Full Clausal Logic - Syntax:
C I auses compound terms

aggregate objects
Add

fUncf'
Ion
an arip,. S (fu
Y7 Constapy are : Cfc;rs), with
SrY tuncy
Ors,

functor : single word starting with lower case
object variable : single word starting with upper case
term : variable | functor [(term][, term]*)]
predicate : single word starting with lower case
atom : predicate[(term][, term]*])]
proposition clause : head [:- body]
head : [atom[;atom]*]
body : proposition|[,proposition]#*

“adding two Peano- plus (@, X,X).
encoded naturals” plus(s(X),Y,s(2)) :- plus(X,¥Y,2).

analogous to

Full Clausal Logic - Semantics: -~ relationdl dausal logi
Herbrand universe, base, interpretation

Herbrand universe of a program P
infinite!

terms that can be constructed from the constants and functors

Herbrand base Bp of a program P

set of all ground atoms that can be constructed using predicates in
P and ground terms in the Herbrand universe of P

Herbrand interpretation | of P is this a model?

possibly infinite subset of Bp consisting of ground atoms that are true

Full Clausal Logic - Semantics: «.,
infinite models are possible Groung, it e it

An interpretation is a model for a program if it is a model
for each ground instance of every clause in the program.

plus(0,0,0)
plus(s(@),0,s(@)):-plus(0,0,0)
plus(s(s(@)),0,5(s(@))):-plus(s(@),0,5(0))

lus(8,s(8),s(@))
plus(s(@),s(0),s(s(@))):—plus(8,s(8),s(s(0)))
plus(s(s(@)),s(@),s(s(s(@)))):—plus(s(@),s(@),s(s(B)))

according to first ground clause, plus (0,0,0) has to be in any model
but then the second clause requires the same of plus(s(2),0,s5(2))
and the third clause of plus(s(s(9)),0,s(s(@))) ...

all models of this program
are necessarily infinite

FUII CIGUSGI LOgiC = PrOOf TheOr)/Z analogous to relational

clausal logic, but have

computing the most general unifier o1k compound

terms into acount when
computing the mgu of
atoms complementary atoms

and

have most general unifier

yields unified atom
plus(s(¥Y),s(@),s(s(¥Y)))

found by

renaming variables so that the two atoms have none in common
ensuring that the atoms’ predicates and arity correspond
scanning the subterms from left to right to s(¥) and (@)
find first pair of subterms where the two atoms differ;
if neither subterm is a variable, unification fails;
else substitute the other term for all occurrences of the variable
and remember the partial substitution;

repeat until no more differences found
4

{v/0}

Full Clausal Logic - Proof Theory:

computing the most general unifier using the

Martelli-Montanari algorithm

repeat
selects=tc¢&
case s — t of
f(S1 Sn) — f(t1
replace s=tby{s; =1#,..., Sn = th}

f(sy,..., Sm)=09(t,..., t,) (f/m+#g/n):

operates on a finite set of equations s=t

t) (n>0):

remove X = X from &

t=X (t¢Var):
replace t = X by X =t

X =t (XeVarA X #tA X occurs more than once in &) :
if Xoccursint
then fail
else replace all occurrences of X in £ (exceptin X =t) by t

esac

until no change

occur check

¢4 e

el

= f(g(£),2)}
{X=9(2),9(Y) =2}
{X=9(2),Z2=9(Y)}
{X=9(9(Y)),Z=9(Y)}
{X/a9(g(Y)),Z/9(Y)}

(X, 9(Y))

resulting set = mgu

{f(X,9(X),b) =f(a,9(£), 2)}
{X=ag(X)=9(2),b=72}
IX=a,X=2Z,b=2}
{X=aa=2Z,b="2}
{X=aZ=ab=2}
{X=a,Z=ab=a}

fail

Full Clausal Logic - Proof Theory:

o before substituting a term
Im Portqnce OF OCCUr CheCk for a variablet,tvlri?y thtat the
variable does not occur in the

term; if so: fail
program query

without occur check, atoms to be resolved
upon unify under substitution

and therefore resolving to the empty clause no semantics for
infinite terms as there

are no such terms in

. the Herbrand base
try to print answer:

BUT

moreover, not a logical consequence of the program omitting occur
check renders

resolution unsound

Full Clausal Logic - Proof Theory:
OCCUr CheCk not performed in Prolog out of

performance considerations
(e.g. unify X with a list of 1000 elements)

Martelli-Montanari algorithm SWI-Prolog
ULY, Y) = (X, 1(X))}
= {Y=X,Y=FfX)}
= (Y =X X=1(X)} built-in unification
= falil operator

in rare cases where the
occurs check is needed

Full Clausal Logic - Meta-theory:
soundness, completeness, decidability

- full clausal logic is sound

c

=

3 PrC = P:C

o o« o .

o full clausal logic is refutation-complete

o

E [] []

6 Pu{C}inconsistent = P u {C} -

O

. The question “PrC2” is only semi-decidable.

