
Software Engineering

Study Trip Berlin 2020

Coen De Roover

cderoove@vub.ac.be

Scaling micro-service architectures up and out:

a slightly opinionated review

mailto:cderoove@vub.ac.be

Brussels

Dutch

6.23 million

French

3.32 million

German

0.07 million

Germany

Luxemburg

France

Netherlands

Sights

Jeanneke pis

Zinneke pisAtomium

Grote Markt - Grand Place

Manneken pis

Food

Waffles (from Brussels)

Chocolates French Fries

Waffles (from Liège)

languages

Software Languages Lab @ Vrije Universiteit Brussel

tools

Design, implement, and formalize

programming languages, frameworks, and tools

for developing future software applications

in a less effort-intensive and less error-prone manner.

Program analysis as tool enabler

6

Figure 3.4: State graph of a program that contains a loop that terminates.

In the setting of concurrent programming, having a way to identify atomic expressions

allows us to give guarantees about the atomicity of other expressions, as we will see in

. If a special form requires all its arguments to be atomic, the evaluation of

the special form itself might be done in only one step of the transition function, without

creating new continuations for the evaluation of its arguments. It is thus possible to be

sure that the evaluation of such a special form will not be dependent on the possible

Program analysis as tool enabler
c
o
n

c
r
e
t
e
 i
n

t
e
r
p

r
e
t
a
t
io

n
a
b

s
t
r
a
c
t
 i
n

t
e
r
p

r
e
t
a
t
io

n

2. the transition function defines how to step from one machine state to the next,

3. the injection function defines how to inject the expression to evaluate into an initial
machine state, and

4. the evaluation function defines the set of machine states that are reachable given an
initial expression.

State Space The state space of this CESK machine is given in Figure 3.2. The states
(⌃CESK) are composed of five components:

1. the control component Control represented by the expression being currently evalu-
ated or the value resulting from an evaluation,

2. the environment component Env which binds variable names to addresses,

3. the store component Store which binds addresses to values,

4. the continuation component Addr which indicates the address of the current contin-
uation, and

5. the time component Time which will depend on the analysis one want to make.

The CESKmachine initially takes its name from its components (Control, Environment,
Store, Kontinuation), but we use a variant that replace the current continuation of a state
by the address of this continuation, and that adds a timestamp to every state to simplify
the allocation of new addresses.

&CESK 2 ⌃CESK = Control ⇥ Env ⇥ Store ⇥ Addr ⇥ Time

Control = Exp + Val

⇢ 2 Env = Var * Addr

� 2 Store = Addr * Val

val 2 Val = Clo +Kont

 2 Kont ::= halt | ar(e, ⇢, a) | fn(clo, a)
clo 2 Clo ::= (�v.e)⇥ Env

a, b 2 Addr an infinite set of addresses

t, u 2 Time an infinite set of timestamps

Figure 3.2: State space of the CESK machine.

Transition Function The transition function for this CESK machine is parameterized
by two functions:

tick : ⌃CESK ! Time

alloc : ⌃CESK ! Addr

The definition of those functions depend on the analysis one wants to do. For the
concrete case, we have Time = Addr = Z, and define tick(h , , , , ti) = t + 1 and
alloc(h , , , , ti) = t.

The transition function is formalized by the relation (!) ⇢ ⌃CESK ⇥ ⌃CESK. We write
&CESK ! & 0CESK to mean that (&CESK, & 0CESK) 2 (!). We also use the following: = �(a),
b = alloc(&CESK), u = tick(&CESK). We can now give the three cases that compose the
transition function.

18

1. To evaluate a variable v, look up in the store the value associated with the address
of this variable:

hv, ⇢,�, a, ti ! h�(⇢(v)), ⇢,�, a, ui.

2. To evaluate an abstraction, create a closure by coupling the abstraction with the
current environment:

h(�v.e), ⇢,�, a, ti ! h((�v.e), ⇢), ⇢,�, a, ui.

3. To evaluate an application (e0 e1), first evaluate the operator e0 and push a con-
tinuation to evaluate the argument e1 afterwards. To push a continuation, update
the store with the new continuation (which lives at b = alloc(&CESK)) and update the
address component of the state to be b:

h(e0 e1), ⇢,�, a, ti ! he0, ⇢,�[b 7! ar(e1, ⇢, a)], b, ui.

4. When an expression has been reduced to a value, the current continuation (which is
 = �(a)) has to be applied:

• if it is an argument evaluation continuation (ar), evaluate the argument stored
inside this continuation and push a function application continuation:

hclo, ⇢,�, a, ti ! he, ⇢0,�[b 7! fn(clo, a0)], b, ui if = ar(e, ⇢0, a0),

• if it is a function application (fn) continuation, bind the function’s argument
to the computed value, evaluate the function’s body and pop a continuation:

hval, ⇢,�, a, ti ! he, ⇢0[v 7! b],�[b 7! val], a0, ui if = fn(((�v.e), ⇢0), a0).

To evaluate a program, the machine will continually apply one of these rule until the
current control component is a value and the current continuation is the halt continuation.

Injection Function To evaluate an expression, we first need to inject it into an initial
machine state. This is done using the injection function ICESK : Exp ! ⌃CESK, defined as:

ICESK(e) = he,?, [ahalt 7! halt], ahalt, t0i

where ahalt and t0 respectively corresponds to an initial address and an initial times-
tamp (e.g. ahalt = 0 and t0 = 0 if we have Time = Addr = Z). When the machine has a
value in its control component and has halt as its current continuation, the evaluation is
completed and the machine halts (no more transition rule can apply).

Evaluation Function We can now define the evaluation function eval : Exp ! P(⌃CESK)
which computes the set of reachable states for an expression (and not only the final value,
which would not be useful to do static analysis):

eval(e) = {&CESK | ICESK(e) !⇤ &CESK}.

Example 5 (Concrete CESK evaluation). We show how to use this concrete machine
to evaluate the set of states reachable by the folowing program:

((�x.x) (�y.(�z.y)))

19

1. To evaluate a variable v, look up in the store the value associated with the address
of this variable:

hv, ⇢,�, a, ti ! h�(⇢(v)), ⇢,�, a, ui.

2. To evaluate an abstraction, create a closure by coupling the abstraction with the
current environment:

h(�v.e), ⇢,�, a, ti ! h((�v.e), ⇢), ⇢,�, a, ui.

3. To evaluate an application (e0 e1), first evaluate the operator e0 and push a con-
tinuation to evaluate the argument e1 afterwards. To push a continuation, update
the store with the new continuation (which lives at b = alloc(&CESK)) and update the
address component of the state to be b:

h(e0 e1), ⇢,�, a, ti ! he0, ⇢,�[b 7! ar(e1, ⇢, a)], b, ui.

4. When an expression has been reduced to a value, the current continuation (which is
 = �(a)) has to be applied:

• if it is an argument evaluation continuation (ar), evaluate the argument stored
inside this continuation and push a function application continuation:

hclo, ⇢,�, a, ti ! he, ⇢0,�[b 7! fn(clo, a0)], b, ui if = ar(e, ⇢0, a0),

• if it is a function application (fn) continuation, bind the function’s argument
to the computed value, evaluate the function’s body and pop a continuation:

hval, ⇢,�, a, ti ! he, ⇢0[v 7! b],�[b 7! val], a0, ui if = fn(((�v.e), ⇢0), a0).

To evaluate a program, the machine will continually apply one of these rule until the
current control component is a value and the current continuation is the halt continuation.

Injection Function To evaluate an expression, we first need to inject it into an initial
machine state. This is done using the injection function ICESK : Exp ! ⌃CESK, defined as:

ICESK(e) = he,?, [ahalt 7! halt], ahalt, t0i

where ahalt and t0 respectively corresponds to an initial address and an initial times-
tamp (e.g. ahalt = 0 and t0 = 0 if we have Time = Addr = Z). When the machine has a
value in its control component and has halt as its current continuation, the evaluation is
completed and the machine halts (no more transition rule can apply).

Evaluation Function We can now define the evaluation function eval : Exp ! P(⌃CESK)
which computes the set of reachable states for an expression (and not only the final value,
which would not be useful to do static analysis):

eval(e) = {&CESK | ICESK(e) !⇤ &CESK}.

Example 5 (Concrete CESK evaluation). We show how to use this concrete machine
to evaluate the set of states reachable by the folowing program:

((�x.x) (�y.(�z.y)))

19

1. To evaluate a variable v, look up in the store the value associated with the address
of this variable:

hv, ⇢,�, a, ti ! h�(⇢(v)), ⇢,�, a, ui.

2. To evaluate an abstraction, create a closure by coupling the abstraction with the
current environment:

h(�v.e), ⇢,�, a, ti ! h((�v.e), ⇢), ⇢,�, a, ui.

3. To evaluate an application (e0 e1), first evaluate the operator e0 and push a con-
tinuation to evaluate the argument e1 afterwards. To push a continuation, update
the store with the new continuation (which lives at b = alloc(&CESK)) and update the
address component of the state to be b:

h(e0 e1), ⇢,�, a, ti ! he0, ⇢,�[b 7! ar(e1, ⇢, a)], b, ui.

4. When an expression has been reduced to a value, the current continuation (which is
 = �(a)) has to be applied:

• if it is an argument evaluation continuation (ar), evaluate the argument stored
inside this continuation and push a function application continuation:

hclo, ⇢,�, a, ti ! he, ⇢0,�[b 7! fn(clo, a0)], b, ui if = ar(e, ⇢0, a0),

• if it is a function application (fn) continuation, bind the function’s argument
to the computed value, evaluate the function’s body and pop a continuation:

hval, ⇢,�, a, ti ! he, ⇢0[v 7! b],�[b 7! val], a0, ui if = fn(((�v.e), ⇢0), a0).

To evaluate a program, the machine will continually apply one of these rule until the
current control component is a value and the current continuation is the halt continuation.

Injection Function To evaluate an expression, we first need to inject it into an initial
machine state. This is done using the injection function ICESK : Exp ! ⌃CESK, defined as:

ICESK(e) = he,?, [ahalt 7! halt], ahalt, t0i

where ahalt and t0 respectively corresponds to an initial address and an initial times-
tamp (e.g. ahalt = 0 and t0 = 0 if we have Time = Addr = Z). When the machine has a
value in its control component and has halt as its current continuation, the evaluation is
completed and the machine halts (no more transition rule can apply).

Evaluation Function We can now define the evaluation function eval : Exp ! P(⌃CESK)
which computes the set of reachable states for an expression (and not only the final value,
which would not be useful to do static analysis):

eval(e) = {&CESK | ICESK(e) !⇤ &CESK}.

Example 5 (Concrete CESK evaluation). We show how to use this concrete machine
to evaluate the set of states reachable by the folowing program:

((�x.x) (�y.(�z.y)))

19

1. To evaluate a variable v, look up in the store the value associated with the address
of this variable:

hv, ⇢,�, a, ti ! h�(⇢(v)), ⇢,�, a, ui.

2. To evaluate an abstraction, create a closure by coupling the abstraction with the
current environment:

h(�v.e), ⇢,�, a, ti ! h((�v.e), ⇢), ⇢,�, a, ui.

3. To evaluate an application (e0 e1), first evaluate the operator e0 and push a con-
tinuation to evaluate the argument e1 afterwards. To push a continuation, update
the store with the new continuation (which lives at b = alloc(&CESK)) and update the
address component of the state to be b:

h(e0 e1), ⇢,�, a, ti ! he0, ⇢,�[b 7! ar(e1, ⇢, a)], b, ui.

4. When an expression has been reduced to a value, the current continuation (which is
 = �(a)) has to be applied:

• if it is an argument evaluation continuation (ar), evaluate the argument stored
inside this continuation and push a function application continuation:

hclo, ⇢,�, a, ti ! he, ⇢0,�[b 7! fn(clo, a0)], b, ui if = ar(e, ⇢0, a0),

• if it is a function application (fn) continuation, bind the function’s argument
to the computed value, evaluate the function’s body and pop a continuation:

hval, ⇢,�, a, ti ! he, ⇢0[v 7! b],�[b 7! val], a0, ui if = fn(((�v.e), ⇢0), a0).

To evaluate a program, the machine will continually apply one of these rule until the
current control component is a value and the current continuation is the halt continuation.

Injection Function To evaluate an expression, we first need to inject it into an initial
machine state. This is done using the injection function ICESK : Exp ! ⌃CESK, defined as:

ICESK(e) = he,?, [ahalt 7! halt], ahalt, t0i

where ahalt and t0 respectively corresponds to an initial address and an initial times-
tamp (e.g. ahalt = 0 and t0 = 0 if we have Time = Addr = Z). When the machine has a
value in its control component and has halt as its current continuation, the evaluation is
completed and the machine halts (no more transition rule can apply).

Evaluation Function We can now define the evaluation function eval : Exp ! P(⌃CESK)
which computes the set of reachable states for an expression (and not only the final value,
which would not be useful to do static analysis):

eval(e) = {&CESK | ICESK(e) !⇤ &CESK}.

Example 5 (Concrete CESK evaluation). We show how to use this concrete machine
to evaluate the set of states reachable by the folowing program:

((�x.x) (�y.(�z.y)))

19

1. To evaluate a variable v, look up in the store the value associated with the address
of this variable:

hv, ⇢,�, a, ti ! h�(⇢(v)), ⇢,�, a, ui.

2. To evaluate an abstraction, create a closure by coupling the abstraction with the
current environment:

h(�v.e), ⇢,�, a, ti ! h((�v.e), ⇢), ⇢,�, a, ui.

3. To evaluate an application (e0 e1), first evaluate the operator e0 and push a con-
tinuation to evaluate the argument e1 afterwards. To push a continuation, update
the store with the new continuation (which lives at b = alloc(&CESK)) and update the
address component of the state to be b:

h(e0 e1), ⇢,�, a, ti ! he0, ⇢,�[b 7! ar(e1, ⇢, a)], b, ui.

4. When an expression has been reduced to a value, the current continuation (which is
 = �(a)) has to be applied:

• if it is an argument evaluation continuation (ar), evaluate the argument stored
inside this continuation and push a function application continuation:

hclo, ⇢,�, a, ti ! he, ⇢0,�[b 7! fn(clo, a0)], b, ui if = ar(e, ⇢0, a0),

• if it is a function application (fn) continuation, bind the function’s argument
to the computed value, evaluate the function’s body and pop a continuation:

hval, ⇢,�, a, ti ! he, ⇢0[v 7! b],�[b 7! val], a0, ui if = fn(((�v.e), ⇢0), a0).

To evaluate a program, the machine will continually apply one of these rule until the
current control component is a value and the current continuation is the halt continuation.

Injection Function To evaluate an expression, we first need to inject it into an initial
machine state. This is done using the injection function ICESK : Exp ! ⌃CESK, defined as:

ICESK(e) = he,?, [ahalt 7! halt], ahalt, t0i

where ahalt and t0 respectively corresponds to an initial address and an initial times-
tamp (e.g. ahalt = 0 and t0 = 0 if we have Time = Addr = Z). When the machine has a
value in its control component and has halt as its current continuation, the evaluation is
completed and the machine halts (no more transition rule can apply).

Evaluation Function We can now define the evaluation function eval : Exp ! P(⌃CESK)
which computes the set of reachable states for an expression (and not only the final value,
which would not be useful to do static analysis):

eval(e) = {&CESK | ICESK(e) !⇤ &CESK}.

Example 5 (Concrete CESK evaluation). We show how to use this concrete machine
to evaluate the set of states reachable by the folowing program:

((�x.x) (�y.(�z.y)))

19

First, this program is injected into an initial state:

I(((�x.x) (�y.(�z.y)))) = h((�x.x) (�y.(�z.y))),?, {ahalt 7! halt}, ahalt, 0i

The concrete transition function is then continually applied, leading to the following
states, where we avoid repeating store values that remain the same:

h((�x.x) (�y.(�z.y))),?, {ahalt 7! halt}, ahalt, 0i
! h(�x.x),?, {ahalt, a0 7! ar((�y.(�z.y)),?, ahalt)}, a0, 1i
! h((�x.x),?),?, {ahalt, a0}, a0, 2i
! h(�y.(�z.y)),?, {ahalt, a0, a2 7! fn(((�x.x),?), ahalt)}, a2, 3i
! h((�y.(�z.y)),?),?, {ahalt, a0, a2}, a2, 4i
! hx, {x 7! a4}, {ahalt, a0, a2, a4 7! ((�y.(�z.y)),?)}, ahalt, 5i
! h((�y.(�z.y)),?), {x 7! a4}, {ahalt, a0, a2, a4}, ahalt, 6i

The result of eval(((�x.x) (�y.(�z.y)))) would thus be the set containing all those
states.

3.1.3 Abstract Semantics

Testing membership of a state inside the set eval(e) for a given expression is undecidable
because of the halting problem. To solve this, we need to abstract the machine in order to
compute a finite approximation of the set eval(e). To do so, we need to adapt the state
space so that it becomes finite, and to adapt the transition function to take this change
into account.

State Space In the state space defined in Figure 3.2, the only sources of infiniteness are
the addresses and the timestamps. By making them finite, the resulting state space also
becomes finite (Figure 3.3). Note that the store is now a mapping from addresses to sets
of values, meaning that multiple values can be stored at the same address.

&̂CESK 2 ⌃̂CESK = \Control ⇥ dEnv ⇥ [Store ⇥ [Addr ⇥\Time

ĉ 2 \Control = Exp + dVal

⇢̂ 2 dEnv = V ar * [Addr

�̂ 2 [Store = [Addr * P(dVal)
cval 2 dVal = dClo + [Kont

̂ 2 [Kont ::= halt | ar(e, ⇢̂, â) | fn(cclo, â)
cval 2 dVal ::= (�v.e)⇥ dEnv

â, b̂ 2 [Addr a finite set of addresses

t̂, û 2 \Time a finite set of timestamps

Figure 3.3: State space of the abstract CESK machine.

Transition Function The transition function mainly stays the same, except that values
in the store now have to be joined instead of updated, in order to preserve soundness. The

20

functions tick and alloc are also adapted:

dtick : ⌃̂CESK ! \Time

[alloc : ⌃̂CESK ! [Addr

A typical implementation for these functions consists of remembering the last k call-
sites, where k is called the polyvariance of the analysis. dtick will update this list of

call-sites, while [alloc will use it to generate a new address. This kind of analysis is called
k-CFA (k-Control-Flow-Analysis) [Shi91].

The abstract transition function (c!) : ⌃̂CESK ⇥ ⌃̂CESK is defined as follows, with ̂ 2
�̂(â), b̂ = [alloc(&̂CESK), û = dtick(&̂CESK).

1. Variable evaluation has to take into account the fact that multiple values may live
at the same address, and thus the transition function may leads to multiple states
(one for each value stored at the address of the variable).

hv, ⇢̂, �̂, â, t̂i c! hcclo, ⇢̂0, �̂, â, ûi

where cclo 2 �̂(⇢̂(v)).

2. Application evaluation needs to perform a join on the store to push a new continu-
ation.

h(e0 e1), ⇢̂, �̂, â, t̂i c! he0, ⇢̂, �̂ t [b 7! ar(e1, ⇢̂, â)], b̂, ûi.

3. Abstraction evaluation stays the same and creates a closure by coupling the abstrac-
tion with the current environment.

h(�v.e), ⇢̂, �̂, â, t̂i ! h((�v.e), ⇢̂), ⇢̂, �̂, â, ûi

4. Continuation evaluation also needs to perform a join on the store.

• For an argument continuation:

hcclo, ⇢̂, �̂, â, t̂i c! he, ⇢̂0, �̂ t [b 7! fn(cclo, â0)], b̂, ûi if ̂ = ar(e, ⇢̂0, â0),

• For a function application continuation:

hval, ⇢̂, �̂, â, t̂i c! he, ⇢̂0[v 7! b̂], �̂ t [b̂ 7! val], â0, ûi if ̂ = fn(((�v.e), ⇢̂0), â0).

Example 6 (Abstract CESK evaluation). When we use the abstract interpreter, the
main di↵erence with the concrete interpreter is that an address can be associated with
more than one value. Therefore, an application of the transition function may lead to
multiple reachable states. For example, the transition function leads to two di↵erent
states when applied to the following state, as two values are associated to the address
a2:

hx, {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ti

The two resulting states are:

h((�x.x)),?), {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ui
h((�y.(�z.y)),?), {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ui

21

functions tick and alloc are also adapted:

dtick : ⌃̂CESK ! \Time

[alloc : ⌃̂CESK ! [Addr

A typical implementation for these functions consists of remembering the last k call-
sites, where k is called the polyvariance of the analysis. dtick will update this list of

call-sites, while [alloc will use it to generate a new address. This kind of analysis is called
k-CFA (k-Control-Flow-Analysis) [Shi91].

The abstract transition function (c!) : ⌃̂CESK ⇥ ⌃̂CESK is defined as follows, with ̂ 2
�̂(â), b̂ = [alloc(&̂CESK), û = dtick(&̂CESK).

1. Variable evaluation has to take into account the fact that multiple values may live
at the same address, and thus the transition function may leads to multiple states
(one for each value stored at the address of the variable).

hv, ⇢̂, �̂, â, t̂i c! hcclo, ⇢̂0, �̂, â, ûi

where cclo 2 �̂(⇢̂(v)).

2. Application evaluation needs to perform a join on the store to push a new continu-
ation.

h(e0 e1), ⇢̂, �̂, â, t̂i c! he0, ⇢̂, �̂ t [b 7! ar(e1, ⇢̂, â)], b̂, ûi.

3. Abstraction evaluation stays the same and creates a closure by coupling the abstrac-
tion with the current environment.

h(�v.e), ⇢̂, �̂, â, t̂i ! h((�v.e), ⇢̂), ⇢̂, �̂, â, ûi

4. Continuation evaluation also needs to perform a join on the store.

• For an argument continuation:

hcclo, ⇢̂, �̂, â, t̂i c! he, ⇢̂0, �̂ t [b 7! fn(cclo, â0)], b̂, ûi if ̂ = ar(e, ⇢̂0, â0),

• For a function application continuation:

hval, ⇢̂, �̂, â, t̂i c! he, ⇢̂0[v 7! b̂], �̂ t [b̂ 7! val], â0, ûi if ̂ = fn(((�v.e), ⇢̂0), â0).

Example 6 (Abstract CESK evaluation). When we use the abstract interpreter, the
main di↵erence with the concrete interpreter is that an address can be associated with
more than one value. Therefore, an application of the transition function may lead to
multiple reachable states. For example, the transition function leads to two di↵erent
states when applied to the following state, as two values are associated to the address
a2:

hx, {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ti

The two resulting states are:

h((�x.x)),?), {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ui
h((�y.(�z.y)),?), {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ui

21

functions tick and alloc are also adapted:

dtick : ⌃̂CESK ! \Time

[alloc : ⌃̂CESK ! [Addr

A typical implementation for these functions consists of remembering the last k call-
sites, where k is called the polyvariance of the analysis. dtick will update this list of

call-sites, while [alloc will use it to generate a new address. This kind of analysis is called
k-CFA (k-Control-Flow-Analysis) [Shi91].

The abstract transition function (c!) : ⌃̂CESK ⇥ ⌃̂CESK is defined as follows, with ̂ 2
�̂(â), b̂ = [alloc(&̂CESK), û = dtick(&̂CESK).

1. Variable evaluation has to take into account the fact that multiple values may live
at the same address, and thus the transition function may leads to multiple states
(one for each value stored at the address of the variable).

hv, ⇢̂, �̂, â, t̂i c! hcclo, ⇢̂0, �̂, â, ûi

where cclo 2 �̂(⇢̂(v)).

