Declarative
Programming

Coen De Roover - 2010

Practicalities

course material

Declarative
Programming

Peter Flach

website

http://soft.vub.ac.be/” cderoove/
declarative_programming/

exam

oral test with

.) individual
written preparation programming
about theory and ;
project

exercises

averaged, unless one <7
exercises

5 sessions
start 6th of October at IG

These slides are based on:

Acknowledgements

slides by Prof. Dirk Vermeir for the same course

http://tinf2.vub.ac.be/™ dvermeir/courses/logic_programming/Ip.pdf

slides by Prof. Peter Flach accompanying his book “Simply Logical”
hitp://www.cs.bris.ac.uk/ " flach/SL/slides/

slides on Computational Logic by the CLIP group

hitp://clip.dia.fi.upm.es/~logalg/

Problem solving strategy

u Di:tionary
(Q dor———

Q declarative

Thesaurys Apple Wikipedia
desclar.a.ti
Teastive |dik i
Pt | le(a)rativ; -klar-|
* Grammar (
Statement.

: declaratipe Statements,

) g f.
ofa sentence or phrase taking the form of 2 simple

noun

a sta(t:ment in the form of declaration
ammar a declarative sentence or p}.u'ase

DERIVATIVES

de-clax--a-!ive-ly adverb

Declarative

Habitat Monitoring using Sensor Network

gather sensor readings

route through network while adjusting
averages and count

power-efficiently and fault tolerantly

SELECT region,
CNT (occupied),

AVG (sound)
FROM sensors ﬁ
GROUP BY region l

HAVING AUG (sound) > 200
EPOCH DURATION 10s

(=]
(&)
P
£
-

General-purpose declarative programming: 1&*;‘
logic formalizes human thought process

classical logic
Aristotle likes cookies
Plato is a friend of anyone who likes cookies
Plato is therefore a friend of Aristotle

formally

al : likes(aristotle, cookies)

a2 : vX likes(X, cookies) — friend(plato, X)
t1 :friend(plato,aristotle)

Tlal,a2] - ti

XWT

program transformations

% if ($condition$) {

D x = $expri$;

*2 else {

‘5 x = $expr2$;

e ==

;," x = $condition$? $expri$: $expr2$;
identifying XML elements

/bookstore/book [price>35.00] /title

- /bookstore/book [position()<3]
>n<? count (//a [@href]
//img[not(Ralt)]
positioning GUI widgets
<Shell>
<Shell.layout>

<FilllLayout/>
</Shell.layout>
<Button text="Hello, world!">

</Button> I
</Shell> aiso ..

General-purpose declarative programming: Lﬁ-’%
logic assertions as problem specification

extensionally
Peano nat(@) A nat(s(@)) A nat(s(s@))) » . . .
encoding
natural Nt (@) 2

W : hat(X) — nat(s(X))) intensionally

numbers
vX (le(@,X)) A

le vX,¥ (le(X,¥Y) - le(s(X),s(¥))

add vX (hat(X) — add(@, X, X))
vX,¥,2 (add(X, ¥, Z2) — add(s(X), Y, s(2)))

prod vX (hat(X) — mult(@, X, 8))
WX, ¥, Z, W (mult(X,Y,W) A add(W,¥,2) - mult(s(X),¥,2Z))

squares vX, ¥ (nat(X) A nat(¥) A mult(X,X,¥Y) — square(X,Y))

squares of natural numbers < to 5

wanted VX wanted(X) «
(aY nat(¥) A le(¥,s(s(s(s(s(@)))))) A square(y, X)))

8

General-purpose declarative programming: 1&;
proof procedure as problem solver r

Assuming the existence of a mechanical proof procedure,
a new view of problem solving and computing is possible

[Greene in 60's]
1 2 3

program proof

specify the problem by means query the proof procedure for
procedure once

of logic assertions answers that follow from the

assertions
query answer
nat(s(@)) ? <yes>
aX add(s(@),s(s(@)),X) ? X = s(s(s(@)))

aX wanted(X) ? X=0 v X=s(0) v X=s(s(s(s(@)))) v

X=s9(8) v X=s16(0) v X=525(0)

9

General-purpose declarative programming: 1@*;‘
historical overview

problem soVing:

ne: .
Gre® iy linear resotution-
Robinson:
(eary
Aif B}l')aszgls Proceq
[{
(0] SOIVe (execit an pretat’o” f
(earyy)) 4, soy, e)”(e orn claygg logi
i er. C c
Interpreta a peCIaI BI ndB R ad
N the P T zed em 2an, > B
difficyp ‘ , t "OVer (Fortra, .
t €ration n) mb
(’ate) D Y A gos Ue) eddlng the or
g of the #; Oceqy,
Ty effic; (: evelops c €lime (j o P’anner) ral

General-purpose declarative programming: 1:?;‘

logic and proof procedure r

which logic

which proof procedure

performance
concurrency, memoization ..
soundness

are all provables true

completeness

can all trues be proven

General-purpose declarative programming: 1:41
historical overview

P [¢) i pa (ifth
.

the basliC ‘adl ms a d dvar Ced \(tp\e”\e‘\ta’“oll teCl H\qUeS Jal n F f
al al)

k. (MCC)’E""OPG E(':‘ ’ rogramm'\ng pookS,
g | Prolod '\mp\ementat\ons, p

commercial T

h Prolod family-

the Edinburd urrent .
. e and con® ing: Major €
A parg\onstra‘mt Logic Programming
CLP —

1995: 150 Prolog standard-

Major research i
Gene\’a\'\on

ous . .
Numer arming systems

e as.
ew applications are
xtension —

Jogic progr many N
Many commercial CLP systems with fielded applications.
Extensions to full higher order, inclusion of functional programming, ...
Highly optimizing compilers, automatic parallelism, automatic debugging.
Concurrent constraint programming systems.
Distributed systems.
Object oriented dialects.
Applications

< Natural language processing

< Scheduling/Optimization problems

< Al related problems

< (Multi) agent systems programming.
< Program analyzers

12

SeroAERN
Oxforg

L] C
Representing |
S?rcé[;(tj CENTRAL
Knowledge Toteman
ourt Roag
Green pi
P, ICcadijj
ark c,-rc'ulé’ Leicester | 'CCADILLY
Square
relations among Charing
ross
underground stations VICTORA
represented by predicates
predicate symbol argument terms
ternary connected/3: connected(bond_street, oxford_circus,central)
binary nearby/2: nearby (bondstreet, oxford_circus)
Y Y

13

Representing Knowledge: |

{ uppercase=variable

derived information oo
(s independe”

inrole V1870

logic predicate nearby/2 V°"‘°‘;’::: roriable Xin 7

implemented through logic rules

conclusion of rule premises of rule

nearby(X,Y) :- connected(X,Z,L), connected(Z,Y,L).

nearby (X,Y) :— connected(X,Y,L).

relation intensionally

line with at most one
other station in between”

“Two stations are nearby
if they are on the same

compare with an extensional description through logic facts:
nearby (bond_street,oxford_circus) .
nearby (oxford_circus, tottenham_court_road) .

nearby (bond_street, tottenham_court_road) .

15

logic rules describe a

Representing Knowledge:
base information

logic predicate connected/3
implemented through logic facts

connected(bond_street,oxford_circus,central).
connected (oxford_circus, tottenham_court_road,central).
connected(bond_street, green_park, jubilee) .

logic facts describe a
connected (green_park, charing_cross, jubilee) . relation exiensiona”y

connected(green_park,piccadilly_circus,piccadilly). (i.e., b)' enumemﬁon)
connected(piccadilly_circus, leicester_square,piccadilly).

connected (green_park,oxford_circus,victoria).

connected (oxford_circus,piccadilly_circus,bakerloo) .

connected(piccadilly_circus,charing_cross,bakerloo) .

connected (tottenham_court_road, leicester_square, northern).
14

Answering Queries:
base information

matching query predicate against a compatible
logic fact yields a set of variable bindings

predicate logic variables as
symbol argument terms
query ?— connected(W, picadilly_circus, L)
answer { W = green_park, L = picadilly }

answer {u oxford_circus, L = bakerloo }

connected (green_park,piccadilly_circus,piccadilly)
connected (oxford_circus,piccadilly_circus,bakerloo)

compatible
facts

Answering Queries:
derived information

query ?- nearby(tottenham_court_road, W).

matching query predicate with the conclusion of a
compatible rule: nearby (X,Y) :— connected(X,Y,L).

yields: { X = tottenham_court_road, Y=W }

the original query can premise of compatible rule
therefore be answered by
answering:

matching new predicate against a compatible logic fact

Yie|d55 { W = leicester_square, L=northern}

final

W { X = tottenham_court_road, Y = leicester_square }
answer

17

Answering Queries:
involving recursive rules

reachable(X,Y) :— connected(X,Y,L).
reachable(X,Y) :- connected(X,Z,L), reachable(Z,V¥).

:-reachable (bond_street, k) reachable(X1,Y1) :- connected(X1,21,L1),
reachable(Z1,Y1).
{X1=bond_street, Y1=W}

:—connected (bond_street, 21,L1),
reachable (Z1,K) connected (bond_street,oxford_circus,central) .

{Z1=oxford_circus, Ll=central}
:—reachable (oxford_circus, W) reachable (X2,Y2) :-connected (X2, 22,L2),

reachable (22,Y2).
{X2=oxford_circus, Y2=W}

$9|qDLIDA jualayip
suoyooijddo snu jusiayip

:—connected (oxford_circus,22,L2),
reachable (22, W) connected (oxford_circus, tottenham_court_road,central) .

left-most
condition
expanded first

{z2=tottenham_court_road, L2=central}

:-reachable (tottenham_court_road, W)
reachable (X3,Y3) :- connected(X3,Y3,L3).

7 {X3=tottenham_court_road, Y3=W}

:—connected (tottenham_court_road,W,L3)
connected (tottenham_court_road, leicester_square, northern)
{W=1leicester_square, L3=northern}
0
19

?- connected(tottenham_court_road, W, L).

Answering a Query
= constructing a proof for a logic formula

logic rule (with variables
?- nearby (tottenham_court_road, W) renamed for uniqueness)

nearby(X1,Y1) :- connected(X1,Y1,L1)

/{X1=tottenhqm_cour‘t_r‘oad, vYi=W }

v
?- connected(tottenham_court_road,,L1) logic fact
connected(tottenham_court_road, leicester_square)
J { W=leicester_square,L1=northern}
] answer

18

a s
(21, V1,01
}

Prolog’s Proof Strategy:
resolution principle

ross,L1)
ark, jubil

to solve a query 7 0., ..., G
find a compatible rule 7 - 5, ..., 8. such that A matches a,

and solve 7= B, ..., B, 0 ..., 0.

gives a procedural interpretation to formulas » logic programs

Prolog =
programmation
en logique

20

Prolog’s Proof Strategy:
based on proof by refutation .\

i

assume the formula (query) is false
and deduce a contradiction

?- nearby (tottenham_court_road, W)

the query

is answered by reducing false :— nearby(tottenham_court_road, W)

|

ey e] to a contradiction
premises are always true

conclusion is always false

in that case, the query is said “to succeed”

21

Representing Knowledge:
compound terms

compound term
functor term compound term

functor term term

route (tottenham_court_road, route(leicester_square, noroute))

route
g
2
tottenham_court_road route g

/7 N\

leicester_square noroute

23

Prolog’s Proof Strategy:
searching for a proof

?- parent(X,paul)

parént (CyPY =, mother(C,P).

porent(%,P):— father (C,P).
\

father (Soen, paul) ;.

father (jolienypaul)«

father (liésbeth,paul).

:— father(C1,P1)

t(c1,P1
parent (C1,P1) i~ mother(c1,Pi® parent (C1,P1)
choice
{c1=X, paul=P1} point (C1=X, paul=P1}

?- mother (C1,paul)

blocked as there
are no matches

choice \‘S“Q
points

Prolog uses depth-first search to find a proof. When blocked or more answers
are requested, it backtracks to the last choice point. Of multiple conditions, the
left-most is tried first. Matching rules and facts are tried in the given order.

Representing Knowledge:
compound terms

reachable (X, Y, noroute) :— connected(X,Y,L).

reachable (X,Y,route(Z,R)) :- connected(X,Z,L),
reachable(Z,Y,R).

do not differ syntactically from predicates,

JUBILEE BAKERLOO NORTHERN

CENTRAL

PICCADILLY

VICTORIA

Noy o
v
logy. e

Og ic d
Prog ram, ':egu/ Qar

but can be used as their arguments

?- reachable (oxford_circus,charing_cross,R) .

answer {R=
answer {R=

{R=
answer

route (tottenham_court_road,
route (leicester_square,noroute)) }

route (piccadilly_circus, noroute)}

route(piccadilly_circus,
route (leicester_square,noroute))}

24

Representing Knowledge: Heay,
. S+ He ! Taj
lists " Taj)
list functor

list notations

car | head / \ cdr | tail
a

[a,b,c]
[al bl [cl [111]
b : lal bl [e]1]
[al [b,cl]
empty list
@ [a,bl [c]]

.(a, . (b, . (e, [12))

25

compound term notation

JUBILEE BAKERLOO NORTHERN

Representing Knowledge: J
lists —o—

reachable (X,Y, [1):- connected(X,VY,L).

reachable (X,Y, [ZIR]):- connected(X,Z,L),
reachable (Z,Y,R).

?- reachable (oxford_circus, charing_cross,R)

{ R= [tottenham_court_road, leicester_square] }

answer
answer { R =[piccadilly_circus] }
answer { R =[piccadilly_circus, leicester_square] }

?- reachable (X, charing_cross, [A,B,C,D])

from which X can we reach charing_cross via
4 successive intermediate stations A,B,C,D
27

PICCADILLY
icoster

JUBILEE BAKERLOO NORTHERN

Representing Knowledge:
lists

arbitrary list([]).
length list([First|Rest]) :- list(Rest).
even evenlist([]).
length evenlist([First,Second|Rest]) :— evenlist(Rest).
odd oddlist([One]).
length oddlist([First,Second|Rest]) :- oddlist(Rest).

oddList([First|Rest]):- evenlist(Rest).

26

lllustrative Logic Programs:
list membership

anonymous variable:
use when you do not care about
the variable’s binding

member (X, [X]_]).

member (X, [_|Tail]) :— member (X, Tail).

?- member (X, [1,2,3])

answers {x=1} {x=2} {x=38}
?- member (h(X), [f(1),g(2),h(3)])
answer {x=31}

?- member (1, [])

query fails (the empty list has no members)
28

lllustrative Logic Programs: lllustrative Logic Programs:
list concatenation basic relational algebra

append ([],Ys,Ys).

append ([X|Xs],Ys, [X|Zs]) :- append(Xs,Ys,Zs). vnion r-union_s(Xi, ...,%n) :—= r(Xi, s Xn)
r_union_s(Xi, ..., %n) :— s(Xi, s Xn)
=]
o
5 ?- append([a,b,c], [d,e,f], Result) . .
3 - T T intersection r-meet_s(Xiy«..s%n) = P(X1yeeey®n)y S(Xiyeeey®n)e
}5 answer { Result = [a,b,c,d,e, fl}
g cartesian product rox_s (X1, ooy Ky Rty oo o Xnen) i P (Kiy o, %),y
S (Rnt1y o o9 Xntn)
& S ?- append(Left, Right, [a,b,c])
s 2 projection ris(Xi,Xs) := r(Xi,X2,Xs).
L& 2 answer { Left = [a,b,c,d,e,f], Right= []}
\0\0 &QKéQ)
AN) i (X1,%2,%3) 1= r(X1,X2y%X3) ith j (X1)
S & O = - o selection i (Xi,®2, i r (X1, X2,X3), smith_or_jones(Xi).
Qd, 8}‘,}(}2‘0 2 answer { Left [al, Right= [b,cl} smi thorj ones (smi th) .
¥ \°€$ t smith_or_jones (jones) .
= answer { Left = [a,b]l, Right= [c]}
o
= _ natural join ~_join_X2_s (X1, X2y « « =5 Xns Y1y o« ¥n) 1= P (X1yX2e ooy Xn)s
answer { Left = [a,b,c], Right= []} S (K25 Y1y e v vy ¥n)
29 30

lllustrative Logic Programs: lllustrative Logic Programs:
deterministic finite automaton deterministic finite automaton

list of symbols Xs

accept(Xs) :— initial(Q), accept(Xs,Q). . Yo Xe) “ decprogl_dfa.pl =)
accepted in state Q accept(Xs) :- initial(Q), accept(Xs,0).
. accept([],Q) :- final(Q).
%, accept([],Q) :- final(Q). accept([XIXs1,0) :- delta(0,X,01), accept(xs,01).
%, 2 \accept ([X|Xs],Q) :- delta(Q,X,Q1), accept(Xs,Q1). N
%/ x (‘ﬂl)
7 final(ql).
e
transition from state Q to delta(q@,b,q1). 1
e G oo 7- accept([a, b, a, b, bl). detiola,0,aD). demo time
delta(q2,b,q0). A
o *
W iE) [Gnswen {} -:--- decprogl_dfapl All(6,10) (Prolog[Swi)
b % 7- % /Users/cderoove/decprogl_dfa.pl compiled 0.00 sec, 3,512 bytes
. —— — .
q0 ql N 2 accept([a, b]). e
7- accept([b]).
a
H t
T \ (ab)*b query fails | rue
S- b ?- accept([a,b]).
% q2 ?- accept(Xs). false.
g’ 7- accept(Xs).
5 R o answer { Xs = [b] } Xs = [b] ;
2 initial(ge). g ool
-] 1 S Xs = [a, b, a, b, b]
2 final(q1). £ answer { ¥s = [a,b,b] } Xs-[a. b a b a b b];
2 c Xs = [a, b, a, b, a, b, a, b, b] ;
s S Xs=[a, b, a b, a b,a,b,al...];
£ delta(q@,b,ql). ©® answer { Xs = [a,b,a,b,b] } x:=[z, b, 2 b, Z b, Z b, 2|...] P
< delta(qg@,a,q2). 3
e = :
E del tG (qz, b, qe) . .. i3 prolog 57% (15,0) (Inferior Prolog: run)

31 32

. . for free . .
lllustrative Logic Programs: oo f lllustrative Logic Programs:

backtracking over

non-deterministic finite automaton = choice poins non-deterministic pushdown automaton

list used as stack

E b
£ q0 ql
9 o)
! : a b £ answer
2 b (ab)*(ab|b) e
9]
E 92 °
= query fails
| .
E from state Q with stack S to state Q1
< with stack S1 consuming X
[
=
3 o> answer palindrome recognizer
~ & ,3.
i o = £ X pushed
1 O 2 answer]
& @ s on stack
9 3
~ % j=2
15 answer % input symbols are pushed
b & . . variable X
0| v .
& 5 transition for palindromes of even length: abba subsfitutes for a
2 transition for palindromes of odd length: madam concrete symbol !
note that is accepted, but not generated ... more about s symbols are popped and compared with input
the limitations of the proof procedure later <
=
E

X popped off stack
33 34 popP

Logic Systems:
structure and meta-theoretical properties

Declarative

defines which gives a meaning to the sentences specifies how to obtain
“sentences” are legal new sentences (theorems)

[}
P ro rq m m I n in the logical language usually truth-functional: what is from assum.ed ones (axioms)
the truth value of a sentence through inference rules

given the truth value of its words

weakest form:
prove nothing

soundness completeness
anything you can anything that is true
prove is true can be proven

Logic Systems:
roadmap towards Prolog

statements that can

propositional clausal logic be true o false

married;bachelor :- man,adult.
statements concern

relations among objects from a
universe of discourse

relational clausal logic

likes (peter,S) :—student_of (S, peter) .

. compound terms
full clausal logic aggregate objects

clausal logic

loves (X, person_loved_by(X)) .

definite clause logic
Pure Prolog
no disjunction in head

lacks control constructs, arithmetic of full Prolog
3

Propositional Clausal Logic - Syntax:
negative and positive literals of a clause

clause

Hi;...3sHn :— Bl,...,Bm B=H

. . = -lB \ H
is equivalent to

H1 ve.ev Hn v =Bl v...v -Bm
positive literals negative literals

hence a clause can also be defined as a disjunction of
literals L1 vL2 v...vL, where each Li is a literal,
i.e. Li= A or Li=-A;, with Ai a proposition.

Propositional Clausal Logic - Syntax:
clauses

if

’ or

optional

clause : head [:- bodyl

, and head : [atom[;atom]*] zero or more

body : atom[,atom]*

atom : single word starting with lower case

“someone is married
or a bachelor if he is a married;bachelor :—-man,adul t.
man and an adult”

Propositional Clausal Logic - Syntax:
logic program

N
finite set of clauses, each Pey,
terminated by a period

womanj;man :— human.
human :— man.
human :— woman.

is equivalent to

(-human v woman v man)
A(=man v human)
A(~woman v human)

(human = (woman v man))
rlman = human)
A(woman = human)

B=H

E-|BVH

Propositional Clausal Logic - Syntax:
special clauses

an empty body stands for true an empty head stands for false

man :—. Or man. :— impossible.

true = man impossible = false

man A -impossible

7

Propositional Clausal Logic - Semantics:
example (1)

program P Herbrand base B,

womanj; man :— human. {woman,mun,humun}
human :— man.

human :— woman.

23 possible Herbrand Interpretations

I={woman} J={woman, man} K={woman, man, human}
L={man} M={man, human} ” {(mo""’n, fq
’ an: fals ISE):
(human, fazsee))’ }

N={human} 0={woman, human} P=2

Propositional Clausal Logic - Semantics:
Herbrand base, interpretation and models

Herbrand base Bp of a program P
when represented by the

set of all atoms occurring in P set of true propositions I:

. .. subset of Herband base
Herbrand interpretation i of P

mapping from Herbrand base Bp to the set of truth values

i : Bp » {true, false}
. H
An interpretation is a model for a dause if the clause is trve ¢, 4
fo1s fhue /‘/,-\e
if either the head is true = try~ try, tryg
or the body is false f°~'ss "—W's,s f°1se
oy tr
Se ¢ Ve
An interpretation is a model for a program if it is a model for e
each clause in the program.

under the interpretation.

8

Propositional Clausal Logic - Semantics:
example (2)

H1
program P -8y -

22017 o
. . —]
for all clauses: either one atom in head is

true or one atom in body is false

womanj; man :— human.
human :— man.
human :— woman.

4 Herbrand interpretations are models for the program

T e w K={woman, man, human}
T T—— M={man, human}
“={rremesde. O0={woman, human} =2

Propositional Clausal Logic - Semantics:
entailment

P entails C

P=C

clause C is a logical consequence of program P
if every model of P is also a model of C

program P models of P

intuitively preferred: doesn’t
assume anything to be true that
doesn’t have to be true

Propositional Clausal Logic - Proof Theory:
inference rules

how to check that P F C without computing all models for P
and checking that each is a model for C?

by applying inference rules, C can be derived from P: P+ C

purely syntactic, not
concerned with semantics

has_wife:-man, ;bachelor:-man,adult

SN

has_wife;bachelor:-man,adult

e.g., resolution

happens to be a logical consequence of the
program consisting of both input clauses

Propositional Clausal Logic - Semantics:
minimal models

no subset is a
model itself

could define best model to be the minimal one

BUT

has 3 models of which 2 are minimal

clauses have at most one
atom in the head

A definite logic program has a
unique minimal model.

12

Propositional Clausal Logic - Proof Theory:
case analysis of resolution

e
<
O 2 eithg,
~é? ‘% n70f77ecl in
4
3 order f,
N *econg cl,
IS QUS
g T ’man v et be t
E 52 Qs Wi ry,
= O ~ lfe Qs w,
> & Maryjq d ell
S £ * !N org
35 F er for g
’q BN Irst CIQ S,
< hq, e f,
> g Y ~adyjy b © be ¢ eq
E§ F c'c'l’e/or S wel|
F
“Mmq y o fherefOr
Ulf v bQ
Che/Or m
“Mmqp
Y S_wife

Propositional Clausal Logic - Proof Theory:
special cases of resolution

modus ponens

3
*o"e'o
S N
& & S
[=
B
=
=
o
@
2
NZ
& SN
O Y Ifit's
S, raining it'’s wet;
e " o
it’s not wet, so it’s
not raining

modus tollens

Propositional Clausal Logic - Meta-theory:
resolution is sound for propositional clausal logic

if PFC then P FC

Propositional Clausal Logic - Proof Theory:
e analysis of resolution

because every model of the two input clauses
is also a model for the resolvent

by case analysis on truth value of resolvent

Propositional Clausal Logic - Proof Theory:
successive applications of the resolution inference rule

A proof or derivation of a clause C from a program P

is a sequence of clauses Co,...,Ch=C
such that vio..» : either C; € P or Ci is the resolvent of Ci1 and Ciz (i1 <i,iz <i).

