PersistentActor with |[AtLeastOnceDelivery |{
13
14 override def|receiveCommand:| Receive = { regular message handler
15 case Plus(amount) =>
16 persist(PlusEvent (amount)) (updateState)
17 case Confirm(id) =>
18 persist(ConfirmEvent(id)) (updateState)
19 }
20 recovery handler used to
21 override def|receiveRecover: Receive = { rehydrate State from journal
22 case e : Event => updateState(e)
23 }
24 . .
’5 dof updateState(e: Event): Any = & match message send with at-least-once delivery
26 case PlusEvent (amount) =>
27 deliver(ref.path)(id => CountCommand(id, amount))
28 case Contirmkevent(id) =>
29 confirmDelivery(id .
v YD) framework can stop resending
31
32 override def persistenceld: String = "actor-1"
33}
34
35 class Accumulator extends Actor {
36 var count: Int = 0
f»’lﬂ
Y override def receive: Receive = {
case CountCommand(id: Long, amount: Int) =>
count = count + amount
sender () ! Confirm(id)
case "resuitt = message processing
3 sender () ! count
44) acknowle gement sent back

45 3}

In summary

... even by PhD students

about message duplication and message ordering over the
study period. However, only a minority of them were
able to correctly implement resilient systems. Most of the
participants consider tool support for resilience testing as
important but under certain conditions.

8
1
7
3 3
6 4
5
5
4
7
3
2 4 4
3
1
0
gl:\ %l_‘?/ gl:b g;\ %lﬂ/ %l:b
S KD KD KD KD KD
Result . Aware and Implemented Aware and Not Implemented . Not Aware and Not Implemented

72

Ongoing research: resilience testing

A Delta-Debugging Approach to Assessing the Resilience of
Actor Programs through Run-time Test Perturbations .

Jonas De Bleser Dario Di Nucci Coen De Roover .

jonas.de bleser@vub.be ddinucci@uvtal coen.de.roover@vub.be “

Vrije Universiteit Brussel Tilburg University - JADS Vrije Universiteit Brussel
Brussels, Belgium ’s-Hertogenbosch, The Netherlands Brussels, Belgium

o

ABSTRACT 1 INTRODUCTION
Among distributed applications, the actor model is increasingly ~ The actor model [2, 26], which advocates the use of fully-isolated 7
prevalent. This model organises applications into processes that through messaging,is
fully-isolated processes that icate through increasingly popular among di systems. Originally em-

messaging. Supported by frameworks such as AKKA and ORLEAN,
itis believed to facilitate realising responsive, elastic and resilient
distributed applications.

While these do provide for impl
ing resilience, it remains up to developers to use them correctly
and to test that their implementation actually recovers from antici-
pated failures. As manually exploring the reaction to every possible
failure scenario is infeasible, there is a need for automated means
of testing the resilience of a distributed application.

We present the first automated approach to testing the resilience
of actor programs. Our approach perturbs the execution of exist-
ing test cases and leverages delta debugging to explore all failure
scenarios more efficiently. Moreover, we present a further optimisa-
tion that uses causality to prune away redundant perturbations and
speed up the exploration. However, its effectiveness is sensitive to
the program’s organisation and to the actual location of the fault.
Our experimental evaluation shows that our approach can speed up
resilience testing by four times compared to random exploration.

bodied by programming languages such as ERLANG and ELIXIR, it
i pported by industrial-strength frameworks such as
B\ or ORweANs? for the NET runtime.

ar has enjoyed adoption by large organisations

research [28, 45,
ing actors and
facilitates the i
frastructural fail
For instance, it

like Chaos Engineering, but at the
application-level and during testing

(e.g. process messages idempotently). An empirical study by Gao et
al. [17] confirms that there are ample of opportunities for oversights
and mistakes.

