
More uses of cut:
if-then-else

1

p:-q,r,s,!,t.
p:-q,r,u.
q.
r.
u.

q and r evaluated twice

such uses are equivalent to 

p:-q,r,if_s_then_t_else_u.
if_s_then_t_else_u:-s,!,t.
if_s_then_t_else_u:-u.
q.
r.
u.

only evaluated when s is false 
and both q and r are true

:-s,!,t!

?-p!

:-q,r,s,!,t!

[]!

:-r,s,!,t!

:-q,r,u!

:-r,u!

:-u!

?-p!

[]!

:-q,r,if_s_then_t_else_u!

:-s,!,t! :-u!

:-r,if_s_then_t_else_u!

:if_s_then_t_else_u!



More uses of cut:
if-then-else built-in

2

p :- q,r,if_then_else(S,T,U).
if_then_else(S,T,U):- S,!,T.
if_then_else(S,T,U):- U.

built-in as P->Q;R

diagnosis(Patient,Condition) :-
  temperature(Patient,T),
  ( T=<37      -> blood_pressure(Patient,Condition)
  ; T>37, T<38 -> Condition=ok
  ; otherwise  -> diagnose_fever(Patient,Condition)

nested if’s:
P->Q;(R->S;T)

always 
evaluates to true



More uses of cut:
enabling tail recursion optimization

3

play(Board,Player):-
  lost(Board,Player).
play(Board,Player):-
  find_move(Board,Player,Move),
  make_move(Board,Move,NewBoard),
  next_player(Player,Next),!,
  play(NewBoard,Next).

:-play(starconfiguration,first).

pops choice points 
from stack before 

entering next 
recursion

would otherwise maintain all previous 
board configurations and all moves 

such that they can be undone

most Prolog’s optimize tail recursion into iterative processes if 
the literals before the recursive call are deterministic 



Arithmetic in Prolog:
is/2

4

is(Result,Expression) succeeds if Expression can be evaluated  as an 
arithmetic expression and its resulting value unifies with Result

Peano-encoding of natural numbers is clumsy and inefficient

multiplication as repeated 
addition using recursion

?-X is 5+7-3.
X = 9

?-9 is 5+7-3.
Yes

?-9 is  X+7-3.
Error in arithmetic expression

must be 
instantiated

?-X is 5*3+7/2.
X = 18.5

defined as an infix 
operator



Arithmetic in Prolog:
is/2 versus =/2

5

succeeds if its arguments 
can be unified

\=/2 when its arguments cannot be unified

?- X = 5+7-3
X = 5+7-3

?- 9 = 5+7-3
no

?- X = Y+3
X = _947+3
Y = _947

?- X = f(X)
X = f(f(f(f(f(f(f(f(f(f(f(f(f(f(f( ..
error: term being written is too deep

-!

3!

7!

+!

5!

?-display(5+7-3).!
-(+(5,7),3)!

just a term



Prolog practices:
accumulators

6

length([],0).
length([H|T],N) :- length(T,N1), N is N1+1.

not tail-recursive

the resolvent collects as many 
is/2 literals as there are 

elements in the list before 
doing any actual calculation

:-N is 2+1!
{M1->2}!

?-length([a,b,c],N)!

{H->a, T->[b,c], N1->N}!

:-length([b,c],M1),!
  N is M1+1!

length([H|T],N1):-length(T,M1),!
                  N1 is M1+1!

:-length([c],M2),!
  M1 is M2+1,!
  N is M1+1!

{H->b, T->[c], N2->M1}!

length([H|T],N2):-length(T,M2),!
                  N2 is M2+1!

:-length([],M3),!
  M2 is M3+1,!
  M1 is M2+1,!
  N is M1+1!

{H->c, T->[], N3->M2}!

length([H|T],N3):-length(T,M3),!
                  N3 is M3+1!

:-M2 is 0+1,!
  M1 is M2+1,!
  N is M1+1!

{M3->0}!

length([],0)!

:-M1 is 1+1,!
  N is M1+1!

{M2->1}!

[]!
{N->3}!

.!

cannot simply place the recursive call 
after the is/2 literal as the latter’s second 

argument has to be instantiated



Prolog practices:
tail-recursive length/2 with accumulator

7

length(L,N) :- length_acc(L,0,N).
length_acc([],N,N).
length_acc([H|T],N0,N) :-
  N1 is N0+1, 
  length_acc(T,N1,N).

read length_acc(L,M,N) 
as N = M + length(L)

accumulator represents 

length so far

?-length_acc([a,b,c],0,N)! length_acc([H|T],N10,N1):-N11 is N10+1,!
                          length_acc(T,N11,N1)!

{H->a, T->[b,c], N10->0, N1->N}!

:-N11 is 0+1,!
  length_acc([b,c],N11,N)!

length_acc([H|T],N20,N2):-N21 is N20+1,!
                          length_acc(T,N21,N2)!

:-N21 is 1+1,!
  length_acc([c],N21,N)!

{H->b, T->[c], N20->1, N2->N}!

:-length_acc([b,c],1,N)!

{N11->1}!

:-length_acc([c],2,N)!

{N21->2}!

length_acc([H|T],N30,N3):-N31 is N30+1,!
                          length_acc(T,N31,N3)!

:-N31 is 2+1,!
  length_acc([],N31,N)!

{H->c, T->[], N30->2, N3->N}!

:-length_acc([],3,N)!

{N31->3}!

length_acc([],N,N)!

[]!

{N->3}!