2. Application evaluation needs to perform a join on the store to push a new continu-
ation.

h(e0 e1), ⇢̂, �̂, â, t̂i c! he0, ⇢̂, �̂ t [b 7! ar(e1, ⇢̂, â)], b̂, ûi.

3. Abstraction evaluation stays the same and creates a closure by coupling the abstrac-
tion with the current environment.

h(�v.e), ⇢̂, �̂, â, t̂i ! h((�v.e), ⇢̂), ⇢̂, �̂, â, ûi

4. Continuation evaluation also needs to perform a join on the store.

• For an argument continuation:

hcclo, ⇢̂, �̂, â, t̂i c! he, ⇢̂0, �̂ t [b 7! fn(cclo, â0)], b̂, ûi if ̂ = ar(e, ⇢̂0, â0),

• For a function application continuation:

hval, ⇢̂, �̂, â, t̂i c! he, ⇢̂0[v 7! b̂], �̂ t [b̂ 7! val], â0, ûi if ̂ = fn(((�v.e), ⇢̂0), â0).

Example 6 (Abstract CESK evaluation). When we use the abstract interpreter, the
main di↵erence with the concrete interpreter is that an address can be associated with
more than one value. Therefore, an application of the transition function may lead to
multiple reachable states. For example, the transition function leads to two di↵erent
states when applied to the following state, as two values are associated to the address
a2:

hx, {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ti

The two resulting states are:

h((�x.x)),?), {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ui
h((�y.(�z.y)),?), {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ui

21

functions tick and alloc are also adapted:

dtick : ⌃̂CESK ! \Time

[alloc : ⌃̂CESK ! [Addr

A typical implementation for these functions consists of remembering the last k call-
sites, where k is called the polyvariance of the analysis. dtick will update this list of

call-sites, while [alloc will use it to generate a new address. This kind of analysis is called
k-CFA (k-Control-Flow-Analysis) [Shi91].

The abstract transition function (c!) : ⌃̂CESK ⇥ ⌃̂CESK is defined as follows, with ̂ 2
�̂(â), b̂ = [alloc(&̂CESK), û = dtick(&̂CESK).

1. Variable evaluation has to take into account the fact that multiple values may live
at the same address, and thus the transition function may leads to multiple states
(one for each value stored at the address of the variable).

hv, ⇢̂, �̂, â, t̂i c! hcclo, ⇢̂0, �̂, â, ûi

where cclo 2 �̂(⇢̂(v)).

2. Application evaluation needs to perform a join on the store to push a new continu-
ation.

h(e0 e1), ⇢̂, �̂, â, t̂i c! he0, ⇢̂, �̂ t [b 7! ar(e1, ⇢̂, â)], b̂, ûi.

3. Abstraction evaluation stays the same and creates a closure by coupling the abstrac-
tion with the current environment.

h(�v.e), ⇢̂, �̂, â, t̂i ! h((�v.e), ⇢̂), ⇢̂, �̂, â, ûi

4. Continuation evaluation also needs to perform a join on the store.

• For an argument continuation:

hcclo, ⇢̂, �̂, â, t̂i c! he, ⇢̂0, �̂ t [b 7! fn(cclo, â0)], b̂, ûi if ̂ = ar(e, ⇢̂0, â0),

• For a function application continuation:

hval, ⇢̂, �̂, â, t̂i c! he, ⇢̂0[v 7! b̂], �̂ t [b̂ 7! val], â0, ûi if ̂ = fn(((�v.e), ⇢̂0), â0).

Example 6 (Abstract CESK evaluation). When we use the abstract interpreter, the
main di↵erence with the concrete interpreter is that an address can be associated with
more than one value. Therefore, an application of the transition function may lead to
multiple reachable states. For example, the transition function leads to two di↵erent
states when applied to the following state, as two values are associated to the address
a2:

hx, {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ti

The two resulting states are:

h((�x.x)),?), {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ui
h((�y.(�z.y)),?), {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ui

21

functions tick and alloc are also adapted:

dtick : ⌃̂CESK ! \Time

[alloc : ⌃̂CESK ! [Addr

A typical implementation for these functions consists of remembering the last k call-
sites, where k is called the polyvariance of the analysis. dtick will update this list of

call-sites, while [alloc will use it to generate a new address. This kind of analysis is called
k-CFA (k-Control-Flow-Analysis) [Shi91].

The abstract transition function (c!) : ⌃̂CESK ⇥ ⌃̂CESK is defined as follows, with ̂ 2
�̂(â), b̂ = [alloc(&̂CESK), û = dtick(&̂CESK).

1. Variable evaluation has to take into account the fact that multiple values may live
at the same address, and thus the transition function may leads to multiple states
(one for each value stored at the address of the variable).

hv, ⇢̂, �̂, â, t̂i c! hcclo, ⇢̂0, �̂, â, ûi

where cclo 2 �̂(⇢̂(v)).

2. Application evaluation needs to perform a join on the store to push a new continu-
ation.

h(e0 e1), ⇢̂, �̂, â, t̂i c! he0, ⇢̂, �̂ t [b 7! ar(e1, ⇢̂, â)], b̂, ûi.

3. Abstraction evaluation stays the same and creates a closure by coupling the abstrac-
tion with the current environment.

h(�v.e), ⇢̂, �̂, â, t̂i ! h((�v.e), ⇢̂), ⇢̂, �̂, â, ûi

4. Continuation evaluation also needs to perform a join on the store.

• For an argument continuation:

hcclo, ⇢̂, �̂, â, t̂i c! he, ⇢̂0, �̂ t [b 7! fn(cclo, â0)], b̂, ûi if ̂ = ar(e, ⇢̂0, â0),

• For a function application continuation:

hval, ⇢̂, �̂, â, t̂i c! he, ⇢̂0[v 7! b̂], �̂ t [b̂ 7! val], â0, ûi if ̂ = fn(((�v.e), ⇢̂0), â0).

Example 6 (Abstract CESK evaluation). When we use the abstract interpreter, the
main di↵erence with the concrete interpreter is that an address can be associated with
more than one value. Therefore, an application of the transition function may lead to
multiple reachable states. For example, the transition function leads to two di↵erent
states when applied to the following state, as two values are associated to the address
a2:

hx, {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ti

The two resulting states are:

h((�x.x)),?), {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ui
h((�y.(�z.y)),?), {x 7! a2}, {a2 7! {((�x.x)),?), ((�y.(�z.y)),?)}, . . .}, ahalt, ui

21

f↦()=>{ x=3; }

…

…

… x↦3

x↦truef↦()=>{ x=true; f(); }

f↦ { ()=>{ x=true; f(); }
 ()=>{ x=3; }

x↦{ Boolean,
 Number }

f()

f()

f()

value of annotation

public class BreakStatement extends Statement {
@EntityProperty(value = SimpleName.class)
private EntityIdentifier<SimpleName> label;

public EntityIdentifier<SimpleName> getLabel() {
return label;

}

public void setLabel(EntityIdentifier<SimpleName> label) {
this.label = label;

}
} to be used as type parameter

public class BreakStatement extends Statement {
@EntityProperty(value = SimpleName.class)
private EntityIdentifier label;

public EntityIdentifier getLabel() {
return label;

}

public void setLabel(EntityIdentifier label) {
this.label = label;

}
}

Example program transformation tool

9

Current courses

Software Engineering

Software Architecture

architectural patterns

message-based systems,

reactive architectures

continuous delivery,

design patterns

design & test metrics

mining software repositories,

program analysis,

automated testing

Software Quality

M A N N I N G

Peter Hilton
Erik Bakker
Francisco Canedo
FOREWORD BY James Ward

Covers Play 2

Model-View-Controller in 51

[Hilton et al. 2014]

HTTP Request

entirely new page

multi-page web application

XML HTTP Request

JSON data

single-page web application

our ProductDetails example also supported by Play

two kinds of contemporary web applications
Asynchronous Messaging Patterns

88 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

IMPACT

GOOD ADVICE IN software design
is dif!cult to come by. General design
principles can guide us, but reality
tends to force trade-offs between seem-
ingly con"icting goals, such as "exibil-
ity and maintainability against size and
complexity. Likewise, code libraries

can go a long way in helping us avoid
reinventing the wheel, but the vision
of lesser-skilled developers effortlessly
wiring together ready-made compo-
nents remains !ction.

Design patterns have helped nar-
row this gap by documenting a well-

working solution to a problem that
occurs repeatedly in a given context.
Instead of presenting a copy-and-paste-
ready code snippet, patterns discuss
forces impacting the solution design.
Examples of such forces are perfor-
mance and security in Web applica-
tions: encryption and decryption algo-
rithms improve security but introduce
processing overhead. Ward Cunning-
ham once described the best patterns as
your older brother teaching you how to
do something right.1

Although patterns have become
popular, their impact as a design tech-
nique is more dif!cult to quantify than
the impact of a speci!c software prod-
uct (which is what previous install-
ments of this column have examined).
This installment highlights both the
breadth of patterns available after 20
years of pattern-writing conferences
and the depth of impact some patterns
have had on open source software.

Twenty Years of
Patterns’ Impact
Gregor Hohpe, Rebecca Wirfs-Brock, Joseph W. Yoder, and Olaf Zimmermann

This column celebrates the 20th year of software patterns. IEEE
Software advisory board members teamed up with members of the
Hillside Group, a nonpro!t organization that promotes the use of
patterns and pattern languages, to re"ect on the state of the practice
and impact of patterns. —Michiel van Genuchten and Les Hatton

Editor: Michiel van Genuchten
MTOnyx
genuchten@ieee.org

Editor: Les Hatton
Kingston University
l.hatton@kingston.ac.uk

continued on p. 84

[Hophe et al., IEEE Software 2013]

0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 13

Editor: Cesare Pautasso
University of Lugano
c.pautasso@ieee.org

Editor: Olaf Zimmerman
University of Applied Sciences
of Eastern Switzerland, Rapperswil

ozimmerm@hsr.ch

INSIGHTS

A Decade of Enterprise
Integration Patterns
A Conversation with the Authors

Olaf Zimmermann, Cesare Pautasso, Gregor Hohpe, and Bobby Woolf

IN AN INDUSTRY that thrives on
constant change, few books can sur-
vive the test of time. Enterprise In-
tegration Patterns (EIP)1—with its
highly in! uential collection of mes-
saging patterns—is de" nitely one of
those few. So, we interviewed the
authors Gregor Hohpe and Bobby

Woolf; here, we have the pleasure
of sharing their re! ections with you.
You can discover the inside story of
their book project as well as their
views on pattern language design
and on integration technology’s evo-
lution. We also thank them for their
precious advice for the next genera-
tion of pattern authors and integra-
tion solution designers.

A General Retrospective
Olaf Zimmermann: How did your
book come to be? How did you get
together, and how did you " nd your
contributors and reviewers?

Bobby Woolf: Martin Fowler was
the matchmaker. When he wrote
Patterns of Enterprise Application
Architecture,2 Kyle Brown pointed
out that his pattern language was
not addressing asynchronous mes-
saging. Martin felt that he already
had plenty of patterns to write,

which motivated Kyle and me to sub-
mit a collection of 27 patterns to the
2002 Pattern Language of Programs
[PLoP] conference under the title,
“Patterns of System Integration with
Enterprise Messaging.”3

Gregor Hohpe: I was based some
3,000 miles away, using enterprise
application integration [EAI] tools,
such as TIBCO and Vitria, in my
consulting job. I had a nagging feel-
ing that these tools share underlying
concepts, which are obfuscated by
different terminology. Martin en-
couraged me to document my " nd-

ings in the form of patterns, also to
be submitted to PLoP 2002,4 where I
" rst met Bobby and Kyle.

Bobby: So Kyle brought me into the
effort he’d started with Martin, then
Martin brought Gregor in. While
Martin and Kyle contributed a lot
of material and guidance, they even-
tually lessened their involvement,
leaving Gregor and me to write and
complete the book. Gregor and I
hadn’t known each other before, so
it was a crash getting-to-know-you
opportunity.

With encouragement from Martin
and Kyle, we decided to combine our
papers with the goal to turn them
into a book. While there was some
merging to be done, the two papers
complemented each other well. We
only had a handful of patterns that
overlapped: Kyle’s and my paper de-
scribed message patterns (“message
construction” in the book) and mes-
sage client patterns (later “messag-
ing endpoints”).

Gregor: Coming from the EAI per-
spective, my 17 patterns focused on
what was “between” the endpoints:
message routing, message transfor-
mation, and message management.
It also contained an early version of
the pattern icons.

Each pattern represents a decision, so
the language walks the reader through
the decisions that need to be made.

[Zimmermann et al., IEEE Software 2016]

terminology has become de facto terminology standard for open-source implementations
 4

data elements flow downstream, demand flows upstream
data elements flow only when there is demand

data in flight is bounded by signalled demand
upstream can batch demands together 
(e.g., a demand immediately followed by another demand)
downstream is in control of maximal incoming data rate

back-pressure is contagious: propagates back to source
demand and data are duals at junctions

splitting data means merging demand
merging data means splitting demand

Streams: back-pressure

 33

Source

Sink
Flow

e2’
e3’

e4
e5

E ➟ E’
asynchronous

boundary

10 messages
/ second

1 message  
/ second

e1’

please send 2 more

please send 2 more

one-to-many

many-to-one

Comparing SAST tools by abstractions used

 12

t

st
at

e(
t)

false positive

true positive

false negative

soundness: reports no false negatives

test run

test run

production run

production run

precision: reports few false positives

imprecise
abstraction

incorrect
abstraction

Cubic framework

x1
x2
x3
x4

(x2,x4)

Simple data structure
map each constraint variable to a node in DAG
each node has an associated bit vector in {0,1}k, initially set to all 0’s

represents the minimal solution to the constraints added to the data structure so far
constraints will be added to the data structure one by one

bits represent constant inclusion constraints
edges between nodes model subset constraints
a list of pairs of variables (y,z) per bit model pending conditional constraints

 7

●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●

●●

●●●●●●●●●●●
●

●

●●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●

●● ●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●● ●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●

●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●
●

●

●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●
●
●
●
●●
●
●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●

●●●●●● ●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●
●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●
●●●
●●
●●●●● ●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●● ●●●●●●●●●●●

●●●●
●●
●●●●●●●

●

●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

0

500

1000

1500

0 1000 2000 3000 4000
CommitId

Fi
le
Id

ChangeType
● added−regular

added−selenium
delete−regular
delete−selenium
edit−regular
edit−selenium

RQ2: Co-Evolution using Change History Views

OPEN-LMIS

Research finding

commits sorted by date

fil
es

 s
or

te
d

by
 id

Visualisation of commit history proposed by Zaidman et al. [ICST2008]

Similar Change History Views for others projects suggest that Selenium
files co-evolve with the rest of the application.

 36

Interpretation I

meta-interpreters,

compilers,

garbage collection

ICT project failures: a positive note

 9

[Eveleens and Verhoef, IEEE Software, 2010]

30 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 74 0 - 74 5 9 / 1 0 / $ 2 6 . 0 0 © 2 0 1 0 I E E E

focus

management hardly help increase project success.
Over the years, their !gures have attracted tremen-
dous attention.

However, we question the validity of their !g-
ures. Robert Glass2,3 and Magne Jørgensen and his
colleagues4 indicated that the only way to assess the
Chaos results’ credibility is to use Standish’s data
and reiterate their analyses. But there’s another way:
obtain your own data and reproduce Standish’s re-
search to assess its validity. We applied the Standish
de!nitions to our extensive data consisting of 5,457
forecasts of 1,211 real-world projects totaling hun-
dreds of millions of euros. Our research shows that
the Standish de!nitions of successful and chal-
lenged projects have four major problems: they’re
misleading, one-sided, pervert the estimation prac-
tice, and result in meaningless !gures.

Misleading De!nitions
The Standish Group published the !rst Chaos re-
port in 1994, which summarized Standish’s re-
search !ndings and aimed to investigate causes
of software project failure and !nd key ways to

reduce such failures.1 The group also intended to
identify the scope of software project failures by
de!ning three project categories that we recall
verbatim:

 ! Resolution Type 1, or project success. The
project is completed on time and on budget,
offering all features and functions as initially
speci!ed.

 ! Resolution Type 2, or project challenged. The
project is completed and operational but over
budget and over the time estimate, and offers
fewer features and functions than originally
speci!ed.

 ! Resolution Type 3, or project impaired. The
project is cancelled at some point during the de-
velopment cycle.1

To !nd answers to their research questions,
Standish sent out questionnaires. Their total sam-
ple size was 365 respondents representing 8,380 ap-
plications. On the basis of the responses, Standish
published overall percentages for each project cat-

F or many years, researchers and practitioners have analyzed how to successfully
manage IT projects. Among them is the Standish Group, which regularly pub-
lishes its !ndings in its Chaos reports. In 1994, Standish reported a shocking
16 percent project success rate, another 53 percent of the projects were chal-

lenged, and 31 percent failed outright.1 In subsequent reports Standish updated its !nd-
ings, yet the !gures remained troublesome. These reports, derived from the Standish
Group’s longitudinal data, suggest that many efforts and best practices to improve project

Although the Standish
Group’s Chaos reports
are often used to
indicate problems in
application software
development project
management, the
reports contain
major !aws.

J. Laurenz Eveleens and Chris Verhoef, Vrije Universiteit Amsterdam

The Rise and Fall of the
Chaos Report Figures

pr o je c t m an a gem en t

32 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

The second is Tom DeMarco’s Estimation
Quality Factor (EQF), a time-weighted estima-
tion accuracy measure he proposed in 1982.10 The
higher a forecast’s EQF value, the higher its quality.

An EQF value of 5 means the time-weighted fore-
casts of a single project deviate on average 1/5, or
20 percent, from the actual.

We applied Boehm’s and DeMarco’s work to
our own data and detected large biases that the
organizations weren’t aware of. We introduce two
data sets from an anonymous multinational corpo-
ration to prove that the one-sided Standish de!ni-
tions lead to unrealistic rates.

Cost
The !rst case study concerns a large !nancial-
services provider. From this organization, Y, we
obtained data on 140 software development proj-
ects conducted from 2004 to 2006. The organi-
zation made 667 forecasts for these projects’ total
costs. We divided the forecasted cost with the ac-
tual project cost and plotted the ratios as shown
in Figure 1. The horizontal axis represents project
progression. The !gure depicts the start of a proj-
ect at zero and represents project completion by
1.0. The vertical axis shows the f/a ratio’s value.
For instance, a data point at project completion
0.2 and an f/a ratio of 2 indicates a forecast was
made when the project was one-!fth completed.
This forecast was two times the actual, meaning
the project turned out to be 50 percent of the es-
timated cost.

The f/a ratios in Figure 1 resemble Boehm’s
conical shape, with the forecasts centered around
the actual value. A median f/a ratio of 1.0 sup-
ports this !nding. The forecasts’ quality is rela-
tively high, with a median EQF value of 8.5.
This indicates that half the projects have a time-
weighted average deviation of 12 percent or less
from the actual. Compared to results from the
literature, this organization makes best-in-class
forecasts.10,11

It turned out that an independent metrics group
assessed this organization’s forecasts. This group
made its own cost calculations next to those of
the project managers. If large discrepancies arose,
these needed to be resolved before any budget was
approved. This caused forecasts to aim at predict-
ing the actual value. Yet, even though this organi-
zation’s cost forecasts are accurate, when we apply
the Standish de!nitions to the initial forecasts, we
!nd only a 59 percent success rate.

Functionality
From the same organization Y, we obtained data
for 83 software development projects from 2003
to 2005. In total, the organization’s estimators
made 100 forecasts for the projects’ functionality,
calculated in function points.12

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.5

1.0

2.0

Project completion

Fo
re
ca
st

/a
ct
ua
l

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.5

1.0

2.0

Project completion

Fo
re
ca
st

/a
ct
ua
l

Figure 1. 667 f/a ratios for 140 project costs of organization Y, where
f is forecast and a is actual. The ratios are spread equally below and
above the horizontal line f/a = 1, indicating the forecasts are unbiased.
The ratios also show that the quality of the forecasts is high compared
to the literature.10,11

Figure 2. 100 f/a ratios for 83 project function points of organization Y,
where f is forecast and a is actual. The ratios are close to and centered
around the horizontal line. This indicates the forecasts are unbiased
and of high quality.

best-in-class cost forecasts, but
would only score a 59% success rate

according to Chaos definitions

forecasts resemble  
Boehm’s cone of uncertainty:  

“The further a project progressed, the

more accurate the estimates for the

remaining effort and time became”

[Boehm 1981]

ptg

Delivery team Version control Build & unit
tests

Automated
acceptance tests

F

User acceptance
tests

Release

Check in

FFeedback

Trigger

Check in

P

Feedback

Trigger

Trigger

P

Check in

P
Trigger

Trigger

Approval
P Approval

P

Feedback

Feedback

Feedback
Feedback

F = fail
P = pass

Figure 5.2 Changes moving through the deployment pipeline

configuration of a production server. The discipline of the deployment pipeline
mitigates this.

Second, when deployment and production release themselves are automated,
they are rapid, repeatable, and reliable. It is often so much easier to perform
a release once the process is automated that they become “normal”
events—meaning that, should you choose, you can perform releases more
frequently. This is particularly the case where you are able to step back to an
earlier version as well as move forward. When this capability is available,
releases are essentially without risk. The worst that can happen is that you find
that you have introduced a critical bug—at which point you revert to an earlier
version that doesn’t contain the bug while you fix the new release offline (see
Chapter 10, “Deploying and Releasing Applications”).

To achieve this enviable state, we must automate a suite of tests that prove
that our release candidates are fit for their purpose. We must also automate de-
ployment to testing, staging, and production environments to remove these
manually intensive, error-prone steps. For many systems, other forms of testing
and so other stages in the release process are also needed, but the subset that is
common to all projects is as follows.

109What Is a Deployment Pipeline?

Continuous delivery

Continuous
Delivery
Distilled

Matt Callanan
@mcallana

processes and tools for
faithfully recreating production-

like environments

processes and tools for
experimenting live with new

features or alternatives

Software development discipline where you build software in such a way
that the software can be released to production at any time:

Software is deployable throughout its lifecycle
Push-button deployments of any version to any environment on demand
Anybody can get fast, automated feedback on the production readiness
of their systems any time somebody makes a change to them

2011

[http://martinfowler.com/delivery.html]

 28

.comwww.

cr
iti

ca
lit

y
sc

al
e

high

low

package

nested
packages

classes

Attributes

M

et
ho

ds

class
color:

criticality

The Criticality score, which is mapped to the intensity of red in the visualization, is a weighted count of how many design problems a class has, including the
problems that the methods of that class have.

.comwww.

Tip: double click the tab of the window where the visualization is displayed to show it expanded it over the entire application screen. Note that the visualization is

automatically zoomed to fit the window. Double-click again and the window will be restored to its initial size.

