
Modular Responsive Web Design: An Experience Report
Lucas Wiener

EVRY AB
Sweden

lucas.wiener@evry.com

Tomas Ekholm
KTH Royal Institute of Technology

Sweden
tomase@kth.se

Philipp Haller
KTH Royal Institute of Technology

Sweden
phaller@kth.se

ABSTRACT
Responsive Web Design (RWD) enables web applications to adapt
to the characteristics of di�erent devices such as screen size which
is important for mobile browsing. Today, the only W3C standard
to support this adaptability is CSS media queries. However, using
media queries it is impossible to create applications in a modular
way, because responsive elements then always depend on the global
context. Hence, responsive elements can only be reused if the global
context is exactly the same. �is makes it extremely challenging
to develop large responsive applications, because the lack of true
modularity makes certain requirement changes either impossible
or expensive to realize.

In this paper we extend RWD to also include responsive modules,
i.e., modules that adapt their design based on their local context,
independently of the global context. We present the ELQ project
that includes an approach to enabling modular responsivity, and a
novel implementation of resize detection of DOM elements. ELQ
provides an implementation of element queries which generalize
CSS media queries. Importantly, our design conforms to existing
web speci�cations, enabling adoption on a large scale. ELQ is
designed to be heavily extensible using plugins. Experimental
results show speed-ups of the core algorithms of up to 37x compared
to previous approaches.

CCS CONCEPTS
•So�ware and its engineering →Domain speci�c languages;
Reusability; Hypertext languages;

KEYWORDS
Responsive web design, Element queries, CSS, Modularity
ACM Reference format:
Lucas Wiener, Tomas Ekholm, and Philipp Haller. 2017. Modular Responsive
Web Design: An Experience Report. In Proceedings of 1st International
Workshop on Programming Technology for the Future Web, Brussels, Belgium,
April 2017 (ProWeb’17), 6 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Responsive Web Design (RWD) is an approach to make an applica-
tion respond to the viewport size and device characteristics. �is is
currently achieved by using CSS media queries that are designed

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ProWeb’17, Brussels, Belgium
© 2017 Copyright held by the owner/author(s). 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

to conditionally design content by the media, such as using serif
fonts when printed and sans-serif when viewed on a screen [25]. In
order to reduce complexity and enable reusability, applications are
typically composed of modules, i.e., interchangeable and indepen-
dent parts that have a single and well-de�ned responsibility [16].
In order for a module to be reusable it must not assume in which
context it is being used.

In this paper we focus on the presentation layer of web applica-
tions. As it stands, using CSS media queries to make the presen-
tation layer responsive precludes modularity. �e problem is that
there is no way to make a module responsive without making it
context-aware, due to the fact that media queries can only target
the viewport; this means that responsive modules can only respond
to changes of the (global) viewport. �us, a responsive module
using media queries is layout dependent and has both reduced func-
tionality and limited reusability [27]. As a result, media queries
can only be used for RWD of non-modular static applications. In a
world where no be�er solution than media queries exists for RWD,
changing the layout of a responsive application becomes a cum-
bersome task since it may require many responsive modules to be
updated. �e limitations of CSS with regard to compositionality are
well known (as shown in the tweet below). While we do not claim
to solve the problem in its entirety, this paper provides a solution
to compositionality issues in the context of RWD.

�e Problem Exempli�ed. Imagine an application that displays
the current weather of various cities as widgets, by using a weather
widget module. �e module should be responsive so that more
information, such as a temperature graph over time, is displayed
when the widget is big. When the widget is small it should only
display the current temperature. Users should also be able to add,
remove and resize widgets.

Such an application cannot be built using media queries, since
the widgets can have varying sizes independent of the viewport
(e.g., the width of one widget is 30% while another is 40%). To
overcome this problem we must change the application, so that
widgets always have the same sizes. �is implies that the size of the
module and the media query breakpoints are coupled/intertwined,

ProWeb’17, April 2017, Brussels, Belgium L. Wiener et al.

i.e. they are proportional to each other. �e problem now is that
we have removed the reusability of the weather module, since it
requires the speci�c width that is correctly proportional to the
media query breakpoints.