If there is a proof of C from P, we write P+ C

square: - ,equal_sides :-parallelogram,right_angles

can be
used in further

square:-parallelogram,right_angles,equal_sides resolutions

resolvent

16

Propositional Clausal Logic - Meta-theory:
resolution is incomplete

the tautology is true under any interpretation

hence any model for a program P is also a model of
hence P F

however, resolution cannot establish P -

incomplete

Propositional Clausal Logic - Meta-theory:
resolution is refutation-complete yerives the empty clavse

from any inconsistent set of

PEC clauses

= E & each model of P is also a model of C
© T
£ 2 < no model of Pis a model of -C
O ¢
§ < © PU-C has no model C=Livlav...vL,

= . . . -C= -|L'|/\-|L2.../\-|Ln

Pu-C is inconsistent P
= set of clauses itself

& o it can be shown that:
O o
o o if Q is inconsistent then Q F [| ooty clause false - true
HE 8 if PE C then PU-C F D for which no model exists

19

Relational Clausal Logic - Syntax:
C I auses statements concern relations

among objects from a universe

of discourse
add ¢, stants

n
Predicates . Varigpes and

Proposiﬁonql IOgi
c

constant : single word starting with lower case
variable : single word starting with upper case
term : constant | variable
predicate : single word starting with lower case
atom : predicate[(term[, term]*])]
clause : head [:- body]
head : [atom[;atom]*]
body : atom[,atom]*

" M
.pet.er likes cnyboc.ly .‘Nho likes (peter,S) :- student_of (S,peter).
is his student. mariais a student_of (maria,peter).

student of peter”

21

Propositional Clausal Logic - Meta-theory:
example proof by refutation using resolution

happy :— has_friends. . L .
friendly :- happy. E friendly :- has_friends. |C

happy :- has_friends.
PU-|C friendly :- happy.

has_friends.

:— friendly.

=a(friendly:-has_friends)
= (friendlyv-has_friends)
=afriendlyrhas_friends

PU-CFH []

:—frirndly friendly:-happy
:—hanypy:-has_friends

:-has_friends has_friends

[

20

Relational Clausal Logic - Semantics:
Herbrand universe, base, interpretation

Herbrand universe of a program P

{ peter, maria } term without variables

set of all terms that are ground in P

Herbrand base Bp of a program P
{ likes(peter,peter), likes (peter,maria),
likes(maria,peter), likes(maria,maria),
student_of (peter,peter), student_of (peter,maria),
student_of (maria,peter), student_of(maria,maria) }

set of all ground atoms that can be constructed using predicates in
P and arguments in the Herbrand universe of P

Herbrand interpretation | of P

{ likes(peter,maria), student_of (maria,peter) }
is this a model?

need to consider
variable substitutions

subset of Bp consisting of ground atoms that are true

22

Relational Clausal Logic - Semantics:
substitutions and ground clause instances

A substitution is a mapping o : Var = Trm.

For a clause C, the result of o on C, denoted Co

is obtained by replacing all occurrences of X € Var in C by o(X).
Ca is an instance of C.

Relational Clausal Logic - Proof Theory:
naive version

¢

naive because there are many
grounding substitutions, most of
which do not lead to a proof

instead of trying arbitrary substitutions before trying to apply resolution,
derive the required substitutions from the literal resolved upon
(positive in one clause and negative in the other)

as atoms can contain variables, do not require exactly the same atom
in both clauses ... rather a complementary pair of atoms that can be
made equal by substituting terms for variables

Relational Clausal Logic - Semantics:
models

g Und .
. i
relationg, C/ns' Ances of

... duse
proposlﬁo"al c; Qre lil(e

interpretation | is a model of a clause C
QUSes

< | is a model of every ground instance of C.

interpretation | is a model of a program P
& | is a model of each clause C e P.

| is a model for P
because it is a model of all ground instances of clauses in P:

Relational Clausal Logic - Proof Theory:
unifier

A substitution o is a unifier of two atoms a; and a2
& a10 = a20. If such a o exists, a1 and a2 are called unifiable.

A substitution 01 is more general than o2 if 02 = 010 for some
substitution 6.

A unifier 6 of a1 and a2 is a most general unifier of ai and a2
& it is more general than any other unifier of a1 and a2.

If two atoms are unifiable then they their mgu is unique up to renaming.

Relational Clausal Logic - Proof Theory:

unifier examples

p(X, b) and p(a, ¥Y) are unifiable
with most general unifier {X/a,Y/b}

q(a) and q(b) are not unifiable

q(X) and q(¥) are unifiable:

{X/¢¥} (or{Y/X}) is the most general unifier

{X/a, Y/a} is a less general unifier

Relational Clausal Logic - Proof Theory:

example of proof by refutation using resolution with mgu

P likes (peter,S) :- student_of (S,peter).
student_of (S, T) :- follows(S,C), teaches(T,C).
teaches (peter, decprog) .
follows (maria, decprog) .

“is there anyone whom peter likes”2 "™ add “peter likes nobody” to P

:-likes (peter,N) likes (peter,S) :-student_of (S, peter) .

{s/N}

:-student_of (N, peter)
student_of(S,T) :- follows(S,C), teaches(T,C).

{S/N, T/peter}
:=follows(N,C), teaches (peter,C)

follows (maria,decprog) .

:—teaches (peter, decprog)
teaches (peter, decprog) .

l_/_

O

:— likes(peter,N)) {N/maria} u P ¢ hence P ¢ likes(peter,maria)

Relational Clausal Logic - Proof Theory:
resolution using most general unifier

apply resolution on many clause-instances at once

it C = Liv..L,
C, = Liv...L5
Lo = ﬂLj?G forsome1<i<n,1<j<n

where § = mgu(L/, L?)

then Llgv...vLl jovL! ,6v...vL 6
VIOV .. VIE OV IE OV V50

Relational Clausal Logic - Meta-theory:
soundness and completeness

_g relational clausal logic is sound

)

o PrC=P:C

(%2}

relational clausal logic is refutation-complete

..g Pu{C} inconsistent = P u {C} - []
o

£ new formulation because

3 - p(X).=vX-p(X)

while +{p(X).)=~(vX-p(X))=3X-p(X)

Relational Clausal Logic - Meta-theory:
decidability

The question “P=C2" is decidable for

relational clausal logic.

also for
propositional
clausal logic

Herbrand universe and base are finite
therefore also interpretations and models

could in principle enumerate all models of P and
check whether they are also a model of C

analogous to

FUII CIOUSGI Logic - Semani’ics: relational clausal logic
Herbrand universe, base, interpretation

Herbrand universe of a program P
{9, s(@), s(s(@)), s(s(s(@))),... }

terms that can be constructed from the constants and functors

infinite!

Herbrand base Bp of a program P
{ plus(0,0,0), plus(s(9),0,0),
plus(9,s(0),0), plus(s(@),s(0),0),...}

set of all ground atoms that can be constructed using predicates in
P and ground terms in the Herbrand universe of P

. R is thi del?
Herbrand interpretation | of P s his @ moce

{ plus(0,0,0), plus(s(®),0,s(0)),plus(@,s(0),s(@))} }

possibly infinite subset of Bp consisting of ground atoms that are true

33

Full Clausal Logic - Syntax:
C I auses compound terms

aggregate objects
Add fynes:

Cflon s
an qrip,. mbols
rity; Onstants are gunct‘ors), with

functor : single word starting with lower case
object variable : single word starting with upper case
term : variable | functor [(term[, term]*)]
predicate : single word starting with lower case
atom : predicate[(term[, term]*])]
proposition clause : head [:- bodyl
head : [atom[;atom]*]
body : proposition[,proposition]*

“adding two Peano- plus (@,X,X).
encoded naturals” plus(s(X),¥Y,s(2)) :- plus(X,V¥,2).

32

Full Clausal Logic - Semantics: '«
infinite models are possible s e i

An interpretation is a model for a program if it is a model
for each ground instance of every clause in the program.

plus(0,0,0)
plus(s(0),0,5(0)):-plus(0,0,0)
plus(s(s(@)),0,s(s(@))):-plus(s(0),0,5(0))

plus (@,s5(0),s(0))
plus(s(0),s(0),s(s(@))):-plus(@,5(B),s(s(@)))
plus(s(s(@)),s(0),s(s(s(@)))):—plus(s(@),s(@),s(s(0)))

according to first ground clause, plus(2,2,2) has to be in any model
but then the second clause requires the same of plus(s(2),0,s(2))
and the third clause of plus(s(s(9)),0,s(s(@))) ...

all models of this program
are necessarily infinite

34

Full Clausal Logic - Proof Theory:
computing the most general unifier

atoms
and

have most general unifier

yields unified atom
plus(s(Y¥),s(@),s(s(¥)))

found by

analogous to relational
clausal logic, but have
to take compound
terms into acount when
computing the mgu of
complementary atoms

renaming variables so that the two atoms have none in common

ensuring that the atoms’ predicates and arity correspond

scanning the subterms from left to right to s(¥) and s(@)

find first pair of subterms where the two atoms differ;
if neither subterm is a variable, unification fails;
else substitute the other term for all occurrences of the
and remember the partial substitution;

repeat until no more differences found
35

{v/e}

Full Clausal Logic - Proof Theory:

variable

importance of occur check i e e horhe

variable does not occur in the

term;
program query

without occur check, atoms to be resolved
upon unify under substitution

and therefore resolving to the empty clause

try to print answer:

BUT

moreover, not a logical consequence of the program

if so: fail

no semantics for
infinite terms as there
are no such terms in
the Herbrand base

omitting occur
check renders

resolution unsound

37

Full Clausal Logic - Proof Theory:
computing the most general unifier using the
Martelli-Montanari algorithm

{f(X,9(Y)) = f(9(2), 2)}

repeat i i =
lects — {c & operates on a finite set of equations s=t = (X=9@).90V) = 2]
case s = t of = {X=9(2),Z=9(V)}
f(s1,..., n) = f(t,..., n >0): Vi S
Caiaces by o "2 0 = {X=g(g(Y).Z=g(¥))

replace s=tby {si =t,...,5, =t}

f(s1,.. - 5m) = glt-..t) (F/m# g/n): = X/9((Y)). 2/9(V)}

until no change {X=aZ=ab=a}

fail

fail
X=X: resulting set = mgu
remove X = X from &
t=X (t¢ Var):
replace t = X by X =t
X:‘t) (X e Var/\y(;é t A X occurs more than once in &) : {f(X,9(X), b) = H(a g(2), Z)}
if Xoccurs in t = {X=ag9(X)=9g(2).b=2}
then tail oceur check = {(X=aX=Zb=2}
else replace all occurrences of X in £ (exceptin X =t) by t = {X=aga=2Zb=27}
esac = {X=aZ=ab=2}
=
=

36

Full Clausal Logic - Proof Theory:
OCCur CheCk not performed in Prolog out of

performance considerations
(e.g. unify X with a list of 1000 elements)

Martelli-Montanari algorithm SWI-Prolog
{I(Y, Y) = I(X, {(X))}
= {Y=X,Y=((X)}
= {Y=X X;f(X)} built-in unification
= fail operator

in rare cases where the
occurs check is needed

38

Full Clausal Logic - Meta-theory:
soundness, completeness, decidability

full clausal logic is sound

-
5

g PC = P:C

o o . .

o full clausal logic is refutation-complete

Q.

£ . .

g Pu{C}inconsistent = P u {C} - []

- The question “PC2” is only semi-decidable.

'g there is no algorithm that will always answer the question (with
==

g “yes” or “no”) in finite time; but there is an algorithm that, if P Ec,
<

will answer “yes” in finite time but this algorithm may loop if PHE C.

39

Every set of clauses can be rewritten as an equivalent

C I a Usql Log iC: sentence in first-order predicate logic.
conversion to first-order predicate logic (1)

variables in a sentence cannot
range over predicates

married;bachelor :— man,adult.

h ife :- ied.
aswife marrie T
becomes (maniadult = marriedvbachelor) a ~(AAB)=-Av-B

(married = haswife)

conjunctive normal
form: conjunction of
disjunction of literals

or (-man v -adult v married v bachelor)
A (-married v haswife)

reachable (X,Y,route(Z,R)) :- connected(X,Z,L), reachable(Z,Y,R).

becomes VYXvWVvZVRvL : -connected(X,Z,L) v
-reachable(Z,Y,R) v
reachable (X,Y,route(Z,R))

variables in clauses are

universally quantified

4

Clausal Logic:
overview

propositional

Herbrand universe
Herbrand base {p, a}

clause P:=q

Herbrand models {}
{p}
{p;a}
meta-theory sound
refutation-complete
decidable

Clausal Logic:

relational

{Q ’ b}
finite

{pa,a), pb,a),...}

p(X,2):-
qX,¥),p(¥,2)

{}
{P (C"C‘)}
{P(G;U)’P(b’u):q(b5u)}

finite number of finite
models

sound
refutation-complete

decidable

40

full

{a, f(a), F(f(a)),...}
infinite

{pla, fa)), p(fla),
p(f(fla))),...}

p (X, f(X)):-
q(X)

{}

{pla, f(a)),qla)}

{p(fla), f(fla)),

q(f@@)} ...

infinite number of finite
or infinite models

sound (occurs check)
refutation-complete
semi-decidable

Every set of clauses can be rewritten as an equivalent
sentence in first-order predicate logic.

conversion to first-order predicate logic (2)

nonempty (X) :- contains(X,Y).

becomes vxXwY:
or vX e
or vX:

or vX:

variables that occur only in the body of a
clause are existentially qualified

42

nonemp ty (X) vacontains (X, Y)
(nonempty (X) vwW-contains (X,Y))
nonempty (X)v-(3¥Y:contains (X, Y))

(z¥:contains (X,Y))= nonempty(X))

For each first order sentence, there exists

C I ausa I Log iC: an “almost equivalent” set of clauses.
conversion from first-order predicate logic (1)

vX [brick (X)= (3¥ [on (X, ¥Y) A-pyramid (Y)] A

~3Y [on(X,Y) A on(Y,X)]A
v [-brick (Y) =-equal (X,Y)1)]

1 eliminate = using A = B = -A v B.

vX [-brick (X) v (3Y [on (X, Y) Ampyramid (¥Y)] A
=3Y [on (X, Y) ron (Y, X) 1A
w [~ (=brick (Y))v-equal (X,¥Y)])]

2 put into negation normal form: negation only occurs immediately before propositions

vX [-brick (X) v (3Y [on (X, Y) A-pyramid (¥Y)] A
v [mon (X, ¥Y) vmon (Y, X)] A
v¥ [brick (¥)v-equal (X,¥)])]

-(AAB) = -Av-B
-(AVB) = -Ar-B
-(-A) = A
X [p(X)] = 3X [-p(X]

} A(3X [p(X)] = vX [+p(X)]

For each first order sentence, there exists

C I ausa I Log iC: an “almost equivalent” set of clauses.
conversion from first-order predicate logic (3)

vX [-brick (X) v ([on (X, sup (X)) r-pyramid (sup (X))] A

v [mon (X, Y)v-on (Y, X)] A
v [brick (¥)v-equal (X,¥)])]

4 standardize all variables apart such that each quantifier has its own unique variable
vX [-brick (X)v([on (X, sup (X)) r-puramid (sup (X))] A

v [Fon (X, Y)v-on (Y, X)] A
vZ [brick (Z2)v-equal (X,2)1)]

5 move V to the front
vXvWvZ [-brick (X) v ([on (X, sup (X)) ~-pyramid (sup (X))] A

[Fon(X,¥Y)v-on (Y, X)] A
[brick (Z)v-equal (X,2)]1)]

45

For each first order sentence, there exists

C I a USCII LogiCI an “almost equivalent” set of clauses.
conversion from first-order predicate logic (2)

vX [-brick (X) v (3¥ [on (X, Y) ~-pyramid (¥Y)] A
v [-on (X, ¥Y)v-on (Y, X)] A
v [brick (Y) v-equal (X,¥)1)]

Skole, Xvy . I
o °M ¢ " Oves
ex; sten ,'_:/foon # (X, Y)

S SUb <s-
Wh, Stity,

20 qe™ 'ch doeg Fuantifey te for

oM w0 o o 70t o¢ Varjqy,
2o\P7 oo 9 Qup Cur in le

N Al ‘\63\0 $S2 vXaY : loves(X,Y) IVersq, 9 the sco
“\?op, 0°“qe<so<\/) vX:loves(X,person_loved_by(X)) Antifie,. Pe

® o® o\)\-"e
\\o~4°s replace existentially quantified variable by a compound term of

which the arguments are the universally quantified variables in
whose scope the existentially quantified variable occurs

3 replace 3 using Skolem functors (abstract names for objects, functor has to be new)

vX [-brick (X) v ([on (X, sup (X)) ~~pyramid (sup (X))] A
wW [Fon (X,¥Y)v-on (Y, X)] A
vy [brick (Y)v-equal (X,¥Y)]1)]

44

For each first order sentence, there exists

C I a USCII LogiCI an “almost equivalent” set of clauses.
conversion from first-order predicate logic (4)

vXvWvZ [brick (X) v ([on (X, sup (X)) A-pyramid (sup (X))] A
[-on (X,¥Y)v-on (Y, X)] A
[brick (Z2)v-equal (X,2)])]

6 convert to conjunctive normal form using Av(BAC) = (AvB)A(AVC)

v¥WVZ [(@brick (X) v [on (X, sup (X)) A-pyramid (sup (X)) 1) A
(abrick (X)v [-on(X,¥)v-on (Y, %)])
(=brick (X)v[brick (Z)v-equal (X,2)])]

v¥WvZ [((abrick (X)von (X, sup (X)))A(=brick (X)v-pyramid (sup (X)))) A
(=brick (X)v[-on(X,Y)von(¥Y,X)])A
(=brick (X)v[brick (Z)v-equal (X,2)])]

vXWv2Z [[-brick (X)von (X, sup (X))] A
[-brick (X)v-pyramid(sup (X))] A
[-brick (X)v-on(X,Y)v-on(Y,X)]A
[-brick (X)vbrick (Z) v-equal (X,2)]]

Av(BvC) = AvBvC

46

For each first order sentence, there exists

C I qau SCII Log iCZ an “almost equivalent” set of clauses.
conversion from first-order predicate logic (5)

v¥WWvZ [[-brick (X)von (X,sup (X)) 1A
[-brick (X)v=pyramid (sup (X)) 1A
[-brick (X)v-on(X,¥Y)v-on(Y,X)] A
[-brick (X)vbrick (Z)v-equal (X,2)]]

7 split the conjuncts in clauses (a disjunction of literals)

X -brick (X)von (X, sup (X))

X -brick (X)v-pyramid (sup (X))
vXwY =brick (X)v-on(X,Y)v-on(Y,X)
v¥vZ -brick (X)vbrick (Z)v-equal (X,2)

8 convert to clausal syntax (negative literals to body, positive ones to head)

on(X,sup (X)) :— brick(X).

:— brick (X), puramid(sup(X)).

:= brick(X), on(X,¥Y), on(Y,X).
brick (X) :- brick(Z), equal(X,Z2).

47

Definite Clause Logic:
motivation e,

Fope 6/0058
negp Ut . “Sps,
g : ooy this . DCng,
= s married(X);bachelor (X) :— man(X), adult(X). CIe”y,sI"de/e:% ,
<5 & man(peter). adult(peter). man(paul). ref,, ’Ih,',]% o),OU
g g :-married(maria). :-bachelor (maria). :-bachelor (paul). "o,,p)'lko
B I"oof
s
clause is used married(X);bachelor(X):-man(X),adult(X) man (peter)
from right to left)
married(peter) ;bachelor (peter) :-adult (peter) adult (peter)

married(peter) ;bachelor (peter) indeﬁn“e

conclusion

married(X);bachelor(X):-man(X),adult(X) :-married(maria)

clause is used
from left to right

bachelor (maria) :-man(maria),adult(maria) :-bachelor(maria)

:-man(maria),adult(maria)

married(X);bachelor(X):-man(X),adult(X) man (paul)
both literals from

head and body are
resolved away

logical consequences that
can be derived in two resolution steps

married(paul) ;bachelor (paul):-adult (paul) :-bachelor(paul)

married(paul) :-adult (paul)
49

For each first order sentence, there exists

CICI USCII LogiCI an “almost equivalent” set of clauses.
conversion from first-order predicate logic (6)

v¥X: (3¥Y:contains(X,Y))= nonempty(X))
1 eliminate = v¥X: = (3Y:contains (X,Y))vnonempty (X))
2 putinto negation normal form vX: (wY:-contains (X, Y))vnonempty (X))
3 replace 3 using Skolem functors
4 standardize variables
5 move V to the front v¥wW: =contains (X,Y)vnonempty (X)
6 convert to conjunctive normal form
7 split the conjuncits in clauses

8 convert to clausal syntax nonempty (X) :- contains(X,Y)

48

Definite Clause Logic:
syntax and proof procedure

for efficiency’s sake

rules out indefinite conclusions fixes direction to use clauses

full clausal logic clauses
are restricted: at most
one atom in the head

from right to left:
m procedural interpretation

A :— Biy...yBn “prove A by proving each of B;”

50

Definite Clause Logic: e and prog

In g enerq heor A
. I . ° for; Pro[iCIQUse will ey:;is::fhe not
recovering lost expressivity .l sl e coed
® Understooy | Which capn
can no longer express ' dP’°CeduraII; Y
E characteristic D I O
= . .
g which had two minimal models of indefinite clavses e C q ra tlve
P [
definite clause g g
containing not
w first model is minimal model of general clause
a to prove that
I== someone is a
:; bachelor, prove
8 second model is minimal model of general clause af::tal;eoz;,?::d
) prove that he is not
a bachelor
51 |
Sentences in definite clause logic: Sentences in definite clause logic:
procedural and declarative meaning procedural meaning enables programming
declarative meaning realized by model semantics T
to determine whether a is a logical consequence of the clause, how the inference rules are
order of atoms in body is irrelevant applied to solve the problem
procedural meaning realized by proof theory algorithm = logic + control

order of atoms may determine whether a can be derived _
declarative knowledge:

to prove a, prove b and then prove ¢ the what of the problem

to prove a, prove c and then prove b

in]agine and proof for b
cis false is infinite

also: an unwieldy theorem prover in

SLD-resolution refutation: "G iremmeem i
turns resolution refutation into a proof procedure

\eft-most
determines how to definite
select a literal to clauses
resolve upon ~ e
3 eg (o7
selection . SID /wqo/"’/b,,oo"e .
and which clause rule "/o(,s:fr so;/% 6’01}76'0'/
is used when linear Q"’f,;e,:'eo'w’@reso/'o,,,o
multiple are resolution ""o# “oxs %o Yong)
I. bl /‘,, es /Qod 'O"Ogr /s
applicable o/, 7 1o, 9o,
PP refers to the shape of the Sny /‘17;«,5,"
resulting proof tr
'°p‘d0wn esulting proof frees
4
SLD-resolution refutation: ony
SLD Pro e Qs
-trees F fye
es'/
program clauses resolved
with are not shown, nor are
alternative :—grandfather(a,X) the resulting substitutions
resolution
steps are ~ :~father(a,E), parent (E, X)
shown

:—parent (b, X)
failure /\ success

branch :—father (b, X) :-mother (b, X) branch
. blocked O
Prolog traverses SLD-trees depth-first, backtracking from every path from the query root fo the

empty clause corresponds to a proof

a blocked node to the last choice point (also from a
tree (a successful refutation proof)

success node when more answers are requested)

SLD-resolution refutation:
refutation proof trees based on SLD-resolution

/

7,

77777777777777777777777 S 0807
| :—grandfather (a,X) r---------- > goal (query) Q,Oe/

grandfather (C,D) :—father (C,E) ,parent (E,D) .

{C/a,D/X}
l:—father (a,E) , parent (E,X) . = derived goal

father (a,b) .

{E/b}

:—parent (b, X) .
parent (U, V) : -mother (U, V) .
{U/b,V/X}
:-mother (b, X) .
mother (b, c) . computed substitution
{X/c} 7
. |

___.. computed answer substitution

5

Problems with SLD-resolution refutation:
never reaching success branch because of infinite subtrees

rule of thumb: non-recursive
clauses before recursive ones

:-sibling(a, X) had we re-ordered the clauses, we
would have reached a success branch
:—sibling (X, a) at the second choice point
:—=sibling(a,X) O

:-sibling (X, a) incompleteness of Prolog is a design choice:

breadth-first traversal would require keeping
all resolvents on a level in memory instead of 1

Prolog loops on this query; renders it incomplete!
only because of depth-first traversal and not because of resolution as all
answers are represented by success branches in the SLD-tree
7

Problems with SLD-resolution refutation:
Prolog loops on infinite SLD-trees
when no (more) answers can be found

:—sibling(a, X)
resolvents
O :-sibling(a, Z) ,sibling(Z,Y) grow
:—sibling (b, Y) :—-sibling(a,U),sibling (U, 2),
/\ sibling(Z,Y)
O :—sibling(a, Z) ,sibling(Z,Y)
infinite .
tree cannot be helped using

breadth-first traversal: is due
to semi-decidability of full

and definite clausal logic
8

Problems with SLD-resolution refutation:
illustrated on list generation

?-plist (L)
less benign:
only lists containing
1s are generated

[1 :-p(H1) ,plist(T1)

:-plist(T1
P () :-plist(T1)

:-p(H1) ,plist(T1) / \

[1 :-p(H1),plist(T1)

:-plist(T1
P & :-plist(T1)

/ \ :-plist(T1l) :-plist(T1)
. [1 . [1 . [1 .

explored by Prolog success branches that are never reached

Problems with SLD-resolution refutation:
illustrated on list generation

U,
Aswer. - oop -
rs ”l' CI WlthU
Quses tfind;,
Were n,

"everseq)
?-list (L)

[1 :-1list(T1)

/N

[1 :-list (T2)

benign: / \
[]

infinitely many lists of :-1list (T3)
arbitrary length are :
generated .