Tool support: visualization instance of a visualization
called “polymetric views”

 28

Compilatie van if-expressies

 19

(define (compile-if exp target linkage)
 (let ((t-branch (make-label 'true-branch))
 (f-branch (make-label 'false-branch))
 (after-if (make-label 'after-if)))
 (let ((consequent-linkage
 (if (eq? linkage 'next) after-if linkage)))
 (let ((p-code (compile (if-predicate exp) 'val 'next))
 (c-code
 (compile
 (if-consequent exp) target consequent-linkage))
 (a-code
 (compile (if-alternative exp) target linkage)))
 (preserving '(env continue)
 p-code
 (append-instruction-sequences
 (make-instruction-sequence
 '(val) '()
 `((test (op false?) (reg val))
 (branch (label ,f-branch))))
 (parallel-instruction-sequences
 (append-instruction-sequences t-branch c-code)
 (append-instruction-sequences f-branch a-code))
 after-if))))))

Procedure apply implementeert lexicaal bereik
de body van de opgeroepen procedure wordt geëvalueerd in een
uitbreiding van de definitie-omgeving van de procedure

de uitbreiding bestaat uit een nieuw frame
dat de concrete argumenten van de oproep 
bindt aan de formele parameters van de procedure

bij de evaluatie van de body zullen vrije variabelen  
niet gevonden worden in het nieuwe frame

maar ergens verderop in de lijst  
van bestaande frames van de definitie-omgeving

Herinnering

env3

frame

env0

env1env2

frame

enclosing-
environment

variables values

enclosing-
environment

 58

variables values

frame

variables values

(define (apply procedure arguments)
 (cond …
 ((compound-procedure? procedure)
 (eval-sequence
 (procedure-body procedure)
 (extend-environment
 (procedure-parameters procedure)
 arguments
 (procedure-environment procedure))))
 …))

concrete
argumenten

formele
parameters

onthouden bij de evaluatie van een
lambda-expressie tot een procedure

 11

0 1 2 3 4 5 6 7 8

the-cars n3 n1 n2 p6

the-cdrs p0 e0 p6 e0 p3

0 1 2 3 4 5 6 7 8

new-cars p4

new-cdrs p7

scan

freeroot

initialisatie: verplaats inhoud van paar op root adres van oud geheugen naar nieuw geheugen

Stop-en-kopieer algoritme

“doorstuur-adres”: adres
waarnaar paar verhuisd werd

“gebroken hart”: geeft aan dat inhoud
van paar reeds verplaatst werd

verwijst naar een net verplaatst paar, maar waarvan de
inhoud nog naar het oude geheugen verwijst

using distributed actors

μ-services architecture

Scaling up

Scaling out

introduction and motivation

using concurrent actors

FTGO monolithic architecture

12

[Richardson 2019]

3The slow march toward monolithic hell

1.1.1 The architecture of the FTGO application

FTGO is a typical enterprise Java application. Figure 1.1 shows its architecture. The
FTGO application has a hexagonal architecture, which is an architectural style
described in more detail in chapter 2. In a hexagonal architecture, the core of the
application consists of the business logic. Surrounding the business logic are various
adapters that implement UIs and integrate with external systems.

The business logic consists of modules, each of which is a collection of domain
objects. Examples of the modules include Order Management, Delivery Management,
Billing, and Payments. There are several adapters that interface with the external sys-
tems. Some are inbound adapters, which handle requests by invoking the business
logic, including the REST API and Web UI adapters. Others are outbound adapters,
which enable the business logic to access the MySQL database and invoke cloud ser-
vices such as Twilio and Stripe.

 Despite having a logically modular architecture, the FTGO application is packaged
as a single WAR file. The application is an example of the widely used monolithic style

Invoked by mobile applications

Twilio
messaging

service

Cloud services

FTGO application

AWS SES
email
service

Stripe
payment
service

Adapters invoke
cloud services.

Twilio
adapter

Courier REST
API

Web
UI

MySQL
adapter

Restaurant
management

Payments

Billing

Notification

Order
management

Delivery
management

Amazon
SES

adapter

Stripe
adapter

Consumer

Restaurant

MySQL

Figure 1.1 The FTGO application has a hexagonal architecture. It consists of business logic
surrounded by adapters that implement UIs and interface with external systems, such as mobile
applications and cloud services for payments, messaging, and email.

Licensed to Coen De Roover <cderoove@vub.ac.be>

M A N N I N G

Chris Richardson

one large, but nicely modularised application

FTGO monolithic: development process

13

[Richardson 2019]

entire executable needs to be redeployed entirely upon smallest change

M A N N I N G

Chris Richardson

5The slow march toward monolithic hell

To make matters worse, this overwhelming complexity tends to be a downward spiral.
If the code base is difficult to understand, a developer won’t make changes correctly.
Each change makes the code base incrementally more complex and harder to under-
stand. The clean, modular architecture shown earlier in figure 1.1 doesn’t reflect real-
ity. FTGO is gradually becoming a monstrous, incomprehensible, big ball of mud.

 Mary remembers recently attending a conference where she met a developer who
was writing a tool to analyze the dependencies between the thousands of JARs in their
multimillion lines-of-code (LOC) application. At the time, that tool seemed like some-
thing FTGO could use. Now she’s not so sure. Mary suspects a better approach is to
migrate to an architecture that is better suited to a complex application: microservices.

DEVELOPMENT IS SLOW

As well as having to fight overwhelming complexity, FTGO developers find day-to-day
development tasks slow. The large application overloads and slows down a developer’s
IDE. Building the FTGO application takes a long time. Moreover, because it’s so large,
the application takes a long time to start up. As a result, the edit-build-run-test loop
takes a long time, which badly impacts productivity.

PATH FROM COMMIT TO DEPLOYMENT IS LONG AND ARDUOUS

Another problem with the FTGO application is that deploying changes into produc-
tion is a long and painful process. The team typically deploys updates to production
once a month, usually late on a Friday or Saturday night. Mary keeps reading that the
state-of-the-art for Software-as-a-Service (SaaS) applications is continuous deployment:

Large
development
organization

Single code base creates
communication and

coordination overhead.

Large, complex
unreliable, difficult

to maintain

The path from code commit to
production is arduous.

Changes sit in a queue until
they can be manually tested.

Order management team

Restaurant management team

Delivery management team

FTGO development

Production

Jenkins
Cl

Backlog

Deployment pipeline

Source
code

repository

Manual
testing

FTGO
application

Figure 1.2 A case of monolithic hell. The large FTGO developer team commits their changes to a
single source code repository. The path from code commit to production is long and arduous and
involves manual testing. The FTGO application is large, complex, unreliable, and difficult to maintain.

Licensed to Coen De Roover <cderoove@vub.ac.be>

FTGO monolithic: scaling options

[Richardson 2019]

uniform replication

(X-axis scaling)

M A N N I N G

Chris Richardson

10 CHAPTER 1 Escaping monolithic hell

the N identical instances of the application. Z-axis scaling is a great way to scale an
application to handle increasing transaction and data volumes.

Y-AXIS SCALING FUNCTIONALLY DECOMPOSES AN APPLICATION INTO SERVICES

X- and Z-axis scaling improve the application’s capacity and availability. But neither
approach solves the problem of increasing development and application complexity. To
solve those, you need to apply Y-axis scaling, or functional decomposition. Figure 1.6 shows
how Y-axis scaling works: by splitting a monolithic application into a set of services.

Application
instance 1

N identical application
instances

Application
instance 2

Load
balancer

Client
Request

Application
instance 3

Route requests using a
load balancing algorithm.

Figure 1.4 X-axis scaling runs multiple, identical instances of the monolithic
application behind a load balancer.

Application
instance 1

N identical application
instances

Application
instance 2

Client Router

Request:
GET /...
Authorization: userId:password

Application
instance 3

Users: a–h

Users: i-p

Users: r–z

Uses the userId to decide
where to route requests

Each instance is responsible
for a subset of the users.

Figure 1.5 Z-axis scaling runs multiple identical instances of the monolithic application behind
a router, which routes based on a request attribute . Each instance is responsible for a subset
of the data.

Licensed to Coen De Roover <cderoove@vub.ac.be>

FTGO monolithic: scaling options

[Richardson 2019]

M A N N I N G

Chris Richardson

10 CHAPTER 1 Escaping monolithic hell

the N identical instances of the application. Z-axis scaling is a great way to scale an
application to handle increasing transaction and data volumes.

Y-AXIS SCALING FUNCTIONALLY DECOMPOSES AN APPLICATION INTO SERVICES

X- and Z-axis scaling improve the application’s capacity and availability. But neither
approach solves the problem of increasing development and application complexity. To
solve those, you need to apply Y-axis scaling, or functional decomposition. Figure 1.6 shows
how Y-axis scaling works: by splitting a monolithic application into a set of services.

Application
instance 1

N identical application
instances

Application
instance 2

Load
balancer

Client
Request

Application
instance 3

Route requests using a
load balancing algorithm.

Figure 1.4 X-axis scaling runs multiple, identical instances of the monolithic
application behind a load balancer.

Application
instance 1

N identical application
instances

Application
instance 2

Client Router

Request:
GET /...
Authorization: userId:password

Application
instance 3

Users: a–h

Users: i-p

Users: r–z

Uses the userId to decide
where to route requests

Each instance is responsible
for a subset of the users.

Figure 1.5 Z-axis scaling runs multiple identical instances of the monolithic application behind
a router, which routes based on a request attribute . Each instance is responsible for a subset
of the data.

Licensed to Coen De Roover <cderoove@vub.ac.be>

shard-based replication

(Z-axis scaling)

16

[Richardson 2019]

M A N N I N G

Chris Richardson

FTGO μ-services: scaling options

each service can be scaled

independently

11Microservice architecture to the rescue

A service is a mini application that implements narrowly focused functionality, such as
order management, customer management, and so on. A service is scaled using X-axis
scaling, though some services may also use Z-axis scaling. For example, the Order ser-
vice consists of a set of load-balanced service instances.

 The high-level definition of microservice architecture (microservices) is an archi-
tectural style that functionally decomposes an application into a set of services. Note
that this definition doesn’t say anything about size. Instead, what matters is that each
service has a focused, cohesive set of responsibilities. Later in the book I discuss what
that means.

 Now let’s look at how the microservice architecture is a form of modularity.

1.4.2 Microservices as a form of modularity

Modularity is essential when developing large, complex applications. A modern appli-
cation like FTGO is too large to be developed by an individual. It’s also too complex
to be understood by a single person. Applications must be decomposed into modules
that are developed and understood by different people. In a monolithic application,
modules are defined using a combination of programming language constructs (such
as Java packages) and build artifacts (such as Java JAR files). However, as the FTGO
developers have discovered, this approach tends not to work well in practice. Long-
lived, monolithic applications usually degenerate into big balls of mud.

 The microservice architecture uses services as the unit of modularity. A service has
an API, which is an impermeable boundary that is difficult to violate. You can’t bypass

Order
Service

Application

Customer
Service

Client

Review
Service

Order
requests

Customer
requests

Review
requests

Order
Service

instance 1

Order service

Order
Service

instance 2

Order
Service

instance 3

Load
balancer

Request

Y-axis scaling functionality decomposes
an application into services.

Each service is typically scaled using
X-axis and possibly Z-axis scaling.

Figure 1.6 Y-axis scaling splits the application into a set of services. Each service is responsible for
a particular function. A service is scaled using X-axis scaling and, possibly, Z-axis scaling.

Licensed to Coen De Roover <cderoove@vub.ac.be>

17

[Richardson 2019]

M A N N I N G

Chris Richardson

FTGO μ-services architecture

13Microservice architecture to the rescue

� Restaurant Service—Maintains information about restaurants
� Kitchen Service—Manages the preparation of orders
� Accounting Service—Handles billing and payments

Many services correspond to the modules described earlier in this chapter. What’s dif-
ferent is that each service and its API are very clearly defined. Each one can be inde-
pendently developed, tested, deployed, and scaled. Also, this architecture does a good
job of preserving modularity. A developer can’t bypass a service’s API and access its
internal components. Chapter 13 describes how to transform an existing monolithic
application into microservices.

1.4.5 Comparing the microservice architecture and SOA

Some critics of the microservice architecture claim it’s nothing new—it’s service-
oriented architecture (SOA). At a very high level, there are some similarities. SOA
and the microservice architecture are architectural styles that structure a system as a
set of services. But as table 1.1 shows, once you dig deep, you encounter significant
differences.

Amazon
SES

Adapter

Twilio
Adapter

Stripe
Adapter

The API Gateway routes
requests from the mobile
applications to services.

Services have APIs. A service’s data is private.

Services corresponding
to business capabilities/
domain-driven design

(DDD) subdomains

API
Gateway

Restaurant
Web UI

Order
Service

Courier

REST
API

REST
API

REST
API

Consumer

Restaurant

Restaurant
Service

REST
API

Accounting
Service

REST
API

Notification
Service

REST
API

Kitchen
Service

REST
API

Delivery
Service

REST
API

Figure 1.7 Some of the services of the microservice architecture-based version of the FTGO
application. An API Gateway routes requests from the mobile applications to services. The services
collaborate via APIs.

Licensed to Coen De Roover <cderoove@vub.ac.be>

monolith distributed vertically into services that are deployed independently

each service provides and consumes functionality as a mini-application on its own

18

[Richardson 2019]

M A N N I N G

Chris Richardson

FTGO μ-services: REST calls (1/2)

simple and familiar, synchronous request/response cycle of HTTP

exposes business objects as resources at a URI

four primary HTTP operations on those resources: POST, GET, PUT, DELETE

not prone to fallacy of transparent distribution

80 CHAPTER 3 Interprocess communication in a microservice architecture

the API gateway should return either a cached version of its data or omit it from the
response.

 It’s essential that you design your services to handle partial failure, but that’s not
the only problem you need to solve when using RPI. Another problem is that in order
for one service to invoke another service using RPI, it needs to know the network
location of a service instance. On the surface this sounds simple, but in practice it’s
a challenging problem. You must use a service discovery mechanism. Let’s look at
how that works.

3.2.4 Using service discovery

Say you’re writing some code that invokes a service that has a REST API. In order to
make a request, your code needs to know the network location (IP address and port)
of a service instance. In a traditional application running on physical hardware, the
network locations of service instances are usually static. For example, your code could
read the network locations from a configuration file that’s occasionally updated. But
in a modern, cloud-based microservices application, it’s usually not that simple. As is
shown in figure 3.4, a modern application is much more dynamic.

 Service instances have dynamically assigned network locations. Moreover, the set of
service instances changes dynamically because of autoscaling, failures, and upgrades.
Consequently, your client code must use a service discovery.

API
gateway

How to handle each
unresponsive service?

Unresponsive
service

Mobile
app

Get
order

endpoint

Get/orders/xyz

Order
Service

Order
Service
proxy

GET/orders/xyz

Kitchen
Service

Kitchen
Service
proxy

GET/tickets?orderId=xyz

Delivery
Service

Delivery
Service
proxy

GET/deliveries?orderId-xyz

...
Service

...
Service
proxy

Figure 3.3 The API gateway implements the GET /orders/{orderId} endpoint using API
composition. It calls several services, aggregates their responses, and sends a response to the
mobile app. The code that implements the endpoint must have a strategy for handling the failure
of each service that it calls.

Licensed to Coen De Roover <cderoove@vub.ac.be>

19

FTGO μ-services: REST calls (2/2)

blocking calls require protection against unresponsive services to prevent cascading failures

29Reacting to failure

2.4.2 Using circuit breakers

No amount of planning and optimization will guarantee that the services you imple-
ment or depend on abide by their latency bounds. We will talk more about the nature
of the things that can go wrong when discussing resilience, but even without knowing
the source of the failure, there are some useful techniques for dealing with services
that violate their bounds.

 When users are momentarily overwhelming a service, then its response latency will
rise, and eventually it will start failing. Users will receive their responses with more
delay, which in turn will increase their own latency until they get close to their own
limits. In the image server example in section 2.1.2, you saw how adding an explicit
queue protected the client by rejecting requests that would take more than the accept-
able response time to service. This is useful when there is a short spike in demand for
the service. If the image database were to fail completely for several minutes, the
behavior would not be ideal. The queue would fill with a backlog of requests that,
after a short time, would be useless to process. A first step would be to cull the old
queue entries, but the queue would refill immediately with still more queries that
would take too long to process.

 In order to stop this effect from propagating across the entire chain of user–service
relationships, users need to shield themselves from the overwhelmed service during
such time periods. The way to do this is well known in electrical engineering: install a
circuit breaker, as shown in figure 2.12.

 The idea here is simple: when involving another service, monitor the time it takes
for the response to come back. If the time is consistently greater than the allowed
threshold this user has factored into its own latency budget for this particular service

Service

Circuit breaker
Request

ClosedOpen

Half open

Periodic sample

Fail fast

Figure 2.12 A circuit breaker in electrical engineering protects a circuit from being
destroyed by a current that is too high. The software equivalent does the same thing for
a service that would otherwise be overwhelmed by too many requests.

Licensed to Coen De Roover <cderoove@vub.ac.be>

20

[Richardson 2019]

M A N N I N G

Chris Richardson

FTGO μ-services: messaging (1/2)

87Communicating using the Asynchronous messaging pattern

business logic. Any number of senders can send messages to a channel. Similarly, any
number of receivers can receive messages from a channel.

 There are two kinds of channels: point-to-point (www.enterpriseintegrationpatterns
.com/PointToPointChannel.html) and publish-subscribe (www.enterpriseintegration-
patterns.com/PublishSubscribeChannel.html):

� A point-to-point channel delivers a message to exactly one of the consumers that
is reading from the channel. Services use point-to-point channels for the one-
to-one interaction styles described earlier. For example, a command message is
often sent over a point-to-point channel.

� A publish-subscribe channel delivers each message to all of the attached consum-
ers. Services use publish-subscribe channels for the one-to-many interaction
styles described earlier. For example, an event message is usually sent over a
publish-subscribe channel.

3.3.2 Implementing the interaction styles using messaging

One of the valuable features of messaging is that it’s flexible enough to support all the
interaction styles described in section 3.1.1. Some interaction styles are directly imple-
mented by messaging. Others must be implemented on top of messaging.

 Let’s look at how to implement each interaction style, starting with request/response
and asynchronous request/response.

IMPLEMENTING REQUEST/RESPONSE AND ASYNCHRONOUS REQUEST/RESPONSE

When a client and service interact using either request/response or asynchronous
request/response, the client sends a request and the service sends back a reply. The

Business
logic

invokes

invokes

Business logic

Sending port Receiving port
Sender Receiver

Message
sender

Message

Message
channel

ReceivesSends

Header

Body

Messaging
infrastructure

Message
handler

Service

Figure 3.7 The business logic in the sender invokes a sending port interface, which is implemented by a message
sender adapter. The message sender sends a message to a receiver via a message channel. The message channel
is an abstraction of messaging infrastructure. A message handler adapter in the receiver is invoked to handle the
message. It invokes the receiving port interface implemented by the receiver’s business logic.

Licensed to Coen De Roover <cderoove@vub.ac.be>

88 CHAPTER 3 Interprocess communication in a microservice architecture

difference between the two interaction styles is that with request/response the client
expects the service to respond immediately, whereas with asynchronous request/
response there is no such expectation. Messaging is inherently asynchronous, so only
provides asynchronous request/response. But a client could block until a reply is
received.

 The client and service implement the asynchronous request/response style inter-
action by exchanging a pair of messages. As figure 3.8 shows, the client sends a com-
mand message, which specifies the operation to perform, and parameters, to a point-
to-point messaging channel owned by a service. The service processes the requests
and sends a reply message, which contains the outcome, to a point-to-point channel
owned by the client.

The client must tell the service where to send a reply message and must match reply mes-
sages to requests. Fortunately, solving these two problems isn’t that difficult. The client
sends a command message that has a reply channel header. The server writes the reply mes-
sage, which contains a correlation id that has the same value as message identifier, to the reply
channel. The client uses the correlation id to match the reply message with the request.

 Because the client and service communicate using messaging, the interaction is
inherently asynchronous. In theory, a messaging client could block until it receives a
reply, but in practice the client will process replies asynchronously. What’s more,
replies are typically processed by any one of the client’s instances.

Request

Sends

Reads

Reads

Sends

MessageId: msgId
ReturnAddress: ReplyChannel

Body

CorrelationId:msgId

Body

Request channel

Reply channel

Reply
Specifies

Client Service

Client sends message containing
msgId and a reply channel.

Service sends reply to the specified reply
channel. The reply contains a correlationId,
which is the request’s msgId.

Figure 3.8 Implementing asynchronous request/response by including a reply channel and message
identifier in the request message. The receiver processes the message and sends the reply to the
specified reply channel.

Licensed to Coen De Roover <cderoove@vub.ac.be>

asynchronicity

sender does not have to wait for the receiver to receive and process the message

requires a send-and-forget approach to communication

variable timing

messaging system queues up requests until the receiver is ready to process them

enables sender and receiver to produce and consume messages at their own pace

21

86 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

IMPACT

(integrated development environment)
or Mule Studio. Unlike prior, some-
what contrived “visual programming”
attempts, the simple pipes-and-!lters
architectural style of asynchronous
messaging solutions makes this visual
composition of patterns natural. Fig-
ure 2 shows a visual Camel route that
directs an incoming message to one of
two possible message endpoints via a
message router. ESB developers can
now think, design, communicate, and
implement their solutions using the
EIP vocabulary, even if they’re using
different runtime platforms.

The EIP playing-card deck handed
out at the inaugural CamelOne confer-
ence is likely the most creative pattern
adaptation to date (see Figure 3). Each
card shows a pattern from the pattern
language together with the solution
statement. It’s satisfying to see design
patterns, which were created to improve
human communication and collabora-
tion, !nding their way (literally) into
the hands of architects and engineers in
such an approachable, useful way.

T he statistics we presented
here indicate that pattern lan-
guages have had a broad im-

pact on the software design community
over the past 20 years. Many research
questions around patterns remain

FIGURE 2. Creating messaging solutions
using the visual pattern language from
Enterprise Integration Patterns (EIPs)7 inside
the Redhat Fuse IDE (integrated development
environment). Messages arriving from a
!le-based message endpoint are routed
by a content-based router to one of two
potential message endpoints based on the
city speci!ed inside the message content.
The content-based router pattern describes
a reusable design for routing messages to a
correct recipient based on message content.

FIGURE 3. Playing cards based on Enterprise Integration Patterns. The visual pattern
language allows for an interactive, almost playful usage of the patterns. Each card displays the
pattern icon together with the name and solution statement.

88 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

IMPACT

GOOD ADVICE IN software design
is dif!cult to come by. General design
principles can guide us, but reality
tends to force trade-offs between seem-
ingly con"icting goals, such as "exibil-
ity and maintainability against size and
complexity. Likewise, code libraries

can go a long way in helping us avoid
reinventing the wheel, but the vision
of lesser-skilled developers effortlessly
wiring together ready-made compo-
nents remains !ction.

Design patterns have helped nar-
row this gap by documenting a well-

working solution to a problem that
occurs repeatedly in a given context.
Instead of presenting a copy-and-paste-
ready code snippet, patterns discuss
forces impacting the solution design.
Examples of such forces are perfor-
mance and security in Web applica-
tions: encryption and decryption algo-
rithms improve security but introduce
processing overhead. Ward Cunning-
ham once described the best patterns as
your older brother teaching you how to
do something right.1

Although patterns have become
popular, their impact as a design tech-
nique is more dif!cult to quantify than
the impact of a speci!c software prod-
uct (which is what previous install-
ments of this column have examined).
This installment highlights both the
breadth of patterns available after 20
years of pattern-writing conferences
and the depth of impact some patterns
have had on open source software.

