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Logic programming with quantified truth:
reasoning with vague (rather than incomplete) information 

characteristic function generalised 
to allow gradual membership µA : U → [0, 1]

→

µA(x) =






0↔ x �∈ A
1↔ x ∈ A
0 < α < 1↔ x ∈ A to the extent α

fu
zz

y 
se

t [
Za

de
h 

19
65

]



3

Logic programming with quantified truth:
operations on fuzzy sets

linguistic hedges

take a fuzzy set (e.g., set of tall people) and modify its membership function

modelling adverbs: very, somewhat, indeed

CHAPTER 3. APPROXIMATE REASONING 45

3.2.3.3 Inference for Approximate Reasoning

Zadeh identified [Zad75b] some inference rules common to human-like approximate

reasoning for the above scheme:

Entailment Choose for A the intensification very as an example.

premise X is A
fact A⊂ B
consequence X is B

Projection Choose R(X ,Y ) = equal(7,4) for an example.

premise X ,Y have a relation R(X ,Y )
consequence X is ΠX (R)

premise X ,Y are in a relation R(X ,Y )
consequence Y is ΠY (R)

Compositional Rule of Inference This is the most important rule defined by Zadeh

and can be seen as a generalisation of classical modus ponens which is of prac-

tical use in forward inferencing systems for approximate reasoning:

premise if X is A and Y is B then Z is C
fact X is A� and Y is B�

consequence Z is C�

Herein, the fuzzy rule can be seen as the fuzzy relation A×B→C. Furthermore

C�
is a relation composed of a factual matching and an implication:

C� = A� ×B� ◦ (A×B→C)

Which would give with min as the t-norm of choice in the fuzzy set product and

fuzzy relational composition the following membership function:

µC� = sup min{min(µA� ,µB�),(min(µA,µB)→ µC)}

where we still have to choose an implication operator. As performance is impor-

tant in fuzzy control systems, popular choices are the Mamdani (min) and Larsen

(product) implication:

• General Modus Ponens with Mamdani Implication

µC� = sup min{min(µA� ,µB�),min(min(µA,µB),µC))}= sup min{µA� ,µB� ,µA,µB,µC}

• General Modus Ponens with Larsen Implication

µC� = sup min{min(µA� ,µB�),(min(µA,µB) ·µC)}

3.2.3.4 Combining Individual Rule Results

The overall behaviour of the system is modelled by taking an aggregation of the indi-

vidual rule results. Usually, union interpreted as max is chosen for this task.

compositional rule of inference

classical set-theoretic operations

� Intersection: µA∩B(x) = min(µA(x), µB(x))
� Union: µA∪B(x) = max(µA(x), µB(x))
� Complement: µĀ(x) = 1− µA(x) original ones by Zadeh, 

later generalized
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Logic programming with quantified truth:
killer application: fuzzy process control
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Logic programming with quantified truth:
killer application: fuzzy process control

easier and smoother operation than classical process control
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Logic programming with quantified truth:
killer application: fuzzy process control

CHAPTER 3. APPROXIMATE REASONING 44

3.2.3.1 Process Control

Fuzzy process control was the first practical application of fuzzy set theory and refers
to the modelling of mechanical processes as a collection of simple fuzzy if-then rules
with imprecise premises and imprecise conclusions.

It has had many successful commercial applications including air condition regulation,
cruise control and even motion detection in video camera’s where a distinction needs
to be made between moving objects and motion caused by instable cameraman hands.
The above examples all require gradual output changes when their input is altered and
their complexity often hinders a precise statement of the causal connection between
input x and output y values. If it was possible to describe the causal connection between
x and y as a function y = f (x), we could use regular modus ponens to regulate the
process:

premise y = f (x)
fact x = x�

consequence y = f (x�)

When the causal relation between the input and the output is only partially or point-
wise known, fuzzy process control allows the system to be described as a collection of
fuzzy if then-rules with linguistic variables X and Y :

rule1 if X is A1 then Y is B1
rule2 if X is A2 then Y is B2
. . . . . .
fact X is A
consequence Y is B

A typical example of the use of such fuzzy if-then rules is that of controlling the sway
of a crane transporting large containers: the experience built up by human crane oper-
ators can be translated effortlessly to rules while the it poses many problems from the
classical engineering perspective.

3.2.3.2 Fuzzy Control Reasoning System

Designing a fuzzy control system generally consists of the following steps:

Fuzzification This is the basic step in which one has to determine appropriate fuzzy
membership functions for the input and output fuzzy sets and specify the indi-
vidual rules regulating the system.

Inference This step comprises the calculation of output values for each rule even when
the premises match only partially with the given input.

Composition The output of the individual rules in the rule base can now be combined
into a single conclusion.

Defuzzification The fuzzy conclusion obtained through inference and composition of-
ten has to be converted to a crisp value suited for driving the motor of an air
conditioning system, for example.
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Logic programming with quantified truth:
a meta-interpreter for a fuzzy logic programming language

if popular_product(?p) : ?c

?p ?c

flowers 1
chips min(0.9, 0.6)*0.8 = 0.48

similar to
f-Prolog
[1990:liu]

LP with quantified truth

fuzzy resolution procedure

weighted logic rules

τ(q) = c * min(τ(q1),...,τ(qn))

q : c if q1,...,qn where c ∈ ]0,1]

confidence 
in conclusion q given absolute 

truth of  q1,...,qn

sold(flowers, 15).
attractive_packaging(chips) : 0.9.
well_advertised(chips) : 0.6.
     
popular_product(?product) if
  sold(?product, ?amount),
  ?amount > 10.

popular_product(?product) : 0.8 if
  attractive_packaging(?product),
  well_advertised(?product).

many 
variations 
possible
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Logic programming with quantified truth:
a meta-interpreter for a fuzzy logic programming language

DEMO
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Logic programming with quantified truth:
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Logic programming with quantified truth:
a meta-interpreter for a fuzzy logic programming language
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Logic programming with quantified truth:
a meta-interpreter for a fuzzy logic programming language 

DEMO
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Logic programming with quantified truth:
reifying the characteristic function of a fuzzy set

6. INSTANTIATING THE FUZZY LOGIC AND DOMAIN-SPECIFIC UNIF. CORNERSTONES

Figure 6.3: Illustrating fuzzy isEqualToOrGreaterThanButRelativelyCloseTo:/2.

We will demonstrate both techniques. The first technique illustrates that fuzzy
SOUL supports rules annotated with a variable that gets bound in their body. The
second technique illustrates that fuzzy SOUL supports Smalltalk terms with an ex-
pression that evaluates to a truth degree rather than a boolean.

1/ Implementing Predicates that Reify the Characteristic Function of a Fuzzy Set

Predicate +?x isEqualToOrGreaterThanButRelativelyCloseTo:+?y reifies
the characteristic function of the fuzzy set of numbers that are greater than ?y, but
still relatively close to ?y. Both arguments have to be bound. The following rules
implement the predicate:

1 +?x isEqualToOrGreaterThanButRelativelyCloseTo: +?x.
2 +?x isEqualToOrGreaterThanButRelativelyCloseTo: +?y : ?c if
3 [?x > ?y],
4 ?c equals: [(?y / ?x) max: (9 / 10)]

Note that the second rule is annotated with a variable that gets bound in the body
of the rule (cf. Section 6.1.1). It associates a truth degree ∈ [ 9

10 ,1[ with numbers ?x
that are greater than ?y, but do not deviate more than 10% from ?y. The closer ?x
is to ?y, the higher the computed truth degree. We do not let the truth degree drop
below 9

10 for numbers that lie far from ?y.6

The first column in Figure 6.3 depicts the truth degrees for solutions to a query
that uses the predicate to identify class declarations in the AMBIENTTALK inter-
preter (cf. Section 5.3.2) with more than 20 members. Except for the classes with
21 and 22 members (truth degrees 20

21 and 10
11 respectively), all classes with more

than 20 members have a truth degree of 9
10 .

6The predicate is used in the resolution of template terms where it ensures that lower truth degrees
are associated with solutions that exhibit more characteristics than the ones that are exemplified by a
template (cf. Section 4.5.2). It is, for instance, used to compare the number of modifiers in the template
(?y) to the modifiers in a solution (?x). Whether a reported method has more modifiers than specified
should not affects its likelihood of being a false positive too much.

148

associates a truth degree 
[ 9,1[ 

with numbers ?x that are 
greater than ?y, but do not 

deviate more than 10% from ?y

DEMO
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Logic programming with quantified truth:
quantifying over the elements of a fuzzy set

6.2. Fuzzified Standard Library

2/ Quantifying over Fuzzy Sets implemented in Smalltalk

Predicate contains:/2 quantifies over the elements of a fuzzy set through linguis-

tic symbiosis. Instances of class FuzzySet respond to message membershipDe-

greeOfElement: with the extent to which the argument can be considered an el-

ement of the set. The following rule implements the case in which both arguments

of the predicate are bound:

1 +?c contains: +?e if
2 [?c isKindOf: Soul.FuzzySet],

3 [?c membershipDegreeOfElement: ?e]

Its implementation illustrates that Smalltalk terms are allowed to evaluate to a

truth degree (cf. Section 6.1.2). Solutions to the following query include bindings

<?t → 1,?e → 20>, <?t → 9

10
,?e → 21> and <?t → 4

5
,?e → 22>:

1 if ?about20 equals: [Soul.FuzzySet triangularWithPeak: 20 andMin: 10 andMax: 30],

2 [8 to: 32] contains: ?e,
3 ?about20 contains: ?e : ?t

The first line of the query instantiates a fuzzy set of which the elements are close to

the number 20. Its triangular membership function ∆(x,10,20,30) determines the

membership degree of element x. It linearly models how close x is to β (α<β< γ):

∆(x,α,β,γ) =






0 x <α
(x −α)/(β−α) α≤ x ≤β
(γ−x)/(γ−β) β≤ x ≤ γ
0 x > γ

The membership function of a fuzzy set can also be instantiated with a custom

BlockClosure or by enumerating its elements and their membership degrees.

6.2.2 Classical Negation as Failure

Unlike the regular connective, the fuzzy not/n connective (cf. Section 6.1.2) intro-

duces choice points if the conjunction of its arguments can be proven to different

extents. However, like the regular connective, variable bindings established by re-

solving this conjunction are undone.

Where choice points are undesirable, predicate absolutelyNot/n can be used

as an alias for the regular not/n connective. It succeeds only if the fuzzy not/n

connective succeeds with an absolute truth degree (i.e. if the conjunction of its ar-

guments fails). The predicate is implemented as follows:

1 absolutelyNot@(?goals) if
2 not@(?goals) : 1

6.2.3 Higher-Order Predicates

The implementation of some higher-order standard library predicates is changed

as well. Like the regular forall/2 predicate, the fuzzy version of the predicate fails

when there is a solution to the first argument goal for which the second argument

goal does not succeed. Both versions differ in their quantification.

The fuzzy version of the predicate is quantified by the smallest product of truth

degrees for each solution to its first argument and the corresponding solution to its

second argument. Its implementation relies on linguistic symbiosis:

149

additional contains:/2  
clause for fuzzy sets 

implemented in Smalltalk
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Logic programming with qualified truth:
an executable linear temporal logic (informally)

regular logic formulas qualified 
by temporal operators: 

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.
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diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-
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Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as
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1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 ✷(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(b) source code 

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.
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diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

(a) observed behavior

(c) documented behavior

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.
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diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

(f) associated run-time values

(d) high-level events specification

verified against

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

1 stackPushOperation(Construct,Path) :-

2 functionCallHasName(Construct, ’push’).

3 stackPopOperation(Construct,Path) :-

4 macroCallHasName(Construct, ’pop’).

5 stackInitOperation(Construct,Path) :-

6 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.
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Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program
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ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of
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2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

specific for this 

application

1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 ✷(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(e) application-specific instances

Figure 1: Source code and corresponding behavioral documentation of a C stack implementation.

We have however already argued in Section 2.2 that pro-
gram models consisting of assertions over such low-level
run-time events do not adhere to our human-readability de-
sirable property nor do they allow the reuse of high-level
events across documentation for applications in the same
domain.

3.2. Documenting Program Behavior

The next step in our recipe comprises documenting a
program’s behavior in a machine-verifiable, but human-
readable model. Our most basic understanding of the be-
havior of a typical stack is that it grows in size whenever
new elements are pushed on it and shrinks whenever an ex-
isting element is removed through the pop operation. The
second perception that springs to mind is that failures might
follow when the stack hasn’t been correctly initialized. We
could also specify assertions about the top of the stack with
regard to the push and pop operation, but we rather opt for
a small model as our objective here is to introduce the plat-
form.

In order to have our insights checked automatically, we
have to specify them in a machine-verifiable language. To
facilitate this task as much as possible, the specification lan-
guage should be highly expressive. An expressive, declar-
ative language additionally ensures that the resulting spec-
ifications are descriptive and convey as much information
as possible. Machine-executable logic languages, whereof
Prolog [9] is the well-known archetypical representant, are
good contenders.

In such programming languages, a program consists of
logic clauses representing a developer’s knowledge about a
particular problem. In our program verification platform,
the logic program consists of a logic representation of the

source code and an execution trace of the C program under
investigation. Our behavioral assertions over the run-time
events from the execution trace, are expressed as logic for-
mulas. To determine whether such a formula is a logical
consequence of the logic program, logic programming lan-
guages rely on a proof procedure. While behavioral pro-
gram models could be expressed in regular Prolog, our BE-
HAVE platform offers an extended Prolog variant which is
especially suited to model the temporal relations between
run-time events.