Prolog practices:
tail-recursive reverse/2 with accumulator

naive_reverse([],[]).
naive_reverse([H|T],R) :-
  naive_reverse(T,R1),
  append(R1,[H],R).

append([],Y,Y).
append([H|T],Y,[H|Z]) :-
  append(T,Y,Z).

costly

  reverse(X,Y,Z)
⇔ Z=reverse(X)+Y

reverse(X,[],Z )⇔ Z=reverse(X)

⇔ Z=reverse([H|T])+Y

⇔ Z=reverse(T)+[H]+Y

⇔ Z=reverse(T)+[H|Y]

⇔ reverse(T,[H|Y],Z)

reverse([H|T],Y,Z)

reverse(X,Z) :- reverse(X,[],Z).

reverse([],Z,Z).
reverse([H|T],Y,Z) :-
  reverse(T,[H|Y],Z).



Prolog practices:
difference lists

9

represent a list by a term L1-L2.

[a,b,c][a,b,c,d]-[d]

[a,b,c][a,b,c,1,2]-[1,2]

[a,b,c|X]-X [a,b,c]

variable for minus list:
can be used as pointer to end of represented list



Prolog practices:
appending difference lists in constant time

10

one unification step rather than as 
many resolution steps as there are 
elements in the list appended to

append_dl(XPlus-XMinus,YPlus-YMinus,XPlus-YMinus) :- XMinus=YPlus.

?-append_dl([a,b|X]-X,[c,d|Y]-Y,Z).
X = [c,d|Y], Z = [a,b,c,d|Y]-Y

XPlus!

XMinus!

YPlus!

YMinus!

XPlus!
YMinus!

or

append_dl(XPlus-YPlus,YPlus-YMinus,XPlus-YMinus).



Prolog practices:
reversing difference lists

11

reverse(X,Z) :- reverse_dl(X,Z-[]).

reverse_dl([],Z-Z).
reverse_dl([H|T],Z-Y) :- reverse_dl(T,Z-[H|Y]).

reverse(X,Y,Z) ⇔ Z=reverse(X)+Y
⇔ reverse(X)=Z-Y

reverse([H|T],Y,Z) ⇔ Z=reverse([H|T])+Y

⇔ Z=reverse(T)+[H|Y]

⇔ reverse(T)=Z-[H|Y]



Second-order predicates:
map/3

12

map(R,[],[]).
map(R,[X|Xs],[Y|Ys]):-R(X,Y),map(R,Xs,Ys).
?-map(parent,[a,b,c],X)

map(R,[],[]).
map(R,[X|Xs],[Y|Ys]):- Goal =.. [R,X,Y],
                       call(Goal),
                       map(R,Xs,Ys).

or, when atoms with variable as predicate symbol are not allowed:

Term=..List succeeds 
if Term is a constant and List is the list [Term]
if Term is a compound term f(A1,..,An) 
          and List is a list with head f and whose tail unifies with [A1,..,An]



Second-order predicates:
map/3

13

map(R,[],[]).
map(R,[X|Xs],[Y|Ys]):-R(X,Y),map(R,Xs,Ys).
?-map(parent,[a,b,c],X)

map(R,[],[]).
map(R,[X|Xs],[Y|Ys]):- Goal =.. [R,X,Y],
                       call(Goal),
                       map(R,Xs,Ys).

or, when atoms with variable as 
predicate symbol are not allowed:

Term=..List succeeds 
if Term is a constant and List is the list [Term]
if Term is a compound term f(A1,..,An) 
          and List is a list with head f and whose tail unifies with [A1,..,An]

univ operator =.. can be used 

to construct terms:

?-Term=..[parent,X,peter]

Term=parent(X,peter)and decompose terms:

?-parent(maria,Y)=..List

List=[parent,maria,Y]



Second-order predicates:
findall/3

14

parent(john,peter).
parent(john,paul).
parent(john,mary).
parent(mick,davy).
parent(mick,dee).
parent(mick,dozy).

findall(Template,Goal,List) succeeds if List unifies with a list of the terms Template 
is instantiated to successively on backtracking over Goal. If Goal has no 

solutions, List has to unify with the empty list. 

 ?-findall(C,parent(john,C),L).
   L = [peter,paul,mary]

?-findall(f(C),parent(john,C),L).
   L = [f(peter),f(paul),f(mary)]
 
 ?-findall(C,parent(P,C),L).
   L = [peter,paul,mary,davy,dee,dozy]



Second-order predicates:
bagof/3 and setof/3

15

parent(john,peter).
parent(john,paul).
parent(john,mary).
parent(mick,davy).
parent(mick,dee).
parent(mick,dozy).

?-findall(C,parent(P,C),L).
  L = [peter,paul,mary,davy,dee,dozy]

?-bagof(C,parent(P,C),L).
  P = john 
  L = [peter,paul,mary];
  
  P = mick 
  L = [davy,dee,dozy]

?-bagof(C,P^parent(P,C),L).
   L = [peter,paul,mary,davy,dee,dozy]

The construct Var^Goal 
tells bagof/3 not to 
bind Var in Goal.

differ from findall/3 if Goal contains free variables

setof/3 is same as bagof/3 without duplicate elements in List

findall/3 is same as bagof/3 with all free variables existentially quantified using ^

a parent and its 
list of children

list of children for 
which a parent exists



asserta(Clause)
     adds Clause at the beginning of the Prolog database.
assertz(Clause) and assert(Clause)
     adds Clause at the end of the Prolog database. 
retract(Clause) 
     removes first clause that unifies with Clause from the Prolog database.

Second-order predicates:
assert/1 and retract/1

16

retractall(Term):-
retract(Term), fail.
retractall(Term):-
retract((Term:- Body)), fail.
retractall(Term).

Backtracking over such literals 

will not undo the modifications 

to the database!

retract all clauses of which the head unifies with Term

failure-driven loop


