
47

Accelerating an Application Domain with Specialized Functional Units

CECILIA GONZÁLEZ-ÁLVAREZ, Ghent University & UPC
JENNIFER B. SARTOR, Ghent University
CARLOS ÁLVAREZ and DANIEL JIMÉNEZ-GONZÁLEZ, UPC
LIEVEN EECKHOUT, Ghent University

Hardware specialization has received renewed interest recently as chips are hitting power limits. Chip
designers of traditional processor architectures have primarily focused on general-purpose computing, par-
tially due to time-to-market pressure and simpler design processes. But new power limits require some chip
specialization. Although hardware configured for a specific application yields large speedups for low-power
dissipation, its design is more complex and less reusable. We instead explore domain-based specialization,
a scalable approach that balances hardware’s reusability and performance efficiency. We focus on special-
ization using customized compute units that accelerate particular operations. In this article, we develop
automatic techniques to identify code sequences from different applications within a domain that can be
targeted to a new custom instruction that will be run inside a configurable specialized functional unit (SFU).
We demonstrate that using a canonical representation of computations finds more common code sequences
among applications that can be mapped to the same custom instruction, leading to larger speedups while
specializing a smaller core area than previous pattern-matching techniques. We also propose new heuris-
tics to narrow the search space of domain-specific custom instructions, finding those that achieve the best
performance across applications. We estimate the overall performance achieved with our automatic tech-
niques using hardware models on a set of nine media benchmarks, showing that when limiting the core area
devoted to specialization, the SFU customization with the largest speedups includes both application- and
domain-specific custom instructions. We demonstrate that exploring domain-specific hardware acceleration
is key to continued computing system performance improvements.

Categories and Subject Descriptors: Computer systems organization [Other Architectures]: Special
purpose systems

General Terms: Design, Performance, Measurement, Experimentation

Additional Key Words and Phrases: Customization, acceleration, specialized functional unit, domain-specific,
application-specific, canonical representation

ACM Reference Format:
González-Álvarez, C., Sartor, J. B., Álvarez, C., Jiménez-González, D., and Eeckhout, L. 2013. Accelerating
an application domain with specialized functional units. ACM Trans. Architec. Code Optim. 10, 4, Article 47
(December 2013), 25 pages.
DOI: http://dx.doi.org/10.1145/2555289.2555303

Authors’ addresses: C. González-Álvarez, J. B. Sartor and L. Eeckhout, ELIS department, Ghent Uni-
versity, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium; emails: cecilia.gonzalezalvarez@elis.ugent.be,
jennifer.sartor@elis.ugent.be and lieven.eeckhout@elis.ugent.be. C. Álvarez and D. Jiménez-González, DAC
department, UPC - Barcelona Tech, Campus Nord, D6 building, Jordi Girona 1-3, 08034 Barcelona, Spain;
emails: calvarez@ac.upc.edu and djimenez@ac.upc.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481 or permissions@acm.org.
c© 2013 ACM 1544-3566/2013/12-ART47 $15.00

DOI: http://dx.doi.org/10.1145/2555289.2555303

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 47, Publication date: December 2013.

47:2 C. González-Álvarez et al.

1. INTRODUCTION

Since G. Estrin proposed the first model of a specialized computer over 50 years ago
[Estrin 1960], computer engineers have extensively studied the implementation of spe-
cific compute units. Specialization can offer many benefits over traditional, general-
purpose architectures, and now, specialization is viewed as a viable way to combat
the end of Dennard scaling [Dennard et al. 1974], or chips hitting a power wall
because of slowed supply voltage scaling [Esmaeilzadeh et al. 2011; Hameed et al. 2010;
Venkatesh et al. 2010]. Computing systems are moving away from general-purpose
designs out of necessity, but more specific designs add complexity and limit flexibil-
ity. Application-specific architectures have been proposed to improve performance and
power efficiency for both research [Vassiliadis et al. 2004] and commercial [Gonzalez
2000; Altera Corporation 2013] purposes. However, time to market is a major issue
with these customized designs, which are more complex, are costlier, and have shorter
lifetimes. Application-specific specialization is economically feasible only for a few very
important applications in big-volume markets.