Twenty Years of
Patterns’ Impact
Gregor Hohpe, Rebecca Wirfs-Brock, Joseph W. Yoder, and Olaf Zimmermann

This column celebrates the 20th year of software patterns. IEEE
Software advisory board members teamed up with members of the
Hillside Group, a nonpro!t organization that promotes the use of
patterns and pattern languages, to re"ect on the state of the practice
and impact of patterns. —Michiel van Genuchten and Les Hatton

Editor: Michiel van Genuchten
MTOnyx
genuchten@ieee.org

Editor: Les Hatton
Kingston University
l.hatton@kingston.ac.uk

continued on p. 84

[
H

o
p

h
e
 e

t
 a

l.
,
IE

E
E
 S

o
f
t
w

a
r
e
 2

0
1
3
]

0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 13

Editor: Cesare Pautasso
University of Lugano
c.pautasso@ieee.org

Editor: Olaf Zimmerman
University of Applied Sciences
of Eastern Switzerland, Rapperswil

ozimmerm@hsr.ch

INSIGHTS

A Decade of Enterprise
Integration Patterns
A Conversation with the Authors

Olaf Zimmermann, Cesare Pautasso, Gregor Hohpe, and Bobby Woolf

IN AN INDUSTRY that thrives on
constant change, few books can sur-
vive the test of time. Enterprise In-
tegration Patterns (EIP)1—with its
highly in! uential collection of mes-
saging patterns—is de" nitely one of
those few. So, we interviewed the
authors Gregor Hohpe and Bobby

Woolf; here, we have the pleasure
of sharing their re! ections with you.
You can discover the inside story of
their book project as well as their
views on pattern language design
and on integration technology’s evo-
lution. We also thank them for their
precious advice for the next genera-
tion of pattern authors and integra-
tion solution designers.

A General Retrospective
Olaf Zimmermann: How did your
book come to be? How did you get
together, and how did you " nd your
contributors and reviewers?

Bobby Woolf: Martin Fowler was
the matchmaker. When he wrote
Patterns of Enterprise Application
Architecture,2 Kyle Brown pointed
out that his pattern language was
not addressing asynchronous mes-
saging. Martin felt that he already
had plenty of patterns to write,

which motivated Kyle and me to sub-
mit a collection of 27 patterns to the
2002 Pattern Language of Programs
[PLoP] conference under the title,
“Patterns of System Integration with
Enterprise Messaging.”3

Gregor Hohpe: I was based some
3,000 miles away, using enterprise
application integration [EAI] tools,
such as TIBCO and Vitria, in my
consulting job. I had a nagging feel-
ing that these tools share underlying
concepts, which are obfuscated by
different terminology. Martin en-
couraged me to document my " nd-

ings in the form of patterns, also to
be submitted to PLoP 2002,4 where I
" rst met Bobby and Kyle.

Bobby: So Kyle brought me into the
effort he’d started with Martin, then
Martin brought Gregor in. While
Martin and Kyle contributed a lot
of material and guidance, they even-
tually lessened their involvement,
leaving Gregor and me to write and
complete the book. Gregor and I
hadn’t known each other before, so
it was a crash getting-to-know-you
opportunity.

With encouragement from Martin
and Kyle, we decided to combine our
papers with the goal to turn them
into a book. While there was some
merging to be done, the two papers
complemented each other well. We
only had a handful of patterns that
overlapped: Kyle’s and my paper de-
scribed message patterns (“message
construction” in the book) and mes-
sage client patterns (later “messag-
ing endpoints”).

Gregor: Coming from the EAI per-
spective, my 17 patterns focused on
what was “between” the endpoints:
message routing, message transfor-
mation, and message management.
It also contained an early version of
the pattern icons.

Each pattern represents a decision, so
the language walks the reader through
the decisions that need to be made.

[
Z

im
m

e
r
m

a
n

n
 e

t
 a

l.
,
IE

E
E
 S

o
f
t
w

a
r
e
 2

0
1
6
]

FTGO μ-services: messaging (2/2)

22

[Richardson 2019]

M A N N I N G

Chris Richardson

FTGO μ-services: development process

each team develops, tests, and deploys their services independently

16 CHAPTER 1 Escaping monolithic hell

SERVICES ARE INDEPENDENTLY SCALABLE

Each service in a microservice architecture can be scaled independently of other ser-
vices using X-axis cloning and Z-axis partitioning. Moreover, each service can be
deployed on hardware that’s best suited to its resource requirements. This is quite dif-
ferent than when using a monolithic architecture, where components with wildly dif-
ferent resource requirements—for example, CPU-intensive vs. memory-intensive—
must be deployed together.

BETTER FAULT ISOLATION

The microservice architecture has better fault isolation. For example, a memory leak
in one service only affects that service. Other services will continue to handle requests
normally. In comparison, one misbehaving component of a monolithic architecture
will bring down the entire system.

EASILY EXPERIMENT WITH AND ADOPT NEW TECHNOLOGIES

Last but not least, the microservice architecture eliminates any long-term commit-
ment to a technology stack. In principle, when developing a new service, the develop-
ers are free to pick whatever language and frameworks are best suited for that service.

Small, autonomous,
loosely coupled teams

Each service has
its own source
code repository.

Each service has
its own automated

deployment pipeline.

Small, simple,
reliable, easy to

maintain services

Order management team

Restaurant management team

Delivery management team

FTGO development

Production

Jenkins Cl

Deployment pipeline

Order Service
source code
repository

Order Service

Jenkins Cl

Deployment pipeline

Restaurant Service
source code
repository

Restaurant Service

Jenkins Cl

Deployment pipeline

Delivery Service
source code
repository

Delivery Service

Figure 1.8 The microservices-based FTGO application consists of a set of loosely coupled services.
Each team develops, tests, and deploys their services independently.

Licensed to Coen De Roover <cderoove@vub.ac.be>

23

FTGO μ-services: development process

Melvin Conway

reverse application: organize teams so

that they mirror the ideal architecture

24

[Richardson 2019]

M A N N I N G

Chris Richardson

FTGO μ-services: containerization

service executables and dependencies are packaged into a container image

multiple containers can be spun up from a container image

4

Container Workflow

Build redis from source
Make sure you have the redis source code
checked out in
the same directory as this Dockerfile

FROM ubuntu:12.04
MAINTAINER dockerfiles http://
dockerfiles.github.io

RUN echo "deb http://archive.ubuntu.com/
ubuntu precise main universe" > /etc/apt/
sources.list
RUN apt-get update
RUN apt-get upgrade -y

RUN apt-get install -y gcc make g++ build-
essential libc6-dev tcl wget

RUN wget http://download.redis.io/redis-
stable.tar.gz -O - | tar -xvz

RUN tar -zvzf /redis/redis-stable.tar.gz
RUN (cd /redis-stable && make)
RUN (cd /redis-stable && make test)

RUN mkdir -p /redis-data
VOLUME ["/redis-data"]
EXPOSE 6379

ENTRYPOINT ["/redis-stable/src/redis-
server"]
CMD ["--dir", "/redis-data"]

Dockerfile

build

Image

Docker Image Docker Container

run

[Cito et al., MSR17]

An Empirical Analysis of the
Docker Container Ecosystem on GitHub

Jürgen Cito∗, Gerald Schermann∗, John Erik Wittern†, Philipp Leitner∗, Sali Zumberi∗, Harald C. Gall∗

∗ Software Evolution and Architecture Lab
University of Zurich, Switzerland

{lastname}@ifi.uzh.ch

† IBM T. J. Watson Research Center
Yorktown Heights, NY, USA

witternj@us.ibm.com

Abstract—Docker allows packaging an application with its
dependencies into a standardized, self-contained unit (a so-called
container), which can be used for software development and to
run the application on any system. Dockerfiles are declarative
definitions of an environment that aim to enable reproducible
builds of the container. They can often be found in source code
repositories and enable the hosted software to come to life in
its execution environment. We conduct an exploratory empirical
study with the goal of characterizing the Docker ecosystem,
prevalent quality issues, and the evolution of Dockerfiles. We base
our study on a data set of over 70000 Dockerfiles, and contrast
this general population with samplings that contain the Top-100
and Top-1000 most popular Docker-using projects. We find that
most quality issues (28.6%) arise from missing version pinning
(i.e., specifying a concrete version for dependencies). Further, we
were not able to build 34% of Dockerfiles from a representative
sample of 560 projects. Integrating quality checks, e.g., to issue
version pinning warnings, into the container build process could
result into more reproducible builds. The most popular projects
change more often than the rest of the Docker population, with
5.81 revisions per year and 5 lines of code changed on average.
Most changes deal with dependencies, that are currently stored
in a rather unstructured manner. We propose to introduce an
abstraction that, for instance, could deal with the intricacies of
different package managers and could improve migration to more
light-weight images.

Keywords-empirical software engineering; GitHub; Docker

I. INTRODUCTION

Containerization has recently gained interest as a light-
weight virtualization technology to define software infras-
tructure. Containers allow to package an application with its
dependencies and execution environment into a standardized,
self-contained unit, which can be used for software develop-
ment and to run the application on any system. Due to their
rapid spread in the software development community, Docker
containers have become the de-facto standard format [1]. The
contents of a Docker container are declaratively defined in a
Dockerfile that stores instructions to reach a certain infrastruc-
ture state [2], following the notion of Infrastructure-as-Code
(IaC) [3]. Source code repositories containing Dockerfiles,
thus, potentially enable the execution of program code in an
isolated and fast environment with one command. Since its
inception in 2013, repositories on GitHub have added 70197
Dockerfiles to their projects (until October 2016).

Given the fast rise in popularity, its ubiquitous nature in
industry, and its surrounding claim of enabling reproducibil-

ity [4], we study the Docker ecosystem with respect to quality
of Dockerfiles and their change and evolution behavior within
software repositories. We developed a tool chain that trans-
forms Dockerfiles and their evolution in Git repositories into
a relational database model. We mined the entire population
of Dockerfiles on GitHub as of October 2016, and summarize
our findings on the ecosystem in general, quality aspects,
and evolution behavior. The results of our study can inform
standard bodies around containers and tool developers to
develop better support to improve quality and drive ecosystem
change.

We make the following contributions through our ex-
ploratory study:

Ecosystem Overview. We characterize the ecosystem of
Docker containers on GitHub by analyzing the distribution of
projects using Docker, broken down by primary programming
language, project size, and the base infrastructure (base image)
they inherit from. We learn, among other things, that most
inherited base images are well-established, but heavy-weight
operating systems, while light-weight alternatives are in the
minority. However, this defeats the purpose of containers to
lower the footprint of virtualization. We envision a recom-
mendation system that analyzes Dockerfiles and transforms its
dependency sources to work with light-weight base images.

Quality Assessment. We assess the quality of Dockerfiles
on GitHub by classifying results of a Dockerfile Linter [5].
Most of the issues we encountered considered version pinning
(i.e., specifying a concrete version for either base images or
dependencies), accounting for 28.6% of quality issues. We also
built the Dockerfiles for a representative sample of 560 repos-
itories. 66% of Dockerfiles could be built successfully with
an average build time of 145.9 seconds. Integrating quality
checks into the “docker build” process to warn developers
early about build-breaking issues, such as version pinning, can
lead to more reproducible builds.

Evolution Behavior. We classify different kinds of changes
between consecutive versions of Dockerfiles to characterize
their evolution within a repository. On average, Dockerfiles
only changed 3.11 times per year, with a mean 3.98 lines of
code changed per revision. However, more popular projects
revise up to 5.81 per year with 5 lines changed. Dependencies
see a high rate of change over time, reinforcing our findings
to improve dependency handling from the analysis of the

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE
DOI 10.1109/MSR.2017.67

13

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE
DOI 10.1109/MSR.2017.67

323

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE
DOI 10.1109/MSR.2017.67

323

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE
DOI 10.1109/MSR.2017.67

323

Research finding

14

ubuntu

debian

node

centos

python

dockerfile/nodejs

golang

alpine

java

nginx

ruby

scratch

php

fedora

busybox

0 5 10 15 20 25
% of Projects with Base Image Referenced in FROM Statements

All
Top−100
Top−1000

Base Images & Sizes

125 MB

195 MB

4 MB

Reduce Image Size

Base Image Recommendation
25

Containerization insights

15

Distribution of Instructions

Instruction All Top-1000 Top-100
RUN 40% 41% 48%

COMMENT 16% 14% 15%
ENV 6% 7% 9%
FROM 7% 8% 7%
ADD 6% 5% 2%
CMD 4% 4% 3%
COPY 3% 4% 3%
EXPOSE 4% 4% 3%

MAINTAINER 4% 4% 3%
WORKDIR 3% 3% 3%

ENTRYPOINT 2% 2% 1%
VOLUME 2% 2% 1%
USER 1% 1% 1%

26

[Cito et al., MSR17]

An Empirical Analysis of the
Docker Container Ecosystem on GitHub

Jürgen Cito∗, Gerald Schermann∗, John Erik Wittern†, Philipp Leitner∗, Sali Zumberi∗, Harald C. Gall∗

∗ Software Evolution and Architecture Lab
University of Zurich, Switzerland

{lastname}@ifi.uzh.ch

† IBM T. J. Watson Research Center
Yorktown Heights, NY, USA

witternj@us.ibm.com

Abstract—Docker allows packaging an application with its
dependencies into a standardized, self-contained unit (a so-called
container), which can be used for software development and to
run the application on any system. Dockerfiles are declarative
definitions of an environment that aim to enable reproducible
builds of the container. They can often be found in source code
repositories and enable the hosted software to come to life in
its execution environment. We conduct an exploratory empirical
study with the goal of characterizing the Docker ecosystem,
prevalent quality issues, and the evolution of Dockerfiles. We base
our study on a data set of over 70000 Dockerfiles, and contrast
this general population with samplings that contain the Top-100
and Top-1000 most popular Docker-using projects. We find that
most quality issues (28.6%) arise from missing version pinning
(i.e., specifying a concrete version for dependencies). Further, we
were not able to build 34% of Dockerfiles from a representative
sample of 560 projects. Integrating quality checks, e.g., to issue
version pinning warnings, into the container build process could
result into more reproducible builds. The most popular projects
change more often than the rest of the Docker population, with
5.81 revisions per year and 5 lines of code changed on average.
Most changes deal with dependencies, that are currently stored
in a rather unstructured manner. We propose to introduce an
abstraction that, for instance, could deal with the intricacies of
different package managers and could improve migration to more
light-weight images.

Keywords-empirical software engineering; GitHub; Docker

I. INTRODUCTION

Containerization has recently gained interest as a light-
weight virtualization technology to define software infras-
tructure. Containers allow to package an application with its
dependencies and execution environment into a standardized,
self-contained unit, which can be used for software develop-
ment and to run the application on any system. Due to their
rapid spread in the software development community, Docker
containers have become the de-facto standard format [1]. The
contents of a Docker container are declaratively defined in a
Dockerfile that stores instructions to reach a certain infrastruc-
ture state [2], following the notion of Infrastructure-as-Code
(IaC) [3]. Source code repositories containing Dockerfiles,
thus, potentially enable the execution of program code in an
isolated and fast environment with one command. Since its
inception in 2013, repositories on GitHub have added 70197
Dockerfiles to their projects (until October 2016).

Given the fast rise in popularity, its ubiquitous nature in
industry, and its surrounding claim of enabling reproducibil-

ity [4], we study the Docker ecosystem with respect to quality
of Dockerfiles and their change and evolution behavior within
software repositories. We developed a tool chain that trans-
forms Dockerfiles and their evolution in Git repositories into
a relational database model. We mined the entire population
of Dockerfiles on GitHub as of October 2016, and summarize
our findings on the ecosystem in general, quality aspects,
and evolution behavior. The results of our study can inform
standard bodies around containers and tool developers to
develop better support to improve quality and drive ecosystem
change.

We make the following contributions through our ex-
ploratory study:

Ecosystem Overview. We characterize the ecosystem of
Docker containers on GitHub by analyzing the distribution of
projects using Docker, broken down by primary programming
language, project size, and the base infrastructure (base image)
they inherit from. We learn, among other things, that most
inherited base images are well-established, but heavy-weight
operating systems, while light-weight alternatives are in the
minority. However, this defeats the purpose of containers to
lower the footprint of virtualization. We envision a recom-
mendation system that analyzes Dockerfiles and transforms its
dependency sources to work with light-weight base images.

Quality Assessment. We assess the quality of Dockerfiles
on GitHub by classifying results of a Dockerfile Linter [5].
Most of the issues we encountered considered version pinning
(i.e., specifying a concrete version for either base images or
dependencies), accounting for 28.6% of quality issues. We also
built the Dockerfiles for a representative sample of 560 repos-
itories. 66% of Dockerfiles could be built successfully with
an average build time of 145.9 seconds. Integrating quality
checks into the “docker build” process to warn developers
early about build-breaking issues, such as version pinning, can
lead to more reproducible builds.

Evolution Behavior. We classify different kinds of changes
between consecutive versions of Dockerfiles to characterize
their evolution within a repository. On average, Dockerfiles
only changed 3.11 times per year, with a mean 3.98 lines of
code changed per revision. However, more popular projects
revise up to 5.81 per year with 5 lines changed. Dependencies
see a high rate of change over time, reinforcing our findings
to improve dependency handling from the analysis of the

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE
DOI 10.1109/MSR.2017.67

13

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE
DOI 10.1109/MSR.2017.67

323

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE
DOI 10.1109/MSR.2017.67

323

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE
DOI 10.1109/MSR.2017.67

323

Research finding

Containerization insights

16

Distribution of RUN Instructions

Category Examples All Top-1000 Top-100

Dependencies apt-get, yum, npm 45.2% 44.7% 45.2%

File System mkdir, cd, cp, rm 30.4% 29.3% 29.4%

Permissions chmod, chown 7.3% 5.2% 2.3%

Build / Execute make, install 5.3% 8.3% 13.5%

Environment set, export, source 0.6% 1.0% 0.2%

Other 11.3% 11.5% 9.4%

Abstraction for Dependencies
27

[Cito et al., MSR17]

An Empirical Analysis of the
Docker Container Ecosystem on GitHub

Jürgen Cito∗, Gerald Schermann∗, John Erik Wittern†, Philipp Leitner∗, Sali Zumberi∗, Harald C. Gall∗

∗ Software Evolution and Architecture Lab
University of Zurich, Switzerland

{lastname}@ifi.uzh.ch

† IBM T. J. Watson Research Center
Yorktown Heights, NY, USA

witternj@us.ibm.com

Abstract—Docker allows packaging an application with its
dependencies into a standardized, self-contained unit (a so-called
container), which can be used for software development and to
run the application on any system. Dockerfiles are declarative
definitions of an environment that aim to enable reproducible
builds of the container. They can often be found in source code
repositories and enable the hosted software to come to life in
its execution environment. We conduct an exploratory empirical
study with the goal of characterizing the Docker ecosystem,
prevalent quality issues, and the evolution of Dockerfiles. We base
our study on a data set of over 70000 Dockerfiles, and contrast
this general population with samplings that contain the Top-100
and Top-1000 most popular Docker-using projects. We find that
most quality issues (28.6%) arise from missing version pinning
(i.e., specifying a concrete version for dependencies). Further, we
were not able to build 34% of Dockerfiles from a representative
sample of 560 projects. Integrating quality checks, e.g., to issue
version pinning warnings, into the container build process could
result into more reproducible builds. The most popular projects
change more often than the rest of the Docker population, with
5.81 revisions per year and 5 lines of code changed on average.
Most changes deal with dependencies, that are currently stored
in a rather unstructured manner. We propose to introduce an
abstraction that, for instance, could deal with the intricacies of
different package managers and could improve migration to more
light-weight images.

Keywords-empirical software engineering; GitHub; Docker

I. INTRODUCTION

Containerization has recently gained interest as a light-
weight virtualization technology to define software infras-
tructure. Containers allow to package an application with its
dependencies and execution environment into a standardized,
self-contained unit, which can be used for software develop-
ment and to run the application on any system. Due to their
rapid spread in the software development community, Docker
containers have become the de-facto standard format [1]. The
contents of a Docker container are declaratively defined in a
Dockerfile that stores instructions to reach a certain infrastruc-
ture state [2], following the notion of Infrastructure-as-Code
(IaC) [3]. Source code repositories containing Dockerfiles,
thus, potentially enable the execution of program code in an
isolated and fast environment with one command. Since its
inception in 2013, repositories on GitHub have added 70197
Dockerfiles to their projects (until October 2016).

Given the fast rise in popularity, its ubiquitous nature in
industry, and its surrounding claim of enabling reproducibil-

ity [4], we study the Docker ecosystem with respect to quality
of Dockerfiles and their change and evolution behavior within
software repositories. We developed a tool chain that trans-
forms Dockerfiles and their evolution in Git repositories into
a relational database model. We mined the entire population
of Dockerfiles on GitHub as of October 2016, and summarize
our findings on the ecosystem in general, quality aspects,
and evolution behavior. The results of our study can inform
standard bodies around containers and tool developers to
develop better support to improve quality and drive ecosystem
change.

We make the following contributions through our ex-
ploratory study:

Ecosystem Overview. We characterize the ecosystem of
Docker containers on GitHub by analyzing the distribution of
projects using Docker, broken down by primary programming
language, project size, and the base infrastructure (base image)
they inherit from. We learn, among other things, that most
inherited base images are well-established, but heavy-weight
operating systems, while light-weight alternatives are in the
minority. However, this defeats the purpose of containers to
lower the footprint of virtualization. We envision a recom-
mendation system that analyzes Dockerfiles and transforms its
dependency sources to work with light-weight base images.

Quality Assessment. We assess the quality of Dockerfiles
on GitHub by classifying results of a Dockerfile Linter [5].
Most of the issues we encountered considered version pinning
(i.e., specifying a concrete version for either base images or
dependencies), accounting for 28.6% of quality issues. We also
built the Dockerfiles for a representative sample of 560 repos-
itories. 66% of Dockerfiles could be built successfully with
an average build time of 145.9 seconds. Integrating quality
checks into the “docker build” process to warn developers
early about build-breaking issues, such as version pinning, can
lead to more reproducible builds.

Evolution Behavior. We classify different kinds of changes
between consecutive versions of Dockerfiles to characterize
their evolution within a repository. On average, Dockerfiles
only changed 3.11 times per year, with a mean 3.98 lines of
code changed per revision. However, more popular projects
revise up to 5.81 per year with 5 lines changed. Dependencies
see a high rate of change over time, reinforcing our findings
to improve dependency handling from the analysis of the

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE
DOI 10.1109/MSR.2017.67

13

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE
DOI 10.1109/MSR.2017.67

323

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE
DOI 10.1109/MSR.2017.67

323

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE
DOI 10.1109/MSR.2017.67

323

Research finding

Containerization insights

28

FTGO μ-services: resource provisioning

[Richardson 2019]

M A N N I N G

Chris Richardson

401Deploying the FTGO application with Kubernetes

� Scheduler—Selects a node to run a pod.
� Controller manager—Runs the controllers, which ensure that the state of the clus-

ter matches the intended state. For example, one type of controller known as a
replication controller ensures that the desired number of instances of a service
are running by starting and terminating instances.

A node runs several components, including the following:

� Kubelet—Creates and manages the pods running on the node
� Kube-proxy—Manages networking, including load balancing across pods
� Pods—The application services

SVC

Pod

Kubernetes master

etcd

Kubelet Kube-proxy

Kubernetes node

SVC

Pod

Kubelet Kube-proxy

Kubernetes node

Application
requests

Configuration
commands

Developer

Aplication
user

Deployment
pipeline

Kubecti
CLI

API Server

Controller
management

Scheduler

Figure 12.10 A Kubernetes cluster consists of a master, which manages the cluster, and nodes,
which run the services. Developers and the deployment pipeline interact with Kubernetes through the
API server, which along with other cluster-management software runs on the master. Application
containers run on nodes. Each node runs a Kubelet, which manages the application container, and a
kube-proxy, which routes application requests to the pods, either directly as a proxy or indirectly by
configuring iptables routing rules built into the Linux kernel.