9

SLD-resolution refutation:
implementing backtracking

amounts to going up one level
in SLD-tree and descending into
the next branch to the right

when a failure branch is reached (non-empty resolvent
which cannot be reduced further), next alternative for
the last-chosen program clause has to be tried

requires remembering previous resolvents for which not all
alternatives have been explored together with the last
program clause that has been explored at that point

backtracking=
popping resolvent from stack and
exploring next alternative

Pruning the search by means of cut:
Cuffing Ch Oice poin fs need to be remembered for all resolvents for which

not all alternatives have been explored

unnecessary alternatives will eventually be explored

parent (X,VY) :—father (X,Y),!.
parent (X,Y) :—mother (X,VY) .
father (john,paul).

mother (mary, paul).

parent (X,VY) :—father (X,VY).
parent (X,Y) :—-mother (X,VY).
father (john,paul) .
mother (mary, paul) .

?-parent (john,C)

i ' o .'_C/ Qr .T’Q'E/;f
i i i "’?Pr"”ed

:-father(john,C),! :-mother(john,C)

?-parent (john,C)
:—father(john,C) :-mother(john,C)

[1 at this point, we know that :
exploring the alternative |
clause for parent/2 will fail

tells Prolog that this is the
only success branch

12

Pruning the search by means of cut:

an edepIe no pruning above the ?2-p(X,Y)

head of the clause

containing the cut
p(X,v):_q(X,v). :-q(X,Y) :-r(X,Y)
p(X,¥):—r(X,¥). | |
qX,¥):—s(X), 1, t(Y).
Pl t-5(X), 1, t(Y) 1
s(b).
t(a).
t(b). :=1,t(Y)

&
“\\e"‘o' |
. “o\‘le\:‘l:eoc\\ed t(T)

right to the cut

[l [l

Pruning the search by means of cut:
operational semantics

“Once you’'ve reached me, stick with all variable
substitutions you’ve found after you entered my clause”

Prolog won't try alternatives for: fo frug, es
literals left to the cut
nor the clause in which the cut is found

13

Pruning the search by means of cut:
different kinds of cut

green cut red cut

does not prune away prunes success
success branches branches

stresses that the conjuncts to
its left are deterministic and
therefore do not have
alternative solutions

some logical
consequences of the
program are not returned

has the declarative and
procedural meaning of
the program diverge

and that the clauses below with
the same head won't result in
alternative solutions either

Pruning the search by means of cut:
red cuts

parent (X,Y) :—father (X,¥),!.
parent (X,Y) :—mother (X,VY) .
father (john,paul) .

father (john,peter). same query,
mo ther (mary, paul). but John has
mother (mary, peter). multiple children

in this program
{C7peter}

:-father(john,C)

the cut is now red as a
success branch is pruned

?-parent (P,
parent (X,Y) :—father (X,¥),!.
parent (X,Y) :—mother (X,VY) .
father (john,paul) .
mother (mary, paul).

:-father (P,paul), !

same program,
but query
P?‘manu.} quantifies over i1
parents rather |
than children

the cut is only green when the
[literal to its left is deterministic

Pruning the search by means of cut:
more dangers of cut

max (M,N,M) :— M>=N. clauses are not mutually exclusive
max (M,N,N) = M=<N. two ways to solve query ?—max (3,3,5)

max (M, N, M) := M>=N, !.

max (M, NN« could use red cut to prune second way

I X problem:
ondy.correc! w e.rtlh ?-max (5, 3, 3)
used in queries wi succeeds

vninstantiated third
Berfe,fo argument

x>

Us,
0/701 < e

Pruning the search by means of cut:

placement of cut

likes (peter,VY) :—-friendly(¥).
likes (T,S) :—student_of (S, T).
student_of (maria,peter).
student_of (paul,peter).
friendly(maria).

?-likes(A,B) ?-likes(A,B)

:-friendly(B) :-student_of(B,A),!

:-friendly(B) :[] i ii[é[

3
A=peter | A=peter A=peter |
B=maria | B=paul’ B=maria
[1 []
A=peter A=pet§r :
B=maria B=maria iB=spaul

likes (peter,Y):-!, friendly(Y). likes (T,S) :-student_of (S,T), !.

cut is often used to
ensure clauses are
mutually exclusive

Negation as failure:
specific usage pattern of cut

?-
p :— q,!,r. R
p :—- s.

cf. previous example

. . t-q,!,r .
only tried when q fails — ‘s
such uses are equivalent to the higher-level [l
P :- q,r. where not_q:-q,!,fail. built-in predicate
p :— not_q,s. not_q. always false

Prolog’s not/1 meta-predicate captures such uses: inmog,,
use \+ ’: Prologs.
not(Goal) :- Goal, ! fail.

not (Goal) . not(Goal) is proved by

failing to prove Goal
slight abuse of syntax

equivalent to call(Goal)
19

Negation as failure:
SLD-tree where not(q) succeeds because q fails

?-p
p:—q,r. / \

p:-not(qg),s.

s. t-q,r t-not(q),s
not (Goal) :—-Goal, !, fail. / \
not (Goal) .
:-q,!,fail,s :t-s
q evaluated ‘
. . twice
version with | was more []

efficient, but uses of not/1
are easier to understand

20

Negation as failure:
floundering occurs when argument is not ground

bachelor (X) :—not (married (X)),

man (X) . unintentionally interpreted as

“X is a bachelor if nobody is
married and X is man”

man (fred) .
man (peter).
married(fred).

query has ?-bachelor (X)
no answers

not (Goal) :—-Goal, !, fail .
:-not (married(X)),man(X) not (Goal).

:-married(X),!,fail,man(X)
these are the bachelors

we were looking for!
:-!,fail ,man(fred)

:—fail ,man(fred)

22

Negation as failure:
SLD-tree where not(q) fails because q succeeds

?2-
p:-not(q),r. *°P
P VAN
q.

o :-not(q),r i-q

not (Goal) :—-Goal, !, fail .
not (Goal) .

:-q,!,fail,r [1

:-!,fail,r

:-fail,r clause of not/1 is pruned
21 —

Negation as failure:
avoiding floundering

correct implementation of SLDNF-resolution:
not (Goal) fails only if Goal has a refutation with an empty answer substitution

Prolog does not perform this check:
not(married(X)) failed because

married(X) succeeded with {X/fred}

work-around: if Goal is ground, only
empty answer substitutions are possible

¥

bachelor (X) :— man(X),
not (married(X)).

grounds X

man (fred) .
man (peter).
married(fred).

23

branch corresponding to second

Negation as failure:
avoiding floundering

?-bachelor (X)

:-man(X) ,not (married (X))

/

:-not (married(fred)) :-not (married(peter))

/

:-married(fred),!, fai married(peter),!,fail []

. ; ds X
-t fail bachelor (X) :— man (X), grounds

not (married(X)).

man (fred) .
man (peter).
married(fred).

:-fail

24

More uses of cut:
if-then-else built-in

p :— g,r,if_then_else(S,T,U).
if_then_else(S,T,U):- S,!,T.
if_then_else(S,T,U):- U.

builtin as P->Q;R

nested if’s:
P->Q; (R->S;T)

diagnosis(Patient,Condition) :-
temperature (Patient,T),

(T=<37 -> blood_pressure(Patient,Condition)

s T>37, T<38 -> Condition=ok

; otherwise -> diagnose_fever (Patient,Condition)

always
evaluates to true

26

More uses of cut:
if-then-else

q and r evaluated twice

P=q,r,Sy 'y t.
p:—qg,r,u.

q.
r. only evaluated when s is false
= and both q and r are true

such uses are equivalent to

p:—q,r,if_s_then_t_else_u.
if_s_then_t_else_u:-s,!,t.
if_s_then_t_else_u:-u.

/N

:-q,r,s,!,t i=q,r,u
i-r,s,!,t i-r,u
|
[1
?-p

:-q,r,if_s_then_t_else_u

:-r,if_s_then_t_else_u

q. :if_s_then_t_else_u
r.
u. :-s,!,t i-u

25 u

More uses of cut:
enabling tail recursion optimization

play (Board,Player) :—

lost (Board,Player) . would ofh

play (Board,Player) :— oard erwise Maintain g
find_move (Board,Player, Move), c°"ﬁgumﬁ°ns Previoys
make_move (Board, Move, NewBoard), such thqy they ¢ and qff Moyes

next_player (Player,Next), !,

play (NewBoard, Next) . 3170 Bl (e

from stack before

:—play(starconfiguration, first). entering next
recursion

most Prolog’s optimize tail recursion into iterative processes if
the literals before the recursive call are deterministic

27

Arithmetic in Prolog: "oreencoding o,
m : i
iS/2 Sy and inefficient oreis

multiplication as repeated
addition using recursion

?7-X is S5+7-3 ?-X is S5*3+7/2.

X =9 X = 18.5

?-9 is 5+7-3.

Yes must be
instantiated

?-9 is X+7-3.
Error in arithmetic expression

defined as an infix
operator

is(Result,Expression) succeeds if Expression can be evaluated as an

arithmetic expression and its resulting value unifies with Resu1t

28

Prolog practices: €Mt impfy 1
atter the is/ |; ce the "ecursive cql|
accumulators

not tail-recursive
length([],0).
length([H|T],N) :- length(T,N1), N is Ni+1.
?-length([a,b,c],N) length([H|T],N1):-length(T,M1),
N1 is M1+1
{H->a, T->[b,c], N1->N}

:-length([b,c],M1), length([H|T],N2):-length(T,M2),
N is MI1+1 N2 is M2+1

{H->b, T->[c], N2->M1}

:-length([c],M2), length([H|T],N3):-length(T,M3),
ML is M2+1, N3 is M3+1
N is M1+1

‘ {H->c, T->[], N3->M2}

:-length([],M3),

M2 is M3+1, length([]1,0)
M1 is M2+1,

N is M1+1
‘ {M3->0}

b the resolvent collects as many
e is/2 literals as there are

| M2->1)

i ia 23, elements in the list before
doing any actual calculation

| a->2)

:=N is 2+1
| nos3y 30
[1

Arithmetic in Prolog:
is/2 versus =/2 \-V2uhen; .
€annot pe Un%:'genis

succeeds if its arguments
can be unified

7- X = 5+7-3
X = 5+7-3

72- 9 = 5+7-3 ?-display(5+7-3). /\
-(+(5,7),3) oy 3

no /\

7— X = Y+3 just a term 5 5

X = _947+3

Y = _0947

72— X = f(X)

X = fOFCFCFCFCFCFCFCFCFCFCFCFCFCTC
error: term being written is too deep

29

Prolog practices:

tail-recursive length/2 with accumulator

length(L,N) :- length_acc(L,0,N).
length_acc ([1,N,N). accumulator represents
length_acc ([H|T],N@,N) :- length so far

N1 is Ne+l, read length_acc(L,M,N
o et U D as N =gM:- |en(9th(|.) |

?-length_acc([a,b,c],0,N) length_acc([H|T],N10,N1):-N11 is N10+1,
length_acc(T,N11,N1)

{H->a, T->[b,c], N10->0, N1->N}

:-N11 is 0+1,
length_acc([b,c],N11,N)

‘ {N11->1}

:-length_acc([b,c],1,N) length_acc([H|T],N20,N2):-N21 is N20+1,
length_acc(T,N21,N2)

{H->b, T->[c], N20->1, N2->N}

1-N21 is 1+1,
length_acc([c],N21,N)

‘ {N21->2}

:-length_acc([c],2,N) length_acc([H|T],N30,N3):-N31 is N30+1,
length_acc(T,N31,N3)

{H->c, T->[], N30->2, N3->N}

:-N31 is 2+1,
length_acc([],N31,N)

:-length_acc([],3,N) length_acc([],N,N)

(N->3)/ 30

[

‘_ {N31->3}
]

Prolog practices:
tail-recursive reverse/2 with accumulator

naive_reverse([], []1). reverse(X,Y,Z)
naive_reverse([H|T],R) :- PN Z=reverse(X)+Y
naive_reverse (T,R1), ¢
append (R1, [H],R). reverse (X,Z2) :- reverse(X, [1,2).

costly
append ([1,Y,Y).

append ([H|T1,Y, [HIZ]) :-
append (T,Y,2) .

reverse([],2,2).
reverse([H|T],Y,2) :-
reverse (T, [H|Y],2).

reverse(X,[],Z)= Z=reverse(X)
reverse([H|T],Y,Z) & Z=reverse([H|T])+Y
& Z=reverse(T)+[H]+Y
& Z=reverse(T)+[H]Y]
< reverse(T,[H]Y],Z)

Prolog practices:
appending difference lists in constant time

- XPlus -
% \ o

- >
XMinus

one unification step rather than as
many resolution steps as there are
elements in the list appended to

< YPlus >

-
YMinus

— XPlus -
% >

-

YMinus

append_dl (XPlus—XMinus, YPlus-YMinus, XPlus-YMinus) :- XMinus=YPlus.

or
append_dl (XPlus-YPlus, YPlus—-YMinus, XPlus-YMinus) .
?-append_dl ([a,b|X]-X, [c,d|Y]-Y,2Z).

X = [c,dlY], 2 = [a,b,c,d|Y]-Y
34

Prolog practices:
difference lists

represent a list by a term L1-L2.

2
[a,b,c,d]-[d] [a,b,cl]
[a,b,c,y1,2]-[1,2] [a,b,c]
[a,b,c|X]-X [a,b,c]

variable for minus list:

can be used as pointer to end of represented list

33

Prolog practices:
reversing difference lists

reverse(X,Y,Z) < Z=reverse(X)+Y

& reverse(X)=ZY

reverse([H|T],Y,Z) < Z=reverse([H|T])+Y
< Z=reverse(T)+[H]|Y]
& reverse(T)=Z-[H] Y]

reverse(X,2) :— reverse_dl (X,2-[1).

reverse_dl ([],2-2).
reverse_dl ([H|T],2-Y) :- reverse_dl(T,Z-[H|Y]).

35

Second-order predicates:
map/3

map (R, [1, [1).

map (R, [X[Xs], [¥]¥s]):-R(X,¥),mnap (R, Xs,¥s) . “”"Voperm
?-map (parent, [a,b,c],X) - ' onor\ o
el'm\ sfrUCf ey
or, when atoms with variable as Te,,h\ [Po fer'"S. sed |
predicate symbol are not allowed: °’enf '\'p “Peter)
°'7dd “Feter)
lec
map (R, [1, [1). '°°re,,/ Pose ,
map (R, [X|Xs], [YIYs]):- Goal =.. [R,X,VY], [Isf\[°’on rms.
call (Goal), 'enf,," #--lis,
map (R, Xs, Ys) . °'Io,yl
Term=..List succeeds
if Term is a constant and List is the list [Term]
if Term is a compound term f(A1,..,An)
and List is a list with head f and whose tail unifies with [A1,..,An]
36
Second-order predicates: difer from fings Goc

contains free variables

bagof/3 and setof/3

parent (john,peter). ?-findall (C,parent (P,C),L).

parent (john,paul) . L = [peter,paul,mary,davy,dee,dozyl
parent (john,mary) .
parent (mick,davy) .

?-bagof (C,parent (P,C),L). a parent and its

parent (mick,dee) . P = john list of children
parent (mick, dozy) . L = [peter,paul,maryl;

P = mick

L = [davy,dee,dozyl

?-bagof (C,P*parent (P,C),L).
L = [peter,paul,mary,davy, dee,dozy]
The construct Var*Goal
tells bagof/3 not to
bind Var in Goal.

list of children for
which a parent exists

setof/3 is same as bagof/3 without duplicate elements in List

findall/3 is same as bagof/3 with all free variables existentially quantified using *
38

Second-order predicates:

findall/3

findall(Template,Goal, List) succeeds if List unifies with a list of the terms Template
is instantiated to successively on backtracking over Goal. If Goal has no
solutions, List has to unify with the empty list.

?-findall (C, parent (john,C),L).
parent (john,peter). L = [peter,paul,mary]
parent (john,paul) .
parent (john,mary) . ?-findall (f (C),parent (john,C),L).
parent (mick,davy) . L = [f(peter), f(paul), f (mary)]
parent (mick,dee) .

parent (mick, dozy) . ?-findall (C, parent (P,C),L).

L = [peter,paul,mary,davy, dee,dozy]

37

Second-order predicates:

assert/1 and retract/1 Jocty

7/ C,

//; U”Q’Zgoye"s
asserta(Clause) to g O the , Ve

adds Clause at the beginning of the Prolog database. edO/ol:h%'f//’c::?"’/s
assertz(Clause) and assert(Clause)

adds Clause at the end of the Prolog database.
retract(Clause)

removes first clause that unifies with Clause from the Prolog database.

retract all clauses of which the head unifies with Term

retractall (Term) :-

retract(Term), fail.
retractall (Term) :—

retract ((Term:— Body)), faii. failure-driven loop
retractall (Term).

39

Second-order predicates:
assert/1 and retract/1

Powerful: enable runtime program modification
Harmful: code hard to understand and debug, often slow

sometimes used as global variables, “boolean” flags or to memoize:

fib(0,0). mfib(N, F):- memo_fib(N, F), !.

fib(1,1). mfib(N, F):-

flﬁ(g";,) - :1>ié,N—1, iFyou'v? remembered an answer
N1 is N-1, N2 is Ni-1, for this goal before, return it
N2 is Ni-1, mfib(N1,F1),
fib(N1,F1), mfib (N2,F2),
fib(N2,F2), F is F1+F2, :
F is F1+F2. assert (memo_fib(N, F)). et el e

such a declaration for

[Slides on Computational Logic from CLIP group]

clauses that are added
or removed from the
program at run-time

:— dynamic memo_fib/2.
memo_fib(0,0) .
memo_fib(1,1).

40

Higher-order programming using call/N:
implementing map and friends

map (—F, [1, [1).

map (F, [AB|As@], [A|AsS]) :-
call (F,R@,A),
map (F, As@,As) .

foldr (F,B, [1,BJ=

foldr (F,B, [A|As],R)
foldr (F,B,As,R1),
call (F,A,R1,R).

filter (P, [1, []).
filter (P, [AQ|AsB],As) :-
(call (P, AB) ->
As = [AB|As1]
3As = Asl),
filter (P, As@, Asl)

compose (F,G, X, FGX) :—
call (G, X,GX),
call (F,GX,FGX) .

[Higher-order logic programming in Prolog, Lee Naish, 1996]

42

Higher-order programming using call/N:
call(Godl,...)

a more flexible form of call/1, which takes additional
arguments that will be added to the Goal that is called

[Higher-order logic programming in Prolog, Lee Naish, 1996]

Sy
Ppo
I'[edb
call (p(X1,%2,%3)) Mogy
call (p(X1,X2), X3) C°’7o/) 'o/o\9
call(p(Xi1), X2, X3) Use top be © co///] ")’s;em
call(p, X1, X2, X3) Unj, "F Usg,, sﬁ7my
1, ge
Pe,of or :’ 'o/"Ces °'/I/°
all resultin p (X1, X2, %3) being called oo, /7°'e),
S Oy
I'Ucf ”)e WOU/OI
900/

41

Higher-order programming using call/N:
using map and friends (1)

[Higher-order logic programming in Prolog, Lee Naish, 1996]

7~ filter(>(5), [3,4,5,6,7],As).
As=[3,4] called goal: >(5,X)
?- map (plus(1), [2,3,4],As).

As=[3,4,5]

?- map (between(l), [2,3],As).
As=[1,1]; As=[1,2]; As=[1,3];
As=[2,1]; As=[2,2]; As=[2,3]

between(l,J,X) binds X to an integer
between | and J inclusive.

?- map (plus(1),RAs, [3,4,5]).
As=[2, 3, 4] assuming that plus/3 is reversible
(e.g., Peano arithmetic)

?- map (plus (X), [2,3,4], [3,4,5]).
X=1

?- map (plus(X), [2,A,4], [3,4,B]).
X=1,RA=3, B=5

relies on execution order in
which X is bound first

43

Higher-order programming using call/N:
using map and friends (2)

using empty list and append

?- foldr (append, [1, [[2], [3,4], [S]],As).
As=[2,3,4,5]

?- compose (map (plus (1)), foldr (append, [1), [[2], [3,4], [S]],Rs).
As=[3,4,5,6]
flattens first, then adds 1

plain Prolog lacks “currying”
functional Programming lan
functions that take t

for higher-order Programming:
guages would return q list of
he missing argument

conceptual di .
P d'lffﬁculfy.‘ ok to curry q call(sum(2,3)) to q sum(2,3,7)
if there is also g definition for X Y)2 3,
?- map(plus, [2, 3, 4], As). sum(X,Y)?
ERROR: map/3: Undefined procedure: plus/2
ERROR: However, there are definitions for:
ERROR: plus/3

[Higher-order logic programming in Prolog, Lee Naish, 1996]

44

Inspecting terms: complement =..

°r9/3 qnd fUﬂCi’Ol’/B operator

arg(N,Term,Arg)

succeeds when Arg is the Nth argument of Term
functor(Term,F,N)

succeeds when the Term starts with the functor F of arity N

ground (Term) :-
tests whether a term is ground (i.e., nonuar (Term), constant (Term) .
contains no uninstantiated variables) ground (Term) :—
nonvar (Term),
compound (Term),
functor (Term,F,N),
ground (N, Term) .

ground (N, Term) :- common Prolog
N > 9, practice: arity of
arg (N, Term,Arg), " .
ground (Arg), auxiliary and main
N1 is N-1, predicates differ
ground (N1, Term) .

ground (0, Term) .

46

flatten defined in terms of foldr

Inspecting terms:
var/1 and its use in practice

var(Term) 2— var (X).
succeeds when Term is an uninstantiated variable true.

. . ?2- ¥X=3,var (X).
nonvar(Term) has opposite behavior false.

ensuring relational

lus(X,Y,2) :-
= X, ¥,2) nature of predicates

nonvar (X),nonvar (¥),Z2 is X+Y.
plus(X,¥Y,2) :-

nonvar (X),nonvar (2),Y is Z-X.
plus(X,Y,2) :-

nonvar (Y),nonvar (Z),X is Z-VY.

directing search for
grandparent (X,2) :- efficiency
nonvar (X),parent (X,Y),parent(¥,2) .
grandparent (X,2) :-
nonvar (Z),parent (Y,2), parent (X,VY) .

45

Extending Prolog:
term_expansion(+In,-Out)

clause or list of clauses that will be added to
the program instead of the In clause

called by Prolog for
each file it compiles

useful for generation code, e.g. :
given compound term representation of data

student (Name, Id)

want to use accessor predicates

student_name (student (Name, _), Name).
student_id(student(_, Id), Id).

instead of explicit unifications throughout the code

Student = student (Name, _)

to ensure independence of one particular representation of the data
47

Extending Prolog:
term_expansion(+In,-Out)

:— struct student(name,id).

student_name (student (Name, _), Name).
student_id(student(_, Id), Id).

declares struct as a prefix operator

create Template with same

functor and arity, but with

variable arguments rather
than constants

:— op(1150, fx, (struct)).

term_expansion((:— struct Term), Clauses)
functor (Term, Name, Arity),
functor (Template, Name, Arity),
gen_clauses (Arity, Name, Term, Template, Clauses).

48

Certain functors and predicate symbols
that be used in infix, prefix, or postfix

Extending Prolog:

OpGI‘Qi‘OI‘S rather than term notation.
:— op(500,xfx, 'has_color'). ?- b has_color C.

a has_color red. C = blue.

b has_color blue. ?- What has_color red.

What = a

integer between 1 and 1200;
smaller integer binds stronger

a+b/c = a+(b/c) = +(a,/(b,c)) if / smaller than +

:— op (Precedence, Type, Name)

prefix: fx, fy
infix: xfx, xfy,yfx associative not right left
postfix: xf,yf xfx xfy yfx

X op Y op2Z / op(X,op(¥,2)) oplop(X,¥),2)

50

Extending Prolog:
term_expansion(+In,-Out)

- X<p'_
X = g5~
N-th argument >
Char_, ~cog
recursed upon X = e(X 95) .

gen_clauses (N, Name, Term, Template, Clauses) =
(N =:=8 ->
Clauses = []
sarg(N, Term, Argname),

trick to merge
recursive and

base clause arg(N, Template, Arg),
atom_codes (Argname, Argcodes),
atom_codes (Name, Namecodes),
o append (Namecodes, [@’_|Argcodes],Codes),
conversion from atom_codes (Pred, Codes),
atom to list of Clause =.. [Pred, Template, Argl, e
character codes Clauses = [Clause|Clausesl],

N1 is N -1,
gen_clauses (N1, Name, Term, Template, Clausesl)

When trying out, put gen_clauses/5
before term_expansion/2
49

Extending Prolog:
. . Moy,
operators in towers of Hanoi e teis;

fr Oves to
Pegc °m pe
:— op (900, xfx, to) . on i;”Us,ngpeg BiA fo
hanoi (@,A,B,C, [1). e'"'ediq,y s
hanoi (N,A,B,C,Moves) :— move n-1 ¢ from A to B. -
N1 is N-1, disc #n is left on A

hanoi (N1,A,C,B,Movesl),
hanoi (N1,B,A,C,Moves2),
append (Movesl, [A to C|Moves2],Moves) .

move n-1 discs from B to C.
they will rest on disc #n

move disc #n from A to C

3 DISKS

Al okl
J_L_LJ.‘_I_J_._J.