In the middle of the spectrum between general-purpose and application-specific pro-
cessors, we have Application-Specific Instruction-set Processors (ASIPs). An ASIP tai-
lors its instruction-set architecture, providing a tradeoff between the flexibility of a
general-purpose processor and the performance and energy efficiency of an application-
specific design. The instruction-set architecture of an ASIP can be configurable, either
in the field (in a fashion similar to an FPGA) or at design time. Optimizing an ASIP
for a given application domain not only may be more economically viable but also
can deliver better system performance when multiple applications run on the device.
Although we focus on the media domain, the concept can be applied to tune an other-
wise general-purpose processor for other domains such as image and audio processing,
medical imaging, and so forth.

In this article, we focus on identifying potential custom instructions that extend the
instruction-set architecture of a base architecture and accelerate a sequence of oper-
ations in an application. We explore the design space of custom instructions that are
implemented in a configurable Specialized Functional Unit (SFU) in hardware, from
those designed for a particular application versus those applicable to many applications
within a domain. Previous research has used automatic tools to identify repeated pat-
terns of instructions and propose them as extensions to the ISA. Initial developments
established the grounds for the field using exhaustive identification of patterns [Atasu
et al. 2008] and approximate techniques [Pozzi et al. 2006]. Other works [Arnold and
Corporaal 2001; Clark et al. 2005] have used pattern-matching-based approaches on
the data flow of programs, represented as Directed Acyclic Graphs (DAGs), to identify
custom instructions across a domain. However, pattern matching cannot always find
similarities between sequences of code in order to map different functionality to the
same custom instruction, inherently limiting specialized hardware opportunities.

We introduce a new technique to extract common sequences of computations from
several applications within a domain, which become custom instructions implemented
within an SFU, which is tightly integrated with a processor core’s data path. We use
Taylor Expansion Diagrams (TEDs), which are canonical representations of polynomial
computations [Ciesielski et al. 2006], to identify common computations. Thus far, TEDs
have only been used in the areas of compiler optimization and design verification, and
we novelly use them to identify common sections of code that can be accelerated by
specialized hardware. We compare the effectiveness of DAG, TED, and a new Hybrid
DAG/TED technique in finding common code sequences to target for acceleration in
hardware. Our study shows that the canonical representation is key to identifying
sequences that are mapped to the same custom instruction across applications. We also
evaluate four new scoring heuristics that prune the huge search space of the potential

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 47, Publication date: December 2013.

Accelerating an Application Domain with Specialized Functional Units 47:3

custom instructions without a detailed evaluation, selecting those that maximize the
speedup of our application domain.

We build an exploration framework to estimate the speedup of new custom instruc-
tions across the spectrum of application-specific and domain-specific acceleration in
hardware. We use nine media benchmarks and extend the LLVM compiler framework
to identify code sequences amenable for acceleration in the SFU. We extract sets of
reusable custom instructions, both within and across benchmarks, which we subse-
quently analyze and rank using our scoring heuristics. We then use the Xilinx design
software to synthesize a hardware implementation of a potential custom instruction.
Given an instruction’s hardware data path, we use estimation models to approximate
its core area and number of cycles, and thus speedup. We show that while DAG, TED,
and Hybrid perform similarly when finding custom instructions for a particular appli-
cation, using the TED and Hybrid techniques to identify custom instructions across a
domain leads to much higher speedups than when using the DAG technique alone. Our
analysis reveals that when the SFU occupies a small, realistic core area, it obtains the
highest speedups when including both custom instructions designed across all applica-
tions in a domain and some specific to one application. Using only application-specific
custom instructions performs best at large, unbounded core areas. We study a few ma-
chine design points in detail: Given a particular area, we present the characteristics of
the SFU that obtains the highest speedup. Finally, we study how well custom instruc-
tions identified for a set of benchmarks perform for other, previously unseen workloads.

Overall, we make the following major contributions in this article:

—We propose TEDs for identifying hardware acceleration opportunities. We find that
their canonical representation allows them to identify more sequences across ap-
plications that are mapped to the same custom instruction, thus achieving higher
speedups for a lower area than the traditionally used DAGs.

—We propose and evaluate four scoring heuristics to quickly and effectively cull the
huge specialized functional unit design space and rank potential domain-specific
custom instructions. The best scoring heuristic is random-scaled sharing, which takes
into account sharing custom instructions across applications as well as introducing
some controlled randomness to smooth out unaccounted factors.

—Our exploration study reveals that while using only application-specific custom in-
structions results in the highest possible speedups at large or unbounded core areas,
it is suboptimal and ineffective at small areas. Instead, considering domain-specific
custom instructions along with application-specific custom instructions yields the
highest possible speedup at small, more realistic core areas. This underlines the im-
portance of identifying custom instructions that can be shared across applications.