CCS CONCEPTS Despite the need for resilience testing, progress has been slow.
- — The few proposed in the literature for automated re- 5,
«Computer — Fault-tol il ing all b 8 o b ing faul
network topologies; - Software and its engineering — Soft- silience testing all perturb a system’s execution by injecting faults o
N N at run time. All need to cope with the problem of exploring a large o5
ware testing and debugging,
space of possible failure scenarios. The number of perturbationsand s,
perturbation targets to consider when generating failure scenarios o7
Resilience Testing, Delta Debugging, Fault Injection, Test Amplifi- is prohibitively large. Existing techniques explore failure scenarios 9
cation cither (i) randomly [29], (ii) by means of developer-provided speci- s

ACM Reference Format:

Jonas De Bleser, Dario Di Nucei, and Coen De Roover. 2020. A Delta-
Debugging Approach to Assessing the Resilience of Actor Programs through
Run-time Test Perturbations. In Proceedings of ACM Conference (Confer-

ence’17). ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/nnnnnnn.

nnnnnnn

fications [25], (i) heuristically [21], or (iv) by means of backward 100
reasoning from a fault-sensitive outcome [4]. 101

In this paper, we present an approach to resilience testing that 102
combines test amplification [12] with delta debugging [49]. The 108
former improves existing test cases by injecting faults during their 104
execution, while the latter efficiently decides which faults to in- 105
ject. In contrast to many approaches [6, 10, 29, 51] that follow the 105

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial that copies. the full citation
o the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute o lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’t7, July 2017, Washington, DC, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM... $15.00

hitps:/doi.org/10.1145/nnnnnnn nnnnnnn

Chaos Engineeri our approach also aims to be 107
used during development as this poses no risk of service outages 15
and data loss. Instead of relying on failure specifications [25], ex- 1
ploration heuristics [21], or prohibitively expensive reasoning [4], 1o

our approach uses the domain-specific information captured by 11:
developers in existing tests. In particular, our goal is to improve the 112

"htps:/fakkaio
“hitps://dotnet githubo/orleans s

[Submitted to AST2020]

1. execute test and record outcome

2. analyse execution trace for all perturbation targets

3. until change in test outcome or test budget exhausted:

re-execute test under adverse conditions
- terminate persistent actor after a message has been processed
- duplicate or delay at-least-once delivery messages

73

lterations

Ongoing research: resilience testing

/0‘ Messages 258 | 408 | 616 | 378 | 1026
Resilience Defect D D D R D
Perturbations 129 204 308 378 513
A 52 63 32 49 34
. RT-R M 36 47 14 35 9
‘ T 0 4 13 1 13
r‘g-" /lg\ A 12 12 13 13 15
w,"‘ér@\ @) RT-DD M 2 12 3 13 14
N & l"“" X
Agsf(s’;!.'ag\"\r’ T oo o] o[o
O NINO 8- O v OIOW;i O A 8 10 | 11 8 11
\\'! g‘._!Q%‘ "/ RT-DD-0 | M 7 11 11 9 12
-2 = T 0 0 0 0 0
AT,
automatically-generated + defect-seeded systems
800-
intelligent . .
9 ' restart perturbations are more expensive,
exploration !
. : as they take longer to recover from
strategy required
100-
Analysis " Type
- RT-DD g 400- uplication
- RT-DD-O 8 = Ee:tlartt
B8 RT-R @ . *
50-
200- *
-
+++* -ﬁ-{_**-**#'*.*- e
07 0_+++++++*+ . T I
R S S SO S R A L R o R q/oIQ %06 @IQ (OQIQ 606 /\QIQ %QIQ Q)QIQ \QQIQ

Perturbations

Perturbations

For those who would like to know more

Artificial ntetigence
A Universal Modular ACICR Formalism o
for Arthlal niilgence
it
P Bhop
s Sier

s paper proposes & moclar ACKR architediuts. a definitional methd for artificial
inteligonae ey 1 conapluoly Lamed on o sinls Ins of Corect: aors Tor. 1 you Will
Viriual processors. aciivaton fames, or sireams]. The formaliem mekes no_ présuppositons
3bout tho ropresertation of primiive data siructures and control Siructurss. © Suh siructures
Gon e prog red 1n & uniform modar fashion. In fact it is
impossitle 1o determing whelher a given object & “really" reprosented as a list, a vector, a