Imagine a company working on a big application that uses media
queries for responsiveness (i.e., each responsive module assumes
to have a speci�c percentage of the viewport size). �e ability to
change is desired by both developers and stakeholders, but is limited
by this responsive approach. �e requirement of changing a menu
from being a horizontal menu at the top to being a vertical menu
on the side implies that all responsive modules break, since the
assumed proportionality of each module is changed. Even worse, if
the menu is also supposed to hide on user input, the responsiveness
of the module breaks, since the layout changes dynamically. �e
la�er requirement is impossible to satisfy in a modular way without
element queries.

Additionally, it is popular to de�ne breakpoints relative to the
font size so that conditional designs respect the size of the con-
tent [6]. Media queries can only target the font size of the document
root, limiting their functionality drastically. With element queries
breakpoints may be de�ned relative to the font size of the targeted
element.

As we can see, even with the exempli�ed limited requirements
there are still signi�cant restrictions when using media queries for
responsive modules.

Requirements. �e desired behavior of a responsive module is
having its inner design respond to the size of its container instead
of the viewport. Only then is a responsive module independent of
its layout context. Realizing responsive modules requires CSS rules
that are conditional upon elements, instead of the global viewport.
We have identi�ed the following requirements of a solution:

• It must provide the possibility for an element to automati-
cally respond to changes of its parent’s properties.

• It must conform to the syntax of HTML, CSS, and JavaScript
to retain the compatibility of tools, libraries and existing
projects.

• It must have adequate performance for large applications
that make heavy use of responsive modules.

• It must enable developers to write encapsulated style rules,
so that responsive modules may be arbitrarily composed
without any con�icting style rules.

Approach. In this paper we extend the concept of RWD to also
include responsive modules. �e W3C has discussed such a fea-
ture under the name of element queries given its analogy to media
queries [26]. �is paper presents a novel implementation of element
queries in JavaScript named ELQ that enables new possibilities of
RWD. Our approach satis�es all requirements given above. We have
released ELQ as an open-source library under the MIT license.1 �e
implementation supports all major browsers, including Internet
Explorer version 8, Chrome version 42 (the last version compatible
with Android version 4), Safari version 5, and Opera version 12.

One could argue that a solution does not need to be executed
on the client side, but instead generate media queries on the server
side for all modules with respect to the current application layout.

1h�ps://github.com/elqteam/elq

However, this approach is insu�cient, since it limits modules to
applications with static layouts [27]. Also, the generated media
queries would not be able to respond to the user changing properties
of elements such as layout and font size.

Contributions. �is paper makes the following contributions:

• A new design and implementation of element queries that
enables responsive modules while conforming to the syn-
tax of HTML, CSS, and JavaScript. We also provide an
integration component2 for the React user interface library.

• Our approach is the �rst to enable nested elements that
are responsive in a modular way, i.e., modules fully en-
capsulate any styling required for RWD. As a side e�ect,
responsive modules may also be arbitrarily styled with CSS
independent of their context.

• An extensible architecture that enables plugins to signi�-
cantly extend the behavior of ELQ, our library implemen-
tation. �is makes it possible to create plugins in order to
enable new features and to ease integration of ELQ into
existing projects.

• A novel implementation of element resize detection3 that
o�ers substantially higher performance than previous ap-
proaches. �e implementation batch-processes DOM oper-
ations in order to avoid layout thrashing (i.e., forcing the
layout engine to perform multiple independent layouts).

• A run-time cycle detection system that detects and breaks
cycles stemming from cyclic rules due to unrestricted usage
of element queries [27].

�e rest of the paper is organized as follows. Section 2 introduces
ELQ and its API from a user’s perspective. Section 3 provides an
overview of the implementation of ELQ’s element resize detection
system. Section 4 evaluates the performance of ELQ. Section 5
reports on case studies of using ELQ. Section 6 relates ELQ to prior
work. Section 7 discusses limitations of ELQ and related libraries,
as well as the current state of standardization of element queries.
Section 8 concludes.