—We demonstrate that new applications inside a domain can substantially benefit from
an SFU already designed for that domain. This suggests that processors with domain-
specific functional units can extend their lifetime and utility by being applicable to
other applications.

2. PROBLEM STATEMENT

We assume that the custom instructions execute on an SFU that is tightly integrated in
the data path of the general-purpose processor, as in Figure 1. Our target architecture
is a single-issue in-order processor with a configurable pipeline to execute custom in-
structions. Our hardware exploration focuses on identifying sequences of code that can
be mapped to the same custom instruction, which runs inside one Specialized Execu-
tion (SE) pipeline of the SFU and takes a variable number of cycles (c). We assume that
SE pipelines can be configured at system boot time. All custom instructions are imple-
mented in the SFU, which works as a multicycle functional unit and reads and writes

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 47, Publication date: December 2013.

47:4 C. González-Álvarez et al.

Fig. 1. Target architecture. The Specialized Functional unit (SFU) is part of the execution pipeline of an
in-order processor core.

data from and to the register file of the core. When analyzing code sequences to iden-
tify custom instructions, we disallow control or memory operations. We do not focus on
creating a new specialized processor, but on accelerating a general-purpose processor
using a small amount of its area. Benefits of such a design include a system that main-
tains precise interrupts, the reduction of instructions in the execution pipeline of the
processor core, and the increment of operational and data-level parallelism in the SFU.

In this article, we explore the tradeoff between application-specific versus domain-
specific hardware specialization. Given a defined set of applications, our main objective
is to design the hardware to maximize the platform’s efficiency. We focus on maximiz-
ing speedup, or boosting system performance and application execution time, given a
particular core area dedicated to the SFU. Exploring the application-specific versus
domain-specific specialization tradeoff involves a number of challenges. For one, we
need a framework to identify code sequences within and across applications that are
amenable to hardware acceleration. Finding common code sequences across applica-
tions is particularly challenging because of the huge search space; that is, one needs
to keep track of all code sequences of all applications to be able to find commonalities,
and one needs to find the best way to represent these code sequences to maximize the
likelihood of finding commonalities both within and across applications. Further, to
be able to quickly explore the custom instruction design space and keep exploration
time reasonable, we need heuristics to rank the effectiveness of potential specialized
hardware without relying on detailed evaluation of each possible custom instruction.
We have to use tools to estimate the speedup an application would achieve when using
a particular set of custom instructions and optimize not only for speedup across the
domain of applications but also for minimizing the SFU’s area. In order to perform
this study, we have built an accelerator exploration framework, which we describe next
and which includes several novel contributions over prior work to identify and rank
potential specialized functional units that accelerate computation.

3. CUSTOM INSTRUCTION SELECTION AND EVALUATION

Figure 2 shows an outline of our custom instruction selection and evaluation frame-
work, which we detail in the following sections. We first analyze application code to
identify potential code sequences for custom instruction design (Step 1). We then take
steps to find commonalities among these identified code sequences, both within and
across applications (Step 2), and then evaluate which custom instructions are most ef-
fective using newly proposed scoring heuristics (Step 3). Using these heuristics, we plug
our chosen custom instructions into a low-level model that estimates both the speedup
and the area of each (Step 4), so we can evaluate the potential of new computer designs
with hardware acceleration.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 47, Publication date: December 2013.

Accelerating an Application Domain with Specialized Functional Units 47:5

Fig. 2. Schematic overview of our custom instruction selection and evaluation framework.

3.1. DFG Exploration

Step 1 of Figure 2 shows how we identify code sequences amenable for acceleration
in hardware. We use the compiler (label 1.1 in the figure) to transform the source
code of the application into its Intermediate Representation (IR) to expose the Data
Flow Graph (DFG) and Control Flow Graph (CFG) of the program. We use an IR
representation close to the assembly language to find sequences of code that could be
turned into specific custom instructions in hardware. Because identifying sequences
of code to accelerate could blow up to a huge state space search, we apply certain
constraints to lower the space exploration.

