Declarative
Programming



I nd UChve reasoni ng : infer general rules from
Overview specific observations

Given

B: background theory (clauses of logic program)
P: positive examples (ground facts)
N: negative examples (ground facts)

Find a hypothesis H such that

H “covers” every positive example given B

vpeP:BuHFp

H does not “cover” any negative example given B

vneN:BuHUEn




Inductive reasoning:
relation to abduction  “iu. e

given a theory T and an observation O,
find an explanation E such that TUE=O

Try to adapt the abductive meta-interpreter:
inducible/1 defines the set of possible hypothesis

%

induce(E,H) :- induce (A, HB,H) :- clause already
induce (E, []1,H). element ((AR:-B),HB), assumed

induce (true,H,H) . induce (B, HO,H) .

induce ((A,B),HB,H) :- induce (A,HB, [(A:-B)|H])
induce (A, HO, H1), inducible((A:-B)), assume clause if
induce (B, H1,H). not(element ((A:-B),Hn)), it's an inducible and

induce (A,HB,H) :- induce (B,HB, H) . not yet assumed
clause(A,B),

induce (B, HO,H) .



IndUC'l'ive reqsoning: bird(tweety).

has_feathers (tweety).

relation to abduction  Pirdeliv.
has_beak (polly).

inducible((flies(X) :-bird (X),has_feathers(X),has_beak (X))).
inducible((flies (X) :-has_feathers (X),has_beak (X))).
inducible((flies(X) :-bird(X),has_beak (X))).
inducible((flies(X) :-bird(X),has_feathers(X))).
inducible((flies(X):-bird(X))).

inducible((flies(X) :—-has_feathers(X))).
inducible((flies (X) :—has_beak (X))) .
inducible((flies(X) :—true)).

enumeration of
possible hypotheses

probably an overgeneralization
?-induce(flies (tweety),H).
H = [(flies(tweety) :-bird(tweety),has_feathers (tweety))];
H = [(flies(tweety) :-bird(tweety))];
H = [(flies(tweety) :-has_feathers (tweety))];
H = [(flies(tweety) :—true)];
No more solutions

Listing all inducible hypothesis is impractical. Better to systematically search the
hypothesis space (typically large and possibly infinite when functors are involved).

Avoid overgeneralization by including negative examples in search process.
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Inductive reasoning:

a hypothesis search involving successive
generalization and specialization steps of a current hypothesis

ground fact for the predicate of which a definition is to be induced that is
either true (+ example) or false (- example) under the intended interpretation

example action hypothesis . .
this negative example

precludes the previous

hypothesis’ second
specialize argument from unifying with
the empty list

add clause

specialize

add clause



Generalizing clauses:
O-subsumption

cl is more general than c2

A clause c1 B-subsumes a clause c2
& 3 a substitution 8 such that ¢186 ¢ ¢c2

B-subsumes

using 6 ={V — [Y|Z]}

- 'v'”vH*;n = B1,...,Bm
. V=BTl v.. v oBm
clauses are seen as sets
of disjuncted positive
(head) and negative
(body) literals

B-subsumes

using 6 = id



Generalizing clauses:

O-subsumption versus k

H1 is at least as general as H2 given B «

H1 covers everything covered by H2 given B
vpeP:BUH2rp=BuHIlEp

BuHIEH2

clause c1 O-subsumes c2 = c1 k c2

The reverse is not true:

c1 k c2, but there is no substitution 0 such that c10 ¢ ¢2



Generalizing clauses:
testing for ©-subsumption

A clause c1 B-subsumes a clause c2
& 3 a substitution 8 such that ¢10 ¢ ¢2

no variables substituted by 0 in c2:
testing for B-subsumption amounts to testing for subset relation
(allowing unification) between a ground version of ¢2 and c1

prove Goal, but without
creating bindings



Generalizing clauses:
testing for ©-subsumption

A clause c1 B-subsumes a clause c2
& 3 a substitution 8 such that ¢10 ¢ ¢2

bodies are lists of atoms

?7—- theta_subsumes ((element (X,VU):— []),

(element (X,V) :— [element(X,2Z2)])).
yes.
?7- theta_subsumes((element(X,a):— []),

(element (X,VU):— [])).
no.