2 OVERVIEW OF ELQ
An element breakpoint is de�ned as a point of an element property
range which can be used to de�ne conditional behavior, similar to
breakpoints of media queries. For example, if an element that is 300
pixels wide has two width breakpoints of 200 and 400 pixels the
element breakpoint states are “wider than 200 pixels” and “narrower
than 400 pixels”.

�e main idea is to de�ne element breakpoints of interest so that
children can be adapted to the di�erent breakpoint states. As a
library, ELQ provides a JavaScript API to registering element break-
points, and detecting breakpoint state changes. ELQ then observes
the elements, in order to automatically let the system know when
a breakpoint has changed state. �e JavaScript API is extensible
through plugins. Mainly, plugins provide alternative behaviors and
API’s for breakpoint registration and action on breakpoint state

2h�ps://github.com/elqteam/react-responsive-block
3h�ps://github.com/wnr/element-resize-detector

https://github.com/elqteam/elq
https://github.com/elqteam/react-responsive-block

Modular Responsive Web Design ProWeb’17, April 2017, Brussels, Belgium

changes. In our companion technical report [28] we show an ex-
ample plugin that provides a grid API similar to the CSS Bootstrap
framework.

Default plugins. �e default plugins of ELQ let users de�ne ele-
ment breakpoints by HTML a�ributes in addition to the JavaScript
API:
<d i v c l a s s =” foo ” data−e lq−b r e a k p o i n t s −widths =”300 500”>

<p>When i n doubt , mumble . < /p>
</d iv>

�e plugins also update element classes to re�ect the current break-
point states, which may be targeted in CSS selectors. For instance,
if the element is 400 pixels wide, the element has the two classes
elq-min-width-300px and elq-max-width-500px. For each break-
point only the min/max part changes, to mimic CSS media queries.
�is is how the classes may be used in CSS to conditionally style
the children:
. f oo . e lq−max−width −300 px {

background−c o l o r : b l u e ;
}

. f oo . e lq−min−width −300 px . e lq−max−width −500 px {

background−c o l o r : green ;
}

. f oo . e lq−min−width −500 px p {

c o l o r : whi te ;
}

�is is however not su�cient for nestable modules since there is
no way to limit the CSS matching search of the selectors. �e last
style rule speci�es that all paragraph elements should have white
text if any .foo ancestor breakpoints element is wider than 500
pixels. Since the ancestor selector may match elements outside of
the module, such selectors are dangerous to use in the context of
responsive modules. �e problem may be somewhat reduced by
more speci�c selectors and such, but it cannot be fully solved for
arbitrary styling [27].

To enable nestable modules, the default plugins let us de�ne
elements to “mirror” the breakpoints classes of the nearest ancestor
breakpoints element (the target of the mirror element). �is means
that the mirror element always re�ects the element breakpoint
states of the target. �e following is an example of using mirroring
to have a .foo module contain another .foo module:
<d i v c l a s s =” foo ” data−e lq−b r e a k p o i n t s −widths =”300 500”>

<d i v c l a s s =” foo ” data−e lq−b r e a k p o i n t s −widths =”300 500”>
<p data−e lq−mirror > . . . < / p>

</d iv>
<p data−e lq−mirror > . . . < / p>

</d iv>

�e paragraph elements are told to mirror the nearest breakpoints
element by the data-elq-mirror annotation. �en, the condi-
tional style of pragraph elements may be wri�en as a combinatory
selector:
. f oo p . e lq−min−width −500 px { c o l o r : whi te ; }

Since the breakpoint state class is now combined with the para-
graph, the conditional style will only be applied in relation to the
actual desired breakpoints element parent.

2.1 Advanced breakpoint logic
Morphing shared markup into structurally di�erent layouts is com-
plex by only using CSS. A be�er way is to produce the di�erent
markup by using the expressiveness of JavaScript.