Static program analysis, implemented in the DFG Explorer (label 1.3), identifies a list
of candidates that could be implemented as custom instructions. Each candidate must
be a maximal convex subgraph [Atasu et al. 2008] of a data-flow graph for a given basic
block, that is, the biggest disconnected subgraph of a basic block that preserves the
convexity constraint [Pozzi et al. 2006]. These subDFGs exclude invalid instructions that
cannot be executed in the SFU. In this article, we assume that the SFU executes neither
memory nor branch instructions to keep the unit highly integrated in the processor’s
pipeline. Instead, they are executed in the core’s ALU; thus, we mark them as invalid
in the exploration step. However, to support other kinds of acceleration hardware that
target code beyond the basic block level and include memory instructions, we could
extend this step of the framework as well as Step 2, which clusters instructions using
TEDs. Therefore, our exploration framework was built to be general and broad enough
to study a variety of acceleration designs.

The DFG exploration is done with a fast implementation of the algorithm presented
by Li et al. [2009] using binary structures. The algorithm performs a binary search
for each basic block in the application, first enumerating the invalid instructions of the

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 47, Publication date: December 2013.

47:6 C. González-Álvarez et al.

graphs, which turn into the cutting nodes of the subtrees to be explored recursively in
the search. The exploration result is a list of candidate code sequences, represented as
subDFGs, that satisfy the previously mentioned criteria in nonexponential asymptotic
time complexity (bounded by the number of invalid instructions, as they define the
number of recursive calls).

In order to cut down on the number of candidates, we define a few rules to limit
subDFG candidates. Groups of instructions are selected to preserve the consistency of
scheduling, which means that all the inputs of the set are ready at issue time. In our
exploration, we allow unlimited inputs and outputs to the custom instruction, because
more complex custom instructions will potentially achieve a higher speedup. We also
limit the exploration space by only considering executed parts of the code, using a
previously gathered execution profile of the application (label 1.2 in Figure 2). At the
end of Step 1, we have a list of candidates that are then passed to the next step, which
clusters the potential code sequences to help select custom instructions.

3.2. Instruction Clustering

In Step 2 of Figure 2, we analyze the code sequences found in Step 1 in order to
cluster them to propose custom instructions that apply to several different sequences
of code. This clustering step can be performed on code sequences identified from the
same application (targeting application-specific custom instructions) and/or sequences
from different applications (targeting domain-specific custom instructions). Clustering
serves several functions: to enhance reusability, to minimize implementation area in
hardware, and to reduce the search space in the selection step.

In the following sections, we describe three methodologies for the clustering: DAG,
TED, and Hybrid.

3.2.1. Clustering with DAG Isomorphism. The first technique clusters code sequences us-
ing DAGs. For each pair of subDFGs obtained in Step 1, we perform a one-to-one
isomorphism detection (label 2.1 in Figure 2). Those graphs that are isomorphically
exact are clustered under the same label, to be potentially transformed into a single
custom instruction candidate.

Previous works [Arnold and Corporaal 2001; Clark et al. 2005] approached the prob-
lem by starting from small graphs, building them up to arrive at relatively large-sized
accelerators—a bottom-up approach. In our work, we employ a top-down approach
and start from maximal subgraphs extracted from a basic block, ideally covering as
large code sequences as possible, and exploit as much instruction-level parallelism as
possible.

Relatively larger custom instructions are more likely to yield better overall perfor-
mance, but the identification of big patterns of functionally identical computation is
a complex problem. Consider the three examples of subDFGs in Figure 3, identified
in different benchmarks and their equivalent algebraic expressions. Example 1 shows
two portions of code of the aacenc application from different basic blocks in their DAG
representations. They differ in the number and types of instructions they contain. Sim-
ple DAG pattern matching would not cluster these two DAGs, although their algebraic
functions are equivalent. In Example 2, we extend the problem to a domain of appli-
cations. We show DAGs of basic blocks from different benchmarks (mpeg2dec, aacenc,
mpeg2enc, and face_detect) that perform the same computation, but with different op-
erators. The DAGs of two of them (mpeg2dec, mpeg2enc) are isomorphically the same;
therefore, they could be clustered with DAG pattern matching. However, DAG pattern
matching is not able to cluster all four of them. In Example 3, we show two DAGs of
face_detect and tmndec with multiple outputs. In this case, although we can have a
partial match with DAGs for outputs 2 and 3, the full match for identical computation

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 47, Publication date: December 2013.

Accelerating an Application Domain with Specialized Functional Units 47:7

Fig. 3. Three examples of the usage of TEDs for instruction clustering. From top to bottom: DAGs, algebraic
expressions, TED construction process, and final normalized TEDs.

cannot be found. Summarizing, in the three motivational examples, pattern matching
using DAGs is missing opportunities to find commonalities among code sequences.