Generalizing clauses:
generalizing 2 atoms

A clause c1 O-subsumes a clause ¢2
< 3 a substitution 8 sych that c10 ¢ ¢2

al a2
% O N
N ér(/ S_}O\t\:\&
/f/—/be @ A\
-, NR
“L S
7,9 S
/4/ a3 Q° first element of second argument (a non-

empty list) has to be the first argument

happens to be the least general (or most specific) generalization
because all other atoms that 6-subsume al and a2 also 6-subsume a3:

only requires second argument to

be an arbitrary non-empty list
no restrictions on
either argument



Generalizing clauses:
generalizing 2 atoms - set of first-order terms is a lattice

/ \ anti-unification
T~ | _—

unification

t1 is more general than t2 < for some substitution 0: 110 = 12

greatest lower bound of two terms (meet operation): unification
specialization = applying a substitution
least upper bound of two terms (join operation): anti-unification

generalization = applying an inverse substitution (terms to variables)



Generalizing clauses:

anti-unification computes the least-general
generalization of two atoms under 0-subsumption

dual of unification

compare corresponding argument terms of two atoms,
T replace by variable if they are different
- replace subsequent occurrences of same term by same variable

remaining arguments: inverse substitutions for
6-LGG of first two arguments each term and their accumulators

will not compute proper inverse substitutions: not clear which

occurrences of 2 are mapped to X (all but the first)
BUT we are only interested in the 0-LGG

clearly, Prolog will generate a new anonymous
variable (e.g., _G123) rather than X



Generalizing clauses:
anti-unification computes the least-general
generalization of two atoms under 0-subsumption

same terms not the same terms, but each
has already been mapped to

the same variable V in the
respective inverse substitutions

equivalent compound

term is constructed if both

original compounds have if all else fails, map

the same functor and arity both terms to the
same variable



Generalizing clauses:
anti-unification computes the least-general
generalization of two atoms under B-subsumption

anti_unify_args (@, Terml, Term2, Term,51,51,52,52). anﬁ-unify first N
anti_unify_args(N, Terml, Term2,Term,510,51,520,52) :- corresponding
N>B, arguments

N1 1is N-1,

arg(N, Terml,Argl),

arg (N, Term2,Arg2),

arg (N, Term, ArgN),
anti_unify(Argl,Arg2,ArgN,S10,S11,520,521),
anti_unify_args (N1, Terml, Term2, Term,S11,51,521,S2).

subs_lookup ([T1<-VU|Subsl], [T2<-V|Subs2],Terml, Term2,V) :-
Tl == Terml,
T2 == Term2,
I,

subs_lookup ([S1|Subsl1], [S2]|Subs2],Terml, Term2,V) :-
subs_lookup (Subs1, Subs2, Terml, Term2,V).

|4



Generalizing clauses:
set of (equivalence classes of) clauses is a lattice

A

4// l\ anti-unification and/or

removing literal

/ \ unification and/or
adding literal

C1 is more general than C2 < for some substitution 6: C16 C C2

greatest lower bound of two clauses (meet operation): 6-MGS

specialization = applying a substitution and/or adding a literal

least upper bound of two clauses (join operation): 8-LGG
generalization = applying an inverse substitution and/or removing a literal

|5



Generalizing clauses:
computing the 0 least-general generalization

similar to, and depends on, anti-unification of atoms
but the body of a clause is (declaratively spoken) unordered

=} therefore have to compare all possible pairs of atoms (one from each body)

obtained by anti-unifying obtained by anti-unifying

obtained by anti-unifying J d
an el

original heads



Generalizing clauses:

computing the 0 least-general generalization

theta_lgg((H1:-B1), (H2:-B2), (H:-B)) :- anti-unify girwise ant
anti_unify(H1,H2,H, [],S10, []1,520), heads P . f
theta_lgg_bodies (B1,B2, []1,B,S10,S1,520,52). AbEElen

atoms in bodies
theta_lgg_bodies([],B2,B,B,S1,51,52,S2).

theta_lgg_bodies ([Lit|B1],B2, B@,B, S1@,S1, S208,S2):- atom from
theta_lgg_literal (Lit,B2, B@,B@@, S18,S11, S28,S21), frst bod
theta_lgg_bodies(B1,B2, B@#O,B, S11,S1, S21,S52). e ey

theta_lgg_literal (Litl, [], B,B, S1,S1, S2,52).
theta_lgg_literal (Litl, [Lit2]|B2],B®@,B,S10,51,520,52) :- atom from
samg_pr‘gdlca’.ce (L11c1,L1ic2), second body
anti_unify(Litl,Lit2,Lit,S10,511,520,521),
theta_lgg_literal (Lit1,B2, [Lit|B®],B, S11, S1,521,52).
theta_lgg_literal (Litl, [Lit2]|B2],B@,B,S18,51,520,52) :-
not (same_predicate(Litl,Lit2)),
theta_lgg_literal (Lit1,B2,B8,B,518,51,520,52) . <{n or e
same_predicate(Litl,Lit2) :- :
functor (Litl,P,N), pair
functor(Lit2,P,N).