For instance, one interface design approach is to have bu�ons
sorted in importance priority from le� to right (more important to
the right) for wide views. For narrow views, it might be desired to
have the bu�ons stacked vertically sorted in priority top to bo�om.
Since the natural �ow of HTML is to render top le� to bo�om
right, we want to structurally change the markup order of the but-
tons. Another example is when table columns should disappear for
narrow views, and the data instead should be presented elsewhere.

�e CSS solution to this can be very complex, compared to a
simple JavaScript condition rendering di�erent markup for the
two cases. �e maintainability of a local solution in JavaScript
excells over a solution in the global space of CSS. ELQ provides
a JavaScript API that is suitable to build higher-level abstractions
upon. We have for instance created a React component4 on top of
ELQ that sends the current breakpoint state as an input property to
the view component, for seamless integration into React-based code.
�is component is heavily used in our responsive view modules.

3 ELEMENT RESIZE DETECTION
Unfortunately, there is no standardized resize event for arbitrary
elements [24]. It is possible to resort to polling the element sizes
in order to detect changes, but there are also two event-based ap-
proaches to detecting element resize events as originally presented
by [3]. One is to use object elements, since frame elements emit
resize events [27].

It is also possible to use multiple over�owing elements that
listen to scroll events in order ot detect size changes, which is the
approach of ELQ. �e over�owing elements are styled so that scroll
events are emi�ed when the target element is resized. For detecting
when the target element shrinks, two elements are needed; one for
handling the scrollbars and one for causing them to scroll. Similarly,
for detecting when the target element expands, two elements are
needed in the same way. As this approach only injects div elements,
it o�ers greater opportunities for optimizations. �e main algorithm
that is performed when an element e is to be observed for resize
events is the following:

(1) Get the computed style of e .
(2) If the element is positioned (i.e., position is not static)

the next step is 4.
(3) Set the position of e to be relative. Here additional checks

can be performed to warn the developer about unwanted
side e�ects of doing this.

(4) Create the four elements needed (two for detecting when
e shrinks, and two for detecting when e expands) and at-
tach event handlers for the scroll event of the elements.
When the elements have been styled and con�gured prop-
erly, they are added as children to an additional container
element that is injected into e .

(5) �e current size of e is stored and the scrollbars of the
injected elements are positioned correctly.

(6) �e algorithm waits for the scroll event handlers to be
called asynchronously by the layout engine (they are called
since the previous step repositioned the scrollbars). When
the handlers have been called, the injection is �nished and

4h�ps://github.com/elqteam/react-responsive-block

https://github.com/elqteam/react-responsive-block

ProWeb’17, April 2017, Brussels, Belgium L. Wiener et al.

observers can be noti�ed on resize events of e when scroll
events occur.

Layout thrashing can be avoided by batching DOM operations,
which results in a signi�cant performance improvement as shown in
Section 4. �e algorithm steps are batch processed in the following
levels:

(1) �e read level: Step 1 is performed to obtain all necessary
information about e . �e information is stored in a shared
state so that all other steps can obtain the information
without reading the DOM.

(2) �emutation level: Steps 2, 3 and 4 are performed, which
mutate the DOM. All mutations performed in this level can
be queued by layout engines.

(3) �e forced layout level: Step 5 is performed, which
forces some layout engines to perform a layout.

Since repositioning a scrollbar in some layout engines forces a
layout, such operations need to be performed a�er all other queue-
able operations have been executed. �erefore, step 5 is performed
in level 3 as the last step. Even though some layout engines are
unable to queue the repositioning of scrollbars, it is still bene�cial
to batch process the algorithm, since only pure layouts need to be
performed (instead of having to recompute styles, and synchronize
the DOM and render trees before each layout). As step 6 is per-
formed by the layout engine asynchronously and does not interact
with the DOM, it does not need to be batch processed.