Formulae in temporal logics comprise the classical logic
formulae possibly qualified by temporal operators such as
✷ (always), � (sometimes), • (previous) and ◦ (next). The
truth value of a formula depends on an implicit temporal
context: a formula can be true at a certain moment in time,
while it might be false at the next moment. While differ-
ent time models are supported in temporal logics, a finite
linear time model suffices for our approach. In this model,
informally, the temporal formula ✷φ is true if φ is true at all
moments in time. Similarly, we have that �φ is true when φ
is true at some moment in time.

Temporal logic programming languages [11] are based
on a subset of a temporal logic such that programs written
in this subset are machine-executable. MTL [4] is a tem-
poral logic programming language based on metric tem-
poral logic. Metric temporal logics incorporate an addi-
tional quantitative aspect into the temporal operators. The
�t (sometimes within t time points) operator is for instance
available. We propose the use of a variant of MTL1 to doc-
ument a program’s behavior in behavioral assertions over

1Regular MTL rules may not contain applications of ✷-operators in
their bodies, or �-operators in their heads. These limitations however do
not apply in our context where the boundaries of time coincide with the
start and end of the execution of a program.

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.
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model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of
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2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly
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Execute
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intercepting
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events

1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 ✷(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(b) source code 

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

(a) observed behavior

(c) documented behavior

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

(f) associated run-time values

(d) high-level events specification

verified against

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

1 stackPushOperation(Construct,Path) :-

2 functionCallHasName(Construct, ’push’).

3 stackPopOperation(Construct,Path) :-

4 macroCallHasName(Construct, ’pop’).

5 stackInitOperation(Construct,Path) :-

6 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

specific for this 

application

1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 ✷(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(e) application-specific instances

Figure 1: Source code and corresponding behavioral documentation of a C stack implementation.

We have however already argued in Section 2.2 that pro-
gram models consisting of assertions over such low-level
run-time events do not adhere to our human-readability de-
sirable property nor do they allow the reuse of high-level
events across documentation for applications in the same
domain.

3.2. Documenting Program Behavior

The next step in our recipe comprises documenting a
program’s behavior in a machine-verifiable, but human-
readable model. Our most basic understanding of the be-
havior of a typical stack is that it grows in size whenever
new elements are pushed on it and shrinks whenever an ex-
isting element is removed through the pop operation. The
second perception that springs to mind is that failures might
follow when the stack hasn’t been correctly initialized. We
could also specify assertions about the top of the stack with
regard to the push and pop operation, but we rather opt for
a small model as our objective here is to introduce the plat-
form.

In order to have our insights checked automatically, we
have to specify them in a machine-verifiable language. To
facilitate this task as much as possible, the specification lan-
guage should be highly expressive. An expressive, declar-
ative language additionally ensures that the resulting spec-
ifications are descriptive and convey as much information
as possible. Machine-executable logic languages, whereof
Prolog [9] is the well-known archetypical representant, are
good contenders.

In such programming languages, a program consists of
logic clauses representing a developer’s knowledge about a
particular problem. In our program verification platform,
the logic program consists of a logic representation of the

source code and an execution trace of the C program under
investigation. Our behavioral assertions over the run-time
events from the execution trace, are expressed as logic for-
mulas. To determine whether such a formula is a logical
consequence of the logic program, logic programming lan-
guages rely on a proof procedure. While behavioral pro-
gram models could be expressed in regular Prolog, our BE-
HAVE platform offers an extended Prolog variant which is
especially suited to model the temporal relations between
run-time events.

Formulae in temporal logics comprise the classical logic
formulae possibly qualified by temporal operators such as
✷ (always), � (sometimes), • (previous) and ◦ (next). The
truth value of a formula depends on an implicit temporal
context: a formula can be true at a certain moment in time,
while it might be false at the next moment. While differ-
ent time models are supported in temporal logics, a finite
linear time model suffices for our approach. In this model,
informally, the temporal formula ✷φ is true if φ is true at all
moments in time. Similarly, we have that �φ is true when φ
is true at some moment in time.

Temporal logic programming languages [11] are based
on a subset of a temporal logic such that programs written
in this subset are machine-executable. MTL [4] is a tem-
poral logic programming language based on metric tem-
poral logic. Metric temporal logics incorporate an addi-
tional quantitative aspect into the temporal operators. The
�t (sometimes within t time points) operator is for instance
available. We propose the use of a variant of MTL1 to doc-
ument a program’s behavior in behavioral assertions over

1Regular MTL rules may not contain applications of ✷-operators in
their bodies, or �-operators in their heads. These limitations however do
not apply in our context where the boundaries of time coincide with the
start and end of the execution of a program.

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

Execute

while

intercepting

high-level

events

1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 ✷(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(b) source code 

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

(a) observed behavior

(c) documented behavior

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

(f) associated run-time values

(d) high-level events specification

verified against

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

1 stackPushOperation(Construct,Path) :-

2 functionCallHasName(Construct, ’push’).

3 stackPopOperation(Construct,Path) :-

4 macroCallHasName(Construct, ’pop’).

5 stackInitOperation(Construct,Path) :-

6 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

specific for this 

application

1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 ✷(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(e) application-specific instances

Figure 1: Source code and corresponding behavioral documentation of a C stack implementation.

We have however already argued in Section 2.2 that pro-
gram models consisting of assertions over such low-level
run-time events do not adhere to our human-readability de-
sirable property nor do they allow the reuse of high-level
events across documentation for applications in the same
domain.

3.2. Documenting Program Behavior

The next step in our recipe comprises documenting a
program’s behavior in a machine-verifiable, but human-
readable model. Our most basic understanding of the be-
havior of a typical stack is that it grows in size whenever
new elements are pushed on it and shrinks whenever an ex-
isting element is removed through the pop operation. The
second perception that springs to mind is that failures might
follow when the stack hasn’t been correctly initialized. We
could also specify assertions about the top of the stack with
regard to the push and pop operation, but we rather opt for
a small model as our objective here is to introduce the plat-
form.

In order to have our insights checked automatically, we
have to specify them in a machine-verifiable language. To
facilitate this task as much as possible, the specification lan-
guage should be highly expressive. An expressive, declar-
ative language additionally ensures that the resulting spec-
ifications are descriptive and convey as much information
as possible. Machine-executable logic languages, whereof
Prolog [9] is the well-known archetypical representant, are
good contenders.

In such programming languages, a program consists of
logic clauses representing a developer’s knowledge about a
particular problem. In our program verification platform,
the logic program consists of a logic representation of the

source code and an execution trace of the C program under
investigation. Our behavioral assertions over the run-time
events from the execution trace, are expressed as logic for-
mulas. To determine whether such a formula is a logical
consequence of the logic program, logic programming lan-
guages rely on a proof procedure. While behavioral pro-
gram models could be expressed in regular Prolog, our BE-
HAVE platform offers an extended Prolog variant which is
especially suited to model the temporal relations between
run-time events.

Formulae in temporal logics comprise the classical logic
formulae possibly qualified by temporal operators such as
✷ (always), � (sometimes), • (previous) and ◦ (next). The
truth value of a formula depends on an implicit temporal
context: a formula can be true at a certain moment in time,
while it might be false at the next moment. While differ-
ent time models are supported in temporal logics, a finite
linear time model suffices for our approach. In this model,
informally, the temporal formula ✷φ is true if φ is true at all
moments in time. Similarly, we have that �φ is true when φ
is true at some moment in time.

Temporal logic programming languages [11] are based
on a subset of a temporal logic such that programs written
in this subset are machine-executable. MTL [4] is a tem-
poral logic programming language based on metric tem-
poral logic. Metric temporal logics incorporate an addi-
tional quantitative aspect into the temporal operators. The
�t (sometimes within t time points) operator is for instance
available. We propose the use of a variant of MTL1 to doc-
ument a program’s behavior in behavioral assertions over

1Regular MTL rules may not contain applications of ✷-operators in
their bodies, or �-operators in their heads. These limitations however do
not apply in our context where the boundaries of time coincide with the
start and end of the execution of a program.

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.
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diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

Execute

while

intercepting

high-level

events

1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 ✷(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(b) source code 

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

(a) observed behavior

(c) documented behavior

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

(f) associated run-time values

(d) high-level events specification

verified against

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

1 stackPushOperation(Construct,Path) :-

2 functionCallHasName(Construct, ’push’).

3 stackPopOperation(Construct,Path) :-

4 macroCallHasName(Construct, ’pop’).

5 stackInitOperation(Construct,Path) :-

6 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.
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being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of
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Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of
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structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-
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The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

specific for this 

application

1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 ✷(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(e) application-specific instances

Figure 1: Source code and corresponding behavioral documentation of a C stack implementation.

We have however already argued in Section 2.2 that pro-
gram models consisting of assertions over such low-level
run-time events do not adhere to our human-readability de-
sirable property nor do they allow the reuse of high-level
events across documentation for applications in the same
domain.

3.2. Documenting Program Behavior

The next step in our recipe comprises documenting a
program’s behavior in a machine-verifiable, but human-
readable model. Our most basic understanding of the be-
havior of a typical stack is that it grows in size whenever
new elements are pushed on it and shrinks whenever an ex-
isting element is removed through the pop operation. The
second perception that springs to mind is that failures might
follow when the stack hasn’t been correctly initialized. We
could also specify assertions about the top of the stack with
regard to the push and pop operation, but we rather opt for
a small model as our objective here is to introduce the plat-
form.

In order to have our insights checked automatically, we
have to specify them in a machine-verifiable language. To
facilitate this task as much as possible, the specification lan-
guage should be highly expressive. An expressive, declar-
ative language additionally ensures that the resulting spec-
ifications are descriptive and convey as much information
as possible. Machine-executable logic languages, whereof
Prolog [9] is the well-known archetypical representant, are
good contenders.

In such programming languages, a program consists of
logic clauses representing a developer’s knowledge about a
particular problem. In our program verification platform,
the logic program consists of a logic representation of the

source code and an execution trace of the C program under
investigation. Our behavioral assertions over the run-time
events from the execution trace, are expressed as logic for-
mulas. To determine whether such a formula is a logical
consequence of the logic program, logic programming lan-
guages rely on a proof procedure. While behavioral pro-
gram models could be expressed in regular Prolog, our BE-
HAVE platform offers an extended Prolog variant which is
especially suited to model the temporal relations between
run-time events.

Formulae in temporal logics comprise the classical logic
formulae possibly qualified by temporal operators such as
✷ (always), � (sometimes), • (previous) and ◦ (next). The
truth value of a formula depends on an implicit temporal
context: a formula can be true at a certain moment in time,
while it might be false at the next moment. While differ-
ent time models are supported in temporal logics, a finite
linear time model suffices for our approach. In this model,
informally, the temporal formula ✷φ is true if φ is true at all
moments in time. Similarly, we have that �φ is true when φ
is true at some moment in time.

Temporal logic programming languages [11] are based
on a subset of a temporal logic such that programs written
in this subset are machine-executable. MTL [4] is a tem-
poral logic programming language based on metric tem-
poral logic. Metric temporal logics incorporate an addi-
tional quantitative aspect into the temporal operators. The
�t (sometimes within t time points) operator is for instance
available. We propose the use of a variant of MTL1 to doc-
ument a program’s behavior in behavioral assertions over

1Regular MTL rules may not contain applications of ✷-operators in
their bodies, or �-operators in their heads. These limitations however do
not apply in our context where the boundaries of time coincide with the
start and end of the execution of a program.

evaluated against an 
implicit temporal context:

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.
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values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

Execute

while

intercepting

high-level

events

1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 ✷(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(b) source code 

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

(a) observed behavior

(c) documented behavior

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.
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diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

(f) associated run-time values

(d) high-level events specification

verified against

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

1 stackPushOperation(Construct,Path) :-

2 functionCallHasName(Construct, ’push’).

3 stackPopOperation(Construct,Path) :-

4 macroCallHasName(Construct, ’pop’).

5 stackInitOperation(Construct,Path) :-

6 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.
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diately spring to mind. Independent from a concrete imple-
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being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of
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Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of
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2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

specific for this 

application

1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 ✷(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(e) application-specific instances

Figure 1: Source code and corresponding behavioral documentation of a C stack implementation.

We have however already argued in Section 2.2 that pro-
gram models consisting of assertions over such low-level
run-time events do not adhere to our human-readability de-
sirable property nor do they allow the reuse of high-level
events across documentation for applications in the same
domain.

3.2. Documenting Program Behavior

The next step in our recipe comprises documenting a
program’s behavior in a machine-verifiable, but human-
readable model. Our most basic understanding of the be-
havior of a typical stack is that it grows in size whenever
new elements are pushed on it and shrinks whenever an ex-
isting element is removed through the pop operation. The
second perception that springs to mind is that failures might
follow when the stack hasn’t been correctly initialized. We
could also specify assertions about the top of the stack with
regard to the push and pop operation, but we rather opt for
a small model as our objective here is to introduce the plat-
form.