?- hanoi (3, left,middle,right, M)
M = [left to right,

left to middle,

right to middle,

left to right,

middle to left,

middle to right,

left to right |

51

200 xfx-->+

|1200x

Extending Prolog:
built-in operators

| 900fx
| 700xix <. ==
| 6o0xfy:

=2
|{150fx dyna
l1100xfy -1
{1050 xty > 0P*~
11000 xfy «
| go0fy M

c. discon iguous initial ization meta, xedlca\e. mo! o
g N . P!
nic ., disco! \i

T N s, =\=, 777 <, @=< -.\-.\--.iS

A\ Le<.@ L@>,@>
) . >
om@=, =TT

500yt'x+.-./\.\/,xor
1)\(())1\\1\?* 7.1, xdiv. << 5>, mod, rem
| 200xfx**
200 xfy”
| 2008y rmN
+‘(G, ’/'(b,c)) O+b/c
is(X, mod(34, 7)) % is 34 mod 7
<’'(’'+'(3,4),8) e
=2 (X, F(Y)) e

i_1(3)
7= (p(X),q(¥))
L=t (p(X), 7, (), r(2)))

clauses are also Prolog terms!

L

52

Extending Prolog:

-3
p(X) := g(¥)
p(X) := q¥),r(2)

[Slides on Computational Logic from CLIP groupﬁ

meta-level vs object-level in meta-interpreter

KNOWLEDGE

clause(p (X),q(X)).

tlél\E/TEAI\-' clause(q(a), true) .
OBJECT- p(X):—q(X).
q(a).
LEVEL

Canonical meta-interpreter still
absorbs backtracking, unification
and variable environments

implicitly from the object-level. o

REASONING

?—prove (p(X)).
X=a

2-p(X).
X=a

Reified unification explicit at meta-level :

prove (RA) :—
clause (Head, Body),
uni fy (A, Head, MGU, Resul t),
apply (Body, MGU, NewBody) ,
prove_var (NewBody) .

Extending Prolog:

vanilla and canonical naf meta-interpreter

Avoids problems where
clause/2 is called with a
conjunction or true.

prove (Goal) :-
clause (Goal,Body),
prove (Body) .

prove (true):— I.

prove((A,B)):- I,
prove (A),

prove ((Goall,Goal2)) :— prove (B) .

prove (Goall),

prove (Goal2) . prove (hot (Goal)):— !,
not (prove (Goal)) .

prove (true) .

prove (A) :-
Are these meta-circular

. clause(A,B),
interpreters?

prove (B) .

Availability: builr-in
[ISO]
clause(:Head, ?Body) - ‘
True if Head can be unified with a clause _hcad
corresponding clause body. Gives alternative clauses on b
facts Body is unified with the atom rrue.

and Body with the
acktracking. For

53

. (might not work equally
PrOIOQ programming. well for everyone)

a methodology illustrated on partition/4

1 Write down declarative specification

% partition(L,N,Littles,Bigs) <- Littles contains numbers
% in L smaller than N,
% Bigs contains the rest

2 Identify recursion and “output” arguments

what is the recursion argument?
what is the base case?

3 Write down implementation skeleton L
Empty list is
partitioned into

partition([I,N, [1, [1). two empty lists.

partition([Head|Taill,N,?Littles, ?Bigs) :—
/* do something with Head */

partition(Tail,N,Littles,Bigs). We recurse on

the “input”
55 argument list.

® not (A=true; A=(X,Y); A=not(G))

Prolog programming: Prolog programming:
a methodology illustrated on partition/4 a methodology illustrated on sort/2

4 Complete bodies of clauses
1 Write down declarative specification
partition([]l,N, [1, [1).
partition([Head|Tail],N,?Littles,?Bigs) :—
Head < N,

® sort(L,S) <- S is a sorted permutation of list L
Head is smaller, has to

i 2 Identi i d “output” t
partition(Tuil,N,Littles,BigS), be added to Littles enlfyrecursmnan output™ arguments
?Littles = [Head|Littles],?Bigs = Bigs. 3 Write d imol ion skel

partition([Head|Taill,N,?Littles, ?Bigs) i~ <Ipuiuspn iy rite down implementation skelefon
Head >= N,
T . . . i i t(CIl, [1).
partition(Tail,N,Littles,Bigs), Bigs otherwise =or 2 : L
2Littles = Littles,?Bigs = [Head|Bigs] . sort([Head|Taill,?Sorted):

/* do something with Head */

5 Fillin “output” arguments sart(Taul,sorted)s

partition([],N, [1, [1). 4 Complete bodies of clauses
partition([Head|Tail]l,N, [Head|Littles],Bigs):-
Head < N, sort([], [1).
partition(Tail,N,Littles,Bigs). sort([Head|Taill,WholeSorted) :-
partition([Head|Taill,N,Littles, [Head|Bigs]) :- sort(Tail,Sorted), -
Head >= N, insert (Head, Sorted, WholeSorted) . Auxiliary
partition(Tail,N,Littles,Bigs). 5 predicate
Prolog programming: Prolog programming:
a methodology illustrated on insert/3 a methodology illustrated on insert/3

4 Complete bodies of
1 Write down declarative specification omplete bodies of clauses

% insert(X,In,0ut) <- In is a sorted list, Out is In insert (X, [1,?Inserted):-

% with X inserted in the proper place _ ?Inserted= [X] . _
insert (X, [Head|Tail], ?Inserted) :-

X > Head,

insert(X,Tail, Inserted),

?Inserted = [Head|Inserted].
insert (X, [Head|Tail], ?Inserted) :-

X =< Head,

?Inserted = [X,Head|Taill.

2 Identify recursion and “output” arguments

3 Write down implementation skeleton
5 Fill in “output” arguments
insert (X, [1,?Inserted).
insert (X, [Head|Tail],?Inserted) :— insert (X, [1, [X]).
/* do something with Head */ insert (X, [Head|Taill, [X,Head|Taill):-
insert(X,Tail, Inserted). % =< Head.
insert (X, [Head|Tail], [Head|Inserted]) :-
X > Head,

s insert(X,Tail, Inserted).

More Prolog programming:
quicksort

quicksort([], [1).

quicksort ([X|Xs],Sorted) :-
partition(Xs,X,Littles,Bigs),
quicksort(Littles,SortedLittles),
quicksort (Bigs, SortedBigs),
append (SortedLittles, [X|SortedBigs],Sorted).

quicksort(Xs,Ys) :— gsort(Xs,Ys—I[]).

gsort([],Ys-Ys).

gsort ([X0|Xs],Ys-2s) :-
partition(Xs,X@,Ls,Bs),
gsort (Bs, Ys2-2s),
gsort(Ls,Ys-[X0|Ys2]).

with difference lists:

60

Revisiting the Eliza classic in Prolog:
core “algorithm”

driven by stimulus-response patterns

statement
statement

while the input is not ,bye”
choose a stimulus-response pair
match the input to the stimulus
generate the reply from the response and the match
output the response

62

[The Art of Prolog, Sterling and Shapiro]

Revisiting the Eliza classic in Prolog:
example conversation

[The Art of Prolog, Sterling and Shapiro]

Revisiting the Eliza classic in Prolog:
dictionary lookup

as association list for arbitrary keys:
lookup (Key, [(Key,Value) |Dict],Value).

lookup (Key, [(Keyl,Valuel)|Dict],Value) :- will be used to
Key \= Keuyl, store matches
lookup (Key,Dict,Value) . between stimulus
and input

as binary tree for integer keys:

lookup2 (Key,dict (Key, X,Left,Right),Value) :- !,
X = Ualue.

lookup2 (Key,dict (Keyl,X,Left,Right),VUalue) :-
Key < Keul,

lookup2 (Key,Left,Value).

lookup2 (Key,dict (Keyl,X,Left,Right),Value) :-
Key > Keyl,
lookup2 (Key,Right,Value) .

[The Art of Prolog, Sterling and Shapiro]

63

Revisiting the Eliza classic in Prolog:
representing stimulus/response patterns

numbered numbered
place-holder place-holder

pattern([i,am,1], ['How', long, have,you,been,1,?]).
pattern([1,you,2,mel, ['What',makes,you, think, 'I',2,you,?]).

pattern([i,like,1], ['Does', anyone,else, in,your, family,like,1,?]).

pattern([i, feel,1], ['Do',you,often, feel, that,way,?]).
pattern([1,X,2], ['Please',you, tell,me,more,about,X]) :-

important (X) .
pattern([1], ['Please',go,on,"'."']). conditional
pattern
important (father).

important (mother).
important (sister).
important (brother).
important (son) .
important (daughter).

64

Revisiting the Eliza classic in Prolog:
actual matching

match ([N|Pattern],Table, Target) :-
integer (N),
lookup (N, Table,LeftTarget),
append (LeftTarget,RightTarget, Target),
match (Pattern, Table,RightTarget).

match ([Word|Pattern],Table, [Word|Target]) :-
atom (Word),
match (Pattern, Table, Target). word

match ([],Table, []1).

place-holder

suppose D = [(a,b),(c,d) | X]

?- lookup (a,D,V) .‘.heincomp\ete t
g=b1 kup (c,D,e) dotos&ructure dof n:\
?— lookup(c,D,e < wglized!
. plc,U, have o be initiall
?- lookup (e,D, f)

yes

8D = [(st)s (C;d),(e,) 1X]

66

[The Art of Prolog, Steriing and Shapiro]

[The Art of Prolog, Sterling and Shapiro]

Revisiting the Eliza classic in Prolog:
main loop

reply([]) :- nl.

reply([Head|Taill) :- write(Head),write(' '),reply(Tail).

eliza :- read(Input),
eliza(Input),
I

eliza([byel) :-
writeln(['Goodbye. I hope I have helped you'l).

eliza(Input) :-
pattern(Stimulus,Response),
match(Stimulus, Table, Input),
match (Response, Table, Output),

find a Stimulus

match it with the Input,

reply(Output), storing matches for place-
read(Inputl), substitute holders in Table

I

© 9 i .

eliza(Inputl). place-holders in

Output

65

Declarative

Programming
4: blind and informed

search of state space,
proving as search process

[The Art of Prolog, Sterling and Shapiro]

State space search:
blocks world

I.—'—.I/
/L—E—J/
Gy

~
;
\L_'_.I
B

State space search:
graph representation

state space ;
solution
state=node, state transition=arc
path from start to goal node
goal nodes and start nodes

optimal if cost over path is minimal

cost associated with arcs between nodes

search algorithms
completeness: will a solution always be found if there is one?
optimality: will highest-quality solution be found when there are several?
efficiency: runtime and memory requirements
blind vs informed: does quality of partial solutions steer process?

4

-
Jolcednicl

State space search:
8-puzzle

Left Right Up Down Left Right Up Down
 HEE | EBERENRBNDaEn Ban
7lale|[7]ale||1|7]6]||5]7]6|[7]8]6||7]8]6|[7]6]|3][7]6]2
s|sl2||5|8]2]||5]8]2 8|2 5|2||5]2 5/8/2||5]8

3
State space search:
Prolog skeleton for search algorithms
reached, but goal state for which
untested states goal (Goal) succeeds
succeeds if the goal search (Agenda, Goal) :- -
state Goal can be next (Agenda, Goal,Rest), selects a candidate
reerdhed e @ dste goal (Goal) . state from the Agenda

on the Agenda

search (Agenda, Goal) :-
next (Agenda, Current,Rest),
children(Current,Children),
add (Children,Rest, NewAgenda),
search (NewAgenda, Goal) .

expands the
current state

arc(1,2). arc(1,8). arc(1,6).
arc(2,?7). arc(2,12). arc(2,4).
arc(12,9). arc(12,15). arc(6,3).
arc(6,11). arc(11,0). arc(11,5).

State space search:
depth-first search

next/3 implemented by taking

first element of list
i ® ©)(© &

.. a ﬁl’sf.l'
search_df ([Goal |Rest],Goal): Gendg : last,
goal (Goal) . freoled) t
search_df ([Current|Rest],Goal) : - 9 stacy
children(Current,Children),

append (Children,Rest, NewAgenda),
search_df (NewAgenda, Goal) . prepending children of first

chi ldren (Node, Children) :- element on agenda to the
findall (C, arc (Node,C),Children). remainder of the agenda

add/3 implemented by

State space search:
depth-first search with loop detection

keep list of
@ visited nodes

search_df_loop ([Goal |Rest],Visited,Goal) :—
goal (Goal) .

search_df_loop ([Current|Rest],Visited,Goal) :- add current
children(Current,Children), node to list of
add_df (Children,Rest,Visited, NewAgenda), Vidhed] nedkes
search_df_loop (NewAgenda, [Current|Visited],Goal) .

add_df ([],RAgenda,Visited,Agenda) .
add_df ([Child|Rest],0ldAgenda,Visited, [Child|NewAgenda]) :-
not(element (Child,0ldAgenda)),
not(element(Child,Visited)),
add_df (Rest, 0ldAgenda, Visi ted, NewAgenda) .
add_df ([Child|Rest],0ldAgenda,Visited, NewAgenda) : -
do not add a element (Child,01dAgenda), do not add
child ifit's add_df (Rest, 01dAgenda, Visi ted, NewAgenda) . already
add_df ([Child|Rest],0ldAgenda,Visited, NewAgenda) : -
element (Child,Visited),)
agenda add_df (Rest, 01dAgenda, Uisi ted, NewAgenda) . children

8

already on the visited

State space search:
depth-first search with paths

keep path to node on agenda,

rather than node Ny rog
Uireg q
chq

nge to ;.
way ¢ °fc/,AND Ch:ldren /3

children ([Node|RestOfPath],Children) :- =972 Calley
findall ([Child,Node|Rest0fPath],arc(Node,Child),Children).

?- search_df([[initial_node]],PathToGoal).

State space search:
depth-first search using Prolog stack

search_df (Goal,Goal) :—
goal (Goal) .

search_df (CurrentNode, Goal) : -
arc (CurrentNode,Child),
search_df (Child,Goal).

use Prolog call
stack as agenda

vanilla

might loop on cycles

search_bd (Depth, Goal,Goal) : -
goal (Goal) .

search_bd (Depth, CurrentNode, Goal) :-
Depth>®@, ¥
NewDepth is Depth-1,
arc (CurrentNode, Child),
search_bd (NewDepth, Child, Goal).

do not exceed depth
threshold while searching

always halts, but no
solutions beyond threshold

depth
bounded

T= h_df (19, initial de,Goal). .
e (10, 3n1tial-node, Goal) increase depth bound
search_id (CurrentNode, Goal) :- less memo™Y | on each iteration
search_id (1, CurrentNode,Goal) . than bfs | | o .
search_id (Depth, CurrentNode, Goal) :— complete and solutions on, but
search_bd (Dep th, CurrentNode, Goal) . upper parts of search space
search_id (Depth, CurrentNode, Goal) : - not that bad for full trees:
NewDepth is Depth+1, a single level is smc":::a:urﬂberdof nodes a.t
search_id (NewDepth, CurrentNode, Goal) all nodes above it
9

iterative
deepening

State space search:
breadth-first search

e e ens

next/3 implemented by taking

first element of list <
Bres -
search_bf ([Goal |Rest],Goal) :- Qgend lrsf-m, ﬁl’sf.
goal (Goal) . Q f"eqfed out
search_bf ([Current|Rest],Goal) :- as q que,,
e

children(Current,Children),
append (Rest, Children, NewAgenda),
search_bf (NewAgenda, Goal) .

add/3 implemented by
appending children of first
element on agenda to the

children (Node,Children) :- ey 6 o egels

findall (C, arc (Node,C),Children).

State space search:
water jugs problem

fill a jug from the pool

empty a jug into the pool

operations

pour one jug into another until one poured

from is empty or the one poured into is full
12

e €@

goal

4l in a jug

[The Art of Prolog, Sterling and Shapiro]

State space search:

babr /=d
Qneh: epfh_ .
dfs vs bfs d;!’""g Facto, " mit
Mg, 2Pth of " O seq
. epth Seq ch Sp
spirals away from start node, of 5 - h o Qce
candidate paths to be remembered st Soluy:
grows exponentially with depth Ution
breadth-first depth-first depth-limited dlzzgt:i,:g
time bd bm b! bd
space bd bm bl bd
shortest J J
solution path might be second
child of root node
complete v Vif1=d Vv

State space search:
implementing the search

as a generic algorithm for
state space problems

visited states

solve_dfs(State,History, []) :- s
final_state (State). il noy,

solve_dfs(State,History, [Move|Moves]) :- QdUnn * We only
move (State, Move), am
update (State,Move,Statel),
legal (Statel),
not (member (Statel,History)),
solve_dfs(Statel, [Statel |History],Moves) .

multiple named ©¢ arcg
transitions out of a state

test_dfs(Problem,Moves) :-
initial_state (Problem,State),
solve_dfs(State, [State] ,Moves) .

sequence of transitions to reach goal from current state

[The Art of Prolog, Sterling and Shapiro]

State space search:

encoding water jugs problem Sz

starting and goal states

initial_state(jugs, jugs(0,0)).
final _state (jugs(4,VU2))
final _state(jugs(V1,4)).

possible transitions out of a state

move (jugs (U1,U2), fill(1)).
move (jugs (U1,U2),fill(2)).
move (jugs (U1,U2),empty(l))
move (jugs (U1,VU2),empty(2))
move (jugs (U1,U2), transfer(2,1)).
move (jugs (U1,U2), transfer(1,2)).

:— Ulb0.
- U2>0.

aa;ﬁ,

453 ==

empty first jug (1), but only if
it still contains water (C1)

Proving as a search process:

df agenda-based meta-interpreter e

prove (true):— !.
prove ((A,B)) :-
I

-9
clause(A,C),
conj —append(C,B,D),

instead of prove (D) .
prove((A,B)) - prove(A):-
prove(A),prove(B) clause(A,B),
prove (B) .

prove_df_a(Goal) :-
prove_df_a([Goall).
prove_df_a([true|Agendal).

prove_df_a([(A,B)|Agendal)
|

depth-first

prove_df_a(NewAgenda) .
prove_df_a([A|Agenda]) :-

findall (B,clause (A,B),Children),

conj _append (true, Ys, Ys) .
conj —append (X, Ys, (X,Ys)) :-
not (X=true),
not (X=(0One, TheOther) .
conj —_append ((X,Xs),Ys, (X,2s)) :-
conj _append (Xs, Ys,2Zs) .

3
findall (D, (clause(A,C),conj_append(C,B,D)),Children),
append (Children, Agenda, NewAgenda),

swapping arguments of
append/3 turns this into a
breadth-first meta-interpreter!

append (Children, Agenda, NewAgenda),

prove_df_a(NewAgenda)

[The Art of Prolog, Sterling and Shapiro]

State space search:
encoding water jugs problem

states a transition can lead to
a jug can be filled up to

update (jugs (U1,U2), fill (1), jugs(C1,U2)) :- . .
its capacity from the pool

capacity(l,C1).
update (jugs (U1,U2),fill (2),jugs(V1,C2)) :-
capacity(2,C2).
update (jugs (V1,VU2),empty(l),jugs(@,VU2)).
update (jugs (V1, U2),emptg(2),Jugs(U1 2)).
update (jugs (U1,U2), transfer (2, 1),Jugs(N1 W2)) :-
capacity(l, Cl)
Liquid is VUl + U2,
Excess is Liquid - Cl1,
adjust(Liquid,Excess, W1, W2).
update (jugs (U1,U2), transfer (1,2), jugs (W1,W2)) :-
capacity(2,C2),
Liquid is VUl + U2,
Excess is Liquid - C2,
adjust(Liquid,Excess,W2,W1).

the first jug will contain OL
after emptying it

the first jug can be poured
in the second

adjust(Liquid, Excess,Liquid,®@) :- Excess =< @.
adjust(Liquid,Excess,V,Excess) :—

Excess > 0,

U is Liquid - Excess.

capacity(j1,8).
capacity(j2,5).

. : This
Proving as a search process: , Miiing .
bf agenda-based meta-interpreter “UBstitutigy,

foo(X) :— bar(X).

?- findall (Body,clause (foo(Z),Body),Bodies).
Bodies = [bar(_G336)].

problem:
findall(Term,Goal, List)
creates new variables in
the instantiation of Term for
the unbound variables in
answers to Goal trick:
store a(Literals,OriginalGoal) on agenda
where OriginalGoal is a copy of the Goal

prove_bf (Goal) :—
prove_bf_a([a(Goal,Goal)],Goal).
prove_bf_a([a(true,Goal) |Agenda] ,Goal) .
prove_bf_a([a((A,B),G)|Agenda],Goal) :-!,
findall (a(D,G), (clause(A,C),conj_append(C,B,D)),Children),
append (Agenda, Children, NewAgenda),
prove_bf_a(NewAgenda, Goal) .
prove_bf_a([a(A,G)|Agenda],Goal) :-
findall (a(B,G),clause(A,B),Children),
append (Agenda, Children, NewAgenda),
prove_bf_a(NewAgenda, Goal) .

Goal will be instantiated with the
correct answer substitutions

breadth-first

17

legal (jugs(C1,C2)).

[The Art of Prolog, Sterling and Shapiro]

Proving as a search process:
forward vs backward chaining of if-then rules

backward chaining forward chaining
from head to body from body to head
search starts from where we want search starts from where we
to be towards where we are are to where we want to be
e.g. Prolog query answering e.g. model construction

what’s more efficient depends on structure of search
space (cf. discussion on practical uses of var)

18

Proving as a search process:
forward chaining - auxiliaries

Proving as a search process:
forward chaining - bottom-up model construction

model of clauses defined by cl/1

model (M) :— model ([],M).

model (M@, M) :—

grounds literal :)
is_violated(Head,M@), !,

add a literal from the head

from head disj_element (L, Head), of a violated clause to the

model ([L|M@],M) . current model
e model (M, M) .
wo(lat:diilutlj)ses is_violated(H,M) :- a violated clause:

note the cl ((H:-B)), body is true in the current model,

satisfing?odg (B,M), but the head not
grounds not(satisfied_head(H,M)).
literal from
body
19

Proving as a search process:
forward chaining - example

©9 & cl ((married(X);bachelor (X) :-man(X),adult(X))).
\ooé‘l o\\'\\e‘ singy cl ((has_wife(X) :-married(X),man(X))) .
o dis Yisjy, cl ((man (paul) :—true)) .
co™ ”Ot\gje’”ent(cl ((adult (paul) :—true)).
n, S X
&_(\)e’ - qfsjgt (6N (Oilse),’ X) ~ R ?-model ([],M)
/‘006\3 (@ = dls_]' ~8lg " ;T p ?— model (M) . / \
A> A ,\1\3 diSlep ye” @Otheh Qlse o M = [has_wife(paul),married(paul), i vier .
R (\ed)&;\,\ﬂ 'QQ?\»Q Si<e; SNy ; Vs)) isjup mpp, adul t (paul), man (paul)]; e aa &
S o C) “\e(\\- pod\é W ,an - m@nt FX(SJ; S))) CﬂOn M = [bachelor (pqu]_) o model ([L] ,l;l) . \
2% 1ef el 0 W (81 SSowiae € Fight 2¥sy S~ adul t (paul), :
\‘»\'5{\ \'Q?\'i o\ SOCIOh o . g (pclul)] :
C e\e“\e i('xed ;b c= {a Perators :-model ([man(p)],M)
0 . = (b’c)} two minimal models as there is a
SatiSfleifge;Bj (R, MY:= disjunction in the head :-model([adult(p) ,man(p)],M)
elemen sM). :
satisfied_head ((A;B),M) :- /\
element (H’ M) Y :-model ([married(p), :-model ([bachelor(p),

satisfied_head ((A;B),M) :-
satisfied_head(B,M).

20

adult(p),man(p)],M) adult(p),man(p)],M)

:-model ([has_w‘ife(p) ,married(p),
adult(p) ,man(p)],M) [1

[1
21

Proving as a search process:
forward chaining - range-restricted clauses

Our simple forward chainer cannot
construct a model for following clauses: ' 5, ynground man(X) will be added to

the model, which leads to the second
clause being violated —which cannot be
solved as it has an empty head

cl ((man (X);woman (X) :—true)).
cl ((false:-man(maria))).
cl ((false:-woman (peter))).

works only for clauses for which grounding the body also grounds the head

add literal to first clause, to
@ enumerate possible values of X

cl ((man (X) ; woman (X) :—person(X))). . range.reg;, -
cl ((person(maria):-true)). all Variap|e in s Mricted
cl ((person(peter) :—true)).

clayse,

s
0 occyr j, bo dy

cl ((false:-man(maria))). can pbe ensy, b
cl((false:-woman (peter))). quant; Y addin)

fy over each vur'g Predicqpe that
2- model (M) 1able’s dom.:
M = [man(peter),person(peter) ,Zuzjoman (maria),person(maria)] ain

. info
Informed search: Srmed: use g o
stance f, Stic estimqte f

best-first search

search_best ([Goal | RestAgenda] , Goal) : -
goal (Goal) .

search_best ([CurrentNode |RestAgenda] , Goal) :—
children (CurrentNode,Children),
add_best (Children,RestAgenda, NewAgenda),
search_best(Nengenda,Goql).

bestfirst: children of node are
added according to heuristic
(lowest value first) .Agendq |

IS sortey

add_best ([] ,Agenda, Agenda) .
add_best ([Node |Nodes] , Agenda, NewAgenda) : -
insert (Node, Agenda, TmpAgenda),

add_best(A,B,C): C contains the
add_best (Nodes, TmpAgenda, NewAgenda) .

elements of A and B (B and C sorted

insert (Node, Agenda, NewAgenda) : - according to eval/2)

eval (Node,Value),
insert (Ualue, Node, Agenda, NewAgenda) .
insert (Ualue,Node, [], [Node]).
insert (Ualue, Node, [FirstNode|RestOfAgenda], [Node, FirstNode|Rest0fAgenda]) :—
eval (FirstNode, FirstNodeUalue),
Ualue < FirstNodeUalue.
insert (Ualue, Node, [FirstNode|RestOfAgenda], [FirstNode|NewRestOfAgendal) :-
eval (FirstNode,FirstNodeVUalue),
Ualue >= FirstNodeUalue,
insert (Ualue, Node, Rest0fAgenda, NewRes tOfAgenda) .