4 EXPERIMENTAL EVALUATION
Only the performance of the element resize detection system has
been evaluated. �is is due to the fact that detecting element resize
events entails all the signi�cant performance penalties of ELQ.
Fortunately, element resize detection is the common denominator
of all automatic libraries and the results of this system can be
compared faithfully. Measurements and graphs show evaluations
performed in Chrome version 42 unless stated otherwise. Previous
implementations use one of two approaches [3]: (a) object-based
resize detection, which uses object elements, and (b) scroll-based
resize detection, which uses over�owing elements. �e approach
of ELQ extends the scroll-based approach with batch processing to
increase performance [28].

�e following plot compares the start-up performance of ELQ’s
scroll-based approach with the other two approaches. ELQ achieves
a 37-fold speedup compared to the object-based approach and a 17-
fold speedup compared to the scroll-based approach when prepar-
ing 700 elements for resize detection. �e memory footprint of the
object approach grows roughly by 0.55 MB per element, in contrast
to the scroll approach whose memory consumption is insigni�cant.

Both approaches perform well when detecting resize events. For
few elements, they both detect changes with a delay of roughly
25 ms. �e object approach scales a bit be�er, as shown in table 1.
However, the installation time penalty is signi�cant at scale for
the object approach. ELQ uses both approaches in order to target
legacy browsers. �e default strategy is to use the scroll approach,
but it is possible to manually choose which strategy to use. See
table 1 for the performance of ELQ’s two resize detection strategies
in di�erent browsers.

0 200 400 600

0

2

4

6

Number of elements

In
je

ct
io

n
tim

e
[s

]

Object-based approach
Scroll-based approach

ELQ scroll-based approach

Browsers Injection Resize detection
scroll object scroll object

Chrome v. 42 30 ms 550 ms 25 ms 20 ms
Firefox v. 40 150 ms 1000 ms 70 ms 30 ms
Safari v. 9 100 ms 400 ms 30 ms 20 ms
Internet Explorer v. 11 350 ms 6700 ms 100 ms 80 ms
iOS Safari v. 9 350 ms 1600 ms 150 ms 60 ms
Android v. 5 Chrome v. 39 40 ms 1000 ms 20 ms 10 ms

Table 1: Performance of the two resize detection strategies,
operating on 100 elements.

5 CASE STUDIES
In order to evaluate ease of integration with existing projects, we
have adapted the popular Bootstrap framework (version 3) to use
element queries instead of media queries. According to its website,
“Bootstrap is the most popular HTML, CSS, and JS framework for
developing responsive, mobile �rst projects on the web.” [15]

To modularize Bootstrap, we rede�ne the behavior of its respon-
sive elements so that they no longer respond to the viewport but
to enclosing container elements. �e following observation guides
our modularization: all responsive elements should respond to their
closest enclosing container or container-fluid element. Both
classes are used in Bootstrap to de�ne new parts of a page (e.g., a
grid is required to have a container ancestor). We also enable them
to be nestable, which is important to satisfy the requirement of
composable modules.

�e breakpoints of the container elements are de�ned using the
elq-breakpoints API. Since the Bootstrap API uses a prede�ned
set of breakpoints, they are all added to the container elements
dynamically with JavaScript. According to this design, we con-
vert all responsive elements of Bootstrap to elq-mirror elements,

Modular Responsive Web Design ProWeb’17, April 2017, Brussels, Belgium

since they need to mirror the breakpoints of the nearest ances-
tor elq-breakpoints element. Since container elements may be
nested, they have both the elq-breakpoints and elq-mirror be-
havior.