In order to have our insights checked automatically, we
have to specify them in a machine-verifiable language. To
facilitate this task as much as possible, the specification lan-
guage should be highly expressive. An expressive, declar-
ative language additionally ensures that the resulting spec-
ifications are descriptive and convey as much information
as possible. Machine-executable logic languages, whereof
Prolog [9] is the well-known archetypical representant, are
good contenders.

In such programming languages, a program consists of
logic clauses representing a developer’s knowledge about a
particular problem. In our program verification platform,
the logic program consists of a logic representation of the

source code and an execution trace of the C program under
investigation. Our behavioral assertions over the run-time
events from the execution trace, are expressed as logic for-
mulas. To determine whether such a formula is a logical
consequence of the logic program, logic programming lan-
guages rely on a proof procedure. While behavioral pro-
gram models could be expressed in regular Prolog, our BE-
HAVE platform offers an extended Prolog variant which is
especially suited to model the temporal relations between
run-time events.

Formulae in temporal logics comprise the classical logic
formulae possibly qualified by temporal operators such as
✷ (always), � (sometimes), • (previous) and ◦ (next). The
truth value of a formula depends on an implicit temporal
context: a formula can be true at a certain moment in time,
while it might be false at the next moment. While differ-
ent time models are supported in temporal logics, a finite
linear time model suffices for our approach. In this model,
informally, the temporal formula ✷φ is true if φ is true at all
moments in time. Similarly, we have that �φ is true when φ
is true at some moment in time.

Temporal logic programming languages [11] are based
on a subset of a temporal logic such that programs written
in this subset are machine-executable. MTL [4] is a tem-
poral logic programming language based on metric tem-
poral logic. Metric temporal logics incorporate an addi-
tional quantitative aspect into the temporal operators. The
�t (sometimes within t time points) operator is for instance
available. We propose the use of a variant of MTL1 to doc-
ument a program’s behavior in behavioral assertions over

1Regular MTL rules may not contain applications of ✷-operators in
their bodies, or �-operators in their heads. These limitations however do
not apply in our context where the boundaries of time coincide with the
start and end of the execution of a program.

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.
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should contain what we consider the defining properties of
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Execute

while

intercepting

high-level

events

1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 ✷(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(b) source code 

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

(a) observed behavior

(c) documented behavior

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.
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being manipulated, we will consider these as additional in-
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Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

(f) associated run-time values
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verified against

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

1 stackPushOperation(Construct,Path) :-

2 functionCallHasName(Construct, ’push’).

3 stackPopOperation(Construct,Path) :-

4 macroCallHasName(Construct, ’pop’).

5 stackInitOperation(Construct,Path) :-

6 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.
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should contain what we consider the defining properties of
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machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

specific for this 

application

1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 ✷(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(e) application-specific instances

Figure 1: Source code and corresponding behavioral documentation of a C stack implementation.

We have however already argued in Section 2.2 that pro-
gram models consisting of assertions over such low-level
run-time events do not adhere to our human-readability de-
sirable property nor do they allow the reuse of high-level
events across documentation for applications in the same
domain.

3.2. Documenting Program Behavior

The next step in our recipe comprises documenting a
program’s behavior in a machine-verifiable, but human-
readable model. Our most basic understanding of the be-
havior of a typical stack is that it grows in size whenever
new elements are pushed on it and shrinks whenever an ex-
isting element is removed through the pop operation. The
second perception that springs to mind is that failures might
follow when the stack hasn’t been correctly initialized. We
could also specify assertions about the top of the stack with
regard to the push and pop operation, but we rather opt for
a small model as our objective here is to introduce the plat-
form.

In order to have our insights checked automatically, we
have to specify them in a machine-verifiable language. To
facilitate this task as much as possible, the specification lan-
guage should be highly expressive. An expressive, declar-
ative language additionally ensures that the resulting spec-
ifications are descriptive and convey as much information
as possible. Machine-executable logic languages, whereof
Prolog [9] is the well-known archetypical representant, are
good contenders.

In such programming languages, a program consists of
logic clauses representing a developer’s knowledge about a
particular problem. In our program verification platform,
the logic program consists of a logic representation of the

source code and an execution trace of the C program under
investigation. Our behavioral assertions over the run-time
events from the execution trace, are expressed as logic for-
mulas. To determine whether such a formula is a logical
consequence of the logic program, logic programming lan-
guages rely on a proof procedure. While behavioral pro-
gram models could be expressed in regular Prolog, our BE-
HAVE platform offers an extended Prolog variant which is
especially suited to model the temporal relations between
run-time events.

Formulae in temporal logics comprise the classical logic
formulae possibly qualified by temporal operators such as
✷ (always), � (sometimes), • (previous) and ◦ (next). The
truth value of a formula depends on an implicit temporal
context: a formula can be true at a certain moment in time,
while it might be false at the next moment. While differ-
ent time models are supported in temporal logics, a finite
linear time model suffices for our approach. In this model,
informally, the temporal formula ✷φ is true if φ is true at all
moments in time. Similarly, we have that �φ is true when φ
is true at some moment in time.

Temporal logic programming languages [11] are based
on a subset of a temporal logic such that programs written
in this subset are machine-executable. MTL [4] is a tem-
poral logic programming language based on metric tem-
poral logic. Metric temporal logics incorporate an addi-
tional quantitative aspect into the temporal operators. The
�t (sometimes within t time points) operator is for instance
available. We propose the use of a variant of MTL1 to doc-
ument a program’s behavior in behavioral assertions over

1Regular MTL rules may not contain applications of ✷-operators in
their bodies, or �-operators in their heads. These limitations however do
not apply in our context where the boundaries of time coincide with the
start and end of the execution of a program.

we will assume a finite, non-branching timeline for our example 
application: reasoning about execution traces of a program
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Logic programming with qualified truth:
a meta-interpreter for finite linear temporal logic programming
solve(A) :-
  prove(A, 0).

prove(not(A), T) :- 
  not(prove(A, T)).

prove(next(A), T) :- 
  NT #= T + 1,
  prove(A, NT).
prove(next(C, A), T) :-
  C #> 0,
  NT #= T + C,
  prove(A, NT).

prove(previous(A), T) :- 
  NT #= T - 1,
  prove(A, NT).
prove(previous(C, A), T) :- 
  C #> 0,
  NT #= T - C,
  prove(A, NT).

next(A) holds if A holds at 
the next moment in time

the initial temporal context for all top-level 
formulas is the beginning of the timeline 

next(C,A) holds if A holds C steps into the 
future (possibly a variable)

#> and friends impose 
constraints over integer domain:

use_module(library(clpfd)).
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Intermezzo: 
constraint logic programming over integer domains

?- X #> 3.
X in 4..sup.

?- X #\= 20.
X in inf..19\/21..sup.

?- 2*X #= 10.
X = 5.

?- X*X #= 144.
X in -12\/12.

?- 4*X + 2*Y #= 24, X + Y #= 9, [X,Y] ins 0..sup.
X = 3,
Y = 6.

?- Vs = [X,Y,Z], Vs ins 1..3, all_different(Vs), X = 1, Y #\= 2.
Vs = [1, 3, 2],
X = 1,
Y = 3,
Z = 2.

X in union of two domains

list of variables on the left is 
in the domain on the right

X in integer domain

ensures elements are assigned 
different values from domain
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Intermezzo: 
constraint logic programming over integer domains 
SEND + MORE = MONEY

puzzle([S,E,N,D] + [M,O,R,E] = [M,O,N,E,Y]) :-

        Vars = [S,E,N,D,M,O,R,Y],

        Vars ins 0..9,

        all_different(Vars),

        S*1000 + E*100 + N*10 + D +

             M*1000 + O*100 + R*10 + E #=

             M*10000 + O*1000 + N*100 + E*10 + Y,

        M #\= 0, S #\= 0.

?- puzzle(As+Bs=Cs).

As = [9, _G10107, _G10110, _G10113],

Bs = [1, 0, _G10128, _G10107],

Cs = [1, 0, _G10110, _G10107, _G10152],

_G10107 in 4..7,

1000*9+91*_G10107+ -90*_G10110+_G10113+ -9000*1+ -900*0+10*_G10128+ -1*_G10152#=0,

all_different([_G10107, _G10110, _G10113, _G10128, _G10152, 0, 1, 9]),

_G10110 in 5..8,

_G10113 in 2..8,

_G10128 in 2..8,

_G10152 in 2..8.

deduced more stringent 
constraints for variables
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Intermezzo: 
constraint logic programming over integer domains 
SEND + MORE = MONEY

puzzle([S,E,N,D] + [M,O,R,E] = [M,O,N,E,Y]) :-

  Vars = [S,E,N,D,M,O,R,Y],

  Vars ins 0..9,

  all_different(Vars),

  S*1000 + E*100 + N*10 + D +

    M*1000 + O*100 + R*10 + E #=

    M*10000 + O*1000 + N*100 + E*10 + Y,

  M #\= 0, S #\= 0.

?- puzzle(As+Bs=Cs).

As = [9, _G10107, _G10110, _G10113],

Bs = [1, 0, _G10128, _G10107],

Cs = [1, 0, _G10110, _G10107, _G10152],

_G10107 in 4..7,

1000*9+91*_G10107+ -90*_G10110+_G10113+ -9000*1+ -900*0+10*_G10128+ -1*_G10152#=0,

all_different([_G10107, _G10110, _G10113, _G10128, _G10152, 0, 1, 9]),

_G10110 in 5..8,

_G10113 in 2..8,

_G10128 in 2..8,

_G10152 in 2..8.

deduced more stringent 
constraints for variables

?- puzzle(As+Bs=Cs), label(As).

As = [9, 5, 6, 7],

Bs = [1, 0, 8, 5],

Cs = [1, 0, 6, 5, 2] ;

false.

labeling a domain variable 
systematically tries out values 

for it until it is ground
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Logic programming with qualified truth:
a meta-interpreter for finite linear temporal logic programming
prove(sometime(C, A), T) :- 
 C#>=0,
 bot(Bot), 
 eot(Tot),
 NT in Bot..Tot, 
 NT #>= T,
 NT #=< T+C,
 prove(A, NT). 
prove(sometime(C,A), T) :-
 C #=< 0,
 bot(Bot), 
 eot(Tot),
 NT in Bot..Tot, 
 NT #>= T + C,
 NT #=< T,
 prove(A, NT).
prove(sometime(A), _) :-
 bot(Bot), 
 eot(Tot),
 C in Bot..Tot, 
 prove(A, C).

A holds 
somewhere on the 

timeline

A holds sometime between 
now and C steps in the future

A holds sometime between now 
and C steps in the past

similar for always
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Logic programming with qualified truth:
example application: reasoning about execution traces

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

Execute

while

intercepting

high-level

events

1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 ✷(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(b) source code 

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

(a) observed behavior

(c) documented behavior

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

(f) associated run-time values

(d) high-level events specification

verified against

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

1 stackPushOperation(Construct,Path) :-

2 functionCallHasName(Construct, ’push’).

3 stackPopOperation(Construct,Path) :-

4 macroCallHasName(Construct, ’pop’).

5 stackInitOperation(Construct,Path) :-

6 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

specific for this 

application

1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 ✷(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.
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verified against

the ASS continuation. At a certain point during the evalua-

tion of a program, the Pico driver loop pops the assignment

continuation (ASS) from the continuation stack and executes

it. The ASS continuation in turn expects the current envi-

ronment (represented by the dictionary DCT) and the value

that is to be assigned VAL) to be on the expression stack.

They are both needed to store a variable-value binding in

the current environment. At the end of its execution, the

ASS continuation pushes the assigned valued VAL on the ex-

pression stack, as Pico assignment expressions evaluate to

their right-hand side.

Over the course of some years, several modifications to

the Pico source code have been made. We therefore wanted

to verify whether the actual dynamics of the continuation

stack still matched the documented behavior. Following the

recipe outlined in Section 2, we first have to identify the

high-level behavioral concepts in terms of which the behav-

ior is documented. The continuation stack and the continu-

ations it contains are excellent candidates.

4.2. Document Program Behavior

Having identified the behavioral concepts to describe

our notion of the Pico interpreter’s internals with, we are

now ready to actually specify these beliefs in a behav-

ioral model. We will start by transforming the docu-

mented continuation schemas from the source code com-

ments into a format readable by our platform. As shown

in the model specification abstract below, we will use logic

facts of the form cntDocumented(CntName, StackBefore,

StackAfter). The documented configuration of the contin-

uation stack before and after the continuation’s execution is

represented by a list whose first element is the top of the

stack. In Prolog, the partial list [’ASS’|R] matches any list

starting with the element ’ASS’ while the rest of the list is

bound to the variable R. We use this feature to represent the

ellipses from the source code comments. The model there-

fore specifies that at the start of the ASS continuation’s exe-

cution, there should be an ASS assignment continuation on

top of the stack. After its execution, the continuation has to

be popped from the stack.

1 cntDocumented(’ASG’,[’ASG’|R],R).
2 cntDocumented(’REF’,[’REF’|R],[’REF’,’APL’|R]).
3 ...

4 behavioralModel :-
5 ✷(when(cntExecuted(Name,Before,After),
6 cntDocumented(Name,Before,After))).

7 cntExecuted(Name,StackBefore,StackAfter) :-
8 cntExited(Name,_,StackAfter),
9 •tcntEntered(Name,_,StackBefore).