24

Proving as a search process:
forward chaining - subsets of infinite models

cl ((append([],Y,¥Y):-list(¥))).

cl ((append ([X|Xs],Ys, [X|Zs]) :—thing (X), append (Xs,Ys,2s))) .
cl((list([]):-true)).

cl((list([X|Y]):-thing(X),list(¥))).

cl ((thing(a):-true)). mnge"eﬂricred
cl((thing(b) :—true)). version of
cl((thing(c):—true)). QPPend/3

model_d(D,M) :—
model_d (D, [],M). depth-bounded
construction of submodel
model_d(@,M,M) .
model_d(D,M@,M) :—
D>,
Dl is D-1,
findall (H,is_violated(H,M8),Heads),
satisfy_clauses (Heads, M@, M1),
model_d (D1,M1,M).

satisfy_clauses ([],M,M).
satisfy_clauses([H|Hs],MB,M) :-
disj_element(L,H),
satisfy_clauses (Hs, [L|MB],M).
23

Informed search:
best-first search on a puzzle

900 OO

A tile may be moved to the empty spot if there are
at most 2 tiles between it and the empty spot.

Find a series of moves that bring all the black tiles
to the right of all the white tiles.

Cost of a move: 1 if no tiles were in between,
otherwise amount of tiles jumped over.

25

Informed search: OOD.@@@

best-first search on a puzzle - encoding
Board: @@® OO0 get_tile(Position,N,Tile) :-

get_tile(Position,1,N,Tile).

[byb,b,e,w,w,w]
get_tile([Tile|Tiles],N,N,Tile).
get_tile([Tile|Tiles],N@,N,FoundTile) :-—
Nl is N@+1,
get_tile(Tiles, N1, N, FoundTile).

replace([Tile|Tiles],1,ReplacementTile, [ReplacementTile|Tiles]).
replace([Tile|Tiles],N,ReplacementTile, [Tile|RestOfTiles]) :—
N>1,
Nl is N-1,
replace(Tiles,N1,ReplacementTile,Rest0fTiles).

Moves: start_move (move (noparent, [b,b,b,e,w,w,w],0))

from to cost

Agendc move_value (Move, Ualue)
items:

heuristic evaluation of position reached by Move

26

Informed search: OOD.@@@

best-first search on a puzzle - encoding’

next_move (move (Position,LastPosition,LastCost),
move (LastPosition,NewPosition,Cost)) :—
get_tile(LastPosition, Ne, e),
get_tile(LastPosition, Nbw, BW),

NewPosition is reached
in one move from

not (BH=E) ’ LastPosition with cost Cost
Diff is abs(Ne-Nbw),
Diff<4,

replace (LastPosition,Ne,BW, IntermediatePosition),
replace (IntermediatePosition, Nbw,e,NewPosition),
(Diff=1 -> Cost=1

3 otherwise -> Cost is Diff-1

)

goal (Move) :—
eval (Move,).

eval (move (0ldPosition,Position,C),VUalue) :-
bLeftOfw(Position,Value).

bLeftOfw(Pos,Val):—
findall ((Nb,Nuw),
(get_tile(Pos,Nb,b),get_tile(Pos,Nw,w), Nb<Nw),L),
length(L,Val).
sum of the number of black tiles to
the left of each white tile

Informed search: ODD.@@@

best-first search on a puzzle - algorithm

tiles(ListOfPositions, TotalCost):— _accfor
start_move (StartMove), VisitedMoves
eval (StartMove, Ualue),
tiles ([move_value (StartMove, Value)], FinalMove, [], UisitedMoves),
order_moves (FinalMove, VUisitedMoves, []1, ListOfPositions,@, TotalCost).
best. q\'ds
- :::’:'Ise‘ar ch cint path ?Gc:vwe to acc for acc for
Ylating from final ™ ListOfPositions TotalCost
Path start move

tiles(Agenda, LastMove, VO, V): goal can be
reached from a move in Agenda where
LastMove is the last move leading to the goal,
and V is VO + the set of moves tried.

tiles ([move_value (LastMove,Value) |RestAgendal ,LastMove,VisitedMoves, UisitedMoves) : -
goal (LastMove) .

tiles ([move_value (Move,VUalue) |RestAgenda],Goal,VisitedMoves, FinalVisitedMoves) :-
show_move (Move, Ualue),

setof@ (move_value (NextMove, NextUalue), dlist of
(next_move (Move, NextMove), eval (NextMove, NextUalue)), finds sof‘e‘ i heit
Children), children with the

merge (Children,RestAgenda, NewAgenda),
tiles (NewAgenda,Goal, [Move|VisitedMoves],FinalVisitedMoves) .

27

eVO\UUﬂon

Informed search: OOO.@@@

best-first search on a puzzle - auxiliaries

order_moves(FinalMove, VisitedMoves,Positions,FinalPositions, TotalCost, FinalTotalCost):
FinalPositions = Positions + connecting sequence of target positions from VisitedMoves ending in
FinalMove's target position.
FinalTotalCost = TotalCost + total cost of moves added to Positions to obtain FinalPositions.

order_moves (move (hoparent, StartPosition,),
VisitedMoves,Positions,
[StartPositionPositions], TotalCost, TotalCost) .

order_moves (move (FromPosi tion, ToPosition,Cost),
VisitedMoves,Positions,
FinalPositions, TotalCost,FinalTotalCost) :—
element (PreviousMove, UisitedMoves),
PreviousMove = move (PreviousPosition, FromPosition,CostOfPreviousMove),
NewTotalCost is TotalCost + Cost,
order_moves (PreviousMove,Uisi tedMoves,
[ToPosition|Positions],FinalPositions,NewTotalCost,FinalTotalCost).

29

Informed search:
optimal best search

Informed search: ODD.@@@

best-first search on a puzzle - example run

O@e® OO °
1@e®0] [0 9

72— tiles(M,C).

[b,b,b,e,w,w,w]-9
[byb,b,w,e,w,w]-9
[b,b,e,w,b,w,w]-8 2 @@l [O/e®O 8

a heuristic might consistently

Best-first search is not complete by itself: assign lower values to the nodes

on an infinite path

[b,b,w,w,b,e,w]-7
[b,b,w,w,b,w,e]-7 :]D[.]@D.:.] 7
[b,b,w,w,e,w,b]-6
[bye,w,w,b,w,b] -4 5@@0IO@O] | 7 H : i i
[b,w,e,u,b,w,b] -4 - An A algorithm is a complete best-first search algorithm that aims
{e,w,b,w,b,m,b%—iﬂ 6 @@CIO] [O® 6
b b b]-2 o o e e
lw,u,b,u,b,e,b]-1 s @ OI0@0® 4 at minimizing the total cost along a path from start to goal.
M=[[b,b,by,e,w,w,w], [b,b,b,w,e,w,w], 9 4
[b,b,e,w,b,w,w], [b,b,w,w,b,e,uw], _ISIEeIL el) F(n) = g(n) + h(n) h(")=0;
[b,b,w,w,b,w,el, [b,b,w,w,e,w,b], 10 [D@OO0® 3 ege"efafes,
[b,e,w,w,b,w,b], [b,w,e,w,b,w,b], S e readfh~ﬁrsf°
[e,w,b,w,b,w,b], [w,w,b,e,b,w,b], 12 DD [@0® 2 estimate on further cost to reach goal:
[wyw,b,w,b,e,bl, [w,w,e,w,b,b,b]] actual cost so far:

1BO0eoe @ !
1500 [0/ee® °

()
1}
—_
al

30

adds breadth-first flavor

Definite clause grammars: ... e

31

if optimistic (underestimating the cost), an optimal path
will always be found. Such an algorithm is called A*.

11,
. OPJJNt =2 [t S Xam
u Pl
context-free grammars in Prolog Consitgq el £
“Verp-_ ar
P s] .
@E»D]
one non-terminal on
. sentence --> noun_phrase,verb_phrase.
left-hand side
° noun_phrase —-> proper_noun.
Decla ratlve noun_phrase --> article,adjective,noun.
noun—_phrase -—> article,noun.

Programming

non-terminal
defined by rule
produces syntactic
category

verb_phrase
verb_phrase

intransitive_verb.
transi tive_verb, noun_phrase.

article --> [the].
adjective --> [lazy].
adjective --> [rapid].

proper_noun —-> [achilles]. terminal: word in
noun —--> [turtle]. |anguage
intransitive_verb—-> [sleeps].

transitive_verb --> [beats].

sentences generated by grammar are lists of terminals:
the lazy turtle sleeps, Achilles beats the turtle, the rapid turile beats Achilles

Definite clause grammars:
parse trees for generated sentences

syntactic categories

/ sentence \ as leafs
noun_phrase verb_phrase
article adjective noun transitive_verb noun_phrase

proper_noun

the rapid turtle beats achilles

words of sentence
as leafs

DCG rules and Prolog clauses:
equivalence

sentence [the, rapid, turtle, beats, achilles]

sentence —-> noun_phrase, verb—-> [sleeps]

grammar rule
verb_phrase

sentence(S) :- verb([sleeps]).
equivalent noun_phrase (NP),
verb_phrase (UP),

Prolog clause
append (NP, UP,S) .

belongs to the noun_phrase

category and some second part

to the verb_phrase category

parsing ?- sentence([the,rapid, turtle,beats,achilles])

S is a sentence if some first part

Definite clause grammars:

Simj,
’hl/q,- #
top-down construction of parse trees ¥ e, 510
p-dow p Ol

sentence sentence --> noun_phrase,

verb_phrase
noun_phrase,verb_phrase noun_phrase --> article,

adjective,

|

artic‘le,adjective,noun,verbjhrase article --> [the]
[the],adjective,noun,verb_phrase adjective --> [rapid]
[the], [rapid],noun,verb_phrase noun --> [turtle]
[the],[rapid],[turtle],verb_phrase verb_phrase --> transitive verb,

noun_phrase

[the], [rapid], [turtle],transitive_verb,noun_phrase transitive_verb --> [beats]
[the], [rapid],[turtle], [beats],noun_phrase noun_phrase --> proper_noun
[the], [rapid], [turtle], [beats],proper_noun proper_noun --> [achilles]

[the], [rapid], [turtle], [beats], [achilles]

start with NT and repeatedly replace NTS on right-hand side of an
applicable rule until sentence is obtained as a list of terminals

4

DCG rules and Prolog clauses:
builtin equivalence without append/3

me\o'\e\'e\
grammar rule sentence —--> noun_phrase,
verb_phrase
ob\ec\-\eve\
. sentence(L,LB) :-
eqU'VOIent noun—_phrase (L,L1),
Prolog clause verb_phrase(L1,L0). :
L consists of a sentence
followed by LO
parsing ?- phrase(sentence, L) built-in meta-predicate calling

sentence(L,[])
starting
non-terminal
6

DCG rules and Prolog clauses:
summary and expressivity

GRAMMAR PARSING
'I!IIIEE\IQI-_ s --> np,vp ?-phrase(s,L)
OBJECT- s(L,L0):- ?-s(L,[1])
np(L,L1),
LEVEL vp(L1,L0)

non-terminals can have arguments
goals can be put into the rules
no need for deterministic grammars
a single formalism for specifying syntax, semantics
parsing and generating

Expressivity of DCG rules:
non-terminals with arguments - parse trees

sentence (s (NP,UP)) —-> noun_phrase (NP),verb_phrase (UP) .
noun_phrase (np (N)) ——> proper_noun(N).

noun_phrase (np (Art,Adj,N)) --> article(Art),adjective(Adj),
noun(N) .

noun_phrase (np (Art,N)) --> article(Art),noun(N).

verb_phrase (up(IV)) --> intransitive_verb(IV).

verb_phrase (up (TU,NP)) --> transitive_verb (TV),noun_phrase (NP) .

article(art(the)) --> [thel.
adjective(adj (lazy)) --> [lazy].
adjective(adj (rapid)) ——> [rapid].
proper_noun(pn(achilles)) -=> [achilles].

noun(n(turtle)) --> [turtle].
intransitive_verb(iv(sleeps))—--> [sleeps].
transitive_verb (tv (beats)) —-> [beats].

?-phrase (sentence(T), [achilles,beats, the, lazy, turtle])

T = s(hp(pn(achilles))
vg E%v gbea ts), ’
np (art (the)

adj Uazildy

Expressivity of DCG rules:

non-terminals with arguments - plurality

sentence —--> noun_phrase (N),verb_phrase (N).

noun_phrase(N) --> article(N),noun(N). arguments unify to
verb_phrase(N) --> intransitive_verb(N). express plurality
article(singular) --> [a]. agreement

article(singular) --> [thel.
article(plural) ——> [the].

noun(singular) --> [turtle].
noun(plural) ——> [turtles].
intransitive_verb(singular) —--> [sleeps].

intransitive_verb(plural)--> [sleep].

phrase (sentence, [a, turtle,sleeps]). % yes
phrase (sentence, [the, turtles,sleepl). % yes
phrase (sentence, [the, turtles,sleeps]). % no

Expressivity of DCG rules:

goals in rule bodies XYINg

numeral (N) —-> n1_999(N). n[XY]
numeralN) --> n1_9(N1), [thousand],n1_999(N2), {N is N1*1000+N2}.
n1_999(N) --> n1_99(N).

n1_999(N) --> n1_9(N1), [hundred],n1_99(N2), {N is N1*1@8+N2}.

n1_99(N) --> nB_9(N).

n1_99(N) -=> n1@_19(N).
n1_99(N) --> n20_92(N). regular goal enclosed
n1_99(N) --> n28_99(N1),n1_9(N2), {N is N1+N2}. by braces
ne_9()—-> I[I.

1_99(N,L,LB) :-
B 9(N)—> nton). | nzefgt’a(ﬁi,lz,u),
n1_9(1)--> [one] . n1_9(N2,L1,L0),

n1_9(2)--> [two] . N is N1 + NZ2.

n10_19(18) ——> [ten].
n1@_19(11) —-> [eleven]. ?-phrase (numeral (2211),N).

N = [two, thousand, two, hundred,eleven]

n20-90(20) —-> [twenty] .
n20_90(30) ——> [thirty].

Interpretation of natural language:
syntax and semantics

syntax

semantics

sentence —--> determiner, noun, verb_phrase

sentence --> proper_noun, verb_phrase
verb_phrase --> [is], property
property —-=> [al, noun

property ——> [mortall]
determiner —-> [everyl
proper_noun —-> [socrates]
noun ——> [human]

[every, human, is, mortal]

interpret a sentence: assign a clause to it

mortal (X) :— human (X)

represents meaning of

sentence

Interpretation of natural language:

in

terpreting sentences as clauses (ll)

sentence(C) --> determiner (M1,M2,C),
noun(M1),
verb_phrase (M2) .
noun (X=>human (X)) —-> [human] .

determiner (X=>B, X=>H, [(H:- B)]) ——> [everu].

?-phrase (sentence (C), [every,human, is,mortall)
C = [(mortal (X):— human(X))]

the meaning of a
determined sentence with
determiner ‘every’ is a
clause with the same
variable in head and body

Interpretation of natural language:
interpreting sentences as clauses (I)

proper_noun (socrates) —-->
[socrates]

property (X=>mortal (X)) ——> [mortal].

operator X=>L: term X is mapped to literal L

verb_phrase(M) ——> [is], property(M).
sentence ([(L:-true)]) —--> proper_noun(X),

verb_phrase (X=>L) .
singleton clause list, cf.

determiner ‘some’

?-phrase (sentence (C), [socrates, is,mortal]).
C = [(mortal (socrates):- true)l

the meaning of the
proper noun ‘Socrates’ is
the term socrates

the meaning of the
property ‘mortal’ is a
mapping from terms to
literals containing the
unary predicate mortal

the meaning of a phrase
(proper noun - verb) is a
clause with empty body
and of which the head is
obtained by applying the
meaning of the verb
phrase to the meaning of
the proper noun

Interpretation of natural language:
interpreting sentences as clauses (Il

determiner (sk=>H1,sk=>H2,

[(H1:-true), (H1:-true)] --> [some].

?-phrase (sentence (C), [some, humans, are,mortall)

C = [(human(sk) :—true), (mortal (sk) :—true)]

the meaning of a
determined sentence
with determiner ‘some’
are two clauses about
the same individual
(i.e., skolem constant)

Interpretation of natural language:
relational nature illustrated

?-phrase (sentence(C),S) .
human (X) :—human (X)
[every, human, is, a, human] ;
mortal (X) :—human (X)
[every, human, is,mortal];
human (socrates) :—true
[socrates, is,a,human] ;

mortal (socrates) :—true
[socrates, is,mortall;

0no O VO VO

?-phrase (sentence (Cs), [D,human, is,mortal]).
D = every, Cs = [(mortal (X):-human(X))];
D = some, Cs = [(human(sk):-true), (mortal (sk) :—true)]

Interpretation of natural language:
shell for building up and querying rule base

question(Q) —-> [who], [is], property(s,X=>Q)

question(Q) ——> [is], proper_noun(N,X), property(N,X=>Q)

question((Q1,Q2)) ——> [are], [some], noun(p,sk=>Q1),
property (p, sk=>Q2)

grammar
for queries

nl_shell(RB) :— get_input(Input), handle_input(Input,RB).
add new
handle_input (stop,RB) :— !. rule
handle_input (show,RB) :- !, show_rules(RB), nl_shell (RB).
handle_input (Sentence,RB) :- phrase (sentence(Rule),Sentence),
nl_shell ([Rule|RB]).
handle_input (Question,RB) :- phrase (question(Query),Question),
prove_rb (Query,RB), !
transform (Query,Clauses),
transform instantiated query phrase (sentence (Clauses), Answer),
(conjuncted literals) to list of clauses ~ show_answer (Answer),
with empty body nl_shell(RB).

handle_input (Error,RB) :-— show_answer (‘no’), nl_shell (RB).
17

shell

question that can be solved

generate nl

Interpretation of natural language:
complete grammar with plurality agreement

:— op(600@,xfy, '=>’).

sentence(C) --> determiner (N,M1,M2,C), noun(N,M1),
verb_phrase (N, M2) .

sentence ([(L:- true)]) —--> proper_noun(N,X),
verb_phrase (N, X=>L) .

verb_phrase (s,M) —--> [is], property(s,M).
verb_phrase (p,M) —--> [are], property(p,M).
property (N, X=>mortal (X)) --> [mortall.
property(s,M) —-> noun(s,M).

property(p,M) —=> noun(p,M).

determiner(s, X=>B , X=>H, [(H:- B)]) —-> [every].
determiner (p, sk=>H1, sk=>H2, [(H1 :- true), (H2 :- true)]l) —->[some].
proper_noun (s,socrates) --> [socrates] .

noun (s, X=>human (X)) --> [human] .

noun (p, X=>human (X)) --> [humans] .

noun (s, X=>living_being (X)) —-> [livingl, [being].
noun (p, X=>living_being(X)) —-> [living], [beings] .

Interpretation of natural language:
shell for building up and querying rule base - aux

convert rule to natural

show_rules ([1). language sentence
show_rules([R|Rs]) :-

phrase (sentence (R), Sentence),

show_answer (Sentence),

show_rules(Rs) .
get_input(Input) :-

write(’? ’),read(Input).

show_answer (Answer) :—

write(’! ’),write(Answer), nl.

show_answer (Answer) :— write(‘!’),nl.
get_input(Input) :— write(‘?’),read(Input).
convert query to list of
clauses for which natural

language sentences can
be generated

transform ((A,B), [(A:-true) |Rest]):-!,
transform(B,Rest) .
transform (A, [(A:-true)]).

Interpretation of natural language:
shell for building up and querying rule base - interpreter

h
Qndy w en spo.:
rule ba . Orin
S€ in Jis
finds a clause in the rule base, but without
instantiating its variables (rule can be used
multiple times, rules can share variables)

copy_term(+ I n, ‘Out)

ion) variables and unify it to Out.
Create a versl

if In with renamed (fresh

Declarative
Programming

Interpretation of natural language:
shell for building up and querying rule base - example

Possip|q :
built-in repeat/1 idiom oFfl Prove o
succeeds indefinitely °Vo'dm &-drive, I appl
! . 100p ¢
N Is es

causes backtracking to

repeat literal
20

Reasoning with incomplete information:
overview

reasoning that leads to conclusions that are plausible, but not
guaranteed to be true because not all information is available
Such reasoning js unsound

Deduction ;
- elon s sound, byt o
implicit information exph'c;: Y makes

default

. abduction induction
reasoning

assume normal state
of affairs, unless
there is evidence to
the contrary

“If something is a bird, it
flies.”

choose between
several explanations
that explain an
observation

“I flipped the switch, but
the light doesn’t turn on.
The bulb mist be broken”

generalize a rule
from a number of
similar observations

“The sky is full of dark

clouds. It will rain.”

Default reasoning:

Tweety is a bird. Normally, birds fly.
Therefore, Tweety flies.

bird(tweety) .
flies(X) :— bird(X), normal (X).
has three models:

{bird (tweety)}
{bird (tweety), flies(tweety)}
{bird (tweety), flies(tweety), normal (tweety)}

bird(tweety) is the only logical conclusion of the program
because it occurs in every model.

If we want to conclude flies(tweety) through deduction, we have

to state normal(tweety) explicitly. Default reasoning assumes
something is normal, unless it is known to be abnormal.

Default reasoning:
non-monotonic form of reasoning

bird (tweety) .
new information can flies () :-bird(X),not (abnormal (%)) -
invalidate previous
conclusions: fipd(twee 05
o;tlf-s(“~bing
lch(t’-UEQt X),not

qbnopmcl (X)).

obnormaI (X))
oStrich (y)

Not the case for deductive reasoning,
which is monotonic in the following sense:

Th-p = Thu{q}-p

Closure(Th) = {p | Th - p}
Th1 c Th2 = Closure(Th1) c Closure(Th2)

5

Default reasoning:
A more natural formulation using abnormal/1

bird(tweety).
flies(X) ; abnormal (X) :— bird(X).

. indefinite
has two minimal models: clause

{bird (tweety), flies(tweety)}
{bird (tweety), abnormal (tweety)}

model 2 is model of the general clause:
abnormal (X) :— bird(X), not(flies(X)). using negation as failure:
model 1 is model of the general clause: ~ tweety flies if it cannot be

proven that he is abnormal
flies(X) :-bird(X), not(abnormal (X)).

bird(tweety). | flies. he i ich: th
flies(X):-bird(X), not(abnormal (x)). TWeefy no longer flies, he is an osirich: the
ostrich(tweety) . default rule (birds fly) is cancelled by the

el) e e e more specific rule (ostriches)

Default reasoning:
without not/1, using a meta-interpreter

problematic: e.g., floundering but also
because it has no clear declarative semantics

Distinguish regular rules (without exceptions)
from default rules (with exceptions.)

Only apply a default rule when it does not
% lead to an inconsistency.

default((flies(X) :— bird(X))).
rule((not(flies(X)) :- penguin(X))).
rule((bird(X) :— penguin(X))).

rule ((penguin (tweety) :— true)).
rule((bird(opus) :- true)).

Default reasoning:
using a meta-interpreter

prove (true,E,E) :— I.
E explains F: lists the prove((A,B),E0,E) - 1,
rules used to prove F prove (A,EQ,E1),
prove (B,E1,E).
prove (A,EQ@, [rule((A:-B))|E]):-

explain(F,E) :-
explain(F, [1,E).
explain(true,E,E) :— !.

explain((A,B),EQ,E) :- !, rule((A:-B)),
explain(R,EQ,E1), prove (B,E@,E) .
explain(B,E1,E).

explain(A,EQ,E) :- prove using regular rules
prove (A, EQ,E) .

explain(A,EQ, [default((A:-B))|E]):-
default((A:-B)),
explain(B,EQ,E), prove using default rules

not (contradiction(A,E)).

contradiction(not(R),E) :- !,
prove(A,E,_).

contradiction(A,E) :—
prove(not(R),E,).

do not use a default to
prove A (or not(A)) if you
can prove not(A) (or A)
using regular rules

Default reasoning:
using a meta-interpreter, Dracula example

default((not(flies(X)) :— mammal (X))).
default((flies(X) :— bat(X))).
default((not(flies(X)) :— dead(X))).
rule ((mammal (X) :— bat(X))).
rule((bat (dracula) :- true)).
rule ((dead (dracula) :- true)).