�e breakpoints of Bootstrap are de�ned as the following con-
stants:5
@screen−sm−min : 480 px ;
@screen−md−min : 992 px ;
@screen−lg−min : 1200 px ;

�e following example shows how Bootstrap’s style de�nitions
are changed from using media queries to using ELQ’s element
queries:
/ ∗ F i l e ” l e s s / g r i d . l e s s ” o f B o o t s t r a p . ∗ /

/ / O r i g i n a l B o o t s t r a p u s i n g media q u e r i e s .
. c o n t a i n e r {

@media (min−width : @screen−sm−min) {
width : @container−sm ;

}

. . .
}

/ / ELQ B o o t s t r a p u s i n g e lement q u e r i e s .
. c o n t a i n e r {

&. e lq−min−width−@{ sc reen−sm−min } {
width : @container−sm ;

}

. . .
}

By using the power of preprocessors, ELQ element queries be-
come as pleasant to work with as media queries. In fact, only
about 0.6% of the style code (LESS syntax) need to be altered. Most
changes are similar to the one shown above, which replaces the
media query syntax with the ELQ element queries syntax. �is is
especially advantageous when keeping a forked project up to date
with the original project, as fewer diverged lines implies a lowered
risk of merge con�icts.

In summary we have shown that it is easy to adapt existing
responsive code to use ELQ’s element queries instead of media
queries. With only a small number of changes, the widely used
Bootstrap framework can be modularized.

Industrial use of ELQ. We have also been gathering experience
with the application of ELQ in large �nancial applications developed
at EVRY. Our practical experience shows that complex applications
require a variety of features to be supported by element queries.
Such features can be provided e�ectively by ELQ plugins. We
have noticed that in most of our responsive modules, it has been
bene�cial for us to use the JavaScript API to conditionally render
whole chunks of HTML instead of only changing the style using
CSS. Two teams at EVRY have independently come to this same
conclusion, and have developed plugins to ease the usage with the
di�erent frameworks that the teams are using (Angular and React).

6 RELATEDWORK
�e libraries [1, 5, 9, 17, 23] have in common that they require devel-
opers to write custom CSS, unlike ELQ. Since they do not conform
to the CSS standard, new features are supported through custom
CSS parsed using JavaScript. As shown by [9, 23] quite advanced
features can be implemented this way. Additionally, adding new
5�e Bootstrap CSS is generated using the LESS preprocessor [20].

CSS features implies that it is possible to implement a solution to
element queries that does not require any changes to the HTML,
which may be preferable since all styling then can be wri�en in
CSS. However, there are numerous drawbacks with libraries that
require custom CSS. Extending the CSS syntax violates the require-
ment of compatability and also introduces a compilation step which
decreases the performance [27].

Resize detection. �e libraries [8, 9, 11–14, 18, 21, 29] simply ob-
serve the viewport resize event, which may be enough for static
pages, but not enough to satisfy the requirements of reusable re-
sponsive modules [27]. Approach [22] does not detect resize events
at all. Like ELQ, [1, 4, 10, 17, 19, 23] observe elements for resize
events. �e libraries [1, 10] use polling while ELQ and [4, 17, 19, 23]
use di�erent injection approaches. As shown in Section 4, the in-
jection approaches used by related libraries have signi�cantly less
performance than ELQ’s element resizing detection system.

Constraint-based CSS. CCSS [2] proposes a more general and
�exible alternative to CSS. �e idea of CCSS is to layout documents
based on constraints. �e Grid Style Sheets library [23] builds upon
the ideas of CCSS. While not directly o�ering element queries, the
library enables the possibility to conditionally style elements by
element criteria and thus makes it a good candidate to solve the
problem of responsive modules. However, the library has two major
issues: performance and browser compatibility [7]. In contrast, ELQ
only considers element queries, but without browser compatibility
limitations and with higher performance.

7 DISCUSSION
Inherent to all current implementations of element queries is that
the conditional style is applied “one layout behind”. Since a layout
pass needs to have been performed in order for an element to
change size, the conditional styles de�ned by the element queries
cannot be applied until the next layout. �erefore, the element
displays an invalid style until another layout has been performed.
�e �ash of invalid design is usually so short that users do not
notice it, but in some cases developers need to work around this
issue to avoid more apparent results (especially when combined
with animations). Another caveat is presented by the element resize
detection approaches, as they mutate the DOM. Developers need
to be aware of this as CSS selectors and JavaScript may also match
the injected elements. �is is easily avoided by good practices.