;g there is no algorithm that will always answer the question (with
S

g “yes” or “no”) in finite time; but there is an algorithm that, if P FC,
0

will answer “yes” in finite time but this algorithm may loop if P = C.

8

Clausal Logic:

overview

Herbrand universe

Herbrand base

clause

Herbrand models

meta-theory

propositional

{p, g}

sound
refutation-complete

decidable

relational

{G$b}
finite

{p(a,a), plb,a),...}

p(X,2):-
qX,¥),p(¥Y,2)

{}
{pla,a)}
{P(Q’Q)’P(bsa)’q(b’q)}

finite number of finite
models

sound
refutation-complete

decidable

full
{a, f(a), f(fla)), ...}

infinite

{pla, fla)), p(fla),
p(f(f(a))),...}

p(x$ f(X)):-
q(X)

{}

{p(a, fla)),qla)}
{p(fla), f(f(a)),
q(f(a))} ...

infinite number of finite
or infinite models

sound (occurs check)
refutation-complete
semi-decidable

Every set of clauses can be rewritten as an equivalent

Clq Usql LogiC: sentence in first-order predicate logic.
conversion to first-order predicate logic (1)

variables in a sentence cannot
range over predicates

married;bachelor :— man,adult.

haswife :— married. A=B=2AvB

becomes (manradult = marriedvbachelor) a ~(AAB)=-Av-B

(married = haswife) , ,
conjunctive normal

or (-man v =-adult v married v bachelor) form: conjunction of

A (-married v haswife) disjunction of literals

reachable (X, Y,route (Z,R)) :— connected(X,Z,L), reachable(Z,VY,R).

becomes VXvYvZvRvL : =connected(¥X,Z,L) v
-reachable(Z,Y,R) v
reachable (X,Y,route(Z,R))

variables in clauses are

universally quantified

. . Every set of clauses can be rewritten as an equivalent
Clausal Logic:

sentence in first-order predicate logic.

conversion to first-order predicate logic (2)

nonempty (X) :— contains(X,VY).

becomes vXwW: nonempty(X)v-contains (X,Y)

or vX: (nonempty(X)vvY-contains(X,VY))
or v¥X: nonempty(X)v=(3¥:contains(X,Y))
or vX: (¥Y:contains(X,Y))= nonempty(X))

variables that occur only in the body of a
clause are existentially qualified

For each first order sentence, there exists

CICI USCII LOgiCZ an “almost equivalent” set of clauses.
conversion from first-order predicate logic (1)

vX [brick (X) = (3¥Y [on (X, ¥) Ampyramid (Y)] A

=3Y [on(X,¥Y) A on(Y,X)]A
v [-brick (Y)==equal (X,¥Y)])]

1 eliminate = using A = B = -A v B.
vX [Abrick (X) v (3¥Y [on (X, Y) ~mpyramid (Y)] A

=3Y [on (X, ¥Y) ron (Y, X)] A
wW [~ (abrick (Y))v-equal (X,Y¥)])]

2 putinto negation normal form: negation only occurs immediately before propositions

vX [Abrick (X) v (3¥Y [on (X, Y) ~mpyramid (Y)] A

v [on (X, ¥) v-on (Y, X)] A -(AAB) = -Av-B
v [brick (Y)v-equal (X,Y)])] ~(AVB) = 2AA-B
-|(-|A) = A

~vX [p(X)] = 3X [-p(X)]
=(3X [p(X)] = vX [-p(X]]

For each first order sentence, there exists

Clq USCII LOgiCZ an “almost equivalent” set of clauses.
conversion from first-order predicate logic (2)

€)% Y Y
SkO/e SXVY /
m v
e I'sfen:::/';sfanf s:g(if' Y)
W Shit
o “0\\\6“\ hich doe ¢ Uantig d ! .fo" a
\Qo° ' o\\)\"o oo\\\\S ofq ... of Occy, ; var lapb]
e\\\o\les\eé\o ee :O\I\Q vX3Y : loves(X,Y) UNivey saf e the Sco
«\o\:e c,O“"e‘sca,\dl vX:loves(X,person_loved_by(X)) i tifie, Pe
<
5 00“ 0\)\|Qe
s\\o"ec"\‘) replace existentially quantified variable by a compound term of

which the arguments are the universally quantified variables in
whose scope the existentially quantified variable occurs

3 replace 3 using Skolem functors (abstract names for objects, functor has to be new)

sup (X) sup (X)

For each first order sentence, there exists

Clq USCII LOgiCZ an “almost equivalent” set of clauses.
conversion from first-order predicate logic (3)

vX [Abrick (X) v ([on (X, sup (X)) rpyramid (sup (X))] A
v [Fon (X, ¥Y)von (Y, X)] A
v [brick (Y)v-equal (X,¥Y)]1)]

4 standardize all variables apart such that each quantifier has its own unique variable

vX [Abrick (X) v ([on (X, sup (X)) rpyramid (sup (X))]
v [Fon (X, ¥Y)von (Y, X)] A
vZ [brick (Z2)v-equal (X,Z2)])]

5 move V to the front

vXwWvZ [Abrick (X)v([on (X, sup (X)) r~pyramid (sup (X))] A
[-on (X, Y)von(Y,X)]A
[brick (Z)v-equal (X,Z2)]1)]1]

C I ausa I Logic . For each first order sentence, there exists

an “almost equivalent” set of clauses.

conversion from first-order predicate logic (4)

vXwWvZ [brick (X) v ([on (X, sup (X)) r~pyramid (sup (X))] A
[Fon (X, Y)von (Y, X)] A
[brick (Z)v-equal (X,Z2)])]

6

convert to conjunctive normal form using Av(BAC) = (AvB)A(AvC)

vXWvZ [(brick (X) v [on (X, sup (X)) Ampyramid (sup (X))]) A
(=brick (X)v[-on(X,Y)v-on(Y,X)])A
(m=brick (X)v [brick (Z)v-equal (X,Z2)]1)]

vXwWvZ [((Abrick (X) von (X, sup (X)))a(=brick (X)vapyramid (sup (X))))
(Abrick (X)v[-on(X,Y)v-on(Y,X)])A
(-brick (X)v[brick (Z)v-equal (X,Z2)])]

vXWVZ [[-brick (X)von (X,sup (X))] A

-brick (X)vapyramid(sup (X))] A
-brick (X)v-on(X,¥Y)von(Y,X)] A
-brick (X)vbrick (Z)v-equal (X,2)]]

Av(BvC) = AvBvC

|5

For each first order sentence, there exists

Clq USCII LOgiCZ an “almost equivalent” set of clauses.
conversion from first-order predicate logic (5)

vXwWvZ [[Abrick (X)von (X,sup (X))] A

[~brick (X)vapyramid (sup (X))] A
-brick (X)v-on(X,Y)v-on(Y,X)] A
-brick (X)vbrick (Z)v-equal (X,Z2)]]

7/ split the conjuncts in clauses (a disjunction of literals)

vX =brick (X)von (X, sup (X))

vX =brick (X)vapyramid (sup (X))
vXvY =brick (X)v-on(X,VY)v-on (Y, X)
vXvZ =brick (X)vbrick (Z)v-equal (X,2Z)

8 convert to clausal syntax (negative literals to body, positive ones to head)

on(X,sup (X)) :— brick(X).

:— brick (X), pyramid(sup(X)).

:— brick (X), on(X,¥Y), on(Y,X).
brick (X) :—= brick(Z), equal (X,Z).

|6

For each first order sentence, there exists

CIG USCII LOgiCZ an “almost equivalent” set of clauses.
conversion from first-order predicate logic (6)

1 eliminate =

2 putinto negation normal form

3 replace 3 using Skolem functors

4 standardize variables

5 move v to the front

6 convert to conjunctive normal form
/7 split the conjuncts in clauses

8 convert to clausal syntax

Definite Clause Logic:

60W’
o
° ° W, Us
mofivation s0u 10 o B0
-|q—’ E . e";c/,c,‘)%/s . Q/)o{g
= 5 married(X);bachelor(X) :- man(X), adult(X). Sny, 'ndeie o) v
— | . .
< o man(peter). adult(peter). man(paul). ”re,cw ”77/,,% o’)'o(,
o 2 :-married(maria). :-bachelor(maria). :-bachelor (paul). Vo, Vs,
£ & ooy
clause is used married(X);bachelor (X):-man(X),adult (X) man (peter)
from right to left
married(peter) ;bachelor (peter):-adult (peter) adult (peter)

married (peter) ;jbachelor (peter)

. married(X) ;bachelor (X):-man(X),adult (X)
clause is used

from left to right

bachelor (maria) :-man(maria),adult (maria)

:-man(maria),adult (maria)

logical consequences that
can be derived in two resolution steps

married(X) ;bachelor(X):-man(X),adult(X)
both literals from

head and body are

resolved away
married(paul) :-adult (paul)

married(paul) ;jbachelor (paul) :-adult(paul)

indefinite
conclusion

:-married(maria)

:-bachelor (maria)

man (paul)

:-bachelor (paul)

Definite Clause Logic:
syntax and proof procedure

for efficiency’s sake

rules out indefinite conclusions fixes direction to use clauses

full clausal logic clauses
are restricted: at most
one atom in the head

from right to left:
m procedural interpretation

“prove A by proving each of Bi”

Definite Clause Logic: ot and o

Yy
° I ° ° Ql'er,. PrOIoCICluse Wl” be dis';fhe not
recovering lost exXpressivity ey, 9 ahaly p,, i ssed
b not/1 v h: a
= UN9erst00d proee ! Can op|
| Proced Y
can no longer express Urally
§ characteristic
- of indefinite clauses
© which had two minimal models
o
definite clause
containing not
w first model is minimal model of general clause
a to prove that
_g someone is
-~ bachelor, prove
= R that he is a man
% second model is minimal model of general clause and an adult, and
=) prove that he is not

a bachelor

20