Licensed to Coen De Roover <cderoove@vub.ac.be>

manages cluster

management API

runs containers

called pods

manages

containers

routes requests

to pods

distributed key-value store

29

FTGO μ-services: infrastructure as code

[Richardson 2019]

M A N N I N G

Chris Richardson

number of containers

to maintain

container image

Kubernetes

port

environment

variables

determines whether

container should be

terminated and restarted

determines whether

container is ready to

accept traffic

30

FTGO μ-services: infrastructure as code
The Seven Sins: Security Smells in Infrastructure as

Code Scripts
Akond Rahman, Chris Parnin, and Laurie Williams
North Carolina State University, Raleigh, North Carolina

Email: aarahman@ncsu.edu, cjparnin@ncsu.edu, williams@csc.ncsu.edu

Abstract—Practitioners use infrastructure as code (IaC) scripts
to provision servers and development environments. While de-
veloping IaC scripts, practitioners may inadvertently introduce
security smells. Security smells are recurring coding patterns that
are indicative of security weakness and can potentially lead to
security breaches. The goal of this paper is to help practitioners

avoid insecure coding practices while developing infrastructure as

code (IaC) scripts through an empirical study of security smells in

IaC scripts.

We apply qualitative analysis on 1,726 IaC scripts to identify
seven security smells. Next, we implement and validate a static
analysis tool called Security Linter for Infrastructure as Code
scripts (SLIC) to identify the occurrence of each smell in 15,232
IaC scripts collected from 293 open source repositories. We
identify 21,201 occurrences of security smells that include 1,326
occurrences of hard-coded passwords. We submitted bug reports
for 1,000 randomly-selected security smell occurrences. We obtain
104 responses to these bug reports, of which 67 occurrences
were accepted by the development teams to be fixed. We observe
security smells can have a long lifetime, e.g., a hard-coded secret
can persist for as long as 98 months, with a median lifetime of
20 months.

Index Terms—devops, infrastructure as code, security smell

I. INTRODUCTION

Infrastructure as code (IaC) scripts help practitioners to
provision and configure their development environment and
servers at scale [1]. IaC scripts are also known as configuration
scripts [2] [1] or configuration as code scripts [1] [3]. Commer-
cial IaC tool vendors, such as Chef 1 and Puppet [4], provide
programming syntax and libraries so that programmers can
specify configuration and dependency information as scripts.

Fortune 500 companies 2, such as Intercontinental Exchange
(ICE) 3, use IaC scripts to maintain their development envi-
ronments. For example, ICE, which runs millions of financial
transactions daily 4, maintains 75% of its 20,000 servers using
IaC scripts [5]. The use of IaC scripts has helped ICE decrease
the time needed to provision development environments from
1⇠2 days to 21 minutes [5].

However, IaC scripts can be susceptible to security weak-
ness. Let us consider Figure 1 as an example. In Figure 1,
we present a Puppet code snippet extracted from the ‘aeolus-
configure’ open source software (OSS) repository 5. In this

1https://www.chef.io/chef/
2http://fortune.com/fortune500/list/
3https://www.theice.com/index
4https://www.theice.com/publicdocs/ICE at a glance.pdf
5https://github.com/aeolusproject/aeolus-configure

code snippet, we observe a hard-coded password using the
‘password’ attribute. A hard-coded string ‘v23zj59an’ is as-
signed as password for user ‘aeolus’. Hard-coded passwords in
software artifacts is considered as a software security weakness
(‘CWE-798: Use of Hard-coded Credentials’) by Common
Weakness Enumerator (CWE) [6]. According to CWE [6],
“If hard-coded passwords are used, it is almost certain that
malicious users will gain access to the account in question”.

IaC scripts similar to Figure 1, which contain hard-coded
credentials or other security smells, can be susceptible to
security breaches. Security smells are recurring coding patterns
that are indicative of security weakness. A security smell does
not always lead to a security breach, but deserves attention
and inspection. Existence and persistence of these smells in
IaC scripts leave the possibility of another programmer using
these smelly scripts, potentially propagating use of insecure
coding practices. We hypothesize through systematic empirical
analysis, we can identify security smells and the prevalence
of the identified security smells.

The goal of this paper is to help practitioners avoid insecure
coding practices while developing infrastructure as code (IaC)
scripts through an empirical study of security smells in IaC
scripts.

We answer the following research questions:
• RQ1: What security smells occur in infrastructure as code

scripts? (Section III)
• RQ2: How frequently do security smells occur in infras-

tructure as code scripts? (Section VI)
• RQ3: What is the lifetime of the identified security smell

occurrences for infrastructure as code scripts? (Section VI)
• RQ4: Do practitioners agree with security smell occur-

rences? (Section VI)
We answer our research questions by analyzing IaC scripts

collected from OSS repositories. We apply qualitative anal-
ysis [7] on 1,726 scripts to determine security smells. Next,
we construct a static analysis tool called Security Linter for
Infrastructure as Code scripts (SLIC) to automatically identify
the occurrence of these security smells in 15,232 IaC scripts
collected by mining 293 OSS repositories from four sources:
Mozilla 6, Openstack 7, Wikimedia Commons 8, and GitHub 9.

6https://hg.mozilla.org/
7https://git.openstack.org/cgit
8https://gerrit.wikimedia.org/r/
9https://github.com/

Pr
ep
rin
t

[Rahman et al. ICSE 2019]

Research finding

TABLE VIII: Smell Occurrences, Smell Density, and Proportion of Scripts for the Four Datasets

Occurrences Smell Density (per KLOC) Proportion of Scripts (Script%)
Smell Name GH MOZ OST WIK GH MOZ OST WIK GH MOZ OST WIK
Admin by default 52 4 35 6 0.1 0.06 0.1 0.04 0.6 0.2 1.1 0.2
Empty password 136 18 21 36 0.3 0.2 0.1 0.2 1.4 0.4 0.5 0.3
Hard-coded secret 10,892 792 3,552 1,716 25.6 11.9 16.5 12.7 21.9 9.9 24.8 17.0
Invalid IP address binding 188 20 114 41 0.4 0.3 0.5 0.3 1.7 0.7 2.9 1.4
Suspicious comment 758 202 305 343 1.7 3.0 1.4 2.5 5.9 8.5 7.2 9.1
Use of HTTP without TLS 1,018 57 460 164 2.4 0.8 2.1 1.2 6.3 1.6 8.5 3.7
Use of weak crypto algo. 177 48 20 26 0.4 0.7 0.1 0.2 0.9 1.1 0.5 0.4
Combined 13,221 1,141 4,507 2,332 31.1 17.2 21.0 17.2 29.3 17.9 32.9 26.7

TABLE IX: Lifetime of Security Smells (Months)

Smell
Name

GH MOZ OST WIK

(Med, Max) (Med, Max) (Med, Max) (Med, Max)
Admin by
default

(30.0, 73.0) (41.0, 41.0) (15.0, 89.0) (20.0, 22.0)

Empty
password

(21.0, 76.0) (27.5, 54.0) (13.5, 89.0) (18.5, 56.0)

Hard-
coded
secret

(24.0, 92.0) (34.0, 77.0) (15.0, 89.0) (20.0, 98.0)

Invalid IP
address
binding

(31.0, 73.0) (14.0, 77.0) (22.0, 89.0) (20.0, 63.0)

Suspicious
comment

(21.0, 92.0) (22.0, 77.0) (11.0, 89.0) (20.0, 61.0)

Use of
HTTP
without
TLS

(23.0, 92.0) (9.0, 77.0) (13.0, 89.0) (20.0, 93.0)

Use of
weak
crypto.
algo.

(26.0, 92.0) (47.0, 77.0) (23.0, 89.0) (20.0, 59.0)

At Least
One Smell

(24.0, 92.0) (23.5, 77.0) (14.0, 89.0) (20.0, 98.0)

perceive these smells to be consequential then smells may
reside in scripts for a long duration.

C. RQ4: Do practitioners agree with security smell occur-
rences?

From 93 practitioners we obtain 104 responses for the
submitted 1000 bug reports. We observe an agreement of
64.4% for 104 smell occurrences. The percentage of smells to
which practitioners agreed to be fixed is presented in Figure 6.
In y-axis each smell name is followed by the occurrence
count. For example, according to Figure 6, for 30 occurrences
of ‘Hard-coded secret’(HARD CODE SECRET), we observe
70.0% agreement. We observe 75.0% or more agreement for
two smells: ‘Use of HTTP without TLS’ and ‘Use of weak
cryptography algorithms’.

In their response, practitioners provided reasoning on why
these smells appeared in the first place. For one occurrence
of ‘HTTP without TLS’, practitioners highlighted the lack of
documentation and tool support saying: “Good catch. This
was probably caused by lack of documentation or absence
of https endpoint at the time of writing. Should be fixed in
next release.”. Upon acceptance of the smell occurrences,
practitioners also suggested how these smells can be mitigated.

DFLT.ADMN_9
EMPT.PASS_7

HARD.CODE.SECR_30
HTTP.USG_19

INVA.IP_15
SUSP.COMM_15
WEAK.CRYP_9

0% 25% 50% 75% 100%
Percentage

Se
cu

rit
y

Sm
el

l

Disagree Agree

Fig. 6: Feedback for the 104 smell occurrences. Practitioners
agreed with 64.4% of the selected smell occurrences.

For example, for an occurrence of ‘Invalid IP address binding’,
one practitioner stated:“I would accept a pull request to do a
default of 127.0.0.1”.

Reasons for Practitioner Disagreements: We observe con-
text to have importance to practitioners. For example, a hard-
coded password may not have security implications if the
hard-coded password resides in a repository used for training
purposes. As one practitioner stated “This is not publicly used
module, but instead used in training only in a non-production
environment. This module is designed in a manner to show
basic functionality within Puppet Training courses.”. For one
occurrence of ‘HTTP Without TLS’ one practitioner disagreed
stating “It’s using http on localhost, what’s the risk?”.

The above-mentioned statements from disagreeing practi-
tioners also suggest lack of awareness: the users who use the
training module of interest may consider use of hard-coded
passwords as an acceptable practice, potentially propagating
the practice of hard-coded secrets. Both local and remote sites
that use HTTP can be insecure, as considered by practitioners
from Google 18 19. Possible explanations for disagreements
can also be attributed to perception of practitioners: smells
in code have subjective interpretation [48], and programmers
do not uniformly agree with all smell occurrences [49], [50].
Furthermore, researchers [51] have observed programmers’
bias to perceive their code snippets as secure, even if the code
snippets are insecure.

18https://security.googleblog.com/2018/02/a-secure-web-is-here-to-
stay.html

19https://developers.google.com/web/fundamentals/security/encrypt-in-
transit/why-https

Pr
ep
rin
t

Cloud-native applications

31

architecture
process infrastructure

+ +

operate at global scale, yet remain responsive, are resilient against failures, and are elastic under load variations

using distributed actors

μ-services architecture

Scaling up

Scaling out

introduction and motivation

using concurrent actors

Scaling up through concurrent programming

33

Concurrency is a means to realise elasticity:

add more threads to server when needed, which the application automatically starts using

Concurrent actor programming

A r t i f i c i a l In te l l i gence

A Universal Modular ACTOR Formalism
for A r t i f i c i a l Intelligence

Carl Hewitt
Peter Bishop
Richard Steiger
Abstract

This paper proposes a modular ACTOR architecture and definit ional method for a r t i f i c i a l
intelligence that is conceptually based on a single kind of object: actors [or, if you w i l l ,
v i r tual processors, activation frames, or streams]. The formalism makes no presuppositions
about the representation of primitive data structures and control structures. Such structures
can be programmed, microcoded, or hard wired 1n a uniform modular fashion. In fact it is
impossible to determine whether a given object is "really" represented as a l i s t , a vector, a
hash table, a function, or a process. The architecture w i l l e f f ic ient ly run the coming
generation of PLANNERlike a r t i f i c i a l intelligence languages including those requiring a high
degree of parallelism. The efficiency is gained without loss of programming generality because
it only makes certain actors more e f f ic ient ; it does not change their behavioral
characteristics. The architecture is general with respect to control structure and
does not have or need goto, interrupt, or semaphore primitives. The formalism achieves the goals that
the disallowed constructs are intended to achieve by other more structured methods.

PLANNER Progress

"Programs should not only work,
but they should appear to work as wel l . "

PDP1X Dogma

The PLANNER project is continuing research in natural and effective means for embedding
knowledge in procedures. In the course of this work we have succeeded in unifying the
formalism around one fundamental concept: the ACTOR. Intu i t ive ly , an ACTOR is an active agent
which plays a role on cue according to a script" we" use the ACTOR metaphor to emphasize the
inseparability of control and data flow in our model. Data structures, functions, semaphores,
monitors, ports, descriptions, Quillian nets, logical formulae, numbers, ident i f iers, demons,
processes, contexts, and data bases can a l l be shown to be special cases of actors. Al l of the
above are objects with certain useful modes of behavior. Our formalism shows how al l of the
modes of behavior can be defined in terms of one kind of behavior: sending messages to actors.
An actor is always invoked uniformly in exactly the same way regardless of whether 1t behaves
as a recursive function, data structure, or process.

" I t is vain to multiply Entities beyond need."
William of Occam

"Monotheism is the Answer."

The unif ication and simplif ication of the formalisms for the procedural embedding of
knowledge has a great many benefits for us:

FOUNDATIONS: The concept puts procedural semantics [the theory of how things
operate] on a firmer basis. It w i l l now be possible to do cleaner theoretical studies of the
relation between procedural semantics and settheoretic semantics such as model theories of
the quantificational calculus and the lambda calculus.

LOGICAL CALCULAE: A procedural semantics is developed for the quantificational
calculus. The logical constants FORALL, THEREEXISTS, AND, OR, NOT, and IMPLIES
are defined as actors.

KNOWLEDGE BASED PROGRAMMING is programming in an environment which has a
substantial knowledge base in the application area for which the programs are intended.
The actor formalism aids knowledge based programming in the following ways

. PROCEDURAL

EMBEDDING of KNOWLEDGE, TRACING BEHAVIORAL DEPENDENCIES, and SUBSTANTIATING that ACTORS
SATISFY their INTENTIONS.

INTENTIONS: Furthermore the confirmation of properties of procedures is made
easier and more uniform. Every actor has an INTENTION which checks that the prerequisites
and the context of the actor being sent the message are satisf ied. The intention is the
CONTRACT that the actor has with the outside world. How an actor f u l l f l l l s i ts contract is
i ts own business. By a SIMPLE BUG we mean an actor which does not satisfy i ts intention.
We would l ike to eliminate simpTedebugging of actors by the METAEVALUATION of actors to show
that they satisfy their Intentions. Suppose that there is an external audience of actors E
which satisfy the intentions of the actors to which they send messages. In tu i t ive ly , the
principle of ACTOR INDUCTION states that the intentions of a l l actions caused by E are
in turn satisf ied provided that the following condition holds:

If for each actor A
the intention of A is satisf ied =>
that the intentions of a l l actors sent messages by A are satisf ied.

Computational induction [Manna], structural induction [Bursta l l] , and Peano induction
are a l l special cases of ACTOR induction. Actor based intentions have the following
advantages: The intention is decoupled from the actors it describes. Intentions of
concurrent actions are more easily disentangled. We can more elegantly write intentions
for dialogues between actors. The intentions are written 1n the same formalism as the
procedures they describe. Thus for example intentions can have intentions. Because
protection is an intr insic property of actors, we hope to be able to deal with protection
issues in the same straight forward manner as more conventional intentions. Intentions
of data structures are handled by the same machinery as for a l l other actors.

COMPARATIVE SCHEHATOLOGY: The theory of comparative power of control structures is

235

[Hewitt et al., 1973]

Three significant trends have under-
scored the central role of concurrency
in computing. First, there is in-
creased use of interacting processes
by individual users, for example, ap-
plication programs running on X
windows. Second, workstation net-
works have become a cost-effective

CONCURRENT
OBJECT-ORIENTED

mechanism for resource sharing and
distributed problem solving. For ex-
ample, loosely coupled problems,
such as finding all the factors of large
prime numbers, have been solved by
utilizing ideal cycles on networks of
hundreds of workstations. A loosely
coupled problem is one which can be
easily partitioned into many smaller
subproblems so that interactions
between the subproblems is quite limited. Finally, multiprocessor tech-

CCYY”NlCITlCYICCT”EACCY/September 199O/Vol.33, No.9 125

[Agha 1990]

34

An actor can only:

process messages one-by-one from a mailbox

A

✉✉✉

35

Concurrent actor programming

An actor can only:

process messages one-by-one from a mailbox

create other actors

BA

✉✉

36

Concurrent actor programming

An actor can only:

process messages one-by-one from a mailbox

create other actors

send messages to other actors asynchronously

BA

✉✉
✉

37

Concurrent actor programming

An actor can only:

process messages one-by-one from a mailbox

create other actors

send messages to other actors asynchronously

change its message processing behavior

✉✉ ✉

BAC

38

Concurrent actor programming

An actor is effectively single-threaded

messages are received and processed sequentially,

the actor invokes its behaviour one-by-one on every message that is received

processing one message is the atomic unit of execution,

it cannot be interleaved with the processing of another message

changes in behaviour (i.e., become) are in effect for the processing of the next message

But message processors of separate actors can be executed concurrently!

B

✉✉

39

Concurrent actor programming

actors

40

we will focus on

concurrent actors first

actors

Scala for Java programmers

Unifies and generalizes functional and object-oriented programming

Features a strong static type system for safety

Hosts multiple domain-specific languages

Offers a read-eval-print loop for interactive prototyping

Compatible with existing languages for the JVM

“Any general-purpose language

has to be a scalable language”

released in 2003 by Martin Odersky

professor at EPFL

42

Functional basics: expressions

var x = 3
> x : Int = 3
var y = 4
> y : Int = 4

if(x > y)
 println(x)
else
 println(y)
4

println(if(x>y) x else y)
4

var max = (x : Int, y : Int) => if(x>y) x else y
> max : (Int, Int) => Int = <function2>

max(3,4)
> res0 : Int = 4

def max(x : Int, y : Int) =
 if(x>y) x else y

types are inferred

every expression has a value

functions are values 43

functions can be assigned to variables

Functional basics: pattern matching

44

def process(input : Any) : String =
 input match {
 case "apple" => "Fruit"

 case input : Int => {
 println("match!")
 input.toString()
 }

 case (a : Int, b : Int) => "Int tuple"
 case (a : Double, b : Double) => "Double tuple"

 case _ => "Unknown input"
 }

List("apple", 2, (0.5, 1.1), (3,4), List()).map(process)  
match!
> res0: List[String] =  
 List(“Fruit”, “2", “Double tuple, “Int tuple, “Unknown input”)

def factorial(n: Int): Int = n match {
 case 0 => 1
 case _ => n * factorial(n-1)
}

matching on value

matching on type

deep match

wildcard

OO basics: inheritance

class Animal {
 def makeSound() = "Sound!"
}

class Dog extends Animal {
 override def makeSound() = "Bark!"
}

class Duck extends Animal {
 override def makeSound() = "Quack!"
}

class DecoyDuck extends Duck {
 override def makeSound() = ""
}

var animals = List(new Dog, new Duck, new DecoyDuck)
> animals : List[Animal] = List(Dog@21bcffb, Duck@380fb434, DecoyDuck@668bc3d5)

animals.map(a => a.makeSound())
> res0: List[String] = List(Bark!, Quack!, "")

polymorphic method invocations are supported as expected

overrides inherited definition

inheritance

inferred parametric type

45

OO basics: traits

trait Loud extends Animal {
 override def makeSound() = super.makeSound().toUpperCase()
}
 
trait Tired extends Animal {
 var count = 0;
 override def makeSound = {
 count = count + 1
 if(count > 1) "" else super.makeSound()
 }
}

will differ depending on which class the trait is “mixed in”

class LoudDog extends Dog with Loud
var fifi = new LoudDog
> fifi : LoudDog = LoudDog$1@73f792cf
fifi.makeSound()
> res1: String = BARK!
class TiredLoudDuck extends Duck with Loud with Tired
var donald = new TiredLoudDuck
> donald : TiredLoudDuck = TiredLoudDuck$1@2ed94a8b
donald.makeSound()
> res2: String = QUACK!
donald.makeSound()
> res3: String = ""
donald.count
> res4: Int = 2

classes can be composed with

reusable pieces of state and

behavior (no equivalent in Java)

reusable state and behavior

46

recursive comparison of structure, rather than addresses

OO basics: case classes

47

val v = Var(“x")
> v: Var = Var(x)
val addop = BinOp("+", Number(1), v)
> addop: BinOp = BinOp(+,Number(1.0),Var(x))
val l = addop.left  
> l: Expr = Number(1.0)
println(addop)
BinOp(+,Number(1.0),Var(x))

addop.right == Var("x")
> res1: Boolean = true
val subop = addop.copy(operator = "-")  
> subop: BinOp = BinOp(-,Number(1.0),Var(x))

def simplifyTop(expr: Expr): Expr = expr match {
 case UnOp("-", UnOp("-", e)) => e
 case BinOp("+", e, Number(0)) => e
 case BinOp("*", e, Number(1)) => e
 case _ => expr
}
simplifyTop(UnOp("-", UnOp("-", v)))  
> res2: Expr = Var(x)

trait Expr
case class Var(name: String) extends Expr
case class Number(num: Double) extends Expr
case class UnOp(operator: String, arg: Expr) extends Expr
case class BinOp(operator: String, left: Expr, right: Expr) extends Expr

compiler has generated factory

method in each companion object

compiler has generated

toString methods

compiler has generated equals

and hashCode methods

compiler has generated copy methods

for “changing” constructor arguments

For those who would like to know more

48

actors

49

we will focus on

concurrent actors first

object PingPong extends App {

 case class StartPingPong(partner : ActorRef)
 case object Ball

 class Paddle extends Actor {
 var counter : Integer = 0

 def receive = {
 case StartPingPong(partner : ActorRef) =>
 counter = 0
 partner ! Ball

 case Ball =>
 counter += 1
 println(s"Count of ${self.path.name}: ${counter}")
 Thread.sleep(1000)
 sender ! Ball
 }
 }

 val system = ActorSystem("PingPong")
 val ping = system.actorOf(Props[Paddle], "ping")
 val pong = system.actorOf(Props[Paddle], "pong")
 ping ! StartPingPong(pong)

}

50

actors: Ping Pong example

Pong: 1
Ping: 1
Pong: 2
Ping: 2
Pong: 3
Ping: 3
Pong: 4
Ping: 4
Pong: 5
Ping: 5
Pong: 6
Ping: 6
…

address at which an actor lives

messages exchanged

method returning message processor

start game

return ball to sender

No direct access possible to the actor state

state can only be accessed through messages sent to known addresses

(represented by an ActorRef)

Three ways to obtain an address:

every actor knows its own address (self),

useful for sending messages to other actors and informing them where to reply to

actor creation returns an address (an ActorRef),

it is not possible to call methods directly on the newly created actor

addresses can be exchanged through messages

(cf. automatically captured sender in Akka)

Actors are completely independent agents of computation, more isolated from each

other than regular objects

all actors run fully concurrently to each other

message-passing primitive is asynchronous

51

actors: strong encapsulation

GoTicks.com: REST API

52

[Roestenburg et al. 2016]

31Clone, build, and test interface

build file set up, we can compile the code, run the tests, and build the JAR file. Run
the following command in the chapter-up-and-running directory.

sbt clean compile test

If any dependencies still need to be downloaded, sbt will do that automatically. Now
that we have the build file in place, let’s take a closer look at what we’re trying to
achieve with this example in the next section.

2.1.2 Fast-forward to the GoTicks.com REST server

Our ticket-selling service will allow customers to buy tickets to all sorts of events, con-
certs, sports games, and the like. Let’s say we’re part of a startup called GoTicks.com,
and in this first iteration we’ve been assigned to build the backend REST server for the
first version of the service. Right now we want customers to get a numbered ticket to a
show. Once all the tickets are sold for an event, the server should respond with a 404
(Not Found) HTTP status code. The first thing we’ll implement in the REST API will
have to be the addition of a new event (since all other services will require the pres-
ence of an event in the system). A new event only contains the name of the event—say
"RHCP" for the Red Hot Chili Peppers—and the total number of tickets we can sell for
the given venue.

 The requirements for the RestApi are shown in table 2.1.

Listing 2.4 Running tests

Table 2.1 REST API

Description
HTTP

method
URL Request body Status code Response example

Create an
event

POST /events/RHCP { "tickets" : 250} 201 Created {
 "name": "RHCP",
 "tickets": 250
}

Get all
events

GET /events N/A 200 OK [{ event : "RHCP",
tickets : 249 }, {
event : "Radiohead",
tickets : 130 }]

Buy tickets POST /events/RHCP/
tickets

 { "tickets" : 2 } 201 Created { "event" : "RHCP",
"entries" : [{ "id"
: 1 }, { "id" : 2 }]
}

Cancel
an event

DELETE /events/RHCP N/A 200 OK { event : "RHCP",
tickets : 249 }

Delete target; then compile and run tests

Licensed to Coen De Roover <cderoove@vub.ac.be>

CRUD operations on resources as HTTP request-response cycles

http://GoTicks.com

:~ cderoove$ http POST localhost:5000/events/RHCP tickets:=10
HTTP/1.1 201 Created
Content-Length: 28
Content-Type: application/json
Date: Tue, 06 Feb 2018 12:07:30 GMT
Server: GoTicks.com REST API

{
 "name": "RHCP",
 "tickets": 10
} :~ cderoove$ http GET localhost:5000/events/

HTTP/1.1 200 OK
Content-Length: 74
Content-Type: application/json
Date: Tue, 06 Feb 2018 12:18:46 GMT
Server: GoTicks.com REST API

{
 "events": [
 {
 "name": "DJMadLib",
 "tickets": 15
 },
 {
 "name": "RHCP",
 "tickets": 10
 }
]
}

create a Red Hot Chilli Peppers event with 10 tickets

list available tickets for all events

GoTicks.com: REST API

53

Demo

http://GoTicks.com

:~ cderoove$ http POST localhost:5000/events/RHCP/tickets tickets:=2
HTTP/1.1 201 Created
Content-Length: 46
Content-Type: application/json
Date: Tue, 06 Feb 2018 12:20:53 GMT
Server: GoTicks.com REST API

{
 "entries": [
 {
 "id": 1
 },
 {
 "id": 2
 }
],
 "event": "RHCP"
}

purchase two tickets for Red Hot Chilli Peppers event

:~ cderoove$ http GET localhost:5000/events/
HTTP/1.1 200 OK
Content-Length: 73
Content-Type: application/json
Date: Tue, 06 Feb 2018 12:23:14 GMT
Server: GoTicks.com REST API

{
 "events": [
 {
 "name": "DJMadLib",
 "tickets": 15
 },
 {
 "name": "RHCP",
 "tickets": 8
 }
]
}

list remaining tickets for all events

GoTicks.com: REST API

54

Demo

http://GoTicks.com

[Roestenburg et al. 2016]

37Explore the actors in the app

import akka.actor.{ ActorSystem , Actor, Props }
import akka.event.Logging
import akka.util.Timeout

import akka.http.scaladsl.Http

Listing 2.11 Main class import statements

Actor

RestApi

Message

TicketRequest
("RHCP", 2)

HTTP request

{"tickets" : 2}

HTTP JSON

{
 "event" : "RHCP",
 "entries":[
 {"id" : 1},
 {"id" : 2}
]
}

Message

Buy(2)

Actor

BoxOffice

Actor

TicketSeller

Message

Tickets(Vector(
 Ticket(1),
 Ticket(2)
))

RestApi receives
POST /events/RHCP/tickets
request

RestApi responds
with JSON tickets

TicketSeller responds
to original sender
with the Tickets

RestApi creates
TicketRequest from
the JSON request and
sends it to the BoxOffice

The BoxOffice finds child
with name "RHCP" and
forwards the Buy message
to it. The sender of the
message as seen from the
TicketSeller is the RestApi.

ActorSystem

Figure 2.3 Buying a ticket

Actor-related code is located
in akka.actor package

Logging extension
Asking requires timeout

HTTP-related code is located
in akka.http package

Licensed to Coen De Roover <cderoove@vub.ac.be>

separate TicketSeller

actor per event!

processing tickets and

answering REST calls

happens concurrently

GoTicks.com: REST API

55

Actors facilitate fine-grained

upscaling within a container

http://GoTicks.com

class TicketSeller(event: String) extends Actor {

 var tickets : List[Ticket] = List()

 def receive = {
 case Add(newTickets) =>
 tickets = tickets ++ newTickets

 case Buy(nrOfTickets) if nrOfTickets <= tickets.size =>
 val entries = tickets.take(nrOfTickets)
 tickets = tickets.drop(nrOfTickets)
 sender() ! Tickets(event, entries)

 case Buy(_) =>
 sender() ! Tickets(event, List())

 case GetEvent =>
 sender() ! BoxOffice.Event(event, tickets.size)

 case Cancel =>
 sender() ! BoxOffice.Event(event, tickets.size)
 self ! PoisonPill
 }
} terminates the TicketSeller actor

when the event is canceled

GoTicks example: scaling upwards

56

answer the remaining

tickets for the event

list of numbered tickets

populated by the BoxOffice actor

answer the requested

number of tickets

or an empty list of tickets

class BoxOffice extends Actor with ActorLogging {
 import BoxOffice._

 def createTicketSeller(name: String) =
 context.actorOf(TicketSeller.props(name), name)

 def receive : Receive = {
 case CreateEvent(name, tickets) =>
 context.child(name) match {
 case None =>
 val newSellerRef = createTicketSeller(name)
 val newTickets = (1 to tickets).map(ticketId => TicketSeller.Ticket(ticketId))
 newSellerRef ! TicketSeller.Add(newTickets.toList)
 sender ! EventCreated(Event(name, tickets))
 case Some(_) => sender ! EventExists
 }

 case GetTickets(event, tickets) =>
 context.child(event) match {
 case None => sender ! TicketSeller.Tickets(event, Nil)
 case Some(seller : ActorRef) => seller.forward(TicketSeller.Buy(tickets))
 }

creates a TicketSeller for the

given event as a child actor

checks whether a TicketSeller for

the given event already exists,

and creates one otherwise

adds a list of numbered tickets

to the seller’s inventory

communicates success

back to RestAPI actor

GoTicks example: scaling upwards

57

forwards, rather than sends, a Buy message to the

appropriate child actor

this ensures responses will go to the REST API

 case GetEvent(event) =>
 context.child(event) match {
 case None => sender ! None
 case Some(seller : ActorRef) => seller.forward(TicketSeller.GetEvent)
 }

 case CancelEvent(event) =>
 context.child(event) match {
 case None => sender ! None
 case Some(seller: ActorRef) => seller.forward(TicketSeller.Cancel)
 }

 case GetEvents =>
 context.children.foreach(seller => seller ! TicketSeller.GetEvent)
 context.setReceiveTimeout(100 microseconds)
 context.become(receiveResponses(sender, Nil))
 }

GoTicks example: scaling upwards

58

switch to another message processing

function to accumulate responses!

how to collect responses?

 def receiveResponses(replyTo : ActorRef, responses : List[Event]) : Receive = {
 case response : Event =>
 context.become(receiveResponses(replyTo, response :: responses))
 case ReceiveTimeout =>
 replyTo ! Events(responses)
 context.setReceiveTimeout(Duration.Undefined)
 context.become(receive)
 }
}

GoTicks example: scaling upwards

59

destination for accumulation responses accumulated so far

continue accumulating

change back to regular

message processing

86 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

IMPACT

(integrated development environment)
or Mule Studio. Unlike prior, some-
what contrived “visual programming”
attempts, the simple pipes-and-!lters
architectural style of asynchronous
messaging solutions makes this visual
composition of patterns natural. Fig-
ure 2 shows a visual Camel route that
directs an incoming message to one of
two possible message endpoints via a
message router. ESB developers can
now think, design, communicate, and
implement their solutions using the
EIP vocabulary, even if they’re using
different runtime platforms.

The EIP playing-card deck handed
out at the inaugural CamelOne confer-
ence is likely the most creative pattern
adaptation to date (see Figure 3). Each
card shows a pattern from the pattern
language together with the solution
statement. It’s satisfying to see design
patterns, which were created to improve
human communication and collabora-
tion, !nding their way (literally) into
the hands of architects and engineers in
such an approachable, useful way.

T he statistics we presented
here indicate that pattern lan-
guages have had a broad im-

pact on the software design community
over the past 20 years. Many research
questions around patterns remain

FIGURE 2. Creating messaging solutions
using the visual pattern language from
Enterprise Integration Patterns (EIPs)7 inside
the Redhat Fuse IDE (integrated development
environment). Messages arriving from a
!le-based message endpoint are routed
by a content-based router to one of two
potential message endpoints based on the
city speci!ed inside the message content.
The content-based router pattern describes
a reusable design for routing messages to a
correct recipient based on message content.

FIGURE 3. Playing cards based on Enterprise Integration Patterns. The visual pattern
language allows for an interactive, almost playful usage of the patterns. Each card displays the
pattern icon together with the name and solution statement.

actually an ad-hoc implementation of Aggregator pattern!

could also use built-in support for futures

send accumulation

upon response timeout

using distributed actors

μ-services architecture

Scaling up

Scaling out

introduction and motivation

using concurrent actors

Scaling out through distributed programming

61

Distribution is another means to achieve elasticity:

add threads from different network nodes to the application

122 CHAPTER 6 Your first distributed Akka app

 We’ll show you that this choice provides a solid foundation for building both local
and distributed applications that are fit for the challenges of today. Akka provides a sim-
ple API for asynchronous programming as well as the tools you need to test your applica-
tions locally and remotely. Now that you understand the reasoning behind a distributed
programming model for both local and distributed systems, in the following sections
we’ll look at how we can scale out the GoTicks.com App that we built in chapter 2.

6.2 Scaling out with remoting
Since this is an introduction to scaling out, we’ll use the relatively simple example
GoTicks.com app from chapter 2. In the next sections, we’ll change the app so it runs
on more than one node. Although the GoTicks.com app is an oversimplified exam-
ple, it will give you a feel for the changes you need to make to an app that hasn’t made
any accommodations for scaling.

 We’ll define a static membership between two nodes using a client-server network
topology, since it’s the easiest path from local to distributed. The roles for the two
nodes in this setup are frontend and backend. The REST interface will run on a front-
end node. The BoxOffice and all TicketSellers will run on a backend node. Both
nodes have a static reference to each other’s network addresses. Figure 6.2 shows the
change that we’ll make.

HTTP routes

RestApi

Actor

BoxOffice

Actor

TicketSeller

Single node

Single-node ActorSystem

HTTP routes

RestApi

Actor

TicketSeller

Frontend node

Frontend ActorSystem

Actor

BoxOffice

Backend node

Backend ActorSystem

Figure 6.2 From single node
to client-server

Licensed to Coen De Roover <cderoove@vub.ac.be>

Distributed actor programming

actor systems are distributable by design

actors are strongly-encapsulated: no shared data

communication through addresses (ActorRefs) is location-transparent:

same ! for sending asynchronous message to local and to remote ActorRef

62

[Andrén 2017]

Local
ActorSystem

Message

Message

Actor

Actor

Actor

JVM 2JVM 1

Distributed
ActorSystem

ActorSystem

Message

Message

Actor

Actor

Actor

Reality strikes

63

``A distributed system is

one in which the failure of a

computer you didn't even

know existed can render

your own computer

unusable.’’

Leslie Lamport,

2013 Turing Award winner

rendering messages first-class entities enables implementing delivery guarantees:

at-most-once delivery:

no state required at sender nor receiver, a message sent once will either arrive or not

message will be delivered [0,1] times

at-least-once:

keep state at the sender to ensure that a message will be resent until it has been

acknowledged by the recipient

message will be delivered [1,∞] times as the acknowledgement message might be lost

exactly-once:

as above, with additional state at the receiver to make sure only the first of the same

messages will be processed

message will be delivered exactly 1 time

(under the assumption of eventual availability of channel and recipient)

unfortunately, (distributed) communication is inherently unreliable

delivery of a message requires eventual availability of channel and recipient

64

Resilience against delivery failures

NOTE: as a recipient might fail while processing a message, reliability can only be guaranteed by application-level

acknowledgements of message processing, it does not suffice for the messaging system to acknowledge putting the

message in the recipients’ mailbox

Resilience against unexpected exceptions

65

/

user system

a b

b1 b2

e
x
c
e
p
tio

n

b1

re
s
o
lu

tio
n

every actor is a supervisor

of its child actors

a failed actor can

be replaced
messages sent to address will

be processed by new actor

✉ ✉

Application-level resilience against node failures

66

323Why use clustering?

can be used to communicate with actors in the cluster, how you can build a resilient,
coordinated process consisting of many actors in the cluster, and how to test a clus-
tered actor system.

14.1 Why use clustering?
A cluster is a dynamic group of nodes. On each node is an actor system that listens on
the network (like you saw in chapter 6). Clusters build on top of the akka-remote
module. Clustering takes location transparency to the next level. The actor might
exist locally or remotely and could reside anywhere in the cluster; your code doesn’t
have to concern itself with this. Figure 14.1 shows a cluster of four nodes.

The ultimate goal for the cluster module is to provide fully automated features for
actor distribution, load balancing, and failover. Right now the cluster module sup-
ports the following features:

� Cluster membership—Fault-tolerant membership for actor systems.
� Load balancing—Routing messages to actors in the cluster based on a routing

algorithm.

Cluster
(node 1, node 2, node 3, node 4)

Node 1

User

a

c d

b

e

Node 4

User

a

c d

b

e

Node 2

User

a

c d

b

e

Node 3

User

a

c d

b

e

Every node contains an
actor system. The actor
systems need to have the
same name to be part of
the same cluster.

A list of member nodes
is maintained in a current
cluster state. The actor
systems gossip to each
other about this state.

The cluster is
a ring of nodes.

Figure 14.1 A four-node clustered actor system

Licensed to Coen De Roover <cderoove@vub.ac.be>

decentralised peer-to-peer cluster membership: gossip protocol and failure detection

message routing: load balancing, topic-based publish/subscribe

@ticofab
ticofab.ioThe Akka-Kubernetes Stack

JVM JVM

Pod Pod Pod

VM VM

Actor Actor ActorActor ActorActors

JVM

Akka node

Pods

VM

Kubernetes node

JVM Akka Cluster

Infrastructure-level resilience against node failures

[https://www.lightbend.com/blog/akka-and-kubernetes-reactive-from-code-to-cloud]

https://www.lightbend.com/blog/akka-and-kubernetes-reactive-from-code-to-cloud

68

Load Balancer

Pod 2Pod 1 Pod 3

Load Balancer

Pod 2Pod 1 Pod 3

“Crop Circle”

Shows

Running Pods / JVMs

POD / JVM

POD / JVM

POD / JVM

“Crop Circle”

Shows

Running Pods / JVMs

load balancer

Entity

Shard

Singleton

HTTP Server

Pod

REST API

shard

persistent

actors

Application-level + infrastructure-level
[Hugh McKee 2019]

69

[Hugh McKee 2019]

Application-level + infrastructure-level

But resilience remains difficult to get right …

[https://stackoverflow.com/questions/27592304/akka-persistence-with-confirmed-delivery-gives-inconsistent-results]

Ongoing research

https://stackoverflow.com/questions/27592304/akka-persistence-with-confirmed-delivery-gives-inconsistent-results

But resilience remains difficult to get right …

71
117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA De Bleser et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

current testing strategy of a system by determining whether tests
also keep succeeding under adverse conditions.

We have several reasons to believe that the combination of test
ampli�cation and delta debugging can expose resilience issues: (i) a
signi�cant amount of time is spent on software testing [40, 43] and
tests are therefore likely to capture domain-speci�c information;
(ii) developers tend to test the most important features (i.e., “happy
paths”) [8, 30] �rst due to timing and budget constraints [7, 18]; (iii)
previous work [48] found that the majority of catastrophic failures
could have been prevented by performing simple testing on error
handling code; and (iv) that many distributed system failures are
caused by the untimely arrival of a single event [33].

To summarize, this paper makes the following contributions:

• The design of an automated resilience testing approach
which combines test ampli�cation with delta debugging to
identify shortcomings in the implementation of resilience
tactics in actor-based applications through perturbation of
their test executions.

• The realization of this approach in a tool called C������3.
It automatically identi�es mistakes in the implementation of
resilience against actor restarts andmessage delivery failures
in actor systems implemented with A���.

• An experimental evaluation of three exploration techniques:
����, �����, and �������. In particular, we show that the
delta-debugging variants ����� and ������� consistently
�nd resilience mistakes up to four times faster compared to
the random exploration of ����.

The remainder of the paper is structured as follows. Section 2
introduces the actor model and the resilience tactics as supported
by A���. In Section 3, we present our resilience testing approach
and its realisation in C������. The exploration strategies it can be
con�gured with are discussed in Section 4. We evaluate the tool in
Section 5, while we discuss the current limitations and challenges
in Section 6. Finally, we discuss related work in Section 7.

2 BACKGROUND
The S����4 ecosystem features A���, a modern implementation
of the actor model [2, 26] where actors communicate through asyn-
chronous message sending, rather than shared state. Listing 1 illus-
trates how developers can render anA��� program resilient against
delivery failures of message CountCommand, even across cluster mi-
gration restarts of the GuaranteedDeliveryActor actor. Listing 2
depicts the corresponding test case which uses S����T���5 , the
most popular S���� testing framework [13].

2.1 Actors in A���
Actors in A��� have local state, a message handler, and a mailbox
in which messages are queued. Actors can (i) update their own local
state, (ii) change their message handler, (iii) send messages to other
actors, and (iv) create new actors.

3https://github.com/jonas-db/chaokka
4https://www.scala-lang.org
5http://www.scalatest.org

1 import akka.actor.{Actor , ActorRef}

2 import akka.persistence .{ PersistentActor , AtLeastOnceDelivery}

3
4 trait Event

5 case class Plus(amount: Int)

6 case class PlusEvent(amount : Int) extends Event

7 case class CountCommand(id : Long , amount : Int)

8 case class ConfirmEvent(id : Long) extends Event

9 case class Confirm(id : Long)

10
11 class GuaranteedDeliveryActor(ref: ActorRef)

12 extends PersistentActor with AtLeastOnceDelivery {

13
14 override def receiveCommand: Receive = {

15 case Plus(amount) =>

16 persist(PlusEvent(amount))(updateState)

17 case Confirm(id) =>

18 persist(ConfirmEvent(id))(updateState)

19 }

20
21 override def receiveRecover: Receive = {

22 case e : Event => updateState(e)

23 }

24
25 def updateState(e: Event): Any = e match {

26 case PlusEvent(amount) =>

27 deliver(ref.path)(id => CountCommand(id, amount))

28 case ConfirmEvent(id) =>

29 confirmDelivery(id)

30 }

31
32 override def persistenceId: String = �actor -1�

33 }

34
35 class Accumulator extends Actor {

36 var count: Int = 0

37
38 override def receive: Receive = {

39 case CountCommand(id: Long , amount: Int) =>

40 count = count + amount

41 sender () ! Confirm(id)

42 case �result� =>

43 sender () ! count

44 }

45 }

Listing 1: Motivating example.

Class Accumulator on lines 35–45 implements an actor and
de�nes its message handler as a partial function returned by the
overriding method receive. Each case in the handler determines
how a certain kind of message sent to the actor should be processed.
Messages are removed one-by-one from the mailbox and processed
by atomatically applying the message handler. For instance, the
case on lines 42-43 matches �result�messages where the handler
will use the ! operator to send the current value of count to the
sender of the message.

Messages are sent to location-transparent addresses of type
ActorRef (e.g., as returned by sender() on line 43); whether the
actor behind this address is local or remote is transparent to the
sender. In fact, the actor’s physical location can be changed through
con�guration without altering the code. This location transparency
enables our tester to simulate a completely distributed deployment
on a single JVM.

2

regular message handler

recovery handler used to

rehydrate state from journal

message send with at-least-once delivery

message processing

acknowledgement sent back

framework can stop resending

Ongoing research

… even by PhD students

72

characters in a given order. With respect to the previous task,
the subtle difference is that the list could contain duplicates.
The participant had to made sure that they did not consider a
duplicate character as a duplicate message (i.e., duplicate as
in a message that was sent again).

For all three tasks, persistence had to be considered for
both actors. The participants had to decide which state of
the actor must be persisted by which event (including which
messages were sent or not), as well as implement the recovery
step such that each event changed the state accordingly. We
did not shuffle the order of the tasks because we would
like to assess the awareness over time, as participants were
instructed to read the summary again after each task. After
all tasks were completed, the participants had to reflect about
their implementations by answering the following questions:

1) Did your implementation take into account PROPERTY?
2) If no, what are the reasons that you did not consider

PROPERTY?
where we considered message duplication and message order-
ing as PROPERTY.

To address RQ1, we analyse how many participants
believed to have correctly implemented the message
guaranteed policies and their implications. To address the
follow-up questions RQ2a and RQ2b, we manually checked
the tasks completed by the participants to assess how many
were able to correctly implement them. Finally, to address
RQ3 we asked to the participants whether tool support could
facilitate resilience testing and which characteristics it should
provide.

Participants. We invited eight participants with a wide
range of experience to participate in our survey. 5 out 8
(62.5%) of the participants consider themselves as experienced
in actor systems (i.e., more than 4 on the Likert scale [12])
and were familiar a wide range of actor frameworks (e.g.,
ERLANG, ELIXIR). However, most of them were not familiar
with AKKA. Nevertheless, the investigated issues can occur
in any actor framework and every developer has to take
these into account, regardless of their experience. We further
discuss some of the threats to validity in VIII. The survey was
hosted on Google Forms and it is designed to be completed
in approximately 2 hours (30 minutes for the introduction and
questions, and 30 minutes for each task). The programming
tasks had to be implemented using INTELLIJ IDEA.

B. Analysis of the Results
Figure 2 shows the results for RQ1, RQ2a , and RQ2b . For

Message Duplication, we observe that the awareness increased
over time. In specific for the first task, most of the participants
(7 out 8 - 87.5%) did not consider the issue. This number
decreased to 4 out 8 participants (50%) in the second and
third task, respectively. Most of the participants stated that
they simply ”forgot it” or were thinking about other aspects
needed to implement resilient systems ”forgot about it, I was
focused on persistence”.

7

1

4

1

3

4

1

3

3

1

4

1

2

5

Message Duplication Message Ordering

Ta
sk

1
Ta

sk
2

Ta
sk

3
Ta

sk
1

Ta
sk

2
Ta

sk
3

0

1

2

3

4

5

6

7

8

Result Aware and Implemented Aware and Not Implemented Not Aware and Not Implemented

Figure 2. Results of the survey.

For MESSAGE ORDERING, we note that most of the par-
ticipants were aware about the issue. It is worth nothing
that the first task did not require any handling of message
ordering. In the second task, 5 out 8 (62.5%) were aware
about the behaviour and 4 out 8 (50%) correctly implemented
a solution. Both the number of participants aware of the
issue and participants able to correctly implement a solution
increased in the third task. Specifically, 7 out 8 (87.5%) were
aware of the issue, while 5 out 8 (62.5%) implemented a
correct solution.

As a side effect of our survey, we noticed that some
participants made mistakes in making actors resilient against
restarting. While both actors had to persist their state to be
resilient, our results show that participants often forgot to
persist the state of the second actor.

For example, one participant stated ”[...] I was focusing
on the AtLeastOnceDelivery part, kind of forgot about per-
sistency” which indicates that a developer has to take many
things into account at once. Therefore, a tool to test resilience
should also take this kind of issue into account. In particular, it
should check not only that the state is completely persisted, but
also that the recovery logic is correctly implemented. This can
partially be done through restarting the actor after processing
some messages and determine whether the state remains the
same.

In general, we observed that the participants frequently
forgot some of the aspects needed to implement resilient
systems. This might indicate why tool support could be
helpful. To further assess this statement (RQ3), we asked the
participants’ opinion about tool support for resilience testing.
A group consisting of 5 out 8 participants (62.5%) thinks
that an automated tool to verify resilience issues would be
useful, if it would work in a similar way of unit testing: ”[...]
The test would then fail if you forget to account for message
order/duplication.” and ”I don’t need a fancy GUI, as long
as the tool mostly works out of the box.”; and it would be
effective: ”[...] should be able to show me possible message
orderings that lead to unexpected outputs.” The remaining
ones would consider it useful only under some conditions such

as performance: ”Due to a possible combinatorial/exponential
explosion, checking whether the program is entirely bug-free
given limited time might not be possible” and completeness: I
would expect such a tool to be ”complete” (it should find all
bugs). However, dynamic analyses are typically incomplete,
but sound (i.e., not every bug will be detected by the tool, but
the detected bugs can happen in the system). As a summary,
the former group agreed that manually testing resilience is
not easy and requires a significant effort. They consider tool
support important, while the latter group raised some concerns
about the completeness of the tool, and the necessity of an
adequate test suite to make the tool work effectively.

In summary

The participants of our study became increasingly aware
about message duplication and message ordering over the
study period. However, only a minority of them were
able to correctly implement resilient systems. Most of the
participants consider tool support for resilience testing as
important but under certain conditions.

IV. ANONYMOUSTOOL’S OVERVIEW

As observed in Section III, the resilience of a distributed
system is often difficult to ensure. To help developers spot re-
silience shortcomings in AKKA-based distributed systems, we
developed the automated resilience testing tool ANONYMOUS-
TOOL. We now provide an overview of ANONYMOUSTOOL’s
resilience testing process (depicted in Figure 3) and summarize
its main characteristics. In brief, ANONYMOUSTOOL

1) automatically discovers all unit tests in a system’s
test suite through a custom extension of SCALATEST4,
SCALA’s most prominent [13] automated testing frame-
work. An index file is generated that contains the infor-
mation for each test case (e.g., name, duration, outcome),

2) obtains the execution traces of the system’s test cases
by instrumenting and monitoring the system under test
while executing its test cases,

3) selects suitable perturbation targets by analyzing the
execution trace of each test case,

4) generates a perturbation plan by enumerating all possible
perturbations for each perturbation target,

5) re-executes the test cases while the system under test is
perturbed according to the generated perturbation plan,

6) reports changes in test outcome with a resilience report
that contains the applied perturbations and the execution
trace.

We now discuss each step in more detail.

A. Input
ANONYMOUSTOOL takes an AKKA-based distributed actor

system and its SCALATEST-based test suite as input. It au-
tomatically detects all test cases and runs them to get initial
meta-data. This step does not require any manual developer
intervention.

4http://www.scalatest.org

B. Implementation
ANONYMOUSTOOL implements the resilience testing pro-

cess depicted in Figure 3 through several components that
are orchestrated from a custom plugin for the Scala Build
Tool SBT. Once enabled for the project under test, the
plugin uses ASPECTJ to intercept and log all relevant actor-
related events when the project’s tests are run. Example events
include actor creation, message sending, message enqueuing
in and dequeuing from a mailbox, message processing, actor
restarting, etc.

C. Test Run Tracing
The events intercepted during a test run are recorded to

an execution trace. ANONYMOUSTOOL uses this trace to
determine which perturbations can be applied during the
execution of each test. Listing 2 depicts an extract from an
example trace. On line 1 a message of type ex3.Letter is
sent from testActor-1 to ex3testactor, while line 2
reports on the creation of an ex3testactor actor which is
persistent and has the AtLeastOnceDelivery guarantee
trait mixed in.
1 Send(akka://AS/system/testActor-1,1537902442,akka://

ActorSystemExercise3/user/ex3testactor

,-504106474,906678420,ex3.Letter,390652926073579)

2 ActorRegistration(akka://AS/user/ex3testactor,

ex3testactor,-504106474,ex3.Exercise3,List(java.lang.

Object, akka.persistence.AtLeastOnceDelivery)

,390652924307172)

Listing 2. An extracted execution trace

D. Perturbation Targets
ANONYMOUSTOOL determines which actors and which

messages to perturb based on an execution trace. A pertur-
bation target can either be an actor (i.e., normal actors or
persistent actors) or a message (i.e., at-most-once or at-least-
once messages). For example, based on the trace in Listing 2,
it will select the message of type ex3.Letter and the actor
ex3testactor as perturbation targets.

E. Perturbation Plans
Once a perturbation target is found, ANONYMOUSTOOL

generates a perturbation plan by determining which pertur-
bations are applicable for the target. Algorithm 1 depicts
the pseudocode according to which plans are generated. Our
current prototype implementation supports 4 different kinds of
perturbations:

1) Actor Restart: AKKA provides a supervision mechanism
for all of its actors. By default, the execution of an actor is
supervised by the actor that created it. This feature enables
developers to react to the expected or unexpected termination
of an actor in its parent actor. The default reaction is to restart
the actor whenever an uncaught exception occurs, and to install
the new actor instance at the former address of the terminated
actor. This way, the new actor instance can continue processing
messages sent to that address.

Ordinary actors do not retain their state when restarted or
migrated to another cluster node. The framework provides

Ongoing research

Ongoing research: resilience testing

73

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

A Delta-Debugging Approach to Assessing the Resilience of
Actor Programs through Run-time Test Perturbations
Jonas De Bleser

jonas.de.bleser@vub.be
Vrije Universiteit Brussel

Brussels, Belgium

Dario Di Nucci
d.dinucci@uvt.nl

Tilburg University - JADS
’s-Hertogenbosch, The Netherlands

Coen De Roover
coen.de.roover@vub.be
Vrije Universiteit Brussel

Brussels, Belgium

ABSTRACT
Among distributed applications, the actor model is increasingly
prevalent. This programming model organises applications into
fully-isolated processes that communicate through asynchronous
messaging. Supported by frameworks such as A��� and O������,
it is believed to facilitate realising responsive, elastic and resilient
distributed applications.

While these frameworks do provide abstractions for implement-
ing resilience, it remains up to developers to use them correctly
and to test that their implementation actually recovers from antici-
pated failures. As manually exploring the reaction to every possible
failure scenario is infeasible, there is a need for automated means
of testing the resilience of a distributed application.

We present the �rst automated approach to testing the resilience
of actor programs. Our approach perturbs the execution of exist-
ing test cases and leverages delta debugging to explore all failure
scenarios more e�ciently. Moreover, we present a further optimisa-
tion that uses causality to prune away redundant perturbations and
speed up the exploration. However, its e�ectiveness is sensitive to
the program’s organisation and to the actual location of the fault.
Our experimental evaluation shows that our approach can speed up
resilience testing by four times compared to random exploration.

CCS CONCEPTS
•Computer systems organization→Reliability; Fault-tolerant
network topologies; • Software and its engineering → Soft-
ware testing and debugging.
KEYWORDS
Resilience Testing, Delta Debugging, Fault Injection, Test Ampli�-
cation

ACM Reference Format:
Jonas De Bleser, Dario Di Nucci, and Coen De Roover. 2020. A Delta-
Debugging Approach to Assessing the Resilience of Actor Programs through
Run-time Test Perturbations. In Proceedings of ACM Conference (Confer-
ence’17).ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The actor model [2, 26], which advocates the use of fully-isolated
processes that communicate through asynchronous messaging, is
increasingly popular among distributed systems. Originally em-
bodied by programming languages such as E����� and E�����, it
is now also supported by industrial-strength frameworks such as
A���1 for the JVM or O������2 for the .NET runtime.

A��� in particular has enjoyed adoption by large organisations
such as T������ and A����� [37], as well as academic attention
in the form of books on distributed systems [31, 41] and dedicated
research [28, 45–47]. Besides elementary abstractions for de�n-
ing actors and their communication, the A��� framework also
facilitates the implementation of resilience against anticipated in-
frastructural failures (e.g., network disconnections or node crashes).
For instance, it provides support for guaranteed message delivery
and for rebalancing actors across the nodes of a cluster.

Nevertheless, developers still need to (i) anticipate failure sce-
nario’s in their designs (e.g., slow or lost messages), (ii) decide
upon the corresponding resilience tactic (e.g., at-least-once delivery
mechanisms), and (iii) account correctly for all their implications
(e.g., process messages idempotently). An empirical study by Gao et
al. [17] con�rms that there are ample of opportunities for oversights
and mistakes.

Despite the need for resilience testing, progress has been slow.
The few techniques proposed in the literature for automated re-
silience testing all perturb a system’s execution by injecting faults
at run time. All need to cope with the problem of exploring a large
space of possible failure scenarios. The number of perturbations and
perturbation targets to consider when generating failure scenarios
is prohibitively large. Existing techniques explore failure scenarios
either (i) randomly [29], (ii) by means of developer-provided speci-
�cations [25], (iii) heuristically [21], or (iv) by means of backward
reasoning from a fault-sensitive outcome [4].

In this paper, we present an approach to resilience testing that
combines test ampli�cation [12] with delta debugging [49]. The
former improves existing test cases by injecting faults during their
execution, while the latter e�ciently decides which faults to in-
ject. In contrast to many approaches [6, 10, 29, 51] that follow the
Chaos Engineering methodology, our approach also aims to be
used during development as this poses no risk of service outages
and data loss. Instead of relying on failure speci�cations [25], ex-
ploration heuristics [21], or prohibitively expensive reasoning [4],
our approach uses the domain-speci�c information captured by
developers in existing tests. In particular, our goal is to improve the

1https://akka.io
2https://dotnet.github.io/orleans

1

[Submitted to AST2020]

1. execute test and record outcome

2. analyse execution trace for all perturbation targets

3. until change in test outcome or test budget exhausted:

re-execute test under adverse conditions

- terminate persistent actor after a message has been processed

- duplicate or delay at-least-once delivery messages

like Chaos Engineering, but at the
application-level and during testing

Ongoing research

Ongoing research: resilience testing

74

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

A Delta-Debugging Approach to Assessing the Resilience of Actor Programs through Run-time Test Perturbations Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 7: Generated actor system with a resilience defect.

and their causing messages. This means that our implementation re-
laxes the equality of messages as we use the combination of sender,
receiver and message hash. Ideally, perturbations should be based
on the send identi�er instead of this combination. However, this
requires an advanced replay mechanism of the whole actor system
which is out of the scope of this paper.

It is also important to note that this optimisation only works
when there are independent execution paths. In the worst case,
������� degrades to �����. Compared to ����, this is still much
more e�cient. Nevertheless, we see several applications where in-
dependent execution paths occur such as publish/subscribe systems
and microservice architectures as discussed in Section 6.1.

5 EVALUATION
We evaluate our approach by applying its prototype implementation
C������ on a number of automatically generated actor systems,
seeded with defects in the implementation of resilience against
actor restarts and duplicated message. Through this experiment,
we aim to answer the following research questions:

RQ1: How e�ective are the delta-debugging exploration strategies
����� and ������� compared to the random exploration strategy ����
in detecting the seeded resilience defects?

RQ2: What is the overhead of applying C������’s perturbations
on the execution of test cases?

5.1 Design
As there is no open-source corpus of distributed actor systems that
implement resilience tactics with known defects, we automatically
generate actor systems for our experiments and randomly seed
them with resilience defects. The communication topology of the
generated actor systems is representative for those known from
micro-service architecture benchmarks [16, 54] and cloud services
such as �B��7. That is, we assume that one actor corresponds to
one micro-service.

Figure 7 depicts an example of the actor systems generated for
our experiments. In contrast to A���’s default, all generated actors
are resilient against restarts and all asynchronous messages are
resilient against delivery failures. Each actor system consists of 50
numbered actors that persist a counter as their internal state. For
7See https://youtu.be/U7X3qONf3sU?t=1182 for a description.

Table 1: The mean (A) and median (M) number of iterations
needed to �nd a resilience defect, as well as the number of
timeouts (T). Resilience defect is either restart actor (R) or
duplicate message (D).

Messages 258 408 616 378 1026 626 706 854 1770 2008
Resilience Defect D D D R D R R R D D
Perturbations 129 204 308 378 513 626 706 854 885 1004

����
A 52 63 32 49 34 62 49 46 42 41
M 36 47 14 35 9 62 42 26 20 30
T 0 4 13 1 13 6 2 6 12 14

�����
A 12 12 13 13 15 14 14 14 14 15
M 12 12 13 13 14 14 14 14 14 15
T 0 0 0 0 0 0 0 0 0 0

�������
A 8 10 11 8 11 8 8 10 13 10
M 7 11 11 9 12 9 8 10 12 9
T 0 0 0 0 0 0 0 0 0 0

each system, we generate a test case that sends a message to the
entry point of the system (i.e., actor 0) and asserts the system’s state
after all communication has happened. During the execution of the
system, messages are sent with at-least-once delivery semantics to
one or more actors with a higher number. Each message changes
the internal state by incrementing a counter value and persisting it
subsequently. For each system, our generation process randomly
selects n communication pairs from all pairs of actors (s, r) such
that the receiver r has a higher number than the sender s (i.e., the
communication topology forms a directed acyclic graph). However,
this process might result in a system where not every actor receives
a message. Therefore, we extend the communication pairs such that
every actor receives at least one message. These communication
pairs are also used to generate the assertions. In particular, we assert
that the �nal counter value is equal to the number of paths from
actor 0 to this actor. This number equals to the number of messages
it will receive, and therefore equals to the value of the counter. We
simulate a defect in persistence by not persisting its counter value
across restarts, and a defect in idempotence by not checking for
duplicated messages. In order to answer RQ1 and RQ2, we conduct
the following experiments:

Experiment1: We generate 10 actor systems, summarized in
Table 1, and run our tool on mutants of these actor systems by seed-
ing one defect in one of the actors with number 5, 25, or 45. These
actors were selected as targets since they process their messages
at di�erent times in the execution. The resulting set of systems
consists of 30 actor systems with varying size and defects, as shown
in Table 1. The number of perturbations explored by each strategy
is determined by the number of messages and the perturbation type.
For each exploration strategy, we repeat the experiments for each
system 10 times with a timeout of 30 minutes.

Experiment2:We select the largest generated actor system from
our previous experiment (i.e., the one with 2008 messages) and
systematically select and apply n perturbations, where n increases
in steps of 100. We repeat this experiment 10 times and compare the
execution time in order to assess the overhead of each perturbation
(i.e., Duplication and Restart).

All experiments are executed on an Ubuntu 18.04.3 instance with
252GB of RAM and 8 Intel(R) Xeon(R) CPU E5-2637 v3 @ 3.50GHz
with Hyper-Threading enabled.

7

automatically-generated + defect-seeded systems

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA De Bleser et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0

50

100

12
9

20
4

30
8

37
8

51
3

62
6

70
6

85
4

88
5

10
04

Perturbations

Ite
ra
tio
ns

Analysis
RT−DD

RT−DD−O

RT−R

Figure 8: Performance of all three exploration strategies.

5.2 Results
RQ1. Table 1 depicts the mean (rows A) and median (rows M)
number of iterations that was required by each exploration strategy
to �nd the seeded defect, as well as the number of runs that timed
out (rows T) after 30 minutes. However, timeouts only occurred for
���� as can be seen from that table. Figure 8 depicts the results of
all runs, omitting runs that timed out.

It is clear that the number of iterations required by ���� �uctu-
ates widely, while ����� and ������� are much more stable and
require fewer iterations to �nd the seeded defect. Note that, in our
experiments, ���� did not necessarily time out more often when an
increasing number of perturbations needed to be explored. Again,
this is due to its non-deterministic nature. Testament to their ef-
�ciency, the delta-debugging strategies don’t time out at all. For
all experiments, it takes ���� on average 33 and 37 iterations more
to �nd the defect compared to ����� and ������� respectively. In
relative terms, ���� needs 370% of the iterations of ������� and
236% of those of �����.

The performance of ������� is slightly better than that of �����.
In all experiments, it takes ����� on an average 4 iterations more
compared to �������. In relative terms, ����� needs 140% of the
iterations of �������. While not immediately apparent from Fig-
ure 8, the number of iterations required by ������� is sensitive to
the location of the defect in the trace of the test case execution.
For defects located early on in the execution, it is more likely that
������� can prune away a large part of the trace.

RQ1 Summary

����� and ������� outperform ���� and need about four times fewer
iterations for detecting a single failure. ������� demonstrates that
causality can be leveraged to achieve a better performance than �����.
However, the improvements are highly dependent on program struc-
ture and fault location, and can degrade to ����� in the worst case.

RQ2. Figure 9 depicts box-and-whisker plots of the di�erent exe-
cution times needed to run the test case with increasingly large per-
turbation con�gurations. We observe that the execution overhead

of con�gurations consisting of duplication perturbations grows
linearly, while the overhead of con�gurations consisting of restart
perturbations seems to grow exponentially. This is to be expected
as asynchronous message sends, the bread and butter of the actor
model, are fast and duplicating one message causes little overhead.
The need to restart an actor, in contrast, should be rare and there-
fore does cause an overhead —which might be less outspoken for
actors that persist and recover their state through other means than
event sourcing. Nevertheless, the overhead of at most 13 minutes
for the most expensive perturbation con�gurations is still within
acceptable limits and indicates that it is feasible to incorporate the
C������ prototype in a testing process. Moreover, there is ample
room for improvements in its implementation.

0

200

400

600

800

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Perturbations

Se
co
nd
s Type

Duplication

Restart

Figure 9: Overhead of perturbations.

RQ2 Summary

The overhead of C������ is acceptable for large quantities of message
duplication perturbations applied to a test case, but might become
problematic when large quantities of actor restart perturbations need
to be applied. It depends on how long it takes for the perturbed system
to recover from each perturbation.

6 APPLICABILITY & LIMITATIONS
To the best of our knowledge, C������ is the �rst resilience testing
approach for actor programs written in the A��� framework. We
brie�y discuss other potential application domains of our approach,
as well as its assumptions and limitations.

6.1 Applicability
Actor frameworks. Our prototype targets A��� because it is the
most popular implementation of the actor model for the JVM, with
both a J��� and a S���� implementation. However, our approach
is equally applicable to actor frameworks for other languages such
as O������, P����, A����, etc. We have provided our tool as a
reference implementation in the hope it may be adapted to these
frameworks as well. It should su�ce to intercept the run-time

8

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA De Bleser et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0

50

100

12
9

20
4

30
8

37
8

51
3

62
6

70
6

85
4

88
5

10
04

Perturbations

Ite
ra
tio
ns

Analysis
RT−DD

RT−DD−O

RT−R

Figure 8: Performance of all three exploration strategies.

5.2 Results
RQ1. Table 1 depicts the mean (rows A) and median (rows M)
number of iterations that was required by each exploration strategy
to �nd the seeded defect, as well as the number of runs that timed
out (rows T) after 30 minutes. However, timeouts only occurred for
���� as can be seen from that table. Figure 8 depicts the results of
all runs, omitting runs that timed out.

It is clear that the number of iterations required by ���� �uctu-
ates widely, while ����� and ������� are much more stable and
require fewer iterations to �nd the seeded defect. Note that, in our
experiments, ���� did not necessarily time out more often when an
increasing number of perturbations needed to be explored. Again,
this is due to its non-deterministic nature. Testament to their ef-
�ciency, the delta-debugging strategies don’t time out at all. For
all experiments, it takes ���� on average 33 and 37 iterations more
to �nd the defect compared to ����� and ������� respectively. In
relative terms, ���� needs 370% of the iterations of ������� and
236% of those of �����.

The performance of ������� is slightly better than that of �����.
In all experiments, it takes ����� on an average 4 iterations more
compared to �������. In relative terms, ����� needs 140% of the
iterations of �������. While not immediately apparent from Fig-
ure 8, the number of iterations required by ������� is sensitive to
the location of the defect in the trace of the test case execution.
For defects located early on in the execution, it is more likely that
������� can prune away a large part of the trace.

RQ1 Summary

����� and ������� outperform ���� and need about four times fewer
iterations for detecting a single failure. ������� demonstrates that
causality can be leveraged to achieve a better performance than �����.
However, the improvements are highly dependent on program struc-
ture and fault location, and can degrade to ����� in the worst case.

RQ2. Figure 9 depicts box-and-whisker plots of the di�erent exe-
cution times needed to run the test case with increasingly large per-
turbation con�gurations. We observe that the execution overhead

of con�gurations consisting of duplication perturbations grows
linearly, while the overhead of con�gurations consisting of restart
perturbations seems to grow exponentially. This is to be expected
as asynchronous message sends, the bread and butter of the actor
model, are fast and duplicating one message causes little overhead.
The need to restart an actor, in contrast, should be rare and there-
fore does cause an overhead —which might be less outspoken for
actors that persist and recover their state through other means than
event sourcing. Nevertheless, the overhead of at most 13 minutes
for the most expensive perturbation con�gurations is still within
acceptable limits and indicates that it is feasible to incorporate the
C������ prototype in a testing process. Moreover, there is ample
room for improvements in its implementation.

0

200

400

600

800

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Perturbations

Se
co
nd
s Type

Duplication

Restart

Figure 9: Overhead of perturbations.

RQ2 Summary

The overhead of C������ is acceptable for large quantities of message
duplication perturbations applied to a test case, but might become
problematic when large quantities of actor restart perturbations need
to be applied. It depends on how long it takes for the perturbed system
to recover from each perturbation.

6 APPLICABILITY & LIMITATIONS
To the best of our knowledge, C������ is the �rst resilience testing
approach for actor programs written in the A��� framework. We
brie�y discuss other potential application domains of our approach,
as well as its assumptions and limitations.

6.1 Applicability
Actor frameworks. Our prototype targets A��� because it is the
most popular implementation of the actor model for the JVM, with
both a J��� and a S���� implementation. However, our approach
is equally applicable to actor frameworks for other languages such
as O������, P����, A����, etc. We have provided our tool as a
reference implementation in the hope it may be adapted to these
frameworks as well. It should su�ce to intercept the run-time

8

intelligent
exploration

strategy required

restart perturbations are more expensive,
as they take longer to recover from

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

A Delta-Debugging Approach to Assessing the Resilience of Actor Programs through Run-time Test Perturbations Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 7: Generated actor system with a resilience defect.

and their causing messages. This means that our implementation re-
laxes the equality of messages as we use the combination of sender,
receiver and message hash. Ideally, perturbations should be based
on the send identi�er instead of this combination. However, this
requires an advanced replay mechanism of the whole actor system
which is out of the scope of this paper.

It is also important to note that this optimisation only works
when there are independent execution paths. In the worst case,
������� degrades to �����. Compared to ����, this is still much
more e�cient. Nevertheless, we see several applications where in-
dependent execution paths occur such as publish/subscribe systems
and microservice architectures as discussed in Section 6.1.

5 EVALUATION
We evaluate our approach by applying its prototype implementation
C������ on a number of automatically generated actor systems,
seeded with defects in the implementation of resilience against
actor restarts and duplicated message. Through this experiment,
we aim to answer the following research questions:

RQ1: How e�ective are the delta-debugging exploration strategies
����� and ������� compared to the random exploration strategy ����
in detecting the seeded resilience defects?

RQ2: What is the overhead of applying C������’s perturbations
on the execution of test cases?

5.1 Design
As there is no open-source corpus of distributed actor systems that
implement resilience tactics with known defects, we automatically
generate actor systems for our experiments and randomly seed
them with resilience defects. The communication topology of the
generated actor systems is representative for those known from
micro-service architecture benchmarks [16, 54] and cloud services
such as �B��7. That is, we assume that one actor corresponds to
one micro-service.

Figure 7 depicts an example of the actor systems generated for
our experiments. In contrast to A���’s default, all generated actors
are resilient against restarts and all asynchronous messages are
resilient against delivery failures. Each actor system consists of 50
numbered actors that persist a counter as their internal state. For
7See https://youtu.be/U7X3qONf3sU?t=1182 for a description.

Table 1: The mean (A) and median (M) number of iterations
needed to �nd a resilience defect, as well as the number of
timeouts (T). Resilience defect is either restart actor (R) or
duplicate message (D).

Messages 258 408 616 378 1026 626 706 854 1770 2008
Resilience Defect D D D R D R R R D D
Perturbations 129 204 308 378 513 626 706 854 885 1004

����
A 52 63 32 49 34 62 49 46 42 41
M 36 47 14 35 9 62 42 26 20 30
T 0 4 13 1 13 6 2 6 12 14

�����
A 12 12 13 13 15 14 14 14 14 15
M 12 12 13 13 14 14 14 14 14 15
T 0 0 0 0 0 0 0 0 0 0

�������
A 8 10 11 8 11 8 8 10 13 10
M 7 11 11 9 12 9 8 10 12 9
T 0 0 0 0 0 0 0 0 0 0

each system, we generate a test case that sends a message to the
entry point of the system (i.e., actor 0) and asserts the system’s state
after all communication has happened. During the execution of the
system, messages are sent with at-least-once delivery semantics to
one or more actors with a higher number. Each message changes
the internal state by incrementing a counter value and persisting it
subsequently. For each system, our generation process randomly
selects n communication pairs from all pairs of actors (s, r) such
that the receiver r has a higher number than the sender s (i.e., the
communication topology forms a directed acyclic graph). However,
this process might result in a system where not every actor receives
a message. Therefore, we extend the communication pairs such that
every actor receives at least one message. These communication
pairs are also used to generate the assertions. In particular, we assert
that the �nal counter value is equal to the number of paths from
actor 0 to this actor. This number equals to the number of messages
it will receive, and therefore equals to the value of the counter. We
simulate a defect in persistence by not persisting its counter value
across restarts, and a defect in idempotence by not checking for
duplicated messages. In order to answer RQ1 and RQ2, we conduct
the following experiments:

Experiment1: We generate 10 actor systems, summarized in
Table 1, and run our tool on mutants of these actor systems by seed-
ing one defect in one of the actors with number 5, 25, or 45. These
actors were selected as targets since they process their messages
at di�erent times in the execution. The resulting set of systems
consists of 30 actor systems with varying size and defects, as shown
in Table 1. The number of perturbations explored by each strategy
is determined by the number of messages and the perturbation type.
For each exploration strategy, we repeat the experiments for each
system 10 times with a timeout of 30 minutes.

Experiment2:We select the largest generated actor system from
our previous experiment (i.e., the one with 2008 messages) and
systematically select and apply n perturbations, where n increases
in steps of 100. We repeat this experiment 10 times and compare the
execution time in order to assess the overhead of each perturbation
(i.e., Duplication and Restart).

All experiments are executed on an Ubuntu 18.04.3 instance with
252GB of RAM and 8 Intel(R) Xeon(R) CPU E5-2637 v3 @ 3.50GHz
with Hyper-Threading enabled.

7

Ongoing research

For those who would like to know moreRecommended books

for general concepts

+

for reactive architectures

 3

[Kuhn et al. 2017][Bass et al. 2013]

=

+

86 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

IMPACT

(integrated development environment)
or Mule Studio. Unlike prior, some-
what contrived “visual programming”
attempts, the simple pipes-and-!lters
architectural style of asynchronous
messaging solutions makes this visual
composition of patterns natural. Fig-
ure 2 shows a visual Camel route that
directs an incoming message to one of
two possible message endpoints via a
message router. ESB developers can
now think, design, communicate, and
implement their solutions using the
EIP vocabulary, even if they’re using
different runtime platforms.

The EIP playing-card deck handed
out at the inaugural CamelOne confer-
ence is likely the most creative pattern
adaptation to date (see Figure 3). Each
card shows a pattern from the pattern
language together with the solution
statement. It’s satisfying to see design
patterns, which were created to improve
human communication and collabora-
tion, !nding their way (literally) into
the hands of architects and engineers in
such an approachable, useful way.

T he statistics we presented
here indicate that pattern lan-
guages have had a broad im-

pact on the software design community
over the past 20 years. Many research
questions around patterns remain

FIGURE 2. Creating messaging solutions
using the visual pattern language from
Enterprise Integration Patterns (EIPs)7 inside
the Redhat Fuse IDE (integrated development
environment). Messages arriving from a
!le-based message endpoint are routed
by a content-based router to one of two
potential message endpoints based on the
city speci!ed inside the message content.
The content-based router pattern describes
a reusable design for routing messages to a
correct recipient based on message content.

FIGURE 3. Playing cards based on Enterprise Integration Patterns. The visual pattern
language allows for an interactive, almost playful usage of the patterns. Each card displays the
pattern icon together with the name and solution statement.

A r t i f i c i a l In te l l i gence

A Universal Modular ACTOR Formalism
for A r t i f i c i a l Intelligence

Carl Hewitt
Peter Bishop
Richard Steiger
Abstract

This paper proposes a modular ACTOR architecture and definit ional method for a r t i f i c i a l
intelligence that is conceptually based on a single kind of object: actors [or, if you w i l l ,
v i r tual processors, activation frames, or streams]. The formalism makes no presuppositions
about the representation of primitive data structures and control structures. Such structures
can be programmed, microcoded, or hard wired 1n a uniform modular fashion. In fact it is
impossible to determine whether a given object is "really" represented as a l i s t , a vector, a
hash table, a function, or a process. The architecture w i l l e f f ic ient ly run the coming
generation of PLANNERlike a r t i f i c i a l intelligence languages including those requiring a high
degree of parallelism. The efficiency is gained without loss of programming generality because
it only makes certain actors more e f f ic ient ; it does not change their behavioral
characteristics. The architecture is general with respect to control structure and
does not have or need goto, interrupt, or semaphore primitives. The formalism achieves the goals that
the disallowed constructs are intended to achieve by other more structured methods.

PLANNER Progress

"Programs should not only work,
but they should appear to work as wel l . "

PDP1X Dogma

The PLANNER project is continuing research in natural and effective means for embedding
knowledge in procedures. In the course of this work we have succeeded in unifying the
formalism around one fundamental concept: the ACTOR. Intu i t ive ly , an ACTOR is an active agent
which plays a role on cue according to a script" we" use the ACTOR metaphor to emphasize the
inseparability of control and data flow in our model. Data structures, functions, semaphores,
monitors, ports, descriptions, Quillian nets, logical formulae, numbers, ident i f iers, demons,
processes, contexts, and data bases can a l l be shown to be special cases of actors. Al l of the
above are objects with certain useful modes of behavior. Our formalism shows how al l of the
modes of behavior can be defined in terms of one kind of behavior: sending messages to actors.
An actor is always invoked uniformly in exactly the same way regardless of whether 1t behaves
as a recursive function, data structure, or process.

" I t is vain to multiply Entities beyond need."
William of Occam

"Monotheism is the Answer."

The unif ication and simplif ication of the formalisms for the procedural embedding of
knowledge has a great many benefits for us:

FOUNDATIONS: The concept puts procedural semantics [the theory of how things
operate] on a firmer basis. It w i l l now be possible to do cleaner theoretical studies of the
relation between procedural semantics and settheoretic semantics such as model theories of
the quantificational calculus and the lambda calculus.

LOGICAL CALCULAE: A procedural semantics is developed for the quantificational
calculus. The logical constants FORALL, THEREEXISTS, AND, OR, NOT, and IMPLIES
are defined as actors.

KNOWLEDGE BASED PROGRAMMING is programming in an environment which has a
substantial knowledge base in the application area for which the programs are intended.
The actor formalism aids knowledge based programming in the following ways

. PROCEDURAL

EMBEDDING of KNOWLEDGE, TRACING BEHAVIORAL DEPENDENCIES, and SUBSTANTIATING that ACTORS
SATISFY their INTENTIONS.

INTENTIONS: Furthermore the confirmation of properties of procedures is made
easier and more uniform. Every actor has an INTENTION which checks that the prerequisites
and the context of the actor being sent the message are satisf ied. The intention is the
CONTRACT that the actor has with the outside world. How an actor f u l l f l l l s i ts contract is
i ts own business. By a SIMPLE BUG we mean an actor which does not satisfy i ts intention.
We would l ike to eliminate simpTedebugging of actors by the METAEVALUATION of actors to show
that they satisfy their Intentions. Suppose that there is an external audience of actors E
which satisfy the intentions of the actors to which they send messages. In tu i t ive ly , the
principle of ACTOR INDUCTION states that the intentions of a l l actions caused by E are
in turn satisf ied provided that the following condition holds:

If for each actor A
the intention of A is satisf ied =>
that the intentions of a l l actors sent messages by A are satisf ied.

Computational induction [Manna], structural induction [Bursta l l] , and Peano induction
are a l l special cases of ACTOR induction. Actor based intentions have the following
advantages: The intention is decoupled from the actors it describes. Intentions of
concurrent actions are more easily disentangled. We can more elegantly write intentions
for dialogues between actors. The intentions are written 1n the same formalism as the
procedures they describe. Thus for example intentions can have intentions. Because
protection is an intr insic property of actors, we hope to be able to deal with protection
issues in the same straight forward manner as more conventional intentions. Intentions
of data structures are handled by the same machinery as for a l l other actors.

COMPARATIVE SCHEHATOLOGY: The theory of comparative power of control structures is

235

[Hewitt et al., 1973]

Three significant trends have under-
scored the central role of concurrency
in computing. First, there is in-
creased use of interacting processes
by individual users, for example, ap-
plication programs running on X
windows. Second, workstation net-
works have become a cost-effective

CONCURRENT
OBJECT-ORIENTED

mechanism for resource sharing and
distributed problem solving. For ex-
ample, loosely coupled problems,
such as finding all the factors of large
prime numbers, have been solved by
utilizing ideal cycles on networks of
hundreds of workstations. A loosely
coupled problem is one which can be
easily partitioned into many smaller
subproblems so that interactions
between the subproblems is quite limited. Finally, multiprocessor tech-

CCYY”NlCITlCYICCT”EACCY/September 199O/Vol.33, No.9 125

[Agha 1990]

[Roestenburg et al. 2016]

76

Unifies and generalizes functional and object-oriented programming

Features a strong static type system for safety

Hosts multiple domain-specific languages

Offers a read-eval-print loop for interactive prototyping

Compatible with existing languages for the JVM

“Any general-purpose language

has to be a scalable language”

released in 2003 by Martin Odersky

professor at EPFL

Take-away 1: programming language matters

Take-away 2: programming model matters

77

A r t i f i c i a l In te l l i gence

A Universal Modular ACTOR Formalism
for A r t i f i c i a l Intelligence

Carl Hewitt
Peter Bishop
Richard Steiger
Abstract

This paper proposes a modular ACTOR architecture and definit ional method for a r t i f i c i a l
intelligence that is conceptually based on a single kind of object: actors [or, if you w i l l ,
v i r tual processors, activation frames, or streams]. The formalism makes no presuppositions
about the representation of primitive data structures and control structures. Such structures
can be programmed, microcoded, or hard wired 1n a uniform modular fashion. In fact it is
impossible to determine whether a given object is "really" represented as a l i s t , a vector, a
hash table, a function, or a process. The architecture w i l l e f f ic ient ly run the coming
generation of PLANNERlike a r t i f i c i a l intelligence languages including those requiring a high
degree of parallelism. The efficiency is gained without loss of programming generality because
it only makes certain actors more e f f ic ient ; it does not change their behavioral
characteristics. The architecture is general with respect to control structure and
does not have or need goto, interrupt, or semaphore primitives. The formalism achieves the goals that
the disallowed constructs are intended to achieve by other more structured methods.

PLANNER Progress

"Programs should not only work,
but they should appear to work as wel l . "

PDP1X Dogma

The PLANNER project is continuing research in natural and effective means for embedding
knowledge in procedures. In the course of this work we have succeeded in unifying the
formalism around one fundamental concept: the ACTOR. Intu i t ive ly , an ACTOR is an active agent
which plays a role on cue according to a script" we" use the ACTOR metaphor to emphasize the
inseparability of control and data flow in our model. Data structures, functions, semaphores,
monitors, ports, descriptions, Quillian nets, logical formulae, numbers, ident i f iers, demons,
processes, contexts, and data bases can a l l be shown to be special cases of actors. Al l of the
above are objects with certain useful modes of behavior. Our formalism shows how al l of the
modes of behavior can be defined in terms of one kind of behavior: sending messages to actors.
An actor is always invoked uniformly in exactly the same way regardless of whether 1t behaves
as a recursive function, data structure, or process.

" I t is vain to multiply Entities beyond need."
William of Occam

"Monotheism is the Answer."

The unif ication and simplif ication of the formalisms for the procedural embedding of
knowledge has a great many benefits for us:

FOUNDATIONS: The concept puts procedural semantics [the theory of how things
operate] on a firmer basis. It w i l l now be possible to do cleaner theoretical studies of the
relation between procedural semantics and settheoretic semantics such as model theories of
the quantificational calculus and the lambda calculus.

LOGICAL CALCULAE: A procedural semantics is developed for the quantificational
calculus. The logical constants FORALL, THEREEXISTS, AND, OR, NOT, and IMPLIES
are defined as actors.

KNOWLEDGE BASED PROGRAMMING is programming in an environment which has a
substantial knowledge base in the application area for which the programs are intended.
The actor formalism aids knowledge based programming in the following ways

. PROCEDURAL

EMBEDDING of KNOWLEDGE, TRACING BEHAVIORAL DEPENDENCIES, and SUBSTANTIATING that ACTORS
SATISFY their INTENTIONS.

INTENTIONS: Furthermore the confirmation of properties of procedures is made
easier and more uniform. Every actor has an INTENTION which checks that the prerequisites
and the context of the actor being sent the message are satisf ied. The intention is the
CONTRACT that the actor has with the outside world. How an actor f u l l f l l l s i ts contract is
i ts own business. By a SIMPLE BUG we mean an actor which does not satisfy i ts intention.
We would l ike to eliminate simpTedebugging of actors by the METAEVALUATION of actors to show
that they satisfy their Intentions. Suppose that there is an external audience of actors E
which satisfy the intentions of the actors to which they send messages. In tu i t ive ly , the
principle of ACTOR INDUCTION states that the intentions of a l l actions caused by E are
in turn satisf ied provided that the following condition holds:

If for each actor A
the intention of A is satisf ied =>
that the intentions of a l l actors sent messages by A are satisf ied.

Computational induction [Manna], structural induction [Bursta l l] , and Peano induction
are a l l special cases of ACTOR induction. Actor based intentions have the following
advantages: The intention is decoupled from the actors it describes. Intentions of
concurrent actions are more easily disentangled. We can more elegantly write intentions
for dialogues between actors. The intentions are written 1n the same formalism as the
procedures they describe. Thus for example intentions can have intentions. Because
protection is an intr insic property of actors, we hope to be able to deal with protection
issues in the same straight forward manner as more conventional intentions. Intentions
of data structures are handled by the same machinery as for a l l other actors.

COMPARATIVE SCHEHATOLOGY: The theory of comparative power of control structures is

235

[Hewitt et al., 1973]

Three significant trends have under-
scored the central role of concurrency
in computing. First, there is in-
creased use of interacting processes
by individual users, for example, ap-
plication programs running on X
windows. Second, workstation net-
works have become a cost-effective

CONCURRENT
OBJECT-ORIENTED

mechanism for resource sharing and
distributed problem solving. For ex-
ample, loosely coupled problems,
such as finding all the factors of large
prime numbers, have been solved by
utilizing ideal cycles on networks of
hundreds of workstations. A loosely
coupled problem is one which can be
easily partitioned into many smaller
subproblems so that interactions
between the subproblems is quite limited. Finally, multiprocessor tech-

CCYY”NlCITlCYICCT”EACCY/September 199O/Vol.33, No.9 125

[Agha 1990]

abstractions for concurrent and distributed programming:

strongly-encapsulated, location-transparent, resilient

actor model

Take-away 3: architecture matters

78

86 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

IMPACT

(integrated development environment)
or Mule Studio. Unlike prior, some-
what contrived “visual programming”
attempts, the simple pipes-and-!lters
architectural style of asynchronous
messaging solutions makes this visual
composition of patterns natural. Fig-
ure 2 shows a visual Camel route that
directs an incoming message to one of
two possible message endpoints via a
message router. ESB developers can
now think, design, communicate, and
implement their solutions using the
EIP vocabulary, even if they’re using
different runtime platforms.

The EIP playing-card deck handed
out at the inaugural CamelOne confer-
ence is likely the most creative pattern
adaptation to date (see Figure 3). Each
card shows a pattern from the pattern
language together with the solution
statement. It’s satisfying to see design
patterns, which were created to improve
human communication and collabora-
tion, !nding their way (literally) into
the hands of architects and engineers in
such an approachable, useful way.

T he statistics we presented
here indicate that pattern lan-
guages have had a broad im-

pact on the software design community
over the past 20 years. Many research
questions around patterns remain

FIGURE 2. Creating messaging solutions
using the visual pattern language from
Enterprise Integration Patterns (EIPs)7 inside
the Redhat Fuse IDE (integrated development
environment). Messages arriving from a
!le-based message endpoint are routed
by a content-based router to one of two
potential message endpoints based on the
city speci!ed inside the message content.
The content-based router pattern describes
a reusable design for routing messages to a
correct recipient based on message content.

FIGURE 3. Playing cards based on Enterprise Integration Patterns. The visual pattern
language allows for an interactive, almost playful usage of the patterns. Each card displays the
pattern icon together with the name and solution statement.

88 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

IMPACT

GOOD ADVICE IN software design
is dif!cult to come by. General design
principles can guide us, but reality
tends to force trade-offs between seem-
ingly con"icting goals, such as "exibil-
ity and maintainability against size and
complexity. Likewise, code libraries

can go a long way in helping us avoid
reinventing the wheel, but the vision
of lesser-skilled developers effortlessly
wiring together ready-made compo-
nents remains !ction.

Design patterns have helped nar-
row this gap by documenting a well-

working solution to a problem that
occurs repeatedly in a given context.
Instead of presenting a copy-and-paste-
ready code snippet, patterns discuss
forces impacting the solution design.
Examples of such forces are perfor-
mance and security in Web applica-
tions: encryption and decryption algo-
rithms improve security but introduce
processing overhead. Ward Cunning-
ham once described the best patterns as
your older brother teaching you how to
do something right.1

Although patterns have become
popular, their impact as a design tech-
nique is more dif!cult to quantify than
the impact of a speci!c software prod-
uct (which is what previous install-
ments of this column have examined).
This installment highlights both the
breadth of patterns available after 20
years of pattern-writing conferences
and the depth of impact some patterns
have had on open source software.

Twenty Years of
Patterns’ Impact
Gregor Hohpe, Rebecca Wirfs-Brock, Joseph W. Yoder, and Olaf Zimmermann

This column celebrates the 20th year of software patterns. IEEE
Software advisory board members teamed up with members of the
Hillside Group, a nonpro!t organization that promotes the use of
patterns and pattern languages, to re"ect on the state of the practice
and impact of patterns. —Michiel van Genuchten and Les Hatton

Editor: Michiel van Genuchten
MTOnyx
genuchten@ieee.org

Editor: Les Hatton
Kingston University
l.hatton@kingston.ac.uk

continued on p. 84

[Hophe et al., IEEE Software 2013]

0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 13

Editor: Cesare Pautasso
University of Lugano
c.pautasso@ieee.org

Editor: Olaf Zimmerman
University of Applied Sciences
of Eastern Switzerland, Rapperswil

ozimmerm@hsr.ch

INSIGHTS

A Decade of Enterprise
Integration Patterns
A Conversation with the Authors

Olaf Zimmermann, Cesare Pautasso, Gregor Hohpe, and Bobby Woolf

IN AN INDUSTRY that thrives on
constant change, few books can sur-
vive the test of time. Enterprise In-
tegration Patterns (EIP)1—with its
highly in! uential collection of mes-
saging patterns—is de" nitely one of
those few. So, we interviewed the
authors Gregor Hohpe and Bobby

Woolf; here, we have the pleasure
of sharing their re! ections with you.
You can discover the inside story of
their book project as well as their
views on pattern language design
and on integration technology’s evo-
lution. We also thank them for their
precious advice for the next genera-
tion of pattern authors and integra-
tion solution designers.

A General Retrospective
Olaf Zimmermann: How did your
book come to be? How did you get
together, and how did you " nd your
contributors and reviewers?

Bobby Woolf: Martin Fowler was
the matchmaker. When he wrote
Patterns of Enterprise Application
Architecture,2 Kyle Brown pointed
out that his pattern language was
not addressing asynchronous mes-
saging. Martin felt that he already
had plenty of patterns to write,

which motivated Kyle and me to sub-
mit a collection of 27 patterns to the
2002 Pattern Language of Programs
[PLoP] conference under the title,
“Patterns of System Integration with
Enterprise Messaging.”3

Gregor Hohpe: I was based some
3,000 miles away, using enterprise
application integration [EAI] tools,
such as TIBCO and Vitria, in my
consulting job. I had a nagging feel-
ing that these tools share underlying
concepts, which are obfuscated by
different terminology. Martin en-
couraged me to document my " nd-

ings in the form of patterns, also to
be submitted to PLoP 2002,4 where I
" rst met Bobby and Kyle.

Bobby: So Kyle brought me into the
effort he’d started with Martin, then
Martin brought Gregor in. While
Martin and Kyle contributed a lot
of material and guidance, they even-
tually lessened their involvement,
leaving Gregor and me to write and
complete the book. Gregor and I
hadn’t known each other before, so
it was a crash getting-to-know-you
opportunity.

With encouragement from Martin
and Kyle, we decided to combine our
papers with the goal to turn them
into a book. While there was some
merging to be done, the two papers
complemented each other well. We
only had a handful of patterns that
overlapped: Kyle’s and my paper de-
scribed message patterns (“message
construction” in the book) and mes-
sage client patterns (later “messag-
ing endpoints”).

Gregor: Coming from the EAI per-
spective, my 17 patterns focused on
what was “between” the endpoints:
message routing, message transfor-
mation, and message management.
It also contained an early version of
the pattern icons.

Each pattern represents a decision, so
the language walks the reader through
the decisions that need to be made.

[Zimmermann et al., IEEE Software 2016]

patterns for asynchronous messaging

Take-away 4: application-level + infrastructure-level

79

@ticofab
ticofab.ioReview of the Akka-Kubernetes Stack

Kubernetes is a great
infrastructure choice for your

clustered application

⚙

It provides location
transparency with
cluster formation

'

It introduces resilience at
an infrastructure level

(

Akka has a cloud-native
programming model,

ready to scale from day 1

)

It enables transparent
communication between

different nodes of a service

*

Resilience is built in
your service with
granular control

+

[https://www.lightbend.com/blog/akka-and-kubernetes-reactive-from-code-to-cloud]

https://www.lightbend.com/blog/akka-and-kubernetes-reactive-from-code-to-cloud

architecture
process infrastructure

+ +