We also have to specify that every executed continuation

should be documented by the model. We accomplish this

in the behavioralModel rule by expressing a temporal re-

lation between the cntExecuted and cntDocumented pred-

icates. Notice how the variables match in order to enforce

that the observed complete stack configurations agree with

their partial specifications.

Once again, the final 3 lines of the extract link the pred-

icates used in the behavioral model to the high-level events

provided by the dynamic meta model. This time, we are us-

ing the temporal operator •t to express that a continuation

is completely executed once it is exited and was entered t
time points ago in the past.

4.3. Application-Specific Instances of High-

Level Events

The third step in our recipe consisted of a precise specifi-

cation of the program model’s meta model. The model from

the previous section completely relied on just two high-level

behavioral events: the start and conclusion of a continua-

tion’s execution. More importantly, we are interested in the

configuration of the continuation stack at those moments

in time. We will therefore associate these values with the

cntEntered and cntExited events. Our meta model de-

clares this information to be intercepted as follows:

1 intercept(before,continuationEntry,
2 event(time,cntEntered(cntName,cntPtr,cntStack))).

3 intercept(after,continuationExit,
4 event(time,cntExited(cntName,cntPtr,cntStack))).

The definitions of the continuationEntry and

continuationExit predicates, which are among the

logic predicates the meta model’s specification relies

on, are shown below. They are responsible for locating

those constructs in the Pico interpreter’s source code that

represent the entry and exit points of a continuation.

1 continuationEntry(Construct,Path) :-
2 inContinuation(Construct,Path),
3 functionEntry(Construct,Path).

4 continuationExit(Construct,Path) :-
5 inContinuation(Construct,Path),
6 functionExit(Construct,Path).

7 continuation(Construct) :-
8 isFunctionDefinition(Construct),
9 expressionIn(Construct,Expression,_),
10 picoStack(Expression).

The continuationEntry rule states that a construct is

the entry point of a continuation if the construct is part of

a continuation and if it is the entry point of a function as

well. As before, the Path variable represents the path from

the program’s parse tree root to the parse tree node bound to

the Construct variable. It is used by the inContinuation

clause to check whether the programming language con-

struct is part of a continuation. We will discuss how to

the ASS continuation. At a certain point during the evalua-

tion of a program, the Pico driver loop pops the assignment

continuation (ASS) from the continuation stack and executes

it. The ASS continuation in turn expects the current envi-

ronment (represented by the dictionary DCT) and the value

that is to be assigned VAL) to be on the expression stack.

They are both needed to store a variable-value binding in

the current environment. At the end of its execution, the

ASS continuation pushes the assigned valued VAL on the ex-

pression stack, as Pico assignment expressions evaluate to

their right-hand side.

Over the course of some years, several modifications to

the Pico source code have been made. We therefore wanted

to verify whether the actual dynamics of the continuation

stack still matched the documented behavior. Following the

recipe outlined in Section 2, we first have to identify the

high-level behavioral concepts in terms of which the behav-

ior is documented. The continuation stack and the continu-

ations it contains are excellent candidates.

4.2. Document Program Behavior

Having identified the behavioral concepts to describe

our notion of the Pico interpreter’s internals with, we are

now ready to actually specify these beliefs in a behav-

ioral model. We will start by transforming the docu-

mented continuation schemas from the source code com-

ments into a format readable by our platform. As shown

in the model specification abstract below, we will use logic

facts of the form cntDocumented(CntName, StackBefore,

StackAfter). The documented configuration of the contin-

uation stack before and after the continuation’s execution is

represented by a list whose first element is the top of the

stack. In Prolog, the partial list [’ASS’|R] matches any list

starting with the element ’ASS’ while the rest of the list is

bound to the variable R. We use this feature to represent the

ellipses from the source code comments. The model there-

fore specifies that at the start of the ASS continuation’s exe-

cution, there should be an ASS assignment continuation on

top of the stack. After its execution, the continuation has to

be popped from the stack.

1 cntDocumented(’ASG’,[’ASG’|R],R).
2 cntDocumented(’REF’,[’REF’|R],[’REF’,’APL’|R]).
3 ...

4 behavioralModel :-
5 ✷(when(cntExecuted(Name,Before,After),
6 cntDocumented(Name,Before,After))).

7 cntExecuted(Name,StackBefore,StackAfter) :-
8 cntExited(Name,_,StackAfter),
9 •tcntEntered(Name,_,StackBefore).

We also have to specify that every executed continuation

should be documented by the model. We accomplish this

in the behavioralModel rule by expressing a temporal re-

lation between the cntExecuted and cntDocumented pred-

icates. Notice how the variables match in order to enforce

that the observed complete stack configurations agree with

their partial specifications.

Once again, the final 3 lines of the extract link the pred-

icates used in the behavioral model to the high-level events

provided by the dynamic meta model. This time, we are us-

ing the temporal operator •t to express that a continuation

is completely executed once it is exited and was entered t
time points ago in the past.

4.3. Application-Specific Instances of High-

Level Events

The third step in our recipe consisted of a precise specifi-

cation of the program model’s meta model. The model from

the previous section completely relied on just two high-level

behavioral events: the start and conclusion of a continua-

tion’s execution. More importantly, we are interested in the

configuration of the continuation stack at those moments

in time. We will therefore associate these values with the

cntEntered and cntExited events. Our meta model de-

clares this information to be intercepted as follows:

1 intercept(before,continuationEntry,
2 event(time,cntEntered(cntName,cntPtr,cntStack))).

3 intercept(after,continuationExit,
4 event(time,cntExited(cntName,cntPtr,cntStack))).

The definitions of the continuationEntry and

continuationExit predicates, which are among the

logic predicates the meta model’s specification relies

on, are shown below. They are responsible for locating

those constructs in the Pico interpreter’s source code that

represent the entry and exit points of a continuation.

1 continuationEntry(Construct,Path) :-
2 inContinuation(Construct,Path),
3 functionEntry(Construct,Path).

4 continuationExit(Construct,Path) :-
5 inContinuation(Construct,Path),
6 functionExit(Construct,Path).

7 continuation(Construct) :-
8 isFunctionDefinition(Construct),
9 expressionIn(Construct,Expression,_),
10 picoStack(Expression).

The continuationEntry rule states that a construct is

the entry point of a continuation if the construct is part of

a continuation and if it is the entry point of a function as

well. As before, the Path variable represents the path from

the program’s parse tree root to the parse tree node bound to

the Construct variable. It is used by the inContinuation

clause to check whether the programming language con-

struct is part of a continuation. We will discuss how to

specific for this application

positively identify a continuation later on, but for the mo-

ment it suffices to recall that they are implemented as func-

tions. The functionEntry clause therefore checks whether

the construct is the first C statement in a function body.

We could try to base our definition of the

inContinuation predicate on the C signature common to

all Pico continuations which states that continuations are

pointers to functions taking no arguments as well as not

returning anything:

typedef _NIL_TYPE_ (*_CNT_TYPE_)(_NIL_TYPE);

Such a definition would however result in many false pos-

itives. Recalling that continuations invoke other continua-

tions and pass around arguments by respectively manipulat-

ing the continuation and expression stack, we have therefore

opted to identify continuations based on a more semantical

definition:

The above rule states that a Construct is a continuation

if first of all it is a function and at least one expression in the

body of that function manipulates either the continuation

or the expression stack. Such stack manipulations can be

detected in Pico as code resulting from the expansion of

pop, push, zap and peek macro calls.

We have however neglected to mention three important

predicates the intercept declarations of the dynamic meta

model rely on: the cntName, cntPtr and cntStack key-

words. As we mentioned before, keywords are used to de-

clare how the information associated with each behavioral

concept of the general meta model can be retrieved from

an application’s run-time state. The cntStack keyword is

responsible for capturing the run-time configuration of the

continuation stack. This process involves interesting code

to walk over the continuation stack, but since this code is

tightly tied to Pico’s internals, it is out of this paper’s scope.

The keywords cntName and cntPtr, on the other hand, dif-

fer somewhat from the keywords we have seen in the run-

ning example. Instead of simply declaring the code it ex-

pands to as a logic fact, these keywords are actually logic

rules which are allowed to query the application’s parse tree

to obtain information that is to be incorporated in the ex-

panded source code. The cntName keyword, for instance,

obtains the name of a continuation from a program’s parse

tree as a function’s name is very difficult to obtain at run-

time given ANSI C’s limited reflective capabilities:

1 keyword(cntName,C,P,Expansion) :-

2 continuationName(C,P,Name),

3 concat([’log("’,Name,’");’],Expansion).

4.4. Lightweight Consistency Verification

To verify whether the Pico interpreter indeed behaves

as indicated by its documentation, we used the interpreter

to evaluate a program containing most of the allowed Pico

expression types. This way, we obtained high-level execu-

tion traces containing information about the dynamics of the

continuation stack as specified by the dynamic meta model

outlined above:

1 ..
2 event(60,cntEntered(’ASG’,13..1,[’ASG’,’print’, ’exit’])).
3 event(61,cntExited(’ASG’,13..1,[’print’, ’exit’])).
4 ..

We verified whether this execution trace is conform to

our model specification by launching the logic query ?-

behavioralModel. By doing so, we found several inter-

esting conflicts between Pico’s documented behavior and

the behavior we observed. One of them was located in the

documentation of the REA continuation which is executed

when an expression is read. The documentation indicated

that this continuation just pops the top of the continuation

stack during its execution, while in reality the EXT and EXP

continuations were pushed on top of the stack. In addi-

tion, several minor naming inconsistencies were detected.

The eval exp was for instance abbreviated in the docu-

mentation as EXP, but another continuation already had this

name. Such inconsistencies are very likely to confuse pro-

grammers during knowledge transfer. Upon interpretation

of our verification results, we were able to adapt the pro-

gram model to the observed behavior and made sure the

documentation and source code are back in sync.

We would like to conclude this section with a side note.

Although the behavioral model of the Pico interpreter as

presented in this section only expresses desirable behav-

ior, we have also used our verification platform to detect

instances of undesirable behavior. The Pico interpreter in-

cludes an implementation of a garbage collection algorithm

which might be invoked during the execution of a contin-

uation. Continuations should therefore be programmed in

a specific way in order to avoid ending up with dangling

pointers to the Pico object memory. In our program model,

we were able to specify the dynamic conditions leading to

a crash as undesirable properties and by doing so we were

able to locate two crash-inducing oversights which weren’t

immediately clear from the source code.

5. Related Work

Many existing software engineering tools already sup-

port the development process using information about a pro-

gram’s behavior.

5.1. Other Dynamic Analyses

In this section, we will compare some of the existing ap-

plications of dynamic analysis that are closest to our work

according to the following non-exhaustive set of compar-

ison criteria: intended application domain, analysis time,

the ASS continuation. At a certain point during the evalua-

tion of a program, the Pico driver loop pops the assignment

continuation (ASS) from the continuation stack and executes

it. The ASS continuation in turn expects the current envi-

ronment (represented by the dictionary DCT) and the value

that is to be assigned VAL) to be on the expression stack.

They are both needed to store a variable-value binding in

the current environment. At the end of its execution, the

ASS continuation pushes the assigned valued VAL on the ex-

pression stack, as Pico assignment expressions evaluate to

their right-hand side.

Over the course of some years, several modifications to

the Pico source code have been made. We therefore wanted

to verify whether the actual dynamics of the continuation

stack still matched the documented behavior. Following the

recipe outlined in Section 2, we first have to identify the

high-level behavioral concepts in terms of which the behav-

ior is documented. The continuation stack and the continu-

ations it contains are excellent candidates.

4.2. Document Program Behavior

Having identified the behavioral concepts to describe

our notion of the Pico interpreter’s internals with, we are

now ready to actually specify these beliefs in a behav-

ioral model. We will start by transforming the docu-

mented continuation schemas from the source code com-

ments into a format readable by our platform. As shown

in the model specification abstract below, we will use logic

facts of the form cntDocumented(CntName, StackBefore,

StackAfter). The documented configuration of the contin-

uation stack before and after the continuation’s execution is

represented by a list whose first element is the top of the

stack. In Prolog, the partial list [’ASS’|R] matches any list

starting with the element ’ASS’ while the rest of the list is

bound to the variable R. We use this feature to represent the

ellipses from the source code comments. The model there-

fore specifies that at the start of the ASS continuation’s exe-

cution, there should be an ASS assignment continuation on

top of the stack. After its execution, the continuation has to

be popped from the stack.

1 cntDocumented(’ASG’,[’ASG’|R],R).
2 cntDocumented(’REF’,[’REF’|R],[’REF’,’APL’|R]).
3 ...

4 behavioralModel :-
5 ✷(when(cntExecuted(Name,Before,After),
6 cntDocumented(Name,Before,After))).

7 cntExecuted(Name,StackBefore,StackAfter) :-
8 cntExited(Name,_,StackAfter),
9 •tcntEntered(Name,_,StackBefore).

We also have to specify that every executed continuation

should be documented by the model. We accomplish this

in the behavioralModel rule by expressing a temporal re-

lation between the cntExecuted and cntDocumented pred-

icates. Notice how the variables match in order to enforce

that the observed complete stack configurations agree with

their partial specifications.

Once again, the final 3 lines of the extract link the pred-

icates used in the behavioral model to the high-level events

provided by the dynamic meta model. This time, we are us-

ing the temporal operator •t to express that a continuation

is completely executed once it is exited and was entered t
time points ago in the past.