Generalizing clauses:
computing the 0 least-general generalization

?- theta_lgg((reverse([2,1], [3], [1,2,3]):-[reverse(][1l], [2,3], [1,2,3])]),
(reverse(l[al, [1, [a]l):-[reverse(I], [al, [a]l)]),
C).

C = reverse([X|Y], 2, [U|V]) := [reverse(Y, [X|Z], [U|IV])]

rev([2,1],[31,01,2,3]):-rev([1],[2,3],[1,2,3])
N N 4 I N
X Y Z U Vv Y X Z UV
NV N I VA V4

rev([a] l[] l[a] ):—rev([] l[a] l[a] )
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Bottom-up induction:
specificto-general search of the hypothesis space

generalizes positive examples into a hypothesis
rather than specializing the most general hypothesis as long as it covers negative examples

relative least general generalization rlgg(e1,e2,M)
of two positive examples el and e2
relative to a partial model M is defined as:

rigg(el, e2, M) =Igg((e1 :- Conj(M)), (e2 :- Conj(M)))

conjunction of all positive
examples plus ground facts for
the background predicates



Bottom-up induction:

relative least general generalization

M
el gppend(I1,2], [3,4], [1,2,3,4]).
e2 append(l[al, [1, [a]).

append([], [I, [1).
append ( [2], [3,4], [2,3,4]).

rigg(e1,e2,M)

?7- theta_lgg((append(I[1,2], [3,4], [1,2,3,4]) :-
[append ([1,2], [3,4], [1,2,3,4]),
append( [al, [I, [al), append(I], [I, [1),
append ( [2], [3,4], [2,3,4])1),

(append([al, [], [a]):-

[append ([1,2], [3,4], [1,2,3,4]),
append( [al, [], [a]l),append(I], [1, []1),
append( [2], [3,4], [2,3,4])]),

C)

20



Bottom-up induction:
relative least general generalization - need for pruning

rigg(e1,e2,M)

remaining ground facts from
M (e.g., examples) are
redundant: can be removed

intfroduces variables that do not
occur in the head: can assume that
hypothesis clauses are constrained

head of clause in body = tautology:
restrict ourselves to strictly
constrained hypothesis clauses

variables in body are proper
9] subset of variables in head



Bottom-up induction:
relative least general generalization - algorithm

to determine vars in
head (strictly rlgg(E1,E2,M, (H:— B)):-
constrained restriction)  onti_unify(El,E2,H, [],510, [],520),
varsin(H,V),
r1gg_bodies (M,M, [],B,S1@,S1,528,52,U) .

~1gg_bodies (B@,B1,BR@, BR,S10,S1,528,52,U) : rlgg
all literals in BO with all literals in B1, yielding BR (from
accumulator BRO) containing only vars in V

rlgg_bodies([],B2,B,B,S1,S1,52,S2,U).

rlgg_bodies([L|B1],B2,B0,B,S10,S1,520,52,U) :-
rlgg_literal (L,B2,B0,B00,510,S11,520,521,U),
rlgg_bodies (B1,B2,B00,B,S11,S1,5S21,52,U).

22



Bottom-up induction:
relative least general generalization - algorithm

rlgg_-literal (1, [],B,B,51,51,52,52,U).

rlgg_literal (L1, [L2]B2],B@,B,S10,S1,520,52,U) :-
same_predicate(L1,L2),
anti_unify(L1,L2,L,510,511,520,521),
varsin (L, Vars), strictly constrained (no new

var_proper_subset (Vars, V), variables, but proper subset)

Ly

~lgg_literal (L1,B2, [L|B@],B,S11,5S1,521,52,U).

rlgg_literal (Ll, [L2|B2] ,B0,B,510,S1,520, 52, U):— otherwise, an
r1gg_literal (L1,B2,B9,B,510,51,520,52,U) . e EeEle pel

of literals

23



Bottom-up induction:
relative least general generalization - algorithm

var_proper_subset([],Ys) :- var_remove_one (X, [Y|Ys],Ys) :-
Ys \= []. X == V.
var_proper_subset ( [X|Xs],Ys) :- var_remove_one (X, [Y|Ys], [VIZs) :-
var_remove_one (X, Ys,Zs), var_remove_one (X, Ys,Zs) .