3.2.2. Clustering with TED Isomorphism. Because of the limitations of using DAG pattern
matching, we introduce a second clustering technique based on a canonical represen-
tation of portions of the application’s code. We gather insights from works on TEDs
[Ciesielski et al. 2006], commonly used for circuit verification. We use these TEDs for
another purpose: to find common parts of the code that cannot be found with a simple
pattern-matching technique using DAGs. We match code from applications using TEDs
at compile time (at an intermediate code level), and thus the shape of a TED does not
influence the final implementation of a custom instruction at the circuit level.

In order to understand how the TED technique works for cases such as the one
depicted in the examples of Figure 3, we first describe the basics of the representa-
tion. Taylor series expansion defines the representation of a multivariate algebraic
expression f (x, y, . . .) as:

f (x, y, . . .) = f (0, y, z, . . .) + x f ′(0, y, z, . . .) + 1
2

x2 f ′′(0, y, z, . . .) + . . . ,

where the origin is set in x = 0 and with f ′(x = 0) and f ′′(x = 0) as the successive
derivatives of f (x = 0). This decomposition, applied recursively to algebraic functions,
is stored into a directed acyclic graph, the Taylor Expansion Diagram (label 2.2 in
Figure 2). Each node of the graph represents an input variable, and three different types
of edges can be linked to a node: constant Taylor expansion is represented with a dashed
edge, the expansion on the first derivative is a plain lined edge, and the expansion on
the second derivative is a double-lined edge. On the bottom left of Figure 3, we can
find a key of that representation. Following a set of rules, we obtain a normalized and
canonical representation of the TED from the starting algebraic expression.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 47, Publication date: December 2013.

47:8 C. González-Álvarez et al.

In our concrete case, we start with the computations expressed as subDFGs or DAGs
from Step 1 in Figure 3. Then, in order to build a TED, we execute the following steps:

(1) Convert the subDFG into an algebraic expression. Note that boolean logic can be
expressed as an algebraic expression as well: for example, the logical “or” operation
can be represented as x ∨ y = x + y − xy [Ciesielski et al. 2006].

(2) Decide the order in which the variables will be expanded, as it affects the size
and shape of final canonical representation. We followed the recommendations of
Gomez-Prado et al. [2004] to keep optimized TEDs.

(3) Recursively calculate the values of the Taylor expansion for the constant, first, and
second derivative for every term in the algebraic expression.

(4) Apply reduction and normalization rules to arrive at and ensure canonicity as
explained by Ciesielski et al. [2006].

We explain the TED construction with the examples in Figure 3. In Example 1, the
first step converts the DAGs into the algebraic expressions A and B written under the
graphs. Note the expansion of the “or” operation into its counterpart algebraic expres-
sion. In the second step, we decide the ordering of the variables, which is important to
arrive at a canonical representation. In this case, the order is x, y. In the third step,
we construct the TED, which will be unique for both A and B, as their Taylor series
expansions yield the same values. Step i in the TED construction builds a partial TED
performing the Taylor series expansion first on variable x. Then, step ii expands on
variable y. The resulting TED, after applying normalization and reduction, leads to
the reduced version in the bottom of the example. For Example 2, the four algebraic
expressions are expanded in the same way, as shown in steps i to v. In Example 3,
with multiple output DAGs, we will have an algebraic expression for each one of the
outputs. Each expression is transformed into the corresponding TED, with as many
steps as input variables. At the end, the generated TEDs, separately, are reduced and
normalized, but also merged into a single normalized TED.

Finally, as TEDs are also directed acyclic graphs, we perform a one-to-one isomor-
phism detection with the normalized TED—like the ones at the bottom of Figure 3—as
we do with the DAG representation (label 2.3 in Figure 2).

3.2.3. Hybrid TED-DAG Clustering. The final clustering technique is the Hybrid TED-
DAG technique. Not all computations in their directed acyclic graphs can be converted
to a polynomial expression, and only polynomials with a finite Taylor expansion can
be modeled as TEDs. This excludes modular arithmetic, relational operations, and
exponentiation of constants as a base, whereas a DAG can represent all types of com-
putations as they are expressed in the DFG. Due to these restrictions, we propose a
hybrid technique that uses the TED representation when it can be created, and oth-
erwise uses the DAG representation of subDFGs to cluster computation (label 2.4 in
Figure 2). Using this hybrid approach, we should be able to cluster more code sequences
to target the same hardware, identifying the most efficient custom instructions for our
set of applications.