4.3. Application-Specific Instances of High-

Level Events

The third step in our recipe consisted of a precise specifi-

cation of the program model’s meta model. The model from

the previous section completely relied on just two high-level

behavioral events: the start and conclusion of a continua-

tion’s execution. More importantly, we are interested in the

configuration of the continuation stack at those moments

in time. We will therefore associate these values with the

cntEntered and cntExited events. Our meta model de-

clares this information to be intercepted as follows:

1 intercept(before,continuationEntry,
2 event(time,cntEntered(cntName,cntPtr,cntStack))).

3 intercept(after,continuationExit,
4 event(time,cntExited(cntName,cntPtr,cntStack))).

The definitions of the continuationEntry and

continuationExit predicates, which are among the

logic predicates the meta model’s specification relies

on, are shown below. They are responsible for locating

those constructs in the Pico interpreter’s source code that

represent the entry and exit points of a continuation.

1 continuationEntry(Construct,Path) :-
2 inContinuation(Construct,Path),
3 functionEntry(Construct,Path).
4 continuationExit(Construct,Path) :-
5 inContinuation(Construct,Path),
6 functionExit(Construct,Path).

7 continuation(Construct) :-
8 isFunctionDefinition(Construct),
9 expressionIn(Construct,Expression,_),
10 picoStack(Expression).
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struct is part of a continuation. We will discuss how to
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ment it suffices to recall that they are implemented as func-

tions. The functionEntry clause therefore checks whether
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tree as a function’s name is very difficult to obtain at run-
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To verify whether the Pico interpreter indeed behaves
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to evaluate a program containing most of the allowed Pico
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documentation of the REA continuation which is executed

when an expression is read. The documentation indicated

that this continuation just pops the top of the continuation

stack during its execution, while in reality the EXT and EXP

continuations were pushed on top of the stack. In addi-

tion, several minor naming inconsistencies were detected.

The eval exp was for instance abbreviated in the docu-

mentation as EXP, but another continuation already had this

name. Such inconsistencies are very likely to confuse pro-

grammers during knowledge transfer. Upon interpretation

of our verification results, we were able to adapt the pro-

gram model to the observed behavior and made sure the

documentation and source code are back in sync.

We would like to conclude this section with a side note.

Although the behavioral model of the Pico interpreter as

presented in this section only expresses desirable behav-

ior, we have also used our verification platform to detect

instances of undesirable behavior. The Pico interpreter in-

cludes an implementation of a garbage collection algorithm

which might be invoked during the execution of a contin-

uation. Continuations should therefore be programmed in

a specific way in order to avoid ending up with dangling

pointers to the Pico object memory. In our program model,

we were able to specify the dynamic conditions leading to

a crash as undesirable properties and by doing so we were

able to locate two crash-inducing oversights which weren’t

immediately clear from the source code.

5. Related Work

Many existing software engineering tools already sup-

port the development process using information about a pro-

gram’s behavior.

5.1. Other Dynamic Analyses

In this section, we will compare some of the existing ap-

plications of dynamic analysis that are closest to our work

according to the following non-exhaustive set of compar-

ison criteria: intended application domain, analysis time,
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the ASS continuation. At a certain point during the evalua-

tion of a program, the Pico driver loop pops the assignment

continuation (ASS) from the continuation stack and executes

it. The ASS continuation in turn expects the current envi-

ronment (represented by the dictionary DCT) and the value

that is to be assigned VAL) to be on the expression stack.

They are both needed to store a variable-value binding in

the current environment. At the end of its execution, the

ASS continuation pushes the assigned valued VAL on the ex-

pression stack, as Pico assignment expressions evaluate to

their right-hand side.

Over the course of some years, several modifications to

the Pico source code have been made. We therefore wanted

to verify whether the actual dynamics of the continuation

stack still matched the documented behavior. Following the

recipe outlined in Section 2, we first have to identify the

high-level behavioral concepts in terms of which the behav-

ior is documented. The continuation stack and the continu-

ations it contains are excellent candidates.

4.2. Document Program Behavior

Having identified the behavioral concepts to describe

our notion of the Pico interpreter’s internals with, we are

now ready to actually specify these beliefs in a behav-

ioral model. We will start by transforming the docu-

mented continuation schemas from the source code com-

ments into a format readable by our platform. As shown

in the model specification abstract below, we will use logic

facts of the form cntDocumented(CntName, StackBefore,

StackAfter). The documented configuration of the contin-

uation stack before and after the continuation’s execution is

represented by a list whose first element is the top of the

stack. In Prolog, the partial list [’ASS’|R] matches any list

starting with the element ’ASS’ while the rest of the list is

bound to the variable R. We use this feature to represent the

ellipses from the source code comments. The model there-

fore specifies that at the start of the ASS continuation’s exe-

cution, there should be an ASS assignment continuation on

top of the stack. After its execution, the continuation has to

be popped from the stack.

1 cntDocumented(’ASG’,[’ASG’|R],R).
2 cntDocumented(’REF’,[’REF’|R],[’REF’,’APL’|R]).
3 ...

4 behavioralModel :-
5 ✷(when(cntExecuted(Name,Before,After),
6 cntDocumented(Name,Before,After))).

7 cntExecuted(Name,StackBefore,StackAfter) :-
8 cntExited(Name,_,StackAfter),
9 •tcntEntered(Name,_,StackBefore).

We also have to specify that every executed continuation

should be documented by the model. We accomplish this

in the behavioralModel rule by expressing a temporal re-

lation between the cntExecuted and cntDocumented pred-

icates. Notice how the variables match in order to enforce

that the observed complete stack configurations agree with

their partial specifications.

Once again, the final 3 lines of the extract link the pred-

icates used in the behavioral model to the high-level events

provided by the dynamic meta model. This time, we are us-

ing the temporal operator •t to express that a continuation

is completely executed once it is exited and was entered t
time points ago in the past.

4.3. Application-Specific Instances of High-

Level Events

The third step in our recipe consisted of a precise specifi-

cation of the program model’s meta model. The model from

the previous section completely relied on just two high-level

behavioral events: the start and conclusion of a continua-

tion’s execution. More importantly, we are interested in the

configuration of the continuation stack at those moments

in time. We will therefore associate these values with the

cntEntered and cntExited events. Our meta model de-

clares this information to be intercepted as follows:

1 intercept(before,continuationEntry,
2 event(time,cntEntered(cntName,cntPtr,cntStack))).

3 intercept(after,continuationExit,
4 event(time,cntExited(cntName,cntPtr,cntStack))).

The definitions of the continuationEntry and

continuationExit predicates, which are among the

logic predicates the meta model’s specification relies

on, are shown below. They are responsible for locating

those constructs in the Pico interpreter’s source code that

represent the entry and exit points of a continuation.

1 continuationEntry(Construct,Path) :-
2 inContinuation(Construct,Path),
3 functionEntry(Construct,Path).

4 continuationExit(Construct,Path) :-
5 inContinuation(Construct,Path),
6 functionExit(Construct,Path).

7 continuation(Construct) :-
8 isFunctionDefinition(Construct),
9 expressionIn(Construct,Expression,_),
10 picoStack(Expression).

The continuationEntry rule states that a construct is

the entry point of a continuation if the construct is part of

a continuation and if it is the entry point of a function as

well. As before, the Path variable represents the path from

the program’s parse tree root to the parse tree node bound to

the Construct variable. It is used by the inContinuation

clause to check whether the programming language con-

struct is part of a continuation. We will discuss how to

the ASS continuation. At a certain point during the evalua-

tion of a program, the Pico driver loop pops the assignment

continuation (ASS) from the continuation stack and executes

it. The ASS continuation in turn expects the current envi-

ronment (represented by the dictionary DCT) and the value

that is to be assigned VAL) to be on the expression stack.

They are both needed to store a variable-value binding in

the current environment. At the end of its execution, the

ASS continuation pushes the assigned valued VAL on the ex-

pression stack, as Pico assignment expressions evaluate to

their right-hand side.

Over the course of some years, several modifications to

the Pico source code have been made. We therefore wanted

to verify whether the actual dynamics of the continuation

stack still matched the documented behavior. Following the

recipe outlined in Section 2, we first have to identify the

high-level behavioral concepts in terms of which the behav-

ior is documented. The continuation stack and the continu-

ations it contains are excellent candidates.

4.2. Document Program Behavior

Having identified the behavioral concepts to describe

our notion of the Pico interpreter’s internals with, we are

now ready to actually specify these beliefs in a behav-

ioral model. We will start by transforming the docu-

mented continuation schemas from the source code com-

ments into a format readable by our platform. As shown

in the model specification abstract below, we will use logic

facts of the form cntDocumented(CntName, StackBefore,

StackAfter). The documented configuration of the contin-

uation stack before and after the continuation’s execution is

represented by a list whose first element is the top of the

stack. In Prolog, the partial list [’ASS’|R] matches any list

starting with the element ’ASS’ while the rest of the list is

bound to the variable R. We use this feature to represent the

ellipses from the source code comments. The model there-

fore specifies that at the start of the ASS continuation’s exe-

cution, there should be an ASS assignment continuation on

top of the stack. After its execution, the continuation has to

be popped from the stack.

1 cntDocumented(’ASG’,[’ASG’|R],R).
2 cntDocumented(’REF’,[’REF’|R],[’REF’,’APL’|R]).
3 ...

4 behavioralModel :-
5 ✷(when(cntExecuted(Name,Before,After),
6 cntDocumented(Name,Before,After))).

7 cntExecuted(Name,StackBefore,StackAfter) :-
8 cntExited(Name,_,StackAfter),
9 •tcntEntered(Name,_,StackBefore).

We also have to specify that every executed continuation

should be documented by the model. We accomplish this

in the behavioralModel rule by expressing a temporal re-

lation between the cntExecuted and cntDocumented pred-

icates. Notice how the variables match in order to enforce

that the observed complete stack configurations agree with

their partial specifications.

Once again, the final 3 lines of the extract link the pred-

icates used in the behavioral model to the high-level events

provided by the dynamic meta model. This time, we are us-

ing the temporal operator •t to express that a continuation

is completely executed once it is exited and was entered t
time points ago in the past.

4.3. Application-Specific Instances of High-

Level Events

The third step in our recipe consisted of a precise specifi-

cation of the program model’s meta model. The model from

the previous section completely relied on just two high-level

behavioral events: the start and conclusion of a continua-

tion’s execution. More importantly, we are interested in the

configuration of the continuation stack at those moments

in time. We will therefore associate these values with the

cntEntered and cntExited events. Our meta model de-

clares this information to be intercepted as follows:

1 intercept(before,continuationEntry,
2 event(time,cntEntered(cntName,cntPtr,cntStack))).

3 intercept(after,continuationExit,
4 event(time,cntExited(cntName,cntPtr,cntStack))).

The definitions of the continuationEntry and

continuationExit predicates, which are among the

logic predicates the meta model’s specification relies

on, are shown below. They are responsible for locating

those constructs in the Pico interpreter’s source code that

represent the entry and exit points of a continuation.

1 continuationEntry(Construct,Path) :-
2 inContinuation(Construct,Path),
3 functionEntry(Construct,Path).

4 continuationExit(Construct,Path) :-
5 inContinuation(Construct,Path),
6 functionExit(Construct,Path).

7 continuation(Construct) :-
8 isFunctionDefinition(Construct),
9 expressionIn(Construct,Expression,_),
10 picoStack(Expression).

The continuationEntry rule states that a construct is

the entry point of a continuation if the construct is part of

a continuation and if it is the entry point of a function as

well. As before, the Path variable represents the path from

the program’s parse tree root to the parse tree node bound to

the Construct variable. It is used by the inContinuation

clause to check whether the programming language con-

struct is part of a continuation. We will discuss how to

specific for this application

positively identify a continuation later on, but for the mo-

ment it suffices to recall that they are implemented as func-

tions. The functionEntry clause therefore checks whether

the construct is the first C statement in a function body.

We could try to base our definition of the

inContinuation predicate on the C signature common to

all Pico continuations which states that continuations are

pointers to functions taking no arguments as well as not

returning anything:

typedef _NIL_TYPE_ (*_CNT_TYPE_)(_NIL_TYPE);

Such a definition would however result in many false pos-

itives. Recalling that continuations invoke other continua-

tions and pass around arguments by respectively manipulat-

ing the continuation and expression stack, we have therefore

opted to identify continuations based on a more semantical

definition:

The above rule states that a Construct is a continuation

if first of all it is a function and at least one expression in the

body of that function manipulates either the continuation

or the expression stack. Such stack manipulations can be

detected in Pico as code resulting from the expansion of

pop, push, zap and peek macro calls.

We have however neglected to mention three important

predicates the intercept declarations of the dynamic meta

model rely on: the cntName, cntPtr and cntStack key-

words. As we mentioned before, keywords are used to de-

clare how the information associated with each behavioral

concept of the general meta model can be retrieved from

an application’s run-time state. The cntStack keyword is

responsible for capturing the run-time configuration of the

continuation stack. This process involves interesting code

to walk over the continuation stack, but since this code is

tightly tied to Pico’s internals, it is out of this paper’s scope.