8 CONCLUSION
�is paper extends Responsive Web Design (RWD) with respon-
sive modules through element queries. Our approach is the �rst to
enable nested elements that are responsive in a modular way, i.e.,
modules fully encapsulate any styling required for RWD. Our im-
plementation, ELQ, is fully compatible with existing web standards
and technologies. �e element resize detection of ELQ performs
up to 37x be�er than previous algorithms. We present a case study
which shows that changing only about 0.6% of the LOC is su�cient
to enable the use of the popular Bootstrap framework in responsive
modules. We also report on �rst commercial usage of ELQ.

ProWeb’17, April 2017, Brussels, Belgium L. Wiener et al.

REFERENCES
[1] Chris Ashton. 2015. Localised CSS. (2015). Retrieved April 29, 2015 from

h�ps://github.com/ChrisBAshton/localised-css
[2] Greg J Badros, Alan Borning, Kim Marrio�, and Peter Stuckey. 1999. Constraint

cascading style sheets for the web. In Proceedings of the 12th annual ACM sym-
posium on User interface so�ware and technology. ACM, 73–82.

[3] Daniel Buchner. 2013. Cross-Browser, Event-based, Element Resize Detection.
(2013). Retrieved March 23, 2015 from h�p://www.backalleycoder.com/2013/03/
18/cross-browser-event-based-element-resize-detection/

[4] Daniel Buchner. 2015. Element �eries. (2015). Retrieved April 29, 2015 from
h�ps://github.com/csuwildcat/element-queries

[5] Gabriel Felipe. 2015. MagicHTML. (2015). Retrieved April 29, 2015 from h�ps:
//github.com/gabriel-felipe/MagicHTML

[6] Lyza Gardner. 2012. �e EMs have it: Proportional Media �eries
FTW! (2012). Retrieved March 2, 2015 from h�p://blog.cloudfour.com/
the-ems-have-it-proportional-media-queries-�w/

[7] Grid Style Sheets. 2015. Element queries with precompilation. (2015). Retrieved
June, 8 2015 from h�ps://github.com/gss/engine/issues/178

[8] Daniel Hägglund. 2015. breaks2000. (2015). Retrieved April 29, 2015 from
h�ps://github.com/judas-christ/breaks2000

[9] Tommy Hodgins and Maxime Euzière. 2015. EQCSS. (2015). Retrieved April 29,
2015 from h�p://elementqueries.com/

[10] Andy Hume. 2015. Selector queries and responsive containers. (2015). Retrieved
April 29, 2015 from h�ps://github.com/ahume/selector-queries/

[11] Kumail Hunaid. 2015. Responsive Elements. (2015). Retrieved April 29, 2015
from h�ps://github.com/kumailht/responsive-elements

[12] Tyson Matanich. 2015. Element�ery. (2015). Retrieved April 29, 2015 from
h�ps://github.com/tysonmatanich/element�ery

[13] Jonathan Neal. 2015. MediaClass. (2015). Retrieved April 29, 2015 from h�ps:
//github.com/jonathantneal/MediaClass

[14] Truong Nguyen. 2015. SickleS. (2015). Retrieved April 29, 2015 from h�p:
//singggum3b.github.io/SickleS/

[15] Mark O�o and Jacob �ornton. 2016. Bootstrap. (2016). Retrieved January 15,
2016 from h�p://getbootstrap.com/

[16] David Lorge Parnas. 1972. On the criteria to be used in decomposing systems
into modules. Commun. ACM 15, 12 (1972), 1053–1058.