3.3. Heuristic Selection

After clustering code sequences, we have identified many different possible custom in-
structions. In order to select the most promising ones for our applications, we introduce
four novel scoring heuristics in Step 3 of Figure 2. Our scoring techniques use dynamic
execution data from the applications in order to prioritize custom instructions, either
focusing on application-specific or domain-specific custom instructions, that maximize
speedup. Our scoring techniques do not currently take hardware implementation area
into account. They score based on the number of regular instructions covered by each

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 47, Publication date: December 2013.

Accelerating an Application Domain with Specialized Functional Units 47:9

custom instruction, the frequency of execution of the basic blocks that contain the
subDFG that maps to that custom instruction, and (for domain-specific) the number of
applications that can use each custom instruction.

3.3.1. Application-Specific Scoring. We first focus on a scoring heuristic that prioritizes
custom instructions targeted at just one application (label 3.1 in Figure 2). Our heuristic
ranks custom instructions based on the potential speedup they can offer, using the
following terms: K is a custom instruction for which n code sequences are found in an
application; that is, n code sequences can be accelerated using custom instruction K.
ninsti is the number of regular instructions and f reqi is the frequency of execution of
the code sequence amenable to the custom instruction. The latter is gathered through
profiling (label 1.2 in Figure 2).

Our application-specific scoring heuristic for custom instruction K is then defined as:

scoringK =
n∑

i=1

ninsti × f reqi,

and essentially weights all code sequences with their instruction counts and execution
frequencies to have a measure of the speedup of the application as a whole.

3.3.2. Domain-Specific Scoring. To identify custom instructions that are most efficient
across a domain of applications, we must use different heuristics that take into ac-
count the reusability of the hardware (label 3.2 in Figure 2). We still take into account
a custom instruction’s execution frequency, but with a slight change. Because we are
considering different applications, we must normalize the execution frequencies to the
application’s total dynamic instruction count. For any given application, the normaliza-
tion is done by scaling the frequency of execution to the percentage of the application’s
total number of instructions executed.

We first define the following variables:

—K is a custom instruction with n code sequences found across all applications (1 ≤ n).
—ninst is the number of regular instructions of a given code sequence amenable to the

given custom instruction.
—nfreq is the normalized frequency of execution of the given code sequence.
—napp is the number of applications that can use the custom instruction.
—Each of these napp applications can use the custom instruction at m different points

in the code (1 ≤ m ≤ n), and thus (n = ∑napp
i=1 mi).

We now detail four new scoring heuristics that each prioritize custom instructions
differently, and we compare them later in the experimental results section.

Scoring #1: Normalized application specific.

scoringK =
n∑

i=1

ninsti × nfreqi

This first scoring is similar to the application-specific scoring, though it uses normalized
frequency values. It maximizes the ranking of frequently used custom instructions tar-
geting high numbers of instructions. A custom instruction’s sharing across applications
is not taken into account with this scoring heuristic.

Scoring #2: Scaled by sharing.

scoringK =
(

n∑
i=1

ninsti × nfreqi

)
× napp

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 47, Publication date: December 2013.

47:10 C. González-Álvarez et al.

Our second scoring technique does take into consideration a custom instruction’s
ability to be reused or shared across applications. The napp factor prioritizes custom
instructions that have a high sharing factor, when the scoring has to discriminate
among custom instructions with similar numbers of normalized dynamic instructions.
Application-specific custom instructions that are very frequently used are still highly
ranked, since nfreqi � napp.

Scoring #3: Geometric mean of sharing.

scoringK = napp

√√√√√napp∏
i=1

⎛
⎝ mi∑

j=1

ninstj × nfreqj

⎞
⎠

Our third scoring heuristic calculates the geometric mean of the mi application-
specific scores, where i is an index that iterates over the applications involved. Since
application-specific scores for a given custom instruction can vary by several orders
of magnitude, we propose this scoring to smooth out the spikes in the scores due to
a single application (when napp > 1). Custom instructions that benefit many applica-
tions but get a high score from only one application are penalized. This heuristic thus
introduces fairness for custom instructions targeting several applications. However,
custom instructions used by one application are not penalized.

Scoring #4: Random-scaled sharing.

scoringK =
napp−1∑

i=0

⎛
⎝ mi∑

j=1

ninstj × nfreqj

⎞
⎠ × napp

napp − i

In the final scoring heuristic, we introduce a randomness factor controlled by the
number of applications that the custom instruction targets. The application-specific
scoring is weighted by napp

napp−i . The