?-explain(flies(dracula),E)
E=[default((flies(dracula) :- bat(dracula))),
rule ((bat (dracula) :- true))]

dracula flies because
bats typically fly

?-explain(not(flies(dracula)),E)
E=[default((not(flies(dracula)) :- mammal (dracula)))
rule ((mammal (dracula) :- bat(dracula))),

rule ((bat(dracula) :- true))]
E=[default((not(flies(dracula)) :- dead(dracula)))
rule((dead(dracula) :- true))l]

dracula doesn’t fly
because mammals
typically don’t

dracula doesn't fly
because dead things
typically don’t

Default reasoning:
using a meta-interpreter, Opus example

default((flies(X) :—- bird(X))).
rule((not(flies(X)) :- penguin(X))).
rule((bird(X) :— penguin(X))).
rule ((penguin(tweety) :- true)).
rule((bird(opus) :- true)).

?7- explain(flies(X),E)

X=opus

E=[default((flies(opus) :- bird(opus))),
rule((bird(opus) :- true))]

?- explain(not(flies(X)),E)
X=tweety d
efault rule has
E=[rule((not(flies(tweety)) :- penguin(tweety))), been cancelled
rule((penguin(tweety) :— true))]

Default reasoning:
using a revised meta-interpreter

need a way to cancel particular defaults in certain
- situations: bats are flying mammals although the default
= is that mammals do not fly
name associated with
default rule

defaul t (nammals_dont_fly(X), (not(flies(X)):—mammal (X))).
default(bats_fly(X), (flies(X):-bat(X))).
defaul t (dead_things_dont_fly(X), (not(flies(X)):—dead(X))).
rule ((mammal (X) :—bat (X))).
rule((bat (dracula) :-true)).
rule ((dead(dracula) :—-true)) .
rule((not (mammals_dont_fly(X)):—bat(X))).
rule((not(bats_fly(X)):—dead(X))).

Default reasoning:
using a revised meta-interpreter

need a way to cancel particular defaults in certain
» situations: bats are flying mammals although the default
K is that mammals do not fly
name associated with
default rule

defaul t (nammals_dont_fly(X), (not(flies(X)):—mammal(X))).
default(bats_fly(X), (flies(X):-bat(X))).
default(dead_things_dont_fly(X), (not(flies(X)):—-dead(X))).
rule ((mammal (X) :-bat(X))).
rule((bat(dracula) :-true)).
rule ((dead (dracula) :-true)).
rule ((not(mammals_dont_fly (X)) :-bat(X))).
rule((not(bats_fly(X)):—-dead(X))).

rule cancels the
mammals_dont_fly default

Default reasoning:
Dracula revisited

E defaul t (nammals_dont_fly(X), (not(flies(X)):—mammal(X))).

2 default (bats_fly(X), (flies(X):-bat(X))).

g' defaul t (dead_things_dont_fly(X), (not(flies(X)):—dead(X))).

E rule ((mammal (X) :—bat (X))).

2 rule((bat(dracula) :-true)). typical case is a clause

£ rule((dead(dracula) :-true)) . that is only applicable

o rule((not (mammals_dont_fly(X)) :-bat (X))). when it does not lead to

2 rule((not(bats_fly(X)):~dead(X))). inconsistencies;

applicability can be

notflies(X):—mammal (X),not (flying_mammal (X)) . restricted using clause
flies(X) :—-bat (X),not(nonflying_bat(X)). IS

= notflies(X):—dead(X),not(flying_deadthing(X)).

g’ mammal (X) :—bat (X) .

& bat(dracula). typical case is |

> dead(dracula) . P genera

clause that negates

flying—mammal (X) :—bat (X) . .)
abnormality predicate

nonflying_bat (X) :—dead (X) .

Default reasoning:
using a revised meta-interpreter

explanations keep
track of names rather
than default rules

explain (A,EQ, [defaul t (Name) |E]) :-
defaul t (Name, (A:- B)),
explain(B,EQ,E),
not (contradiction (Name,E)),
not(contradiction(R,E)).

default rule is not cancelled in this
situation: e.g., do not use default
named bats_fly(X) if you can prove
not(bats_fly(X))

dracula can not fly after all

?-explain(flies(dracula),E)

no

?-explain(not(flies(dracula)),E)

E=[defaul t (dead_things_dont_fly(dracula)),
rule ((dead(dracula):- true))]

Abduction:

given a theory T and an observation O,
find an explanation E such that TuE=O

T likes(peter,S) :- student_of(S,peter).
likes (X,Y) :— friend(X,VY).

O likes(peter,paul)

Defa I R
E1 {student_of (paul,peter)} abo vk reasonin

E2 {friend(peter,paul)}

g makes assumptions

se (e.g., tweety j
ird), abdyc; Uit

{(likes(X,¥) :- friendly(¥)),
friendly(paul)}

another possibility, but abductive explanations are
usually restricted to ground literals with predicates
that are undefined in the theory (abducibles)

14

Abduction:

. Try to prove Observation from theory,
adeChVG when a literal is encountered that
mefa_inferprefer % cannot be resolved (an abducible),

add it to the Explanation.

abduce (0,E) :—
abduce (0, [],E).
abduce (true,E,E) :— I.

abduce ((R,B),EQ,E) :- I, likes (peter,S) :- student_of(S,peter).
s SR Tilkes (X1v) = friend (il
abduce (B,E1,E) .
abduce (A, EQ, E) :- ?-abduce (likes (peter,paul),E)
clause(R,B), A already E = [student_of (paul,peter)];
obduee@EOD): | osumed | E - [friendpaul,peter)]
element (A,E).
abduce (A,E, [RIE]) :-
not (element (A,E)), A can be assumed if it
abducible(R). was not already assumed

abducible (A) :- and it is an abducible.

not(clause(A,B)).

Abduction:

first attempt at abduction with negation

extend abduce/3 with negation as failure:

abduce (not(R),E,E) :—
not (abduce (A,E,E)) .

do not add negated literals to the explanation:

abducible(A) :—
A \= not(X),

not (clause (A,B)) . flies(X) :— bird(X), not(abnormal (X)) .

abnormal (X) :—- penguin(X).
bird(X) :- penguin(X).
bird(X) :- sparrow(X).

?-abduce (flies (tweety),E)
E = [sparrow(tweety)]

Theory u Explanation = Observation

Abduction:

abductive meta-interpreter and negation

flies(X) :- bird(X), not(abnormal (X)).
abnormal (X) :— penguin(X).

bird(X) :- penguin(X).

bird(X) :- sparrow(X).

?-abduce (flies (tweety),E)
E [not (abnormal (tweety)), penguin (tweety)];
E [not (abnormal (tweety)), sparrow (tweety)];

general clauses

inconsistent with
theory as penguins
are abnormal

abnormal/1 not an

abducible

Since no clause is found for not(abnormal(tweety)), it is added to the explanation.

Abduction:
first attempt at abduction with negation: FAILED

any explanation of bird(tweety) will also be an
explanation of flies1(tweety):

fliesl (X) :— not(abnormal (X)),bird(X)
abnormal (X) :— penguin(X).

bird(X) :- penguin(X).

bird(X) :— sparrow(X).

reversed order
of literals

the fact that abnormal(tweety) is to be considered false,
is not reflected in the explanation:

?- abduce (not (abnormal (tweety)), [1, [1)
true .

abduce (not(A),E,E) :—
not (abduce (A,E,E)). assumes the explanation

is already complete

Abduction: Abduction:

final abductive meta-interpreter: abduce/3 final abductive meta-interpreter: abduce_not/3
abduce (true,E,E) :- !. abducible (R) :— _ disjundtion: a negation
abduce ((A,B),EB,E) - I, A \= not(X), abduce_not ((A,B),E0,E):~ conjunction can be explained by
abduce (R,EQ,E1), not(clause(R,B)). D explcining Aor b)’ explaining B
abduce (B,E1,E) . abduce_not (A,EBQ,E) ;
abduce (R, E@,E) : - abduce_not (B, EB, E) . not(A) is explained by explaining
clause (R,B), A already abduce_not (R, EQ, E) :- not(B) for every A:-B
abduce (B, EB,E) . assumed setof (B,clause(A,B),L),
abduce (A, E, E) :— abduce_not_list(L,E@,E).
element(A,E). A can be assumed if abduce_not (A, E,E) :- not(A) already assumed
cbauoath,E, IRIE]) i~ o e e elenment (not (), E)
not (element (A,E)), i+ i« abducible ’ abduce_not (A,E, [not(A)|E]) :-
abducible(R), Ed "t exolai ! HA) not (e}e"‘ent (not(R),EJ), assume not(A) if not already so, A is abducible
not (abduce_not (A,E,E)) . oesn texplain no abducible(R), and E does not already explain A
abduce (not (A),EB, E) :~ not (abduce (A, E,E)).
not (element (A,E@)), only assume not(A) if A was not already assumed, ubdu:?_TOt (mzt (Hi’(E?’ E;); abduce_not_list([],E,E).
abduce_not (R, EQ,E) . ensure not(A) is reflected in the explanation n;d N e(:e;e E()J ’ Z abduce_not_list([B|Bs],E@,E) :—
AREHEENLES RS explain not(not(A)) by abduce_not (B,E®@,E1),
explaining A abduce_not_list(Bs,E1,E).
19 20
Abduction: Abduction: Theory: system descriog
uction: uchion: Observapne e:cr.rf.on
. E . MPUtvalyes, oytpy;
final abductive meta-interpreter: example diagnostic reasoning q,’:&',‘:”":f’"i diagnosis=hypogry
i which COomponents gre faulty
flies(X) :-— bird(X),not(abnormal (X)) . 3-bit adder § xor1j—
fliesl (X) :— not(abnormal (X)),bird(X). D—T— ol
abnormal (X) :— penguin(X). usua"y what z l —

Ccl

Carry
orl [—=°

c2
and2|

Theory describing normal operation

! carried on [
bird(X) :- sparrow(X). from previous

?- abduce(flies (tweety),E). Gl CUC I_

E = [not(penguin(tweety)),
not (dead (tweety)),
sparrouw (tweety)]

abnormal (X) :- dead(X). has to b
bird(X) :- penguin(X). as fo be Ii)

?— abduce(fliesl (tweety),E).

E = [sparrou(tweety), adder (X, Y, Z,Sum,Carry) :- xor (0,0,0). and(0,0,0). or(0,0,0).
not (penguin (tweety)), v el xor (X,Y,S), xor(@,1,1). and(@,1,8). or(@,1,1).
not (dead (tweety))] expected xor (Z,S,Sum), xor(1,0,1). and(1,0,0). or(1,0,1).

and (X, ¥,C1),and(Z,S,C2), xor(1,1,8). and(1,1,1). or(l,1,1).
or(C1,C2,Carry) .

21 22

Abduction:

diagnostic reasoning - fault model

faul t (NameComponent=State)

adder (N, X, Y, Z, Sum, Carry) :-
xorg (N-xor1,X,Y,S),
xorg (N-xor2,2,S,Sum),
andg (N-and1,X,Y,C1),
andg (N-and2, X,S,C2),
org(N-ori1,C1,C2,Carry).

describes how
each component
can behave in a

faulty manner

xorg (N, X,¥,2)
xorg(N,0,0,1)
xorg(N,0,1,0)
xorg(N,1,0,0)
xorg(N,1,1,1)

xandg (N, X,Y,2) :
xandg (N, 0,0,1):

xandg (N, @,1,1)

xandg (N, 1,0,1) :—
:— faul t(N=s0)

xandg (N, 1,1,0)

xor (X,Y,2).

fault(N=s1).
faul t (N=s0@) .
faul t (N=s0) .
fault(N=s1).

and(X,Y,2) .
fault(N=s1).

:— fault(N=s1).

fault(N=s1).

correct behavior

faulty behavior

can be nested:
subSystemName-
componentName

sO: output stuck at O,
org(N,X,Y,2):— or(X,Y,2). s1: output stuck at 1
org(N,0,0,1) :— fault(N=s1).
org(N,0,1,0) :— fault(N=s0).
org(N,1,8,0) :— fault(N=s0).

org (N, 1,213,8) :— fault(N=s@).

Declarative semantics for incomplete information:

completing incomplete programs

Semant;
Ics
an

d
€ not ip ge: OofrheOr o

can no longer express be ‘-‘hscuss ed | °“$e w,ll

married(X); bachelor(X) :— man(X), adult(X).
man(john). adult(john). At

i i f indefinite cl
which had two minimal models orindetinie ciauses

man (john),adul t (john),married (john)}
man (john),adul t (john),bachelor (john)}
man (john),adul t (john),married(john),bachelor (john)}

definite clause
containing not

first model is minimal model of general clause
to prove that

someone is a
bachelor, prove
that he is a man

and an adult, and
prove that he is not
a bachelor

married(X) :— man(X), adult(X), not bachelor (X).

second model is minimal model of general clause

bachelor (X) :— man(X), adult(X), not married(X).

25

Abduction:

diagnostic reasoning - diagnoses for faulty adder

diagnosis (Observation,Diagnosis) :—
abduce (Observation,Diagnhosis) .

adder(N,X,Y,Z,Sum,Carry): both
Sum and Carry are wrong obvious diagnosis: outputs

f add tuck
?- dlagn051s(adder(a,@ 0,1,0,1),D). or adder are siuc

= [fault(a-orl=sl), fault(a—-xor2=s0)];

= [fault(a-and2=s1), faul t (a-xor2=s0)];

= [fault(a—andl=sl1), fault (a—-xor2=s0)];

= [fault(a—-and2=s1), faul t (a—andl=s1), faul t (a-xor2=s0)];
= [fault(a-orl=sl), fault (a—and2=s0), fault(a-xorl=sl)];
= [fault(a-andl=sl), fault(a-xorl=s1)];

= [fault(a-and2=s@), faul t (a—andl=s1), fault(a-xori=si)];
= [fault(a-xori=si1)]

OO0O0OO0OO0OO0OO0OOo

most plausible as only one faulty
component accounts for entire fault

24

Declarative semantics for incomplete information:
completing incomplete programs

A program P is “complete” if for every (ground) fact f,
either P F f or P F f

unique
minimal

. . model
Transform an incomplete program into a complete one,

that captures the intended meaning of the original program.

| 2
closed world assumption predicate completion

%)

2

g

5 straightforward olf for gen‘ercl.clcuses

a (with negation in body)
2

9

2 ok for definite clauses may lead to inconsistencies if
n

4 (without negation) the program is not stratified

26

Completing incomplete programs: everything that is not

known to be true,
must be false

closed world assumption

oti;/;tion: in general, there qrbe
. Ise statements that can be
rue statements

more fa
made than t

do not say something is not true,
% simply say nothing about it

27

Completing incomplete programs:
closed world assumption - example

P likes(peter,S) :- student_of(S,peter).
L only the black atoms are relevant

. for determining whether an

Interpretation is a mode| of every

Bp {likes(peter,peter),likes(peter,paul),
ground instance of every clause

likes (paul,peter), likes (paul,paul),
student_of (peter,peter),student_of (peter,paul),
student_of (paul,peter),student_of (paul,paul)}

models {student_of (paul,peter),likes(peter,paul)}
{student_of (paul,peter), likes (peter,paul), likes (peter,peter)}
{student_of (paul,peter), likes (peter,paul),
student_of (peter,peter), likes (peter,peter)} there are still 4 orange
X atoms remaining which can
each be added (or not)
in total: 3*274=48 models for such a simple program! freely to the above
Interpretations

PEA likes (peter,paul)
student_of (paul,peter)

29

Completing incomplete programs: everything that is not

known to be true,
must be false

closed world assumption

the clause “false :-A” is only true
under interpretations in which A
is false
CWA-complement of a program P (i.e, CWA(P)-P):
explicitly assume that every ground atom A that
does not follow from P is false

CWA(P) = P U {:-A|AcBp A PA}

28

Completing incomplete programs:
closed world assumption - example

P likes(peter,S) :- student_of (S,peter).
student_of (paul,peter).

Bp {likes(peter,peter),likes(peter,paul),
likes (paul,peter), likes (paul,paul),
student_of (peter,peter),student_of (peter,paul),
student_of (paul,peter),student_of (paul,paul)}

PEA likes (peter,paul)
student_of (paul,peter)

CWA(P) likes (peter,S) :- student_of (S,peter).
student_of (paul,peter).
:— student(paul,paul).
:— student (peter,paul).

is a complete program:
every ground atom from Bp

is assigned true or false
:— student (peter,peter). |hasonly 1 model: {student_of(paul
:— likes(paul,paul). which is declared the inf—endF;d
:— likes (paul,peter). (also obtained as the inters
:— likes(peter,peter).

,peter),likes(peter,paul)}
model of the program
ection of all models)

30

Completing incomplete programs:
closed world assumption - inconsistency

when applied to indefinite

P bird(tweety).
and general clauses

flies (X);abnormal (X) :— bird(X).

Br {bird(tweety),abnormal (tweety), flies (tweety)}

{
{bird (tweety), flies (tweety)}

{bird (tweety),abnormal (tweety)}

{bird (tweety),abnormal (tweety), flies (tweety)}

models

PEA bird(tweety)

CWA(P) bird(tuweety).
flies(X);abnormal (X) :— bird(X).
:—abnormal (tweety) .
:—flies (tweety)

CWA(P) is inconsistent

no
ckwsel;:mﬂer has a model because, in order for the second
o to ehtrue' under an interpretation, its head needs to be
given that its body is already true due to the first clause

31

Completing incomplete programs:
predicate completion - algorithm

likes (peter,S) :— student_of (S,peter).
student_of (paul,peter).

S - add literals
1 ensure each argument of each clause head is a distinct variable vgr=Term 1o body

likes (X,S) :— X=peter,student_of(S,peter).
student_of (X,Y) :— X=paul,Y=peter

use disjunction in implicqti
. . im ’
if there are several clauses for a predicate, plication’s

combine them into a single formula f .
or a predicate

vXvY likes(X,Y) < X=peterastudent_of(Y,peter))
vXvY student_of(X,Y)— X=paulrY=peter

if a predicate without
definition is used in a
body (e.g. p/1),
add vX -p(X)

3 turn the implication into an equivalence

vXvY likes(X,Y)— X=peterastudent_of(Y,peter))
vXvY student_of(X,Y) & X=paulrY=peter

4 convert to clausal form 33

body if there are multiple clauses

Completing incomplete programs:

predicate completion - idea
rn i
€qui Plicat; =
C/oUse': 7{3{'%8 (iff °nsc(,f) into
regard each clause as part of the " their gy °;"R/efing

complete definition of di it pa
plete definition of a predicate rt)

only clause defining likes/2:
P likes(peter,S) :— student(S,peter).
its completion:
vXvS likes(X,S)—X =peterastudent(S,peter)
in clausal form:
Comp(P) likes(peter,S) :- student(S,peter).

X=peter :- likes(X,S).
student (S,peter) :- likes(X,S)

32

Completing incomplete programs:
predicate completion - algorithm

likes (peter,S) :— student_of (S,peter).

student_of (paul,peter). -
if a predicate without

definition is used in a
body (e.g. p/1),
add vX -p(X)

3 turn the implication into an equivalence

vXvY likes(X,Y)— X=peterastudent_of(Y,peter))
vXvY student_of(X,Y) & X=paulrY=peter

Clausal Logic: o
conversion from firstorder pre.

4 convert to clausal form

likes (peter,S) :—student_of (S, peter).
X=peter:-likes(X,S).

student_of (S,peter):-likes (X,S).
student_of (paul,peter).

X=paul :—student_of (X,V¥) .
Y=peter:-student_of (X,Y).

for definite clauses,
CWA(P) and Comp(P)

have same model|
has the single model

{student_of(paul,peter), likes(peter,paul)}

34

Completing incomplete programs:
predicate completion - existential variables

if a predicate without
definition is used in o
body (e.g. p/1),
add vX -p(X)

3 turn the implication into an equivalence

careful with variables in a body that do not occur in the head

vXvY ancestor(X,Y)- (parent(X,Y) v
(3Z parent(X,Z)rancestor(Z,Y))))

use second form because
all clauses myst have the
same head

vXvYVvZ ancestor(X,Y) —parent(X,Z) nancestor(Z,Y)
vZ:qep(Z) vXvY ancestor(X,Y)+ 3Z parent(X,Z)rancestor(Z,Y))
VZ:q \% -.p(Z)
q Vv VZ:-p(Z)
q vaZ:p(z)
35

Completing incomplete programs:
predicate completion - negation

1 ensure each argument of each clause head is a distinct variable

2 if there are several clauses for a predicate,
combine them into a single formula

vX bird(X) « X=tweety. -
vX flies(X) « bird(X)Ar=abnormal(X) if a predicate without
definition is used ina
body (e.g. p/1),
add vX -p(X)

3 turn the implication into an equivalence
vX bird(X) & X=tweety.
vX flies(X) < bird(X)A~abnormal(X).

vX =~abnormal(X) +

Completing incomplete programs:
predicate completion - existential variables

3 turn the implication into an equivalence

vXvY ancestor(X,Y)< (parent(X,Y) v
(3Z parent(X,Z)Arancestor(Z,Y))))

4 convert to clausal form

parent (X,VY);parent (X,pa(X,Y)) :—ancestor (X,V¥) .
parent (X,Y);ancestor (pa(X,V¥),Y) :—ancestor (X,V¥) .

Skolem functor
vX3Y : loves(X,Y)
vX:loves(X,person_loved_by(X))

36

Completing incomplete programs:
predicate completion - negation

if a predicate without
definition is used in o
body (e.g. p/1),
add vX -p(X)

3 turn the implication into an equivalence

vX bird(X) & X=tweety.
vX flies(X) < bird(X)A~abnormal(X).

vX ~abnormal(X)

4 convert to clausal form

X=tweety:-bird(X).

bird(X):—flies(X).
:—flies(X),abnormal (X) .
:—abnormal (X) .

has the single model
{bird(tweety) flies(tweety)}

38

Completing incomplete programs: _ ComplP}is Completing incomplete programs: ifPis statified then
inconsistent for Comp(P) is consistent

predicate completion - inconsistency - certain unstratified P stratified programs sufficient but nof necessary:

there are non-stratified p’

(s for
which Comp(P) is consis

if a predicate without "

definition is used in a

3 turn the implication into an equivalence body (e.g. p/1), organize the program in layers (strata);
add vX -p(X) X

vX wise(X) < teacher(X) do not allow the programmer to negate a predicate

e thatis not yet completely defined (in a lower stratum)
vX teacher(X) & X = peter A wise(peter) L £

Clausal Logie:
con

version from firstorder predicae logic (6)

4 convert fo clausal form A program P is stratified if its predicate symbols can be partitioned into disjoint

sets So, . .., Sn

e () el) —— such that for each clause p(...) « Li,...,Li where p € Sk, any literal L is such that
; ; ¢ if Lj =q(...) then qeSou...uSk
X=peter :—teacher (X) . if Lj ==q(...)then qeSou...uSk-1

wise (peter) :-teacher (X) .

inconsistent!
39 40

Completing incomplete programs:
soundness result for SLDNF-resolution

P +sione g = Comp(P) F q

completeness result only holds for a subclass of programs D ecC I ard ﬁve
Programming

41 !

Inductive reasoning:
overview

infer general rules from
specific observations

Given

B: background theory (clauses of logic program)
P: positive examples (ground facts)
N: negative examples (ground facts)

Find a hypothesis H such that

H “covers” every positive example given B

vpeP:BuHEp

H does not “cover” any negative example given B
vneN:BuHHn

Inductive reasoning: bttt

has_feathers (tweety) .
relation to abduction ~ Pird(eiiv.

has_beak (polly).

inducible((flies (X) :-bird(X),has_feathers(X),has_beak (X))).
inducible((flies (X) :—~has_feathers (X),has_beak (X))).
inducible((flies(X) :-bird(X),has_beak (X))).
inducible((flies (X) :-bird (X),has_feathers(X))).
inducible((flies(X) :-bird(X))).

inducible ((flies(X) :—has_feathers(X))).

inducible ((flies(X) :-has_beak (X))).
inducible((flies(X):—true)).

enumeration of
possible hypotheses

probably an overgeneralization
?-induce (flies (tweety),H).

H = [(flies(tweety) :-bird(tweety),has_feathers (tweety))];
H = [(flies(tweety):-bird(tweety))];

H = [(flies(tweety) :—-has_feathers (tweety))];

H = [(flies(tweety):—true)l;

No more solutions

Listing all inducible hypothesis is impractical. Better to systematically search the
hypothesis space (typically large and possibly infinite when functors are involved).

Avoid overgeneralization by including negative examples in search process.
4

Inductive reasoning:
relation to abduction

In inductive reasoning
,

ﬂ.le hypothesis (what has
gic program) ;

given a theory T and an observation O,
find an explanation E such that TUEFO

Try to adapt the abductive meta-interpreter:
inducible/1 defines the set of possible hypothesis

2

induce (E,H) :- induce (A,HO,H) :- clause already
induce (E, [],H). element ((A:-B),HB), assumed

induce (true,H,H) . induce (B,H@,H) .

induce ((A,B),HO,H) :- induce(A,HB, [(A:-B) [H]) :
induce (R, HO,H1), inducible((A:-B)), assume clause if
induce (B, H1,H) . not (element ((A:-B),Ha)), |it’s an inducible and

induce(A,HB,H) :- induce (B,HO,H) . not yet assumed
clause (R,B),
induce (B,H@,H) .

Inductive reasoning:
a hypothesis search involving successive
generalization and specialization steps of a current hypothesis

ground fact for the predicate of which a definition is to be induced that is
either true (+ example) or false (- example) under the intended interpretation

example action hypothesis
this negative example
+ p(b, [b]) add clause p(X,¥). precludes the previous
hypothesis’ second
- p(x, [1) specialize p (X, [U|W]). * argument from unifying with
the empty list
- p(x, [a,b]) specialize p (X, [X|W]).
+ p(b, [a,bl) addclause p (X, [X|W]).

D(X, [U|N]):—D(X,N) .

5

Generalizing clauses:

©-subsumption Hls b1,

H1 V...V Hnyv -B1 V.
clauses are seen as sets
of disjuncted positive
(head) and negative
(body) literals

..Bm

_ ..V =Bm
c1 is more general than c2

A clause c1 B-subsumes a clause c2
& 3 a substitution 0 such that ¢16 ¢ ¢2

element(X,U) :— element(X,Z) a(X) := b(X)
B-subsumes B-subsumes
element (X, [Y[2]) :- element(X,2Z) a(X) := b(X), c(X).
using 6 = {V - [Y|Z]} using 6 = id

Generalizing clauses:
testing for ©-subsumption

A clause c1 B-subsumes a clause c2
& 3 a substitution 8 such that ¢16 ¢ ¢c2

no variables substituted by 6 in c2:
testing for 6-subsumption amounts to testing for subset relation
(allowing unification) between a ground version of ¢2 and c1

theta_subsumes ((H1:-B1), (H2:-B2)) :-
verify((ground((H2:-B2)),H1=H2,subset (B1,B2))).

prove Goal, but without

verify(Goal) :-
creating bindings

not(not(call (Goal))).

ground (Term) :—
numbervars (Term, @,N) .

Generalizing clauses:

0-subsumption versus F

H1 is ot least as general as H2 given B <

H1 covers everything covered by H2 given B
vpeP:BuH2rp=BuHl*rp

BuH1:H2

clause c¢1 B-subsumes c2 = c1 + c2

The reverse is not true:

a(X) :— b(x). % cl
p(X) :— p(X). 8 c2

c1 k c2, but there is no substitution 8 such that c18 ¢ c2

Generalizing clauses:
testing for ©-subsumption

A clause c1 B-subsumes a clause c2
& 3 a substitution 8 such that ¢16 ¢ ¢2

bodies are lists of atoms

?- theta_subsumes ((element (X,U):— []),
(element (X,V) :— [element(X,Z)])).

yes.
?- theta_subsumes ((element (X,a):- []),

(element (X,VU):— [1)).
no.

Generalizing clauses:
generalizing 2 atoms

A clause c1 8-subsumes o clause ¢2
© 3 a substitution 6 such that c1 6cc2

al element(l, [1]). element(z, [z,u,x]). a2

g
('6‘. ;’\(9 &
N 00) S \\4\\
/f/—/ CR 6‘0" A
{}’(ﬁ.’. ‘O"‘o ~\.\'V
///?9 < /\
Z a3 Q first element of second argument (a non-

element (X, [X]¥]). empty list) has to be the first argument

happens to be the least general (or most specific) generalization
because all other atoms that 6-subsume al and a2 also 6-subsume a3:

element (X, [¥[Z]). only requires second argument to

be an arbitrary non-empty list
no restrictions on element(X,VY).

either argument

Generalizing clauses:
anti-unification computes the least-general
generalization of two atoms under 6-subsumption

dual of unification

compare corresponding argument terms of two atoms,
o replace by variable if they are different
replace subsequent occurrences of same term by same variable

remaining arguments: inverse substitutions for

0-LGG of first two arguments each term and their accumulators

72— anti_unify(2*%2=2+2,2%3=3+3, T, [],S1, [],52).

= 2rnemaes 0 . Q
S1 = [2 <~ %] will not compute proper inverse substitutions: not clear which

S2 = [3 <- X] occurrences of 2 are mapped to X (all but the first)
) BUT we are only interested in the 81GG

clearly, Prolog will generate a new anonymous
variable (e.g., _G123) rather than X

Generalizing clauses:
generalizing 2 atoms - set of first-order terms is a lattice

g(f(X),v¥) . e,
anti-unification

g(f(X), f(a)) g(f(x),x) g(f(fla)),x)

unification

g(f(f(a)),fla))

t1 is more general than 12 & for some substitution 0: t18 = 12

greatest lower bound of two terms (meet operation): unification
specialization = applying a substitution

least upper bound of two terms (join operation): anti-unification
generalization = applying an inverse substitution (terms to variables)

Generalizing clauses:
anti-unification computes the least-general
generalization of two atoms under B-subsumption

:— op (600, xfx, '<-’).

anti_unify(Terml, Term2, Term) :-
anti_unify(Terml, Term2, Term, []1,S1, [1,S52).

anti_unify(Terml, Term2,Terml,S1,S1,52,52) :-
Terml == Term2,
I,

anti_unify(Terml,Term2,V,S1,S1,52,52) :-
subs_lookup (S1,S2, Terml, Term2,V),
o

anti_unify(Terml, Term2,Term,S10,S1,520,S2) :-
nonvar (Term1),

same terms not the same terms, but each

has already been mapped to
the same variable V in the

respective inverse substitutions

nonvar (Term2), eql.uvalent compciund
functor (Termi,F,N), fermis constructed if both

functor (Term2,F,N), original compounds have

'l the same functor and arity

if all else fails, map
both terms to the

functor (Term,F,N), same variable

anti_unify_args (N, Terml, Term2, Term,S10,S1,520,S2) .
anti_unify(Terml,Term2,VY,S10, [Term1<-VU|S10],S20, [Term2<-V|S20]).

Generalizing clauses:
anti-unification computes the least-general
generalization of two atoms under 6-subsumption

anti_unify_args(@,Terml, Term2, Term,S1,S1,52,52) . anti-unify first N

anti_unify_args (N, Terml, Term2, Term,S10,S1,520,S2) :- corresponding
N>D, arguments
Nl is N-1,

arg(N, Terml,Argl),

arg (N, Term2,Arg2),

arg(N, Term,ArgN),
anti_unify(Argl,Arg2,ArgN,S10,S11,520,S21),
anti_unify_args (N1, Terml, Term2, Term,S11,S1,521,S2).

subs_lookup ([T1<-VU|Subsl], [T2<-V|Subs2], Terml, Term2,V) :-
Tl == Terml,
T2 == Term2,
I

subs_lookup ([S1|Subs1], [S2|Subs2], Terml, Term2,V) :-
subs_lookup (Subsl,Subs2, Terml, Term2,V) .

14

Generalizing clauses:
computing the 0 least-general generalization

similar to, and depends on, anti-unification of atoms

but the body of a clause is (declaratively spoken) unordered

€ therefore have to compare all possible pairs of atoms (one from each body)

?- theta_lgg((element(c, [b,c]):-[element(c, [c])]),
(element(d, [b,c,d]):-[element(d, [c,d]),element(d, [d])]),
c).

C = element (X, [b,c|Y]):—[element (X, [c|Y]),element (X, [X])]

obtained by anti-unifying obtained by anti-unifying
element (c, [c]) and element (c, [c]) and
element(d, [c,d]) element (d, [d])

obtained by anti-unifying
original heads

Generalizing clauses:
set of (equivalence classes of) clauses is a lattice

m(X,V¥)
s / l \ I anti-unification and/or
Mis, mCIXIY],2) m(X,¥) :-m (¥,) removing literal

m(X, [¥]2])
/ \ unification and/or
adding literal
m(X, [X[2]) m(X, [¥]2]):-m(X,2)

C1 is more general than C2 < for some substitution 6: C16 ¢ C2

greatest lower bound of two clauses (meet operation): 8-MGS
specialization = applying a substitution and/or adding a literal
least upper bound of two clauses (join operation): 6-LGG
generalization = applying an inverse substitution and/or removing a literal

15

Generalizing clauses:
computing the 0 least-general generalization

anti-unify
heads pair-wise anti-
unification of
atoms in bodies

theta_lgg((H1:-B1), (H2:-B2), (H:-B)) :-
anti_unify(H1,H2,H, [1,S10@, [1,520),
theta_lgg_bodies (B1,B2, [1,B,510,S1,528,52) .

theta_lgg_bodies(I[],B2,B,B,S1,51,52,52) .

theta_lgg_bodies([Lit|B1],B2, B®,B, S18,S1, S20,S2):-
theta_lgg_literal (Lit,B2, B@,B@d, S1@,Si1, S20,S21),
theta_lgg_bodies (B1,B2, B@®@,B, Si1,S1, S21,S2).

atom from

first body

theta_lgg_literal (Litl, [], B,B, S1,S1, S2,52).
theta_lgg_literal (Litl, [Lit2|B2],B@,B,S1@,S1,520,52) :— I
same_predicate(Litl,Lit2),
anti_unify(Litl,Lit2,Lit,S1@,511,520,521),
theta_lgg_literal (Lit1,B2, [Lit|B@],B, S11, S1,S521,52).
theta_lgg_literal (Litl, [Lit2]|B2],B@,B,S18,S1,520,52) :-
not (same_predicate(Litl,Lit2)),
theta_lgg_literal (Litl,B2,B@,B,S1@,S1,528,52) .
same_predicate(Litl,Lit2) :-
functor (Litl,P,N),
functor (Lit2,P,N).

second body

incompatible
pair

Generalizing clauses:
computing the 0 least-general generalization

?- theta_lgg((reverse([2,1], [3], [1,2,3]):-[reverse([1], [2,3], [1,2,3])]1),
(reverse([al, [1, [al):-[reverse(I], [al, [al)]),

e
C = reverse([X|Y], Z, [UIV]) :— [reverse(Y, [X|Z], [UIV])]
rev([211]1[3]l 11):_rev([l]r[213]l ll)
2 I
XY Z U Y X Z U
2 N V4 I A V4
rev([a] AREAE-!):—rev([] r[al rla)

Bottom-up induction:
relative least general generalization

M
el gppend([1,2], [3,4], [1,2,3,4]).
e2 append(l[al, [, [al).
append ([1, [1, [1).
append([2], [3,4], [2,3,4]).

rlgg(el,e2,M)
?- theta_lgg((append([1,2], [3,4], [1,2,3,4]) :-
[Gppend([1,2], [354]5 [152)3,4])’
append([al, [1, [a]l), append(I], [I, [1),
append([2], [3,4], [2,3,4]1)1),
(append(lal, [1, [a]):-
[append ([1,2], [3,4], [1,2,3,4]),
append([al, [1, [a]),append([], [1, [1),
append ([2], [3,4], [2,3,4]1)]),
C)

20

Bottom-up induction:
specificto-general search of the hypothesis space

generalizes positive examples into a hypothesis
rather than specializing the most general hypothesis as long as it covers negative examples

relative least general generalization rlgg(e1,e2,M)
of two positive examples e1 and e2
relative to a partial model M is defined as:

rlgg(el, e2, M) = Igg((e1 :- Conj(M)), (e2 :- Conj(M)))

conjunction of all positive
examples plus ground facts for
the background predicates

Bottom-up induction:
relative least general generalization - need for pruning

rlggle1,e2,M)

append ([XIY¥], 2, [XIU]) := [
append([2], [3, 4], [2, 3, 4]),
append (Y, Z, U),
append([V], z, [V|z]),
append ([KIL], [3, 41, [K, M, N[O]),
append (L, P, Q),
append([1, [1, [1),
append(R, [1, R),
append(S, P, T),
append ([A], P, [AIP]),
append(B, [I, B),
append([al, [1, [al),
append([CIL], P, [CIQ]),
append([D|VY], [3, 4], [D, E, FIG]),
append(H, 2, I),

remaining ground facts from
M (e.g., examples) are
redundant: can be removed

intfroduces variables that do not
occur in the head: can assume that
hypothesis clauses are constrained

head of clause in body = tautology:

restrict ourselves to strictl
append ([X|¥1, 2, [X|ul), constrc:ine;h ‘;thesis c;au);es
append([1, 2], [3, 41, [1, 2, 3, 4]) YP

] variables in body are proper
21 subset of variables in head

Bottom-up induction:
relative least general generalization - algorithm

to determine vars in
head (strictly rlgg(E1,E2,M, (H:= B)):—
constrained restriction) -~ anti_unify(El,E2,H, [1,s10, [1,520),
varsin(H,V),
rlgg_bodies(M,M, [],B,S1@,S1,528,52,U) .

r1gg_bodies (B8, B1,BR@, BR, 518, S1,520,52,U) : rigg
all literals in BO with all literals in B1, yielding BR (from
accumulator BRO) containing only vars in V

rlgg_bodies([],B2,B,B,S1,S1,52,52,U) .

rlgg_bodies([L|B1],B2,B@,B,510,S1, 528,52, V) :-
rlgg_literal (L,B2,B0,B00,518@,511,528,521,U),
rlgg_bodies (B1,B2,B@0,B,S11,51,521,52,U) .

22

Bottom-up induction:
relative least general generalization - algorithm

var_proper_subset ([],Ys) :- var_remove_one (X, [Y|Ys],Ys) :-
¥s \= [I. X ==

var_proper_subset ([X|Xs],Ys) :-
var_remove_one (X, Ys,2s),
var_proper_subset (Xs, Zs) .

var_remove_one (X, Ys,2Zs) .

varsin_args (8, Term,Vars,Vars) .

varsin(Term,Vars) :-
varsin_args (N, Term,U0,V) : -

varsin(Term, [],V),

sort(U,Vars) . N>@,
varsin (U, Vars, [V|Vars]):- Nl is N-1,

var (V). arg (N, Term,ArgN),
varsin(Term,V8,V) :- varsin (ArgN,ue,u1),

functor (Term,F,N), varsin_args (N1, Term,U1,U).

varsin_args (N, Term,V0,V).

24

var_remove_one (X, [Y|Ys], [YI|Zs) :

Bottom-up induction:
relative least general generalization - algorithm

rlgg_literal (L1, [1,B,B,S1,S1,52,52,U).
rlgg_literal (L1, [L2|B2],B@,B,S10@,51,520,52,U) :-
same_predicate(L1,L2),
anti_unify(L1,L2,L,518,S11,520,521),
varsin(L,Vars),
var_proper_subset (Vars, V),
I
rlgg_literal (L1,B2, [L|B@],B,S11,S1,521,52,U).
rlgg_literal (L1, [L2|B2],B®,B,S1@,51,52@,52,U) :-
rlgg_literal (L1,B2,B0,B,5S10,51,520,52,U) .

strictly constrained (no new
variables, but proper subset)

otherwise, an
incompatible pair
of literals

23

Bottom-up induction:
relative least general generalization - algorithm

?- rlgg(append(I1,2], [3,4], [1,2,3,4]),
append([al, [I, [a]),
[append([1,2], [3,4], [1,2,3,4]),
append([al, [1, [al),
append (], [1, [1),

append ([2], [3,4], [2,3,4])],
(H:- B)).

append ([X|VY], 2, [X[U])

[append([2], [3, 4], [2, 3, 4]),

append (Y, 2, U),

append ([I, [1, [1),

append([al, [1, [al),

append([1, 21, [3, 4], [1, 2, 3, 4])]

25

Bottom-up induction:
main algorithm

construct rlgg of two positive examples

remove all positive examples that are
2 extensionally covered by the constructed clause

further generalize the clause by removing literals

as long as no negative
examples are covered

26

Bottom-up induction: p——

main algorithm - covering e TI"";T; i
covers all o e

positive examples and

covering (Poss,Negs, Model, Hyp@, NewHup) :- .
none of the negative

construct_hypothesis (Poss,Negs,Model,Hyp),

|
’ remove covered

remove_pos (Poss, Model, Hyp, NewPoss) , . |
covering (NewPoss, Negs, Model, [Hyp|Hyp@],NewHuyp) . posifive examples

covering (P,N,M,HB,H) :-
append (H2, P, H) - \when no longer possible to construct new hypothesis clauses,
add remaining positive examples to hypothesis
remove_pos ([],M,H, []1). covers_ex ((Head:- Body),
remove_pos ([P|Ps],Model, Hyp, NewP) :- Example,Model) :—
covers_ex (Hyp, P, Model), verify((Head=Example,
Iy forall (element (L,Body),
write(’Covered example: '), element (L,Model)))).

write_1ln(P),

remove_pos (Ps, Model, Hyp, NewP) .
remove_pos ([P|Ps],Model,Hyp, [P|NewP]):—

remove_pos (Ps, Model, Hyp, NewP) . 28

Bottom-up induction:
main algorithm

split positive from

induce_rlgg (Exs,Clauses) :— X
negative examples

pos_neg (Exs,Poss, Negs),
bg_model (BG),

append (Poss, BG, Model), include positive examples
induce_rlgg(Poss,Negs,Model,Clauses) . in background model

induce_rlgg(Poss,Negs,Model,Clauses) :—
covering (Poss, Negs, Model, [],Clauses) .

pos_neg([]l, [1, [1).

pos_neg ([+E|Exs], [E|Poss],Negs) :-
pos_neg (Exs,Poss,Negs) .

pos_neg ([-E|Exs],Poss, [E|Negs]) :-
pos_neg (Exs,Poss,Negs) .

27

Bottom-up induction:
main algorithm - hypothesis construction

this is the only step

construct_hypothesis([E1,E2|Es],Negs,Model,Clause) :— in the algorithm
write(’RLGG of '), write(El), that involves
write(’ and '), write(E2), write(’ is’), negative examples!
rlgg(El,E2,Model,Cl), remove redundant literals
reduce (C1,Negs, Model,Clause), and ensure that no negative
b examples are covered

nl, tab(5), write_ln(Clause).
construct_hypothesis([E1,E2|Es],Negs,Model,Clause) :—

write_ln(’ too general’),

construct_hypothesis ([E2|Es],Negs,Model,Clause) .

if no rlgg can be constructed for these
two positive examples or the constructed
one covers a negative example
?Nﬂi?e considered

other example in @
tion of covering

note ‘hdt E
agoin with an
29 different iterd

Bottom-up induction:
main algorithm - hypothesis reduction

setof@(X,G,L) :-
setof (X,G,L),!.

remove redundant literals setof@ (X,0, [1).

and ensure that no negative
examples are covered

succeeds with empty
list of no solutions
can be found

reduce ((H:-B@),Negs,M, (H:-B)) :—

setof@ (L, ;
(element(L,BB), not(uar_element(L,M))), removes literals from
B1), the body that are

reduce_negs (H,B1, [],B,Negs,M) . already in the model

var_element (X, [Y|Ys]) :- demenv2ugng
— . syntactic identity rather
var_element (X, [Y|Ys]) :- than unification
var_element (X, Ys) .

30

?- induce_rlgg(|[
+append([1,2], [3,4], [1,2,3,4]),
+append([al, [1, [al),
+append ([1, [1, [1),
+append([], [1,2,3], [1,2,3]),
+append ([2], [3,4], [2,3,4]),
+append([], [3,4], [3,4]1),
-append([a], [bl, [b]),
-append([c], [bl, [c,al),
-append([1,2], [I, [1,3])

], Clauses).

Bottom-up induction:
example

RLGG of append(I[1,2], [3,4], [1,2,3,4]) and append([al, [], [a]) is
append ([X|Y],2Z, [XIU]) :— [append(Y,Z,U)]

Covered example: append([1,2], [3,4], [1,2,3,4])

Covered example: append([al, [], [a])

Covered example: append([2], [3,4], [2,3,4])

RLGG of append([], [1, [1) and append(I[], [1,2,3], [1,2,3]) is
append ([],%X,%X) :— []

Covered example: append([1, [1, [1)

Covered example: append([], [1,2,3], [1,2,3])

Covered example: append([], [3,4], [3,4])

Clauses = [(append([],X,X) :- [1), 32
(append ([X|Y],2Z, [XIU]) :- [append(Y,Z,U)]1)]

Bottom-up induction:

main algorithm - hypothesis reduction

B is the body of the reduced clause: a
subsequence of the body of the original clause
(second argument), such that no negative example
is covered by model U reduced clause (H:-B)

reduce_negs (H, [L|Rest],B0,B,Negs,Model) :—

append (B@, Rest,Body),

not (covers_neg ((H:-Body), Negs,Model,N)),

P

try to remove L from the
original body

reduce_negs (H,Rest, B0, B, Negs, Model) .

reduce_negs (H, [L|Rest],B@,B,Negs,Model) :—

L cannot be removed

reduce_negs (H,Rest, [L|B@],B,Negs,Model) .
reduce_negs (H, [],Body, Body, Negs, Model) :—

not (covers_neg((H:- Body),Negs,Model,N)).

covers_neg(Clause,Negs, Model,N)
element (N,Negs),
covers_ex (Clause, N, Model) .

Bottom-up induction:
example

RLGG of listnum([]l, [1) and

fail if the resulting clause
covers a negative example

a negative example is
covered by clause U model

bg_model ([num(1,o0ne),num(2, two),
num (3, three),
num 4 fourg
num (S, five j)

?—induce_rlg ([
+listnum
+listnum three 4%,[two 3, four]),
+listnum 41 four]

+1listnum Pee 4] [é fourl),
+listnum two 3

-listnum([1,4 e four]),
-listnum 2 three, 4] [two]),
-listnum f1ve],[5,51 0
Clauses).

listnum([2, three,4], [two,3, four]) is too general
RLGG of listnum([2, three,4], [two,3, four]) and

listnum([4], [four]) is

listnum ([X|Xs], [VIYs]) := [num(X,¥), listnum (Xs,Ys)]
Covered example: listnum([2, three,4], [two,3, four])

Covered example: listnum([4], [four])

RLGG of listnum([], [1) and listnum([three,4], [3, four]) is too general
RLGG of listnum([three,4], [3, four]) and listnum([two], [2]) is
listnum([U|Us], [W|Ws]) := [num(W,V), listnum (Us,Ws)]

Covered example:
listnum([three, 4], [3, four])
Covered example: listnum([two], [2])

Clauses =[(listnum([V|Us], [W|Ks]): —[numaﬁ U),listnum(Us,Ws)]),
(listnum ([X[Xs], [Y|Ys]) :— [num(X,¥Y),listnum (Xs,¥Ys)]),listnum ([], []) 1]

programming with quantified truth
programming with qualified truth

programming with constraints on integer domains

Declarative
Programming

only to whet your appetite,

will not be asked on exam
implicit parallel evaluation

software engineering applications

Logic programming with quantified truth:

operations on fuzzy sets

classical set-theoretic operations

> Intersection: pang(x) = min(pa(x), pe(x))
» Union: paus(x) = max(pa(x), ue(x))

» Complement: pz(x) =1 — pa(x) original ones by Zadeh,

later generalized
linguistic hedges

take a fuzzy set (e.g., set of tall people) and modify its membership function

modelling adverbs: very, somewhat, indeed

compositional rule of inference

premise ifXisAandY is Bthen Zis C
fact XisA'andY is B’
consequence | Zis C’

Logic programming with quantified truth:

reasoning with vague (rather than incomplete) information

characteristic function generalised
to allow gradual membership

pa: U—[0,1]

= O—x¢&A
& pa(x)=4¢ l=xcA
= 0<a<l1+ x € Ato the extent
g
g 1T
R
2
f(x) — tall
0 1 X

1m20 1m50 1m80 2m10

Logic programming with quantified truth:

killer application: fuzzy process control

Fuzzy Logic Rice Cooker Reviews

-‘l-rﬁ -+ http: / /www.rice-cooker-guide.com, fuzzy-logic-rice-cooker.htm =tad ¢ [Qr Google)
p: g y-logic-ri |
uide. /fuz: c-rice-coo!
" [] / (\

" Rice Cooker Guide.com f“")
l s

.Performance Reports & -

-Pros & Cons w

-Visitor Reviews

Home

About This Site Best Fuzzy Logic Rice Cooker Brands

Popular Brands
kers »
o ed this Fuzzy Logic rice cooker reyevys
page to help folks narrow down 2 specific brand/model.bFLzzy tLhoag(:z:o:—::‘c:eer
s comes out better
Zojirushi Cookers has better flavor, great texture, andvalway erbiioaieies
basic cookers and remain the best rice cooker choi

Tiger Cookers To help categorize, we have add

Panasonic Cookers

Aroma Cookers
Cuisinart Cookers

Black & Decker Zojirushi Fuzzy Logic Rice Cookers

Being the most elite in the indu;try,

Zojirushi rice cookers make a fine

line of fuzzy logic cookers and offer
- <ame of the best models around.

Rival Cookers

Cup Capaci
Best 3 Cup Cookers
Best 4 Cup Cookers

Logic programming with quantified truth:

killer application: fuzzy process control

IF temperature=cold THEN turn knob to 6
IF temperature=warm THEN turn knob to 3

p cold warm p

0 0

température knob
3 + 6

measured temperature
7 > “‘weighted average”: 5 N

easier and smoother operation than classical process control

Logic programming with quantified truth:

a meta-interpreter for a fuzzy logic programming language

many
variations

possible
confidence

P with oo in conclusion g given absolute
WP iy @il weld » truthof gi,...,dn

weighted logic rules ST
q: c if qi,...,9n where c €]0,1]
fuzzy resolution procedure
T(q) = ¢ * min(T(gl),...,T(gn))

sold(flowers, 15).
attractive_packaging(chips) : 0.9.
well advertised(chips) : 0.6.