The keywords cntName and cntPtr, on the other hand, dif-

fer somewhat from the keywords we have seen in the run-

ning example. Instead of simply declaring the code it ex-

pands to as a logic fact, these keywords are actually logic

rules which are allowed to query the application’s parse tree

to obtain information that is to be incorporated in the ex-

panded source code. The cntName keyword, for instance,

obtains the name of a continuation from a program’s parse

tree as a function’s name is very difficult to obtain at run-

time given ANSI C’s limited reflective capabilities:

1 keyword(cntName,C,P,Expansion) :-

2 continuationName(C,P,Name),

3 concat([’log("’,Name,’");’],Expansion).

4.4. Lightweight Consistency Verification

To verify whether the Pico interpreter indeed behaves

as indicated by its documentation, we used the interpreter

to evaluate a program containing most of the allowed Pico

expression types. This way, we obtained high-level execu-

tion traces containing information about the dynamics of the

continuation stack as specified by the dynamic meta model

outlined above:

1 ..
2 event(60,cntEntered(’ASG’,13..1,[’ASG’,’print’, ’exit’])).
3 event(61,cntExited(’ASG’,13..1,[’print’, ’exit’])).
4 ..

We verified whether this execution trace is conform to

our model specification by launching the logic query ?-

behavioralModel. By doing so, we found several inter-

esting conflicts between Pico’s documented behavior and

the behavior we observed. One of them was located in the

documentation of the REA continuation which is executed

when an expression is read. The documentation indicated

that this continuation just pops the top of the continuation

stack during its execution, while in reality the EXT and EXP

continuations were pushed on top of the stack. In addi-

tion, several minor naming inconsistencies were detected.

The eval exp was for instance abbreviated in the docu-

mentation as EXP, but another continuation already had this

name. Such inconsistencies are very likely to confuse pro-

grammers during knowledge transfer. Upon interpretation

of our verification results, we were able to adapt the pro-

gram model to the observed behavior and made sure the

documentation and source code are back in sync.

We would like to conclude this section with a side note.

Although the behavioral model of the Pico interpreter as

presented in this section only expresses desirable behav-

ior, we have also used our verification platform to detect

instances of undesirable behavior. The Pico interpreter in-

cludes an implementation of a garbage collection algorithm

which might be invoked during the execution of a contin-

uation. Continuations should therefore be programmed in

a specific way in order to avoid ending up with dangling

pointers to the Pico object memory. In our program model,

we were able to specify the dynamic conditions leading to

a crash as undesirable properties and by doing so we were

able to locate two crash-inducing oversights which weren’t

immediately clear from the source code.

5. Related Work

Many existing software engineering tools already sup-

port the development process using information about a pro-

gram’s behavior.

5.1. Other Dynamic Analyses

In this section, we will compare some of the existing ap-

plications of dynamic analysis that are closest to our work

according to the following non-exhaustive set of compar-

ison criteria: intended application domain, analysis time,

Figure 1d, using the keywords stackTop and stackSize we

declared that the size of the stack and the element on top

should be recorded after each pop operation. These run-

time values will have to be obtained by the execution of

application-specific source code. For the stack implemen-

tation of the running example, the C code associated with

each keyword is shown in Figure 1f. For the use case in

Section 4, somewhat more elaborate code will have to be

provided in order to obtain the correct run-time values for

each high-level event.

3.4. Lightweight Consistency Verification

Developers can verify the consistency of a program’s ac-

tual behavior with its documented behavior by launching

logic queries against a recorded execution trace. DynaMode

instruments the source code of the application under inves-

tigation in order to record all occurrences of the high-level

run-time events specified in the meta model of the behavior

program model. To intercept occurrences of the high-level

pop event, the platform relies on the stackPopOperation

logic rule to identify those source code constructs which

give rise to the pop event. The platform also relies on the

definition of the stackTop and stackSize keywords to ob-

tain the run-time values associated with this event.

To verify the behavioral model specified in Figure 1d,

the logic query ?- behavioralModel has to be launched. In

case of a verification failure, our temporal logic interpreter

prints the last event that was used in an attempt to prove

the query. This information can be used to either adapt the

application to the model or the model to the application.

The generated execution traces consist of high-level events

which renders manual inspection in case of verification fail-

ures somewhat more feasible on the one hand, while the

verification itself is often computationally less expensive as

assertions generally need to be checked over fewer events

on the other hand.

4. Case Study: Documenting and Verifying the

Behavior of the Pico Interpreter

Pico [13] is an elegant interpreted programming lan-

guage developed at the Vrije Universiteit Brussel. Origi-

nally conceived to teach programming concepts to students

outside the realm of computer science, its C implementa-

tion is nowadays also heavily used in the computer science

curriculum as a teaching vehicle to introduce interpretation

techniques.

The Pico interpreter relies on the concept of a continua-

tion to represent the subtasks a computation –such as the

evaluation of an expression– comprises. Contrary to the

conventional semantics, a Pico continuation does not de-

note the entire future of the computation at hand, but rather

a piece of this computation. The Pico interpreter stores

these pieces on a stack. The entire stack of continuations,

to which we will refer as the continuation stack, therefore

represents the complete future of the computation. A con-

tinuation may invoke other continuations by placing them

on the continuation stack. Arguments can be passed by

storing them on a separate stack referred to as the expres-

sion stack. The heart of the Pico interpreter is a loop which

continuously executes the continuation located at the top of

the continuation stack. Continuations are implemented as

pointers to C functions which take no arguments nor return

a value.

In order to develop Pico language extensions, computer

science students first have to grasp the dynamics of the Pico

execution model. A well-defined sequence of continuation

and expression stack manipulations determines the opera-

tional semantics of each Pico expression. Students should

therefore have a good idea of how the contents of these

stacks evolves during the evaluation of a program.

4.1. Identify High-Level Run-Time Events

The internals of the Pico interpreter, which comprise

about 16K lines of condense C code, are documented in

a very consistent manner as is required by its educational

purposes. For each continuation, the documentation de-

scribes what the continuation stack and expression stack are

expected to look like before and after the execution of the

continuation. Consider for instance the documentation of

the ASS continuation, which implements the execution of an

assignment expression. Its behavior was documented by the

original developer in terms of expression and continuation

stack transformations:

1 /*----------------------------------------------*/

2 /* ASG */

3 /* expr-stack: [... ... ... ... DCT VAL] -> */

4 /* [... ... ... ... ... VAL] */

5 /* cont-stack: [... ... ... ... ... ASG] -> */

6 /* [... ... ... ... ... ...] */

7 /*----------------------------------------------*/

8 static _NIL_TYPE_ ASG(_NIL_TYPE_)

9 { ... }

The expected elements of the continuation and expres-

sion stack are written down between square brackets and

separated by spaces. The top of the stacks are located on

the right side. The dots represent possible elements on the

stack that are of no importance to the assignment continu-

ation as they are left untouched during its execution. The

expected configuration of the stack before the execution of

the continuation is located to the left of each arrow, while

its configuration after the execution is located to the right.

This human-readable schema sufficiently documents the

semantics of the assignment expression as implemented by

the ASS continuation. At a certain point during the evalua-

tion of a program, the Pico driver loop pops the assignment

continuation (ASS) from the continuation stack and executes

it. The ASS continuation in turn expects the current envi-

ronment (represented by the dictionary DCT) and the value

that is to be assigned VAL) to be on the expression stack.

They are both needed to store a variable-value binding in

the current environment. At the end of its execution, the

ASS continuation pushes the assigned valued VAL on the ex-

pression stack, as Pico assignment expressions evaluate to

their right-hand side.

Over the course of some years, several modifications to

the Pico source code have been made. We therefore wanted

to verify whether the actual dynamics of the continuation

stack still matched the documented behavior. Following the

recipe outlined in Section 2, we first have to identify the

high-level behavioral concepts in terms of which the behav-

ior is documented. The continuation stack and the continu-

ations it contains are excellent candidates.

4.2. Document Program Behavior

Having identified the behavioral concepts to describe

our notion of the Pico interpreter’s internals with, we are

now ready to actually specify these beliefs in a behav-

ioral model. We will start by transforming the docu-

mented continuation schemas from the source code com-

ments into a format readable by our platform. As shown

in the model specification abstract below, we will use logic

facts of the form cntDocumented(CntName, StackBefore,

StackAfter). The documented configuration of the contin-

uation stack before and after the continuation’s execution is

represented by a list whose first element is the top of the

stack. In Prolog, the partial list [’ASS’|R] matches any list

starting with the element ’ASS’ while the rest of the list is

bound to the variable R. We use this feature to represent the

ellipses from the source code comments. The model there-

fore specifies that at the start of the ASS continuation’s exe-

cution, there should be an ASS assignment continuation on

top of the stack. After its execution, the continuation has to

be popped from the stack.

1 cntDocumented(’ASG’,[’ASG’|R],R).
2 cntDocumented(’REF’,[’REF’|R],[’REF’,’APL’|R]).
3 ...

4 behavioralModel :-
5 ✷(when(cntExecuted(Name,Before,After),
6 cntDocumented(Name,Before,After))).

7 cntExecuted(Name,StackBefore,StackAfter) :-
8 cntExited(Name,_,StackAfter),
9 •tcntEntered(Name,_,StackBefore).

We also have to specify that every executed continuation

should be documented by the model. We accomplish this

in the behavioralModel rule by expressing a temporal re-

lation between the cntExecuted and cntDocumented pred-

icates. Notice how the variables match in order to enforce

that the observed complete stack configurations agree with

their partial specifications.

Once again, the final 3 lines of the extract link the pred-

icates used in the behavioral model to the high-level events

provided by the dynamic meta model. This time, we are us-

ing the temporal operator •t to express that a continuation

is completely executed once it is exited and was entered t
time points ago in the past.

4.3. Application-Specific Instances of High-

Level Events

The third step in our recipe consisted of a precise specifi-

cation of the program model’s meta model. The model from

the previous section completely relied on just two high-level

behavioral events: the start and conclusion of a continua-

tion’s execution. More importantly, we are interested in the

configuration of the continuation stack at those moments

in time. We will therefore associate these values with the

cntEntered and cntExited events. Our meta model de-

clares this information to be intercepted as follows:

1 intercept(before,continuationEntry,
2 event(time,cntEntered(cntName,cntPtr,cntStack))).

3 intercept(after,continuationExit,
4 event(time,cntExited(cntName,cntPtr,cntStack))).

The definitions of the continuationEntry and

continuationExit predicates, which are among the

logic predicates the meta model’s specification relies

on, are shown below. They are responsible for locating

those constructs in the Pico interpreter’s source code that

represent the entry and exit points of a continuation.

1 continuationEntry(Construct,Path) :-
2 inContinuation(Construct,Path),
3 functionEntry(Construct,Path).
4 continuationExit(Construct,Path) :-
5 inContinuation(Construct,Path),
6 functionExit(Construct,Path).

7 continuation(Construct) :-
8 isFunctionDefinition(Construct),
9 expressionIn(Construct,Expression,_),
10 picoStack(Expression).

The continuationEntry rule states that a construct is

the entry point of a continuation if the construct is part of

a continuation and if it is the entry point of a function as

well. As before, the Path variable represents the path from

the program’s parse tree root to the parse tree node bound to

the Construct variable. It is used by the inContinuation

clause to check whether the programming language con-

struct is part of a continuation. We will discuss how to

positively identify a continuation later on, but for the mo-

ment it suffices to recall that they are implemented as func-

tions. The functionEntry clause therefore checks whether

the construct is the first C statement in a function body.

We could try to base our definition of the

inContinuation predicate on the C signature common to

all Pico continuations which states that continuations are

pointers to functions taking no arguments as well as not

returning anything:

typedef _NIL_TYPE_ (*_CNT_TYPE_)(_NIL_TYPE);

Such a definition would however result in many false pos-

itives. Recalling that continuations invoke other continua-

tions and pass around arguments by respectively manipulat-

ing the continuation and expression stack, we have therefore

opted to identify continuations based on a more semantical

definition:

The above rule states that a Construct is a continuation

if first of all it is a function and at least one expression in the

body of that function manipulates either the continuation

or the expression stack. Such stack manipulations can be

detected in Pico as code resulting from the expansion of

pop, push, zap and peek macro calls.

We have however neglected to mention three important

predicates the intercept declarations of the dynamic meta

model rely on: the cntName, cntPtr and cntStack key-

words. As we mentioned before, keywords are used to de-

clare how the information associated with each behavioral

concept of the general meta model can be retrieved from

an application’s run-time state. The cntStack keyword is

responsible for capturing the run-time configuration of the

continuation stack. This process involves interesting code

to walk over the continuation stack, but since this code is

tightly tied to Pico’s internals, it is out of this paper’s scope.

The keywords cntName and cntPtr, on the other hand, dif-

fer somewhat from the keywords we have seen in the run-

ning example. Instead of simply declaring the code it ex-

pands to as a logic fact, these keywords are actually logic

rules which are allowed to query the application’s parse tree

to obtain information that is to be incorporated in the ex-

panded source code. The cntName keyword, for instance,

obtains the name of a continuation from a program’s parse

tree as a function’s name is very difficult to obtain at run-

time given ANSI C’s limited reflective capabilities:

1 keyword(cntName,C,P,Expansion) :-

2 continuationName(C,P,Name),

3 concat([’log("’,Name,’");’],Expansion).