var_proper_subset (Xs,Zs) .

varsin(Term,Vars) :— varsin_args (@, Term,Vars,Vars) .
varsin(Term, [],U), varsin_args (N, Term,U0,VU) : -
sort (U,Vars) . N>,

varsin (U,Vars, [U|Uars] ) :- N1 is N-1,
var (V). arg (N, Term,ArgN),

varsin (Term,VU0,U) :- varsin (ArgN,uo,uUl),
functor (Term,F,N), varsin_args (N1, Term,VU1,U).

varsin_args (N, Term,U0,V).

24



Bottom-up induction:
relative least general generalization - algorithm

?- rlgg(append([1,2], [3,4], [1,2,3,4]),
append( [a], [1, [al),
[append ([1,2], [3,4], [1,2,3,4]),
append( [a], [], [al),
append([], [1, [1),
append ( [2], [3,4], [2,3,4])],
(H:- B)).
append ( [X|Y], 2, [X|U])
[append ([2], [3, 4], [2, 3, 4]),
append (Y, Z, U),
append([], [l, [I),
append([a], [], [al),
append([1, 2], [3, 4], [1, 2, 3, 4])]

25



Bottom-up induction:
main algorithm

construct rlgg of two positive examples

remove all positive examples that are

< extensionally covered by the constructed clause

further generalize the clause by removing literals

as long as no negative
examples are covered

26



Bottom-up induction:
main algorithm

, split positive from
induce_rlgg(Exs,Clauses) :- . |
pos_nheg (Exs,Poss,Negs), negative examples
bg_model (BG),
append (Poss, BG, Model ), include positive examples
induce_rlgg(Poss,Negs, Model,Clauses) . in background model

induce_rlgg(Poss,Negs,Model,Clauses) :-
covering (Poss,Negs,Model, [],Clauses).

pos_neg([], [1, [1).

pos_neg([+E|Exs], [E|Poss],Negs) :-
pos_neg (Exs,Poss,Negs) .

pos_neg([-E|Exs],Poss, [E|Negs]) :-
pos_neg (Exs,Poss,Negs) .

27



BOHIO m'Up indUCHOn: consfruct a new

main algorithm - covering hypothesis Tllql;st: that
covers ail o e

positive examples and

covering (Poss, Negs,Model, Hyp@, NewHyp) :- .
none of the negative

construct_hypothesis (Poss,Negs,Model,Hyp),

l
© )

remove_pos (Poss, Model , Hyp, NewPoss),

covering (NewPoss,Negs,Model, [Hyp|Hyp@], NewHyp) .

covering(P,N,M,HO,H) :-

append (H2,P.H) - \when no longer possible to construct new hypothesis clauses,
add remaining positive examples to hypothesis

remove covered
positive examples

remove_pos ([],M,H, [1). covers_ex ((Head:- Body),
remove_pos ( [P|Ps],Model, Hyp, NewP) :- Example, Model) :-
covers_ex (Hyp,P,Model), verify((Head=Example,
l, forall (element (L,Body),
write(’Covered example: '), element(L,Model)))).

write_ln(P),

remove_pos (Ps, Model, Hyp, NewP) .
remove_pos ( [P|Ps],Model,Hyp, [P|NewP]) :-

remove_pos (Ps, Model, Hyp, NewP) . 78



Bottom-up induction:
main algorithm - hypothesis construction

this is the only step
in the algorithm
that involves
negative examples!

construct_hypothesis([E1,E2|Es],Negs,Model,Clause) :-
write(’RLGG of '), write(El),
write(’ and ’), write(E2), write(’ is’),

rlgg(El,E2,Model,Cl), remove redundant literals
reduce (Cl,Negs,Model,Clause), and ensure that no negative
s examples are covered

nl, tab(5), write_ln(Clause).
construct_hypothesis([E1,E2|Es],Negs,Model,Clause) :-

write_ln(’ too general’),

construct_hypothesis([E2|Es],Negs,Model,Clause).

if no rlgg can be constructed for these
two positive examples or the constructed
one covers a negative example
1 will be considered

another example in @
£ covering/?

note that E

2 different iteration O



Bottom-up induction:
main algorithm - hypothesis reduction

setof@(X,G,L) :-
: setof (X,G,L),!.
remove redundant literals
: setof@(X,G, []). e wi
and ensure that no negative SLI',Ccee s with empty
examples are covered ist of no solutions
can be found
reduce ((H:-B@),Negs,M, (H:-B)) :-
setof@ (L, :
(element (L,BB), not(var_element(L,M))), removes literals from
B1), the body that are
reduce_negs (H,B1, [],B,Negs,M). already in the model
var_element (X, [Y|Ys] ) :- e'e’."e"f/2 using
W == U, syntactic identity rather
var_element (X, [Y|Ys] ) :- than unification

var_element (X, Ys) .