[17] François Remy. 2015. prolly�ll-min-width. (2015). Retrieved April 29, 2015 from
h�ps://github.com/FremyCompany/prolly�ll-min-width/

[18] Sam Richard. 2015. eq.js. (2015). Retrieved April 29, 2015 from github.com/
Snugug/eq.js

[19] Marc J. Schmidt. 2015. CSS Element �eries. (2015). Retrieved April 29, 2015
from h�ps://github.com/marcj/css-element-queries

[20] Alexis Sellier. 2015. LESS. (2015). Retrieved March 9, 2015 from h�p://lesscss.org/
[21] Joshua Stoutenburg. 2015. breakpoints.js. (2015). Retrieved April 29, 2015 from

h�ps://github.com/reusables/breakpoints.js
[22] Ma� Stow. 2015. Class �ery. (2015). Retrieved April 29, 2015 from h�ps:

//github.com/stowball/Class-�ery
[23] Dan Tocchini. 2015. Grid Style Sheets 2.0. (2015). Retrieved April 29, 2015 from

h�p://gridstylesheets.org/
[24] W3C. 2000. Document Object Model Events. (2000). Retrieved March 14, 2015

from h�p://www.w3.org/TR/DOM-Level-2/events.html
[25] W3C. 2012. Media �eries. (2012). Retrieved May 19, 2015 from h�p://www.w3.

org/TR/css3-mediaqueries/
[26] W3C. 2013. W3C public mail archive: �e :min-width/:max-width pseudo-

classes. (2013). Retrieved April 28, 2015 from h�ps://lists.w3.org/Archives/
Public/www-style/2013Mar/0368.html

[27] Lucas Wiener. 2015. ELQ: Extensible Element �eries for Modular Responsive Web
Components. Master’s thesis. KTH Royal Institute of Technology, Sweden.

[28] Lucas Wiener, Tomas Ekholm, and Philipp Haller. 2015. Modular Responsive
Web Design using Element �eries. CoRR abs/1511.01223 (2015). h�p://arxiv.
org/abs/1511.01223

[29] Corey Worrell. 2015. Responsive Elements. (2015). Retrieved April 29, 2015 from
h�ps://github.com/coreyworrell/responsive-elements

https://github.com/ChrisBAshton/localised-css
http://www.backalleycoder.com/2013/03/18/cross-browser-event-based-element-resize-detection/
http://www.backalleycoder.com/2013/03/18/cross-browser-event-based-element-resize-detection/
https://github.com/csuwildcat/element-queries
https://github.com/gabriel-felipe/MagicHTML
https://github.com/gabriel-felipe/MagicHTML
http://blog.cloudfour.com/the-ems-have-it-proportional-media-queries-ftw/
http://blog.cloudfour.com/the-ems-have-it-proportional-media-queries-ftw/
https://github.com/gss/engine/issues/178
https://github.com/judas-christ/breaks2000
http://elementqueries.com/
https://github.com/ahume/selector-queries/
https://github.com/kumailht/responsive-elements
https://github.com/tysonmatanich/elementQuery
https://github.com/jonathantneal/MediaClass
https://github.com/jonathantneal/MediaClass
http://singggum3b.github.io/SickleS/
http://singggum3b.github.io/SickleS/
http://getbootstrap.com/
https://github.com/FremyCompany/prollyfill-min-width/
github.com/Snugug/eq.js
github.com/Snugug/eq.js
https://github.com/marcj/css-element-queries
http://lesscss.org/
https://github.com/reusables/breakpoints.js
https://github.com/stowball/Class-Query
https://github.com/stowball/Class-Query
http://gridstylesheets.org/
http://www.w3.org/TR/DOM-Level-2/events.html
http://www.w3.org/TR/css3-mediaqueries/
http://www.w3.org/TR/css3-mediaqueries/
https://lists.w3.org/Archives/Public/www-style/2013Mar/0368.html
https://lists.w3.org/Archives/Public/www-style/2013Mar/0368.html
http://arxiv.org/abs/1511.01223
http://arxiv.org/abs/1511.01223
https://github.com/coreyworrell/responsive-elements

	Abstract
	1 Introduction
	2 Overview of ELQ
	2.1 Advanced breakpoint logic

	3 Element resize detection
	4 Experimental Evaluation
	5 Case Studies
	6 Related Work
	7 Discussion
	8 Conclusion
	References