4.4. Lightweight Consistency Verification

To verify whether the Pico interpreter indeed behaves

as indicated by its documentation, we used the interpreter

to evaluate a program containing most of the allowed Pico

expression types. This way, we obtained high-level execu-

tion traces containing information about the dynamics of the

continuation stack as specified by the dynamic meta model

outlined above:

1 ..

2 event(60,cntEntered(’ASG’,13..1,[’ASG’,’print’, ’exit’])).

3 event(61,cntExited(’ASG’,13..1,[’print’, ’exit’])).

4 ..

We verified whether this execution trace is conform to

our model specification by launching the logic query ?-

behavioralModel. By doing so, we found several inter-

esting conflicts between Pico’s documented behavior and

the behavior we observed. One of them was located in the

documentation of the REA continuation which is executed

when an expression is read. The documentation indicated

that this continuation just pops the top of the continuation

stack during its execution, while in reality the EXT and EXP

continuations were pushed on top of the stack. In addi-

tion, several minor naming inconsistencies were detected.

The eval exp was for instance abbreviated in the docu-

mentation as EXP, but another continuation already had this

name. Such inconsistencies are very likely to confuse pro-

grammers during knowledge transfer. Upon interpretation

of our verification results, we were able to adapt the pro-

gram model to the observed behavior and made sure the

documentation and source code are back in sync.

We would like to conclude this section with a side note.

Although the behavioral model of the Pico interpreter as

presented in this section only expresses desirable behav-

ior, we have also used our verification platform to detect

instances of undesirable behavior. The Pico interpreter in-

cludes an implementation of a garbage collection algorithm

which might be invoked during the execution of a contin-

uation. Continuations should therefore be programmed in

a specific way in order to avoid ending up with dangling

pointers to the Pico object memory. In our program model,

we were able to specify the dynamic conditions leading to

a crash as undesirable properties and by doing so we were

able to locate two crash-inducing oversights which weren’t

immediately clear from the source code.

5. Related Work

Many existing software engineering tools already sup-

port the development process using information about a pro-

gram’s behavior.

5.1. Other Dynamic Analyses

In this section, we will compare some of the existing ap-

plications of dynamic analysis that are closest to our work

according to the following non-exhaustive set of compar-

ison criteria: intended application domain, analysis time,

Figure 2: Source code and corresponding behavioral documentation extracts of the Pico interpreter.

and after the execution of the continuation. Consider for

instance the documentation of the ASG continuation, which

implements the execution of an assignment expression. Its

behavior is documented in terms of expression and contin-

uation stack transformations shown in Figure 2b. The ex-

pected elements of the continuation and expression stack

are written down between square brackets and separated by

spaces. The top of the stacks are located on the right side.

The dots represent possible elements on the stack that are

of no importance to the assignment continuation as they are

left untouched during its execution. The expected configu-

ration of the stack before the execution of the continuation

is located to the left of each arrow, while its configuration

after the execution is located to the right.

This human-readable schema sufficiently documents the

semantics of the assignment expression as implemented by

the ASG continuation. At a certain point during the evalua-

tion of a program, the Pico driver loop pops the assignment

continuation (ASG) from the continuation stack and executes

it. The ASG continuation in turn expects a variable envi-

ronment (represented by the dictionary DCT) and the value

that is to be assigned VAL) to be on the expression stack.

They are both needed to store a variable-value binding in

the current environment. At the end of its execution, the

ASG continuation pushes the assigned valued VAL on the ex-

pression stack, as Pico assignment expressions evaluate to

their right-hand side.

4.2. Documenting Program Behavior

Over the course of some years, several modifications to

the Pico source code have been made. We therefore wanted

to verify whether the actual dynamics of the continuation

stack still matched the documented behavior. Following the

recipe outlined in Section 2, we first have to identify the

high-level events in terms of which we will document the

behavior. Following the original documentation, we chose

to model the execution of a continuation as a high-level

event whose associated run-time values are the configura-

tion of the continuation stack before and after the execution.

In this paper, we will only describe and verify the evolution

of the continuation stack, but our approach can be easily

applied to the expression stack as well.

1 /*----------------------------------------------*/
2 /* ASS */
3 /* expr-stack: [... ... ... ... DCT VAL] -> */
4 /* [... ... ... ... ... VAL] */
5 /* cont-stack: [... ... ... ... ... ASS] -> */
6 /* [... ... ... ... ... ...] */
7 /*----------------------------------------------*/
8 static _NIL_TYPE_ ASG(_NIL_TYPE_)
9 { ... }

We are now ready to specify our behavioral model as

assertions over the high-level events we just identified.

We will start by transforming the original documentation

into a format readable by our platform. As the model

specification abstract in Figure 2c shows, we use logic

facts of the form cntDocumented(CntName, StackBefore,

StackAfter). The documented configuration of the contin-

uation stack before and after the continuation’s execution is

represented by a list whose first element is the top of the

stack. In Prolog, the partial list [’ASG’|R] matches any list

starting with the element ’ASG’ while the rest of the list

is bound to the variable R. We use this feature to represent

the ellipses from the source code comments. The first line

of the model therefore specifies that at the start of the ASG

continuation’s execution, there should be an ASG assignment

continuation on top of the stack. After its execution, the

continuation has to be popped from the stack.



20

Non-standard evaluation strategies:
a taste of implicit parallel evaluation

multi-core 
revolution

speed up 
sequential 
programs

should be easier 
for declarative 

programs

expose inherent 
parallelism

formal 
foundation

relatively 
pure

BUT also complex datastructures with pointers ... 
imagine executing these goals in parallel!

Slide 3

Complex Data Structures / Pointers

• Example:
main :- X = f(Y,Z),

X Yf Z

Y = a,
X f Za

W = Z,
X f Za W

W = g(K),
X f Za W g K

X = f(a,g(b)).
X f Za W g b

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

[http://clip.dia.fi.upm.es/~logalg/slides/PS/A_par.pdf]

http://clip.dia.fi.upm.es/~logalg/slides/PS/A_par.pdf
http://clip.dia.fi.upm.es/~logalg/slides/PS/A_par.pdf
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Non-standard evaluation strategies:
a taste of implicit parallel evaluation
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New Mexico State University

And-Parallelism

Or-Parallelism

Unification
Parallelism

correctness (same solutions as sequential)
 efficiency (no slowdown, speedup)

not trivial: goals typically depend 

on each other 

(data and control dependency), 

workers need to be synchronized

[http://www.cs.nmsu.edu/~ipivkina/Compulog/pontelli.pdf]

http://clip.dia.fi.upm.es/~logalg/slides/PS/A_par.pdf
http://clip.dia.fi.upm.es/~logalg/slides/PS/A_par.pdf
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Non-standard evaluation strategies:
a taste of implicit parallel evaluation - or-parallelism

execute different 
branches at choice point 

simultaneously

relevant for 
search problems, 
generate-and-test

there is no dependency between 
the clauses implementing p/1

p(a).
p(b).
?- p(X).

typical architecture:
set of workers, each a full interpreter

scheduler assigns unexplored branches to idle workers

issue: maintaining a different environment per 
branch efficiently(e.g., sharing, copying, ...)

much easier to implement than and-parallelism

[http://clip.dia.fi.upm.es/~logalg/slides/PS/A_par.pdf]

http://clip.dia.fi.upm.es/~logalg/slides/PS/A_par.pdf
http://clip.dia.fi.upm.es/~logalg/slides/PS/A_par.pdf
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Non-standard evaluation strategies:
a taste of implicit parallel evaluation - or-parallelism

..., p(X), ... 
p(X) :- ..., X=a, ..., !, ...
p(X) :- ..., X=b, ...

Slide 8

Issues in Or-parallelism: Illustration
. . ., p(X), . . .

p1(X) :- . . ., X=a, . . ., !, . . .
p2(X) :- . . ., X=b, . . .

!

p1 p2
x=a x=b

x
main :- l, s.

:- parallel l/0.

l :- large_work_a.

l :- large_work_b.

:- parallel s/0.

s :- small_work_a.

s :- small_work_b.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

speculative work should be avoided to gain speedup

left-based scheduling, immediate killing on cut 

avoid incurring an overhead  
from fine-grained parallelism 

Slide 8

Issues in Or-parallelism: Illustration
. . ., p(X), . . .

p1(X) :- . . ., X=a, . . ., !, . . .
p2(X) :- . . ., X=b, . . .

!

p1 p2
x=a x=b

x
main :- l, s.

:- parallel l/0.

l :- large_work_a.

l :- large_work_b.

:- parallel s/0.

s :- small_work_a.

s :- small_work_b.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

speculative

a lot of work 
from the past is 
relevant again, 
BUT: distributed 

vs shared 
memory 

architectures, 
caching 

[http://clip.dia.fi.upm.es/~logalg/slides/PS/A_par.pdf]

http://clip.dia.fi.upm.es/~logalg/slides/PS/A_par.pdf
http://clip.dia.fi.upm.es/~logalg/slides/PS/A_par.pdf
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Logic programming in software engineering:
SOUL - symbiosis

symbiosis with base program languages

changes are immediately reflected

1 if ?c isCompilationUnit,

2 [?c types size > 1]

3 if compilationUnit(packageDeclaration(simpleName([’testapp’])),?,?) isCompilationUnit

4 if ?c isCompilationUnit,

5 ?c hasPackage: ?p,
6 ?p hasName: ?n,
7 ?n isSimpleName,

8 ?n hasIdentifier: [‘testapp’]

Fig. 4. Some queries illustrating quantification over the compilation units in an Eclipse workspace.

by the second query in Figure 4. However, we have deliber-
ately chosen not to reify parse tree nodes as compound logic
terms, which forces us to expand the unification into a quite
elaborate sequence of conjuncted conditions comprising the
figure’s third query.

In order to reconcile the declarative style of the sec-
ond query with the reification of the actual parse tree
node objects, we adapt SOUL’s unification scheme such
that parse tree nodes unify with their logic compound term
representation. Although this extension is much like its
corresponding extension for Smalltalk, the Java grammar’s
sheer size leaves customizing the unification for each in-
dividual org.eclipse.jdt.core.dom.ASTNode sub-
class a laborious undertaking. To unify a node with a
logic term, one would have to invoke the methods re-
sponsible for retrieving the child node (e.g. getName(),
getTypeDeclarations(), etc . . . ) corresponding to each
of the compound term’s arguments. Moreover, these hard-
coded invocations leave the implementation brittle with re-
spect to changes to the parser or the language specification.
A reflection-based unification scheme covering the entire
ASTNode-hierarchy is therefore highly desirable.

1) The unification extension: Property descriptors
endow the Eclipse ASTNode-hierarchy with
such a reflective API. Each node has a method
getStructuralProperty(StructuralPropertyDescriptor) which
retrieves the value of the receiver’s property designated by
the given property descriptor. These properties range from an
individual child node over a collection of children to primitive
values. Another method, propertyDescriptors(int),
returns a list of the property descriptors available for the
receiver under the given Java Language Specification. The
order in which descriptors are returned depends on the
location of the designated property in the grammar rule
(e.g. the descriptor for a method’s name comes before the
descriptor for a method’s parameters), rendering the mapping
of a node’s properties to the arguments of its logic term
representation one-to-one.

The reflective capabilities of the ASTNode-hierarchy triv-
ialize the unification between a parse tree node and a logic
term. Similar to its corresponding extension for Smalltalk
code, a parse tree node with property descriptors δ1, . . . , δn

unifies with a logic term f(t1, . . . , tn) if and only if the
term’s functor f unifies with the name of the node’s class, its
multiplicity n agrees with the amount of property descriptors

and each of the term’s arguments ti unifies with the value of
the node’s property designated by property descriptor δi.

The above unification scheme is embod-
ied by the unifyWithCompound:inEnv:

method in the Smalltalk proxy for each
org.eclipse.jdt.core.dom.ASTNode instance.
One can argue that this method could as well have been
part of a closed unification protocol. However, it has already
been overridden for certain subclasses to exclude unimportant
properties from the logic term. Import declarations for
instance omit their boolean static property which can be
accessed more naturally in the logic programming paradigm
through an importDeclarationIsStatic predicate.

2) The extension in practice: As Figure 4 already motivated
the rationale for unifying parse tree nodes with logic terms
have, the following logic queries merely serve to illustrate the
actual unification:

1 if ?c isCompilationUnit

2 if compilationUnit(?p, ?i, ?t) isCompilationUnit

3 if compilationUnit(?, ?i, ?) isCompilationUnit,

4 ?i contains: ?f(?name)
5 if ?c isCompilationUnit,

6 ?c compilationUnitHasPackage: ?p,
7 ?c equals: compilationUnit(?p, [?c imports], ?)

Solutions to the first query comprise bindings of variable ?c
to CompilationUnit instances. The second query ranges
over the same instances, but binds each instance’s package
declaration, import declarations and type declarations to vari-
ables ?p, ?i and ?t respectively. The third query lists the names
of each import in each compilation unit. Its solutions have
variable ?f bound to the symbol importDeclaration,
which is the type of each element in the compilation unit’s
collection of import declarations i. The last query is composed
of three separate logic conditions. Through the predicate
compilationUnitHasPackageDeclaration, the sec-
ond condition binds ?p to the package the compilation unit
?c is declared in. The third condition merely demonstrates
that compilation unit ?c unifies with the logic term given as
second argument to the equals: predicate1. This argument
is a Smalltalk term evaluating to the compilation unit’s im-
port declarations obtained through an invocation of the Java
CompilationUnit.imports() method.