30



Bottom-up induction:
main algorithm - hypothesis reduction

B is the body of the reduced clause: a
subsequence of the body of the original clause
(second argument), such that no negative example
is covered by model U reduced clause (H:-B)

reduce_negs (H, [L|Rest],B@,B,Negs,Model ) :-
append (B@, Rest,Body),

not (covers_neg((H:-Body),Negs,Model,N)),

|

X

reduce_negs (H,Rest,B0,B, Negs, Model ).
reduce_negs (H, [L |Rest],B0@,B,Negs,Model ) :- [Ncannol belremoved

reduce_negs (H,Rest, [L|B@],B,Negs,Model).
reduce_negs (H, [],Body,Body,Negs,Model) :-

not (covers_neg((H:- Body),Negs,Model,N)).

try to remove L from the
original body

fail if the resulting clause
covers a negative example
covers_neg(Clause, Negs,Model,N) :-

element (N, Negs), a negative example is
covers_ex (Clause,N,Model) . covered b), clause U model



?—- induce_rlgg([

Boﬂom-up induction: +append([1,2], [3,4], [1,2,3,4]),

example

+append ( [al, [], [al),

+append ([], [I, [1),

+append ([1, [1,2,3], [1,2,3]),
+append ( [2], [3,4], [2,3,4]),
+append ([], [3,4], [3,4]),
_GPPend([G]’ [bls [b])s
—append ([c], [b], [c,a]),
-append ([1,2], [], [1,3])

], Clauses).

RLGG of append([1,2], [3,4], [1,2,3,4]) and append(l[al, []1, [a]l) is

append ( [X|Y],2Z, [X|U]) :-
Covered example: append/(
Covered example: append/(
Covered example: append/(

RLGG of append([], [1, []1)
append ([]1,X,%X) :— []

Covered example: append([]
Covered example: append([]
Covered example: append([]

[append (Y, Z,U)]
1,21, [3,4]1, [1,2,3,4])
al, [1, [al)

2], [3,4], [2,3,4])
and append([], [1,2,3], [1,2,3]) is

1, [1, [1)
1, [1,2,3], [1,2,3])

1, [3,4], [3,4])

Clauses = [(append([],X,X) := []), 32

(append ([X|VY],2Z, [X[U])

:— [append (Y,Z,U)])]



Bottom-up induction:

example

RLGG of listnum(
listnum(
RLGG of listnum(
listnum(

1, [1) and
2, three, 4], [two, 3, four]) is too general
2, three, 4], [two, 3, four]) and

4], [four]) is

bg_model ( [num (1, 0ne), num(2, two),
num 3 three),

num 4 fourg

num five ])
?-1nduce_rlg
+11stnum %
+1istnum three 4%,[two , 3, fourl]),
+11stnum 41 [four]
+]listnum three 4] [3 fourl ),
+1listnum two] [ 5
—listnum 1, four]),
—listnum three. 4], [twol ),
-1listnum fer],[%,5]) ],

Clauses).

listhnum ( [X]|Xs], [Y]Ys]) := [hum(X,¥),listhum (Xs,Ys)]

listnum([2, three,4], [two,3, four])

listnum([4], [four])

RLGG of listnum([], []) and listnum([three,4], [3, four]) is too general
RLGG of listnum([three,4], [3, four]) and listnum([two], [2]) is
listhnum([V|Us], [W|Ws]) := [num(W,V),listhum (Us, Us)]

Covered example:
Covered example:

Covered example:

listnum([three, 4], [3, four])

Covered example:

Clauses =[(listhnum([V|Us], [W]|Ws]
(listnum ([X|Xs], [Y]|VYs]

listnum([two],

2])

) := [num Elz'l,U), listnum(Us,Ws)]),
)= [num(X,¥Y),listnum(Xs,¥Ys)]),listnum([], []) 1