2p 2c

popular product (?product) if
flowers 1 sold(?product, ?amount),

chips min(0.9, 0.6)"0.8 = 0.48 ?amount > 10.

popular_ product(?product) : 0.8 if
attractive_packaging(?product),
well advertised(?product).

7

Lol Evaluator :| Evaluator :] onfigure

Logic programming with quantified truth:

killer application: fuzzy process control

ruley if X is A thenY is By
rules if X is Ap then Y is By
fact Xis A

consequence | Y is B

Designing a fuzzy control system generally consists of the following steps:

Fuzzification This is the basic step in which one has to determine appropriate fuzzy
membership functions for the input and output fuzzy sets and specify the indi-
vidual rules regulating the system.

Inference This step comprises the calculation of output values for each rule even when
the premises match only partially with the given input.

Composition The output of the individual rules in the rule base can now be combined
into a single conclusion.

Defuzzification The fuzzy conclusion obtained through inference and composition of-
ten has to be converted to a crisp value suited for driving the motor of an air
conditioning system, for example.

Logic programming with quantified truth:

a meta-interpreter for a fuzzy logic programming language

SXa NS X' SOUL Clause Browser
X/ SOUL Querybrowser 5

wearsLargeShoes(?p) : 7t &Y All Result | Al Results Int | =

if

Next Result [Basic Inspect I Sroc

Variable View Ordering
ki Ay Appl
™ Esh|

Clear sed

T Lookup in: | default | 4 solutions in 3 ms

[| () N

" Browser View Tree View | Text view|

|-

| (27/50)
[#barry
1 (18/25)
L. #john
9/10)

DEMO

Logic programming with quantified truth:

a meta-interpreter for a fuzzy logic programming language

000 SOUL Clause Browser
Tools Special Help

Lookup: | default clause lookul isProvenListOfGoalsToExtent:above <> isProvenListOfGoalsToExtent: ?im
- m_- <&last> isProvenListOfGoalsToExten

@ LogicPrimitives logic ieiioven g Exientabovelihreshold=) <&gl&r> isProvenListOfGoalsToExter
@ QuotedParseLayer

@ TestQueriesLayer
@ JavaEclipseReasoning
#.@ SmalltalkReasoning
@ IntensionalViewsLayer
@ VisualQueryPredicatesForS|
=@ Metalnterpretation
i@ Vanillainterpreter
®
® ExampleBased
-.@ OtherJavaTemplateQueries|

>

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
v

<&last> isProvenListOfGoalsToExtent: ?degree aboveT! 3 r ? i gth: &implication if
1
&lastisP : 7d aboveTl : 7threshold,
7min equals: [?currentMin min: 7d],
?degree equals: [?min * ?implication],
[?degree >= ?threshold]

DEMO

Logic programming with quantified truth:
quantifying over the elements of a fuzzy set
additional contains:/2

clause for fuzzy sets
implemented in Smalltalk

+?c contains: +?e if
[?c isKindOf: Soul.FuzzySet],
[?c membershipDegreeO0fElement: Z?el

(. eNé) SOUL Querybrowser

jf | 7about20 equals: [Soul.FuzzySet triangularWithPeak: 20 andMin: 10 andMax: 30],
8 to: 32] contains: 7e,
“7about20 contains: 7e : 7t

P linearly models

Next x Results
how close an

Variable View Ordering
Lonh element is to 20
Clear

17
“?about20

Lookup in: | JavaEclipse B 19 solutions in 2 ms ﬂ(‘

Evaluator l FuzzyEvaIuato[ﬂ Configure 253

] /\\)
G
N
14 2 2

1
(3/10) 26 28N
(7110) & %
(1/5) RN
1/10) e >

[Browser ViewY Tree View | Text view !

Logic programming with quantified truth:

reifying the characteristic function of a fuzzy set

+?z isEqualToOrGreaterThanButRelativelyCloseTo: +7?z.
+2z isEqualToOrGreaterThanButRelativelyCloseTo: +2y : ?c if
[2z > 2y],
?c equals: [(?y / 2z) max: (9 / 10)] associates a truth degree
[9.11
with numbers 2x that are
greater than 2y, but do not

deviate more than 10% from 2y

e OO SOUL Querybrowser
Sorr————— & oy
it | [19t0:25] contains: ?x, A sults Debug
?x isEqualToOrGreaterThanButRelativelyCloseTo: 20 ?d 7 - ™ (Basic nspect)
£ Nextx Results)
Next x Results
Variable View Ordering
2 —rseryans
;‘ Apply
(23
 Clear)
——

Lookup in: | JavaEclipse |7 6 solutions in 3 ms

Evaluator | FuzzyEvaIualo] ﬂ Configure

fBrowser ViewY Tree View | Text View |

(10/11) 25
e & ‘ DEMO

(20/21)

Logic programming with qualified truth:

an executable linear temporal logic (informally)

O (always).
regular logic formulas qualified ¢ (sometimes)

by temporal operators: e (previous)
o (next)

evaluated against an

. .. O¢ is true if ¢ is true at all
implicit temporal context:

moments in time.

we will assume a finite, non-branching timeline for our example
application: reasoning about execution traces of a program

Logic programming with qualified truth:
a meta-interpreter for finite linear temporal logic programming

solve(R) :-

the initial temporal context for all top-level
prove (A, @).

formulas is the beginning of the timeline

prove(not(A), T) :-
not (prove (A, T)).

prove (next (A), T) :- next(A) holds if A holds at

H= . .
NT T+ 1, the next moment in time
prove (A, NT).

prove (next(C, A), T) :-
C #> 0, next(C,A) holds if A holds C steps into the

NT #= T + C, q .
prove (A, NT). future (possibly aiviarlrable)

#> and friénds impose
constraints over integer domain:
use_module(librory(clpfd)).

prove (previous(A), T) :-
NT #= T - 1,
prove (A, NT).
prove (previous(C, R), T) :-
C #> 0,
NT #= T - C,
prove (A, NT). 13

Intermezzo:
constraint logic programming over integer domains

SEND + MORE = MONEY

puzzle([S,E,N,D] + [M,0,R,E] = [M,0,N,E,Y]) :-
Vars = [S,E,N,D,M,0,R,¥],
Uars ins 0..9,
all_different (Uars),
S*1000 + E*100 + N*10 + D +
M*1000 + 0*100 + R*10 + E #=
M*10000 + 0*1000 + N*100 + E*10 + VY,
M #\= 9, S #\= 0.

?- puzzle (As+Bs=Cs).

As = [9, _G1@1@7, _G1@11@, _G1@113], deduced more stringent
Bs = [1, @, _G19128, _G18107], constraints for variables
Cs = [1, @, _G1@110, _G1@107, _G1@152],

_G10107 in 4..7,

1000*9+91*_G10107+ -90*_G10110+_G10113+ -9000*1+ —-900*0+10*_G10128+ —-1*_G10152%#=0,

all_different([_G10107, _G1@11@, _G1@113, _Gi@128, _G1@152, @, 1, 91),
_G10110@ in 5..8,
_G10113 in 2..8,
_G10128 in 2..8,
_G10152 in 2..8.

Intermezzo:
constraint logic programming over integer domains

?7- X #> 3.

X in 4..sup. X in integer domain

27— X #\= 20.

X in inf..19\/21..sup. X in union of two domains

?- 2%¥X #= 10.
X = 5.

list of variables on the left is

?7- X¥X #= 144.
in the domain on the right

X in -12\/12.

72— 4¥X + 2%y #= 24, X + Y #= 9, [X,Y] ins @..sup.
X = 3,
Y =6.

?- Us = [X,Y,2], Us ins 1..3, all_different(Us), X = 1, ¥ #\= 2.
Us = [1’ 3’ 213

X =1,

v = 3, ensures elements are assigned

2 = 2. different values from domain
Intermezzo:

constraint logic programming over integer domains

SEND + MORE = MONEY

puzzle([S,E,N,D] + [M,0,R,E] = [M,0,N,E,¥]) :- ?- puzzle(As+Bs=Cs), label (As).
Uars = [S,E,N,D,M,0,R,Y], As = [9, 5, 6, 7],
Uars ins 0..9, Bs = [1, @, 8, 5],
all_different (Vars), Cs = [1, @, 6, 5, 2] ;
S*1000 + E*100 + N*10 + D + false.
M*1000 + 0*100 + R*10 + E #=
M*10000 + 0*1008 + N*100 + E*1@ + Vv, labeling a domain variable
M #\= 0, S #\= 0. systematically tries out values

7- puzzle (As+Bs=Cs). for it until it is ground

As = [9, _G1@1@7, _Gi@11@, _G1@113],

Bs = [1, @, _G10128, _G10187],

Cs = [1, @, _G1@11@, _G1@107, _G1@152],

_G108107 in 4..7,

1000*0+91*_G10107+ —-90*_G10110+_G10113+ -9000*1+ —QPP*B+10%_G10128+ —1*_G10152#=0,
all_different([_G10107, _G1@118, _G1@113, _G1@128, _G18152, @, 1, 91),

_G1011@ in 5..8,

SONERIE U oz deduced more stringent

_G10128 in 2..8, . .
i constraints for variables
-G10152 in 2..8.

Logic programming with qualified truth:

a meta-interpreter for finite linear temporal logic programming

prove (sometime(C, A), T) :-
C#>=0,
bot(Bot),
eot(Tot),
NT in Bot..Tot,
NT #>= T,
NT #=< T+C,
prove (A, NT).
prove (sometime (C,A), T) :-
C #=< 0,
bot(Bot),
eot(Tot),
NT in Bot..Tot,
NT #>= T + C,
NT #=< T,
prove (A, NT).
prove (sometime (A),
bot(Bot),
eot(Tot),
C in Bot..Tot,
prove(R, C).

_) -

A holds sometime between
now and C steps in the future

A holds sometime between now
and C steps in the past

A holds
somewhere on the
timeline

similar for always

Logic programming with qualified truth:

example application: reasoning about execution traces

(a) observed behavior

..
2 event (60,cntEntered(’ASG’,13..1,['ASG’, ‘print’, ‘exit’])).
s event (61,cntExited(’ASG’,13..1,[print’, 'exit’])).

[

Execute

ur
¢ Source code _

while

verified against
(c) documented behavior

| cntDocumented ('ASG’, ['ASG’ |R],R) .

interlcepting

1
1
!

y

(b) documentation as present in the source code

Logic programming with qualified truth:
example application: reasoning about execution traces

(a) observed behavior (b) source code

1 event(0,init). Execute 1int *stack;
2 t(1 h(10,1)). . 2 int top;
mo) while A e |

3 event(2,push(20,2)). . .
s event (3,push(30,3)). € intercepting —.
s event (4,pop(20,2)). high-level 5

events o)
7 void push(int element) {

stack [top++]=element;

top = 0;
stack = malloc(sizexsizeof (int));

verified qgainst

(c) documented behavior s :

1| behavioralModel :-
> until(stackInitialized, —stackUsed), . [HEEELS EERO) SERCkI=—EeRl?
3 O (when (push (S) A estackOperation(S1l), S is S1 + 1)), ‘ (d) h,‘qh_/eve/ events specification

4+ O(when (pop(S) A estackOperation(Sl), S is S1 - 1)). TIntercept(after, stackPopoperation
' ,

2 event(time, pop(stackTop, stackSize))).
3 intercept (after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).
5 intercept (before, stackInitOperation,

6 event(time, init)).

s stackInitialized(S) :- init(s).

6 stackUsed(S) :- push(S).

7 stackUsed (S) :- pop(S) .

s stackOperation(S) :- stackUsed(S) .

9 stackOperation(S) :- stackInitialized(S).

specific for this

10 push (S) :- event (push(_,S)) . it
o= application

11 pop(S) :-— event (pop(_,S)).

12 init (0) :- event (init). (f) associated run-time values

1/ /
2 /% ASS */
3 /+ expr-stack: [... . DCT VAL] -> */
4/ [ooo ... VAL] */
5 /* cont-stack: [... +ee eues oe. ... ASS] -> */
6 /% [coo 000 coo ©00 coo ool */
7/ /
s static _NIL_TYPE_ ASG(_NIL_TYPE_)

o { ee. }

(d) high-level events specification

2 cntDocumented ('REF’, ['REF’ |R], ['REF’, 'APL’ |R]) .
8 000

4+ behavioralModel :-
5 O(when(cntExecuted(Name,Before,After),

1 intercept (before,continuationEntry,
> event(time,cntEntered(cntName,cntPtr,cntStack))).

3 intercept(after,continuationExit,
4 event(time,cntExited(cntName,cntPtr,cntStack))).

3 cntDocumented (Name,Before,After))).

7 cntExecuted(Name, StackBefore,StackAfter) :-

o e

specific for this application
) application-specific instances

N

(f) associated run-time value:

s cntExited(Name,_,StackAfter),
9 e'cntEntered(Name, ,StackBefore).

7 continuation (Construct)
s isFunctionDefinition(Construct),

9 expressionIn(Construct,Expression,_),
1 picoStack(Expression).

| continuationEntry (Construct,Path) :-
> inContinuation(Construct,Path),

5 functionEntry(Construct,Path).

4+ continuationExit(Construct,Path) :-
s

6

| keyword (cntName,C,P,Expansion) :-
> continuationName(C,P,Name),

s concat([’log("’,Name,’");"’],Expansion).

inContinuation(Construct,Path),
functionExit (Construct,Path).

| keyword(stackSize, ’‘log("%i", top);’).
> keyword (time, ‘log("$i", TIME++);’).
3 keyword (stackTop, 'log("%1i",stack[top-1]);").

lication-specific instances

| stackPushOperation(Construct,Path) :-
functionCallHasName (Construct, ‘push’).

3 stackPopOperation(Construct,Path) :-

4+ macroCallHasName(Construct, ‘pop’).

s stackInitOperation(Construct,Path) :-

6 functionCallHasName(Construct, ‘init’).

18

Non-standard evaluation strategies:
a taste of implicit parallel evaluation

should be easier

speed up

multi-core

. sequential for declarative
revolution
programs programs
main :- X = £(Y,2), expose inherent formal relatively
parallelism foundation pure
Y = a,
W=z,
- 500, @@ s el

X = f(a,g(b)).

BUT also complex datastructures with pointers ...
imagine executing these goals in parallel!

20 http://clip.dia.fi.upm.es/ “logalg/slides/PS/A_par.pdf

Non-standard evaluation strategies:
a taste of implicit parallel evaluation

while (Query not empty) do

selecty;, ..., B from Query

And-Parallelism

repeat

select .

LII\US(‘

(H :- Body) from Program: Or-Parallelism

Unification

Parallelism

until (unify[(H,B) or no clauses left>
if (no clauses left) then FAIL
else
6 = MostGeneralUnifier(H,B) of trivial: goals '(Yp'lco\\Y depend
Query = ((Query \ {B}) U Body)o " on each other
endif (data and control depnec
endwhile workers need to be sy

correctness (same solutions as sequential)
efficiency (no slowdown, speedup)

nde“CY) '
hronize

21 http://clip.dia.fi.upm.es/~logalg/slides/PS/A_par.pdf

Non-standard evaluation strategies:
a taste of implicit parallel evaluation - or-parallelism

speculative work should be avoided to gain speedup .

ceey PUX), X
p(X) = ..., X=a, I speculative

p(X) := ..., X=b, ... [
pl p2

leftbased scheduling, immediate killing on cut x=3 x=b

1 “——— alot of work
from the past is
relevant again,
BUT: distributed

main :- 1, s.

:- parallel 1/0.

1 :- large_work_a.
1 :- large_work_b. v shared
memory
avoid incurring an overhead architectures,
from fine-grained parallelism caching

23 http://clip.dia.fi.upm.es/“logalg/slides/PS/A_par.pdf

Non-standard evaluation strategies:
a taste of implicit parallel evaluation - or-parallelism

P Egi : there is no dependency between Szl difﬂ?rent .
:_ .). the clauses implementing p/1 branches at choice point

simultaneously

relevant for
search problems,
generate-and-test

much easier to implement than and-parallelism

issue: maintaining a different environment per
branch efficiently(e.g., sharing, copying, ...)

typical architecture:
set of workers, each a full interpreter

scheduler assigns unexplored branches to idle workers

22 http://clip.dia.fi.upm.es/"logalg/slides/PS/A_par.pdf

Logic programming in software engineering:
SOUL - symbiosis

symbiosis with base program languages

if ?c isCompilationUnit, <€ ordinaryterm
[7c types size > 1] «— symbiosis term

(L

instance method method instance

base program not reified as logic facts

changes are immediately reflected

query results easily perused by existing IDE’s

24

Logic programming in software engineering:

SOUL - symbiosis - demo

.YeXe) SOUL Querybrowser

N £ A el
jf | ?cisClassDeclaration, All Results

[?cge(Parem]equals:7paren[l € NextResult) € Y

Next x Results
Variable View Ordering

2 7parent
1 7

Lookup in: | JavaEclipse 7 72 solutions in 12 ms

Evaluator | Evaluator r O] Configure

[Browser ViewY Tree View | Text iew !

MethodCalledFromDifferentSites 4| Composite java
Component

MPCompoundBox

Leafd

Composite

SecondSecondinner

OnlyLoggingLeaf

AbstractBaseClass

MPAugmentedType

NullTest

FirstSecondinner

MPFunctionPointer

Leafd

IterationTest

MPFunctionObject

MPOutlineSubClass >4

nice, but true power of logic
programming comes not only from
backtracking, but also from the
ability to unify with a user-
provided compound term to
quickly select objects one is

interested in

hold that thought
hmm .. strange:
the method’s name (a Java
Object) is unified with a
compound term?

if ?m methodDeclarationHasName: ?n,
?n equals: simpleName (?identifier)

if ?m methodDeclarationHasName: simpleName (?identifier)

Logic programming in software engineering:
SOUL - symbiosis - demo

?type isTypeWithFullyQualifiedName: ['presentation.Component,
?class inClassHierarchyOfType: ?type,

not(?class classDeclarationHasName: simpleName(['Composite)),
?class definesMethod: ?m,

?m methodDeclarationHasName: simpleName(['acceptVisitor]),
?m methodDeclarationHasParameters: nodeList(<?p>), yuk .. not as
?p singleVariableDeclarationHasName: simpleName(?id), declarative as
?m methodDeclarationHasBody: ?body, advertised!
?body equals: block(nodeList(<expressionStatement(?log) expressionStatement(?dd)>)),
or(?so equals: qualifiedName(simpleName(['System]),simpleName(['out])),

?s0 equals: fieldAccess(simpleName(['System),simpleName(['out]))),
?log equals: methodinvocation(?so,?,simpleName(['printin),nodeList(<?string=)),
?dd equals: methodinvocation(simpleName(?id),?,?,nodeList(<thisExpression([nil])>))

and | have to do this for all
implementation variants?
27

Logic programming in software engineering:
SOUL - symbiosis - demo

all subclasses of presentation.Component
should define a method acceptVisitor(ComponentVisitor)
that invokes System.out.printin(String) before
double dispatching to the argument

N

=

public class PrototypicallLeaf extends Component {
public void acceptVisitor(ComponentVisitor v) {
System.out.println("Prototypical.");
v.visitPrototypicallLeaf(this);

26

Logic programming in software engineering:
SOUL - code templates

integrate concrete syntax of base program

if jtStatement(?s) {
while(?iterator.hasNext()) {
2collection.add(?element) ;
}
}’

jtExpression(?iterator){?collection.iterator()}

resolved by existential queries on control-flow graph

is add(Object) ever invoked in the control-flow of a while-statement?

28

Logic programming in software engineering:
SOUL - code templates - demo

0o SOUL Querybrowser
. " P cimiemsiuriion W wontmisiis
if | jtClassDeclaration(?c,controlflow) { All Results Debug
class SumComponentVisitor { ¢ NextResult O € Basic Inspect A
?m = [?modList ?type visitLeaf1(?arg) {
751:7521 Next x Results)
| Variable View Ordering
€ Aooly
» Apply
Clear)
ype
‘?modList
= 7c
Lookup in: | JavaEclipse |3 153 solutions in 44 ms 3 752

Evaluator | Evaluator r“ﬂ Configure

fBrowser ViewY Tree View | Text View |

SumComponentVisitor >> public visitLeaf1 (Componel | I1.value sum=new Integer(sum.intValue() + I1.value);

new Integer(sum.intValue() + I1.value) Leaft I1=(Leaft)c1;

System.out System.out.printin("A visitor is visiting a leaf1.”);
System.out.printin("A visitor is visiting a leaf1.”) sum

sum 11.value

(Leaft)c1 sum.intValue() + I1.value

cl System.out

sum.intValue() +11.value sum

System.out.printin("A visitor is visiting a leaf1.”); sum.intValue()

"A visitor is visiting a leaf1.” cl

sum.intValue() System.out.printin(“A visitor is visiting a leaf1.”)

super.visitLeaf1(c1):
super.visitLeaf1(c1)
Leaft I1=(Leaft)c1;
cl

"A visitor is visiting a leaf1.”

sum=new Integer(sum.intValue() +11.value)
(Leaft)ct

new Integer(sum.intValue() + I1.value)

sum=new Integer(sum.intValue() + I1.value);
sum

Logic programming in software engineering:
SOUL - code templates - demo

but still not in query results:

N~ ~
S N
.)
public class MayA'LiasLeaf extends Component {
public Object m(Object o) {
if(getInput() % 2 == @)

public class MustAliasLeaf extends Component {
public void acceptVisitor(ComponentVisitor v) {
System.out.println("Must alias.");

Component temp = this; return o;
v.visitMustAliasLeaf(temp); else
" } return new MayAliasLeaf();
}

public void acceptVisitor(ComponentVisitor v) {
System.out.println("May alias.");
v.visitMayAliasLeaf((MayAliasLeafdm(this));

31

Logic programming in software engineering:
SOUL - code templates - demo

\
- 4
? 2i i
hCIassDecIaratlonl(,class,.lmerpretatloh](public class Super‘LogLeaF extends OnlylLogginglLeaf
class Composite extends® presentation.Component { {
?modList ?type acceptVisitor(?t ?p) {
System.out.printin(?string);

?p.?m(this); }

public void acceptVisitor(ComponentVisitor v) {
super.acceptVisitor(v);
v.visitSuperLoglLeaf(this);

} ?type isTypeWithFullyQualifiedName: ['presentation.Component],
VS 2class inClassHierarchyOfType: ?type,
not(?class classDeclarationHasName: simpleName(['‘CompaositeT)),
?class definesMethod: 7m,

?m methodDeclarationHasName: simpleName(['acceptVisitor]),
?m methodDeclarationHasParameters: nodelList(<?p>),

?p singleVariableDeclarationHasName: simpleName(?id),

?m methodDeclarationHasBody: ?body,

?body equals: block(nodeList(<expressionStatement(?log),expressionStatement(?dd)>)),
or(?so equals: qualifiedName(simpleName(['System),simpleName(['out])),
?s0 equals: fieldAccess(simpleName(['System']),simpleName(['out]))),
?log equals: methodinvocation(?so,? simpleName(['printin]),nodeList(<?string=)),
?dd equals: methodIinvocation(simpleName(?id),?,?,nodeList(<thisExpression([nil])=))

v

Logic programming in software engineering:
SOUL - domain-specific unification

ﬁ; instance vs compound term
easily identify elements of interest

ﬁ; instance vsﬁs instance

incorporates static analyses: ensures query conciseness & correctness

semantic analysis
correct application of scoping rules, name resolution

points-to analysis
tolerance for syntactically differing expressions
if jtStatement(?s) {

while(?iterator.hasNext()) {
2collection.add(?element) ;

can the value on which hasNext() is
invoked alias the iterator of the }
collection to which add is invoked? i

jtExpression(?iterator){?collection.iterator()}

never, in at least one or in all possible executions
-> propagate this knowledge using logic of quantified truth

32

Logic programming in software engineering:
SOUL - domain-specific unification - demo

800

SOUL Querybrowser

if jtStatement(?s1) { return ?exp:},
jtStatement(?s2) { return ?exp:},
[2s1 ~~7s2]

Lookup in: | JavaEclipse E 756 solutions in 9549 ms

Evaluator [Evaluator |+ (Configure

All' Results

(_Debug)
Next Result) (Basic Inspect)
Next x Results

(ExtxTesuts)

Variable View Ordering
2 € Aoply D
7:? Apply)
0 (€ Clear)
7exp e)

ETIITTTR
{ ' Text Report

Tuples

! lass -> (9 PrototypicalLeaf

rBWséFVFe’VTY Tree View | Text View |

return this.self().sum; a
return arg1:

return indirectReturnOfArgument(o,delay - 1);
return (Integer)indirectReturnOfArgument(sum,1{
return p1;

return p;

return;

return o.f;

return arg;

return p;

return result;

return p;

return;

return p2;

return p2;

return p2;

«(

return o;

return (Integer)retrieved:

return indirectReturnOfArgument(o,delay - 1);
return (Integer)indirectReturnOfArgument(sum, 1t

class -> & MayAliasLeaf

Logic programming in software engineering:
SOUL - domain-specific unification - demo

jtClassDeclaration(?class,?interpretation){
class !Composite extends* presentation.Component {
?modList ?type acceptVisitor(?t ?p) {
System.out.printin(?string);
?p.?m(this);

1(1680 ms)

08
0.36

class -> & SuperLoglLeaf

0.72

class -> © MustAliasLeaf

0.648

0.11

33

34