1The logic fact ?x equals: ?x. implements the equals: predicate
which hence serves as a substitute for Prolog’s = operator.

ordinary term

symbiosis term

instance

base program not reified as logic facts

method method

query results easily perused by existing IDE’s

instance
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Logic programming in software engineering:
SOUL - symbiosis - demo 

nice, but true power of logic 
programming comes not only from 

backtracking, but also from the 
ability to unify with a user-

provided compound term to 
quickly select objects one is 

interested in

if ?m methodDeclarationHasName: simpleName(?identifier)

if ?m methodDeclarationHasName: ?n,
   ?n equals: simpleName(?identifier)

hmm .. strange: 
the method’s name (a Java 

Object) is unified with a 
compound term?

hold that thought
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Logic programming in software engineering:
SOUL - symbiosis - demo 

all subclasses of presentation.Component  
 should define a method acceptVisitor(ComponentVisitor)

that invokes System.out.println(String) before 
double dispatching to the argument

public class PrototypicalLeaf extends Component {
	 public void acceptVisitor(ComponentVisitor v) {
	 	 System.out.println("Prototypical.");
	 	 v.visitPrototypicalLeaf(this);
	 }
} 
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Logic programming in software engineering:
SOUL - symbiosis - demo 

yuk .. not as 
declarative as 

advertised!

and I have to do this for all 
implementation variants?
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Logic programming in software engineering:
SOUL - code templates

integrate concrete syntax of base program

1 public List list;

2

3 public void initializeContainer() {

4 List l = new LinkedList();

5 list = l;

6 }

7

8 public void insertElement(Object x) {

9 Iterator i = list.iterator();

10

11 while(i.hasNext()) {

12 Object o = i.next();

13 operation(x, (Collection) this.self().list);

14 }

15 }

16

17 public void operation(Object o, Collection c) {

18 c.add(o);

19 }

20

21 public Example self() {

22 return this;

23 }

Figure 14. Modification of a container during iteration.

branch. Obviously, if our matching algorithm would only match
the then-branches that directly contain a single method invocation,
we would not find many bugs using this query. Because of the
behavioral matching of statement sequences using the call-graph
analysis, we can safely restrict the template to those statements that
are essential to the pattern. Finally, although our template uses the
same variable in the condition of the if-statement as well as in the
method invocation, the actual code that will be found does not have
to because we match the variables based on the points-to analysis.
This means that any expression that evaluates to the same value as
the variable x will be matched.

3.3 Detecting Concurrent Modification Exceptions
Another possible bug in Java programs happens when a modifica-
tion is made to a collection that is currently being iterated over. This
bug will appear upon execution of the insertElement method
in the code of Figure 14. This method executes an iteration over
a Linkedlist collection object during which it calls the method
operation that adds the element to the collection. However, a col-
lection that is under iteration may not be modified and therefore,
a ConcurrentModificationException will be thrown and the
program crashes. Obviously, in this small code snippet, the bug is
easily detectable by the human developer but the same observation
does not hold for large programs written by different developers.
Therefore, we want to implement the automated detection of such
concurrent modifications and we can do so by writing and execut-
ing a query in our tool.

The query in Figure 15 shows how we can detect one possi-
ble occurrence of the bug. It searches for all while-statements that
use an iterator ?iterator to loop over a collection ?collection and
that perform an addition on that collection during the execution
of the while-body. On line 3, the query also states that the value
that is bound to the logic variable ?iterator is actually an itera-
tor object that is obtained by invoking iterator() on the collec-
tion object ?collection. This particular query will thus detect the
bug that is present in the code snippet of Figure 14. The template
again requires a matching process that takes both structural as well
as behavioral information into account. For instance, the while-
statement can be found using mere matching on a structural meta
model of the program but the call to the addition operation can oc-
cur anywhere in the control flow of the while-body. Furthermore,
the logic variables ?collection and ?iterator will match with any

1 if jtStatement(?s) {

2 while(?iterator.hasNext()) {

3 ?collection.add(?element);
4 }

5 },

6 jtExpression(?iterator){?collection.iterator()}

Figure 15. Detect additions to a container during iteration.

expression that evaluates to the collection and iterator objects re-
spectively. Once again, because of this matching process, the pro-
totype implementation that is present in the template matches all
actual places in the code where similar behavior and structure is
implemented.

Of course, this template does not detect all possible occurrences
of this bug. For example, we also need to detect removals of
elements and take into account that there are other loop constructs
available in Java. We can detect all these possibilities using multiple
similar templates that each detect a possible case5.

4. Related Work
Several works have been presented on the use of templates for code
base querying. Works that are closely related to our approach are
the LogicAJ2 [27] and Spoon [23] templates that provide a way
of selecting program elements based on whether or not their im-
plementation syntactically matches a given template. Compared to
our approach, matching program elements in a syntactical way re-
quires a template for each of the alternative ways in which a be-
havior can be specified. This renders the templates less expressive
for finding different variations of the same pattern. Behavioral pat-
terns are better supported in the Trace-matches [2] AspectJ exten-
sion. In it, interesting patterns on the call-graph are defined as reg-
ular expressions that are matched during the execution of the pro-
gram. Trace matches are similar in spirit to our interpretation of
statement sequences in source code templates. Their use of regular
expressions even permits to define more complex sequences, for
example allowing repetition of edges as well as optional or alterna-
tive edges. However, trace matches operate on an online dynamic
analysis while our approach uses an offline call-graph analysis in
combination with other representations of the program.

In the domain of program transformation, templates normally
serve as a condition to a rewrite rule. In JaTS [6], a transforma-
tion is specified as a left hand side template, that must match to
the elements which will be transformed, and a right hand side tem-
plate which will be used instantiated to replace the matched ele-
ments. SmPL [24] follows a similar principle, it is specified not as
a LHS - RHS rule, but as a Unix diff file that on a single template
defines the changes that must occur on matching elements. SmPL
allows for more semantic matches than JaTS by relaying on the
function’s control flow to match on sequences of statements, and
on code isomorphisms to cope with the different ways to specify
a behavior (for example, in C, X == null ↔ !X). The analysis
done in SmPL, however, is intraprocedural only, and does not take
into account aliasing between variables on its matching; neverthe-
less, the use of isomorphisms permit a greater, albeit limited, degree
of variability than what our approach offers.

Finally, PQL [20] is a domain specific language that uses
template-like queries to match on context-sensitive traces of the
program. These traces represent, for example, security flaws, vi-
olations to design rules, or possible unsafe behaviors. PQL is the
closest work to ours, although it is not a complete template lan-

5 We are also currently working on an extension of the templates to express
more variability (such as logical ’or’) inside the templates themselves.

9 2006/11/15

resolved by existential queries on control-flow graph

is add(Object) ever invoked in the control-flow of a while-statement?
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vs

public class SuperLogLeaf extends OnlyLoggingLeaf 
{
	 public void acceptVisitor(ComponentVisitor v) {
	 	 super.acceptVisitor(v);
	 	 v.visitSuperLogLeaf(this);
	 }
}
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but still not in query results:

public class MustAliasLeaf extends Component {
	 public void acceptVisitor(ComponentVisitor v) {
	 	 System.out.println("Must alias.");
	 	 Component temp = this;
	 	 v.visitMustAliasLeaf(temp);
	 }
}

public class MayAliasLeaf extends Component {
	 public Object m(Object o) {
	 	 if(getInput() % 2 == 0) 
            return o;
	 	 else 
            return new MayAliasLeaf();
	 }

	 public void acceptVisitor(ComponentVisitor v) {
	 	 System.out.println("May alias.");
	 	 v.visitMayAliasLeaf((MayAliasLeaf)m(this));
	 }
}
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SOUL - domain-specific unification

points-to analysis
tolerance for syntactically differing expressions

semantic analysis
correct application of scoping rules, name resolution

incorporates static analyses: ensures query conciseness & correctness 

instance vs compound term

instance vs instance

easily identify elements of interest

can the value on which hasNext() is 
invoked alias the iterator of the 
collection to which add is invoked?

never, in at least one or in all possible executions
-> propagate this knowledge using logic of quantified truth

1 public List list;

2

3 public void initializeContainer() {

4 List l = new LinkedList();

5 list = l;

6 }

7

8 public void insertElement(Object x) {

9 Iterator i = list.iterator();

10

11 while(i.hasNext()) {

12 Object o = i.next();

13 operation(x, (Collection) this.self().list);

14 }

15 }

16

17 public void operation(Object o, Collection c) {

18 c.add(o);

19 }

20

21 public Example self() {

22 return this;

23 }

Figure 14. Modification of a container during iteration.

branch. Obviously, if our matching algorithm would only match
the then-branches that directly contain a single method invocation,
we would not find many bugs using this query. Because of the
behavioral matching of statement sequences using the call-graph
analysis, we can safely restrict the template to those statements that
are essential to the pattern. Finally, although our template uses the
same variable in the condition of the if-statement as well as in the
method invocation, the actual code that will be found does not have
to because we match the variables based on the points-to analysis.
This means that any expression that evaluates to the same value as
the variable x will be matched.

3.3 Detecting Concurrent Modification Exceptions
Another possible bug in Java programs happens when a modifica-
tion is made to a collection that is currently being iterated over. This
bug will appear upon execution of the insertElement method
in the code of Figure 14. This method executes an iteration over
a Linkedlist collection object during which it calls the method
operation that adds the element to the collection. However, a col-
lection that is under iteration may not be modified and therefore,
a ConcurrentModificationException will be thrown and the
program crashes. Obviously, in this small code snippet, the bug is
easily detectable by the human developer but the same observation
does not hold for large programs written by different developers.
Therefore, we want to implement the automated detection of such
concurrent modifications and we can do so by writing and execut-
ing a query in our tool.

The query in Figure 15 shows how we can detect one possi-
ble occurrence of the bug. It searches for all while-statements that
use an iterator ?iterator to loop over a collection ?collection and
that perform an addition on that collection during the execution
of the while-body. On line 3, the query also states that the value
that is bound to the logic variable ?iterator is actually an itera-
tor object that is obtained by invoking iterator() on the collec-
tion object ?collection. This particular query will thus detect the
bug that is present in the code snippet of Figure 14. The template
again requires a matching process that takes both structural as well
as behavioral information into account. For instance, the while-
statement can be found using mere matching on a structural meta
model of the program but the call to the addition operation can oc-
cur anywhere in the control flow of the while-body. Furthermore,
the logic variables ?collection and ?iterator will match with any

1 if jtStatement(?s) {

2 while(?iterator.hasNext()) {

3 ?collection.add(?element);
4 }

5 },

6 jtExpression(?iterator){?collection.iterator()}

Figure 15. Detect additions to a container during iteration.

expression that evaluates to the collection and iterator objects re-
spectively. Once again, because of this matching process, the pro-
totype implementation that is present in the template matches all
actual places in the code where similar behavior and structure is
implemented.

Of course, this template does not detect all possible occurrences
of this bug. For example, we also need to detect removals of
elements and take into account that there are other loop constructs
available in Java. We can detect all these possibilities using multiple
similar templates that each detect a possible case5.

4. Related Work
Several works have been presented on the use of templates for code
base querying. Works that are closely related to our approach are
the LogicAJ2 [27] and Spoon [23] templates that provide a way
of selecting program elements based on whether or not their im-
plementation syntactically matches a given template. Compared to
our approach, matching program elements in a syntactical way re-
quires a template for each of the alternative ways in which a be-
havior can be specified. This renders the templates less expressive
for finding different variations of the same pattern. Behavioral pat-
terns are better supported in the Trace-matches [2] AspectJ exten-
sion. In it, interesting patterns on the call-graph are defined as reg-
ular expressions that are matched during the execution of the pro-
gram. Trace matches are similar in spirit to our interpretation of
statement sequences in source code templates. Their use of regular
expressions even permits to define more complex sequences, for
example allowing repetition of edges as well as optional or alterna-
tive edges. However, trace matches operate on an online dynamic
analysis while our approach uses an offline call-graph analysis in
combination with other representations of the program.

In the domain of program transformation, templates normally
serve as a condition to a rewrite rule. In JaTS [6], a transforma-
tion is specified as a left hand side template, that must match to
the elements which will be transformed, and a right hand side tem-
plate which will be used instantiated to replace the matched ele-
ments. SmPL [24] follows a similar principle, it is specified not as
a LHS - RHS rule, but as a Unix diff file that on a single template
defines the changes that must occur on matching elements. SmPL
allows for more semantic matches than JaTS by relaying on the
function’s control flow to match on sequences of statements, and
on code isomorphisms to cope with the different ways to specify
a behavior (for example, in C, X == null ↔ !X). The analysis
done in SmPL, however, is intraprocedural only, and does not take
into account aliasing between variables on its matching; neverthe-
less, the use of isomorphisms permit a greater, albeit limited, degree
of variability than what our approach offers.

Finally, PQL [20] is a domain specific language that uses
template-like queries to match on context-sensitive traces of the
program. These traces represent, for example, security flaws, vi-
olations to design rules, or possible unsafe behaviors. PQL is the
closest work to ours, although it is not a complete template lan-

5 We are also currently working on an extension of the templates to express
more variability (such as logical ’or’) inside the templates themselves.

9 2006/11/15
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