
Full Clausal Logic - Syntax:
clauses

 functor : single word starting with lower case
 variable : single word starting with upper case
 term : variable | functor[(term[,term]*)]
 predicate : single word starting with lower case
 atom : predicate[(term[,term]*])]
 clause : head [:- body]
 head : [atom[;atom]*]
 body : proposition[,proposition]*

plus(0,X,X).
plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

“adding two Peano-
encoded naturals”

1

compound terms
aggregate objects

Add function symbols (functors), with
an arity; constants are 0-ary functors.

object

proposition

Full Clausal Logic - Semantics:
Herbrand universe, base, interpretation

2

analogous to
relational clausal logic

Herbrand base BP of a program P

Herbrand interpretation I of P

set of all ground atoms that can be constructed using predicates in
P and ground terms in the Herbrand universe of P

possibly infinite subset of BP consisting of ground atoms that are true

Herbrand universe of a program P

terms that can be constructed from the constants and functors
{ 0, s(0), s(s(0)), s(s(s(0))),... }

{ plus(0,0,0), plus(s(0),0,0),
 plus(0,s(0),0), plus(s(0),s(0),0),...}

{ plus(0,0,0), plus(s(0),0,s(0)),plus(0,s(0),s(0))} }

is this a model?

infinite!

Full Clausal Logic - Semantics:
infinite models are possible

3

according to first ground clause, plus(0,0,0) has to be in any model
but then the second clause requires the same of plus(s(0),0,s(0))
and the third clause of plus(s(s(0)),0,s(s(0))) ...

Herbrand universe is infinite,

therefore infinite number of
grounding substitutions

An interpretation is a model for a program if it is a model
for each ground instance of every clause in the program.

plus(0,0,0)
plus(s(0),0,s(0)):-plus(0,0,0)
plus(s(s(0)),0,s(s(0))):-plus(s(0),0,s(0))
...
plus(0,s(0),s(0))
plus(s(0),s(0),s(s(0))):-plus(0,s(0),s(s(0)))
plus(s(s(0)),s(0),s(s(s(0)))):-plus(s(0),s(0),s(s(0)))
...

all models of this program
are necessarily infinite

Full Clausal Logic - Proof Theory:
computing the most general unifier

4

analogous to relational
clausal logic, but have

to take compound
terms into acount when
computing the mgu of
complementary atoms

renaming variables so that the two atoms have none in common
ensuring that the atoms’ predicates and arity correspond
scanning the subterms from left to right to

find first pair of subterms where the two atoms differ;
if neither subterm is a variable, unification fails;
else substitute the other term for all occurrences of the variable
and remember the partial substitution;

repeat until no more differences found

atoms

plus(s(0),X,s(X)) plus(s(Y),s(0),s(s(Y)))and

have most general unifier

{Y/0, X/s(0))} yields unified atom
 plus(s(Y),s(0),s(s(Y)))

found by

s(Y) and s(0)

{Y/0}

Full Clausal Logic - Proof Theory:
computing the most general unifier using the
Martelli-Montanari algorithm

5

E

repeat
select s = t ∈ E
case s = t of

f (s1, . . . , sn) = f (t1, . . . , tn) (n ≥ 0) :
replace s = t by {s1 = t1, . . . , sn = tn}

f (s1, . . . , sm) = g(t1, . . . , tn) (f/m �= g/n) :
fail

X = X :
remove X = X from E

t = X (t �∈ Var) :
replace t = X by X = t

X = t (X ∈ Var ∧ X �= t ∧ X occurs more than once in E) :
if Xoccurs in t
then fail
else replace all occurrences of X in E (except in X = t) by t

esac
until no change

operates on a finite set of equations s=t

occur check

Clausal logic

examples

{f (X , g(Y)) = f (g(Z), Z)}
⇒ {X = g(Z), g(Y) = Z}
⇒ {X = g(Z), Z = g(Y)}
⇒ {X = g(g(Y)), Z = g(Y)}
⇒ {X/g(g(Y)), Z/g(Y)}

{f (X , g(X), b) = f (a, g(Z), Z)}
⇒ {X = a, g(X) = g(Z), b = Z}
⇒ {X = a, X = Z , b = Z}
⇒ {X = a, a = Z , b = Z}
⇒ {X = a, Z = a, b = Z}
⇒ {X = a, Z = a, b = a}
⇒ fail

52 / 259

resulting set = mgu

Clausal logic

examples

{f (X , g(Y)) = f (g(Z), Z)}
⇒ {X = g(Z), g(Y) = Z}
⇒ {X = g(Z), Z = g(Y)}
⇒ {X = g(g(Y)), Z = g(Y)}
⇒ {X/g(g(Y)), Z/g(Y)}

{f (X , g(X), b) = f (a, g(Z), Z)}
⇒ {X = a, g(X) = g(Z), b = Z}
⇒ {X = a, X = Z , b = Z}
⇒ {X = a, a = Z , b = Z}
⇒ {X = a, Z = a, b = Z}
⇒ {X = a, Z = a, b = a}
⇒ fail

52 / 259

Full Clausal Logic - Proof Theory:
importance of occur check

6

before substituting a term
for a variable, verify that the
variable does not occur in the

term; if so: fail

loves(X,person_loved_by(X)). :- loves(Y,Y).

without occur check, atoms to be resolved
upon unify under substitution

{Y/X, X/person_loved_by(X)}

program query

and therefore resolving to the empty clause

try to print answer:

BU
T X=person_loved_by(person_loved_by(person_loved_by(...)))

no semantics for
infinite terms as there
are no such terms in
the Herbrand base

moreover, not a logical consequence of the program omitting occur
check renders

resolution unsound

Full Clausal Logic - Proof Theory:
occur check

7

not performed in Prolog out of
performance considerations

(e.g. unify X with a list of 1000 elements)

Clausal logic

occur check

{l(Y , Y) = l(X , f (X))}
⇒ {Y = X , Y = f (X)}
⇒ {Y = X , X = f (X)}
⇒ fail

The last example illustrates the need for the “occur check” (which is
not done in most Prolog implementations)

53 / 259

Martelli-Montanari algorithm SWI-Prolog

?- l(Y,Y) = l(X,f(X)).
Y = f(**),
X = f(**).
?-

built-in unification
operator

?- unify_with_occurs_check(l(Y,Y),l(X,f(X))).
false.
?- in rare cases where the

occurs check is needed

Full Clausal Logic - Meta-theory:
soundness, completeness, decidability

8

P⊦C ⇒ P⊧Cso
un

d full clausal logic is sound

P∪{C} inconsistent ⇒ P ∪ {C} ⊢ ☐co
m

pl
et

e full clausal logic is refutation-complete

de
ci

da
bi

lit
y The question “P⊧C?” is only semi-decidable.

 there is no algorithm that will always answer the question (with

“yes” or “no”) in finite time; but there is an algorithm that, if P ⊧C,

will answer “yes” in finite time but this algorithm may loop if P⊭ C.

Clausal Logic:
overview

9

propositional relational full

Herbrand universe

Herbrand base

clause

Herbrand models

meta-theory

-
finite infinite

{p, q}

{a,f(a),f(f(a)),...}

{p(a,a), p(b,a),...}

{a,b}

{p(a,f(a)), p(f(a),
 p(f(f(a))),...}

p:-q p(X,Z):-
 q(X,Y),p(Y,Z)

p(X,f(X)):-
 q(X)

{}
{p}
{p,q}

{}
{p(a,a)}
{p(a,a),p(b,a),q(b,a)}
...

finite number of finite
models

{}
{p(a,f(a)),q(a)}
{p(f(a),f(f(a)),
 q(f(a))} ...

infinite number of finite
or infinite models

sound
refutation-complete

decidable

sound
refutation-complete

decidable

sound (occurs check)
refutation-complete

semi-decidable

Clausal Logic:
conversion to first-order predicate logic (1)

10

married;bachelor :- man,adult.
haswife :- married.

becomes (man∧adult ⇒ married∨bachelor) ∧

(married ⇒ haswife)

(¬man ∨ ¬adult ∨ married ∨ bachelor)
∧ (¬married ∨ haswife)

or

A ⇒ B ≡ ¬A ∨ B

¬(A ∧ B) ≡ ¬A ∨ ¬B

conjunctive normal
form: conjunction of
disjunction of literals

reachable(X,Y,route(Z,R)):- connected(X,Z,L), reachable(Z,Y,R).

becomes ∀X∀Y∀Z∀R∀L : ¬connected(X,Z,L) ∨

 ¬reachable(Z,Y,R) ∨
 reachable(X,Y,route(Z,R))

variables in clauses are
universally quantified

Every set of clauses can be rewritten as an equivalent
sentence in first-order predicate logic.

variables in a sentence cannot
range over predicates

Clausal Logic:
conversion to first-order predicate logic (2)

11

Every set of clauses can be rewritten as an equivalent
sentence in first-order predicate logic.

nonempty(X) :- contains(X,Y).

becomes

or

∀X∀Y: nonempty(X)∨¬contains(X,Y)

 ∀X: (nonempty(X)∨∀Y¬contains(X,Y))

 ∀X: nonempty(X)∨¬(∃Y:contains(X,Y))or

 ∀X: (∃Y:contains(X,Y))⇒ nonempty(X))or

variables that occur only in the body of a
clause are existentially qualified

Clausal Logic:
conversion from first-order predicate logic (1)

12

For each first order sentence, there exists
an “almost equivalent” set of clauses.

1 eliminate ⇒ using A ⇒ B ≡ ¬A ∨ B.

2 put into negation normal form: negation only occurs immediately before propositions

∀X[brick(X)⇒(∃Y[on(X,Y)∧¬pyramid(Y)]∧

 ¬∃Y[on(X,Y) ∧ on(Y,X)]∧
 ∀Y[¬brick(Y)⇒¬equal(X,Y)])]

∀X[¬brick(X)∨(∃Y[on(X,Y)∧¬pyramid(Y)]∧

 ¬∃Y[on(X,Y)∧on(Y,X)]∧
 ∀Y[¬(¬brick(Y))∨¬equal(X,Y)])]

∀X[¬brick(X)∨(∃Y[on(X,Y)∧¬pyramid(Y)]∧

 ∀Y[¬on(X,Y)∨¬on(Y,X)]∧
 ∀Y[brick(Y)∨¬equal(X,Y)])]

¬(A∧B) ≡ ¬A∨¬B
 ¬(A∨B) ≡ ¬A∧¬B

 ¬(¬A) ≡ A
¬∀X [p(X)] ≡ ∃X [¬p(X)]
¬(∃X [p(X)] ≡ ∀X [¬p(X)]

Clausal Logic:
conversion from first-order predicate logic (2)

13

For each first order sentence, there exists
an “almost equivalent” set of clauses.

3 replace ∃ using Skolem functors (abstract names for objects, functor has to be new)

∀X[¬brick(X)∨([on(X,sup(X))∧¬pyramid(sup(X))]∧

 ∀Y[¬on(X,Y)∨¬on(Y,X)]∧
 ∀Y[brick(Y)∨¬equal(X,Y)])]

∀X[¬brick(X)∨(∃Y[on(X,Y)∧¬pyramid(Y)]∧

 ∀Y[¬on(X,Y)∨¬on(Y,X)]∧
 ∀Y[brick(Y)∨¬equal(X,Y)])]

∀X∃Y : loves(X,Y)
∀X:loves(X,person_loved_by(X))

replace existentially quantified variable by a compound term of
which the arguments are the universally quantified variables in

whose scope the existentially quantified variable occurs

∃X∀Y : loves(X,Y)
Skolem constants substitute for an

existentially quantified variable

which does not occur in the scope

of a universal quantifiermodel {lo
ves(paul,anna)}

can be converted to equivalent

 {loves(paul,person_loved_by(paul))}

Clausal Logic:
conversion from first-order predicate logic (3)

14

For each first order sentence, there exists
an “almost equivalent” set of clauses.

4 standardize all variables apart such that each quantifier has its own unique variable

∀X[¬brick(X)∨([on(X,sup(X))∧¬pyramid(sup(X))]∧

 ∀Y[¬on(X,Y)∨¬on(Y,X)]∧
 ∀Z[brick(Z)∨¬equal(X,Z)])]

∀X[¬brick(X)∨([on(X,sup(X))∧¬pyramid(sup(X))]∧

 ∀Y[¬on(X,Y)∨¬on(Y,X)]∧
 ∀Y[brick(Y)∨¬equal(X,Y)])]

5 move ∀ to the front

∀X∀Y∀Z[¬brick(X)∨([on(X,sup(X))∧¬pyramid(sup(X))]∧

 [¬on(X,Y)∨¬on(Y,X)]∧
 [brick(Z)∨¬equal(X,Z)])]

Clausal Logic:
conversion from first-order predicate logic (4)

15

For each first order sentence, there exists
an “almost equivalent” set of clauses.

6 convert to conjunctive normal form using A∨(B∧C) ≡ (A∨B)∧(A∨C)

∀X∀Y∀Z[(¬brick(X)∨[on(X,sup(X))∧¬pyramid(sup(X))])∧

 (¬brick(X)∨[¬on(X,Y)∨¬on(Y,X)])∧
 (¬brick(X)∨[brick(Z)∨¬equal(X,Z)])]

∀X∀Y∀Z[¬brick(X)∨([on(X,sup(X))∧¬pyramid(sup(X))]∧

 [¬on(X,Y)∨¬on(Y,X)]∧
 [brick(Z)∨¬equal(X,Z)])]

∀X∀Y∀Z[((¬brick(X)∨on(X,sup(X)))∧(¬brick(X)∨¬pyramid(sup(X))))∧

 (¬brick(X)∨[¬on(X,Y)∨¬on(Y,X)])∧
 (¬brick(X)∨[brick(Z)∨¬equal(X,Z)])]

∀X∀Y∀Z[[¬brick(X)∨on(X,sup(X))]∧

 [¬brick(X)∨¬pyramid(sup(X))]∧
 [¬brick(X)∨¬on(X,Y)∨¬on(Y,X)]∧

 [¬brick(X)∨brick(Z)∨¬equal(X,Z)]]

A∨(B∨C) ≡ A∨B∨C

Clausal Logic:
conversion from first-order predicate logic (5)

16

For each first order sentence, there exists
an “almost equivalent” set of clauses.

7 split the conjuncts in clauses (a disjunction of literals)

∀X∀Y∀Z[[¬brick(X)∨on(X,sup(X))]∧

 [¬brick(X)∨¬pyramid(sup(X))]∧
 [¬brick(X)∨¬on(X,Y)∨¬on(Y,X)]∧

 [¬brick(X)∨brick(Z)∨¬equal(X,Z)]]

8 convert to clausal syntax (negative literals to body, positive ones to head)

∀X ¬brick(X)∨on(X,sup(X))
∀X ¬brick(X)∨¬pyramid(sup(X))
∀X∀Y ¬brick(X)∨¬on(X,Y)∨¬on(Y,X)
∀X∀Z ¬brick(X)∨brick(Z)∨¬equal(X,Z)

on(X,sup(X)) :- brick(X).
:- brick(X), pyramid(sup(X)).
:- brick(X), on(X,Y), on(Y,X).
brick(X) :- brick(Z), equal(X,Z).

Clausal Logic:
conversion from first-order predicate logic (6)

17

For each first order sentence, there exists
an “almost equivalent” set of clauses.

∀X: (∃Y:contains(X,Y))⇒ nonempty(X))

∀X: ¬(∃Y:contains(X,Y))∨nonempty(X))1 eliminate ⇒

2 put into negation normal form ∀X: (∀Y:¬contains(X,Y))∨nonempty(X))

3 replace ∃ using Skolem functors

4 standardize variables

5 move ∀ to the front ∀X∀Y: ¬contains(X,Y)∨nonempty(X)

6 convert to conjunctive normal form

7 split the conjuncts in clauses

8 convert to clausal syntax nonempty(X) :- contains(X,Y)

Definite Clause Logic:
motivation

married(X);bachelor(X) :- man(X), adult(X).
man(peter). adult(peter). man(paul).
:-married(maria). :-bachelor(maria). :-bachelor(paul).

18

man(peter)!

adult(peter)!married(peter);bachelor(peter):-adult(peter)!

married(peter);bachelor(peter)!

married(X);bachelor(X):-man(X),adult(X)! :-married(maria)!

:-bachelor(maria)!bachelor(maria):-man(maria),adult(maria)!

:-man(maria),adult(maria)!

in
de

fin
ite

pr
og

ra
m

lo
gi

ca
l c

on
se

qu
en

ce
s

th
at

 c
an

 b
e

de
riv

ed
 in

 tw
o

re
so

lu
tio

n
st

ep
s

married(X);bachelor(X):-man(X),adult(X)! man(paul)!

:-bachelor(paul)!married(paul);bachelor(paul):-adult(paul)!

married(paul):-adult(paul)!

clause is used
from right to left

clause is used
 from left to right

both literals from
head and body are

resolved away

how to use the clause depends on what you

want to prove, but this indeterminacy is a

source of inefficiency in refutation proofs

indefinite
conclusion

Definite Clause Logic:
syntax and proof procedure

19

A :- B1,...,Bn

full clausal logic clauses
are restricted: at most
one atom in the head

from right to left:
➠ procedural interpretation

“prove A by proving each of Bi“

rules out indefinite conclusions fixes direction to use clauses

for efficiency’s sake

Definite Clause Logic:
recovering lost expressivity

married(X); bachelor(X) :- man(X), adult(X).
man(john). adult(john).

20

can no longer express

which had two minimal models
{man(john),adult(john),married(john)}
{man(john),adult(john),bachelor(john)}
{man(john),adult(john),married(john),bachelor(john)}

characteristic
of indefinite clauses

ge
ne

ra
l c

la
us

es
pr

ob
le

m

first model is minimal model of general clause

married(X) :- man(X), adult(X), not bachelor(X).

second model is minimal model of general clause

bachelor(X) :- man(X), adult(X), not married(X).

to prove that
someone is a

bachelor, prove
that he is a man

and an adult, and
prove that he is not

a bachelor

definite clause
containing not

semantics and proof theory for the not
in a general clause will be discussed

later; Prolog actually provides a
special predicate not/1 which can only

be understood procedurally