‘more afflciant. I thes not ‘o1 benavio
Fonnaciore s ganm- i respect 1o conrol struelure and
oto, interrupt, primiives " Th formsiam acheies e goas that
e o method

e imended to. achieve by oher o siructured
RANER Progress

should ot only work,
ot 1y 3 ,ymummﬂ_fp;\q o work 25 well.

foct s contiuing researc in natural and offective mers for

e ‘course of this werk we have sucosedsd i unifying he.
amenta concapt the AIER " IMultere. an ATCR 13 35 ative agent
fue”accorcing to'a script™ e use the ACICR melaphor to emphasze the.
n our Siructures, funclions. samaphores,
prions.” Qulian nets. iogicai formuiao, numbers, identifiors.

o bo shoun 10 b Special casés of actors. | All of he
cerii vaet s of venavior O formata < 1ot the
Je”Geinect i terms of one. Kind of behavior g 10 actors.
o oy ' sxacty tho S vy rogarloss of Wheter

dsta siruoture. or process.

I8 v o gl Entites boyon need.”
Wiliam
Monotlon & the Ao

ara simplficaton of “he Tomalms for the procedural arbing of

benefiis
Jre’ concept pms nmceaum somantcs the theary of ron rings

s wilh Sibi 1o do. cleanr theorelical sludes of the
ural semanics'and sm—mcmchc Semanics. such a5 thearies of

CLEsh SaE s s

FROCRAMNG s programming 1 an envionment which has a
in the appiication aroa for which he programs are_ Intended.
looodge e pegramminn e folloving s
TRICNG BEHAVORA. DEFENDENCES, and

il ENTERPRISE

e SRy iG REACTIVE DESIGN PATTERNS

cor b sen are Salsiiod intention i the

o mossoe
’ e e ot "o an-acor TS 110 ot s
SeLE B e e actor whe doss ot Saialy 15 imnten. (o)
o e Simoedabigong o acior by he METAEVALATEN of aciors 1o srow
Trfions " Sipos (et e s o ol audence of i £
reesgaiicant trncs have e o 'of oo acteto wiich hey s rocmges. - Intuively. e
Three ignif r—— latos Shat i inemiione'of 2 actens caused by £ 3o

scored the cemtral ol of concurrency fed that the following condiion nolds:
WITH BRIAN HANAFEE AND JAMIE ALLEN

in computing. First, there is in- v
creased use of interacting processes n of A Is satisfied =>
fentions of ail aciors sent by A are satisfied

ion programs running on X induction. . Actor based ini 4
windows. Second, workstation net on s decaied rom the aclors ' deserbes | Inents
works have become 3 cost-effctive casly disentangled. We Sleganty write mentions
ciors: " Sntentions are writton i the s formalism o8 he
Thus for eaimpia intontions can have intontions. Becauso.
ic property of aciors wo fopo o be able o deal with protection
Ew«. fenyars e o o Conienional ienions. e

ancied by he. s machnery o Tor el cher actr
TOLOGY The theory

OBJECT-ORIENTED e
PROGRAMMING

echanism forresource shar
isributed probie soving. Forox
ample, loosely coupled probems,
such a4 finding al the factors ofarge.

SR [Hewitt et al., 1973]

subproblems 5o that interactions
between the subproblems is quite limited. Finally, multiprocessor tech

GREGOR HOHPE
BosBy WOOLF

Wit CONTRIBUTIONS BY
[Agha 1990] KYLE BROWN
ConrAD E D'Cruz A
+ MARTIN FOWLER > \
o REACTIVE
MICHAEL J. RETTIG 1man -

‘ I MESSAGIN
[E— PATTERNS

! y
¥ J"""v
n.cne

susaneq
uopesSaqu|
asudiaz

VA UGHN VERNUON

yJonas Bonér

Raymond Roestenburg
Rob Bakker
Rob Williams

/ll MANNING

[Roestenburg et al. 2016]

TakRe-away 1: programming language matters

“Any general-purpose language
hastobea lable nguage”

released in 2003 by Martin Odersky
professor at EPFL

Unifies and generalizes functional and object-oriented programming
Features a strong static type system for safety

Hosts multiple domain-specific languages

Offers a read-eval-print loop for interactive prototyping

Compatible with existing languages for the JVM

o O O O O

76

TakRe-away 2: programming model matters

BUild powerful reactive, Simpler Concurrent & Distributed Systems [HEWItt et al-: 1973]

Actors and Streams let you build systems that scale up, using the

concurre nt, an d d iSt I‘i b Uted resources of a server more efficiently, and out, using multiple
applications more easily

[Agha 1990]

Resilient by Design
. . U 3 R Building on the principles of The Reactive Manifesto Akka allows you
Akka is a toolkit for building highly concurrent, distributed, and

to write systems that self-heal and stay responsive in the face of
resilient message-driven applications for Java and Scala failures.

High Performance
Up to 50 million msg/sec on a single machine. Small memory
footprint; ~2.5 million actors per GB of heap.

Elastic & Decentralized
Akka is the implementation of the Actor Model on the JVM. Distributed systems without single points of failure. Load balanci CONCURRENT

and adaptive routing across nodes. Event Sourcing and CQRS with OBIECT'OMENTED

Cluster Sharding. Distributed Data for eventual consistency using PROGRAMMING

CRDTs.

Reactive Streaming Data

Asynchronous non-blocking stream processing with backpressure. [P ————— 12s

actor model

Fully async and streaming HTTP server and client provides a great
platform for building microservices. Streaming integrations with
Alpakka.

Proven in production

Organizations with extreme requirements rely on Akka and other Lightbend technologies. Read about their experiences in our
and learn more about how Lightbend can contribute to success with its

iigt CapitalOne credit karma inte' @Hootsuite NORWEGIAN
MEDIA CRUISE LINE
QUPSIDE Walmart ' amazoncom Z3alando weight A akka

PayPal

abstractions for concurrent and distributed programming:
strongly-encapsulated, location-transparent, resilient

Take-away 3: architecture matters

Ju3

IMPACT

Z

/A

Editor: Michiel van Genuchten
MTOnyx

genuchten@ieee.org

Editor: Les Hatton
Kingston University
Lhatton@kingston.ac.uk

Twenty Years of
Patterns’ Impact

Gregor Hohpe, Rebecca Wirfs-Brock, Joseph W. Yoder, and Olaf Zimmermann

This column celebrates the 20th year of software patterns. IEEE
Software advisory board members teamed up with members of the
Hillside Group, a nonprofit organization that promotes the use of
patterns and pattern languages, to reflect on the state of the practice
and impact of patterns. —Michiel van Genuchten and Les Hatton

GOOD ADVICE IN software design
is difficult to come by. General design
principles can guide us, but reality
tends to force trade-offs between scem-
ingly conflicting goals, such as flexibil-
ity and maincainability against size and
complexity. Likewise, code libraries

can go a long way in helping us av
reinventing the wheel, but the
lopers cffortlessly

ion
of lesser-skilled de
wiring together ready-made compo-
nents remains fiction.

Design patterns have helped nar-
row this gap by documenting a well

working solution to a problem that
oceurs repeatedly in a gi
Instead of presenting a copy-
ready code snippet, patterns discuss
fo

n context.

d-past

s impacting the solution design.
Examples of such forces are perfor-
mance and security in Web applica-

tions: encryption and decryption algo-

rithms improve security but introduce
processing overhead. Ward Cunning-
ham once described the best patterns as
your older brother teaching you how to

do something right.!
Although ~ patterns
popular, their impact as a design tech-
nique is more difficult to quantify than
the impact of a specific software prod-
uct (which is what previous install-
ments of this column have examined)
This installment highlights both the
breadth of patterns available after 20

have become

asiudia

=
—~
D
oQ
—~
Q
=
O
-’

years of pattern-writing conferences
and the depth of impact some patterns
have had on open source software.

continued on p. 84

88 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY

Hophe et al., IEEE Software 2013]

Editor: Cesare Pautasso
University of Lugano
c.pauta ee.org

INSIGHTS

Editor: Olaf Zimmerman

A Decade of Enterprise
Integration Patterns

A Conversation with the Authors

Olaf Zimmermann, Cesare Pautasso, Gregor Hohpe, and Bobby Woolf

IN AN INDUSTRY that thrives on
constant change, few books can sur-
vive the test of time. Enterprise In-
tegration Patterns (EIP)'—with its

Bobby Woolf: Martin Fowler was
the marchmaker. When he wrote
Patterns of Enterprise Application
Architecture,? Kyle Brown pointed
out that his pattern language was
not addressing asynchronous mes-
saging. Martin felt that he already
had plenty of patterns to write,

ings in the form of patterns, also to
be submitted to PLoP 2002,4 where I
first met Bobby and Kyle.

v yle brought me into the
effort he'd started with Martin, then
Martin brought Gregor in. While
Martin and Kyle contributed a lot
of material and guidance, they even-
lessened their involvement,
aving Gregor and me to write and
Each pattern represents a decision, so {ompte the bock. Gregor and |

hadn’t known each other before, so
the language walks the reader through it was a crash getting-to-know-you

the decisions that need to be made. opportunity.

With encouragement from Martin

highly influential collection of mes-
saging patterns—is definitely one of
those few. So, we interviewed the
authors Gregor Hohpe and Bobby

and Kyle, we decided to combine our
papers with the goal to turn them
ino a book. While there was some
merging to be done, the two papers
complemented cach other well. We

which motivated Kyle and me to sub-
mit a collection of 27 patterns to the

Woolf; here, we have the pleasure
of sharing their reflections with you.
You can discover the inside story of
their book project as well as their
views on pattern language design
and on integration technology’s evo-
so thank them for their

had a

2002 Pattern Language of Programs
[PLoP] conference under the title,
“Patterns of System Integration with
Enterprise Messaging.”

only andful of patterns that
overlapped: Kyle’s and my paper de-
scribed message patterns (“message
construction” in the book) and mes-

sage client pateerns (later
ing endpoints”)

messag-
Gregor Hohpe: T was based some
3,000 miles away, using enterprise
application integration [EAI] tools,
such as TIBCO and Vitria, in my
consulting job. I had a nagging fecl-
ing that these tools share underlying
concepts, which are obfuscated by
different terminology. Martin en
couraged me to document my find-

dvice for the next genera-
tion of pattern authors and integra-
tion solution designers.

Gregor: Coming from the EAI per-
spective, my 17 patterns focused on
what was “between” the endpoints:
message routing, mes

A General Retrospective

Olaf Zimmermann: How did your
book come to be? How did you get
together, and how did you find your
contributors and reviewers?

sfor-

age trai

‘mation, and message management.
It also contained an early version of
the pattern icons

JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 13

[Zimmermann et al., IEEE Software 2016]
patterns for asynchronous messaging

Take-away 4: application-level + infrastructure-level

Akka has a cloud-native It enables transparent Resilience is built in
programming model, communication between your service with
ready to scale from day 1 different nodes of a service granular control
Kubernetes is a great It provides location It introduces resilience at
infrastructure choice for your transparency with an infrastructure level
clustered application cluster formation

S
Q0

[https://www.lishtbend.com/blog/akka-and-kubernetes-reactive-from-code-to-cloud]

79

https://www.lightbend.com/blog/akka-and-kubernetes-reactive-from-code-to-cloud

1990's

SPAGHETTI-ORIENTED

ARCHITECTURE
(aka Copy & Paste)
............ T ———— kuh
2000's e,
2>, @ N

LASAGNA-ORIENTED s
ARCHITECTURE < < N ’ <
(aka Layered Monolith) + aws, N LR

P < Ny ’ SO S
2010’s O <
RAVIOLI-ORIENTED & Google Cloud
ARCHITECTURE

(aka Microservices)

architecture process infrastructure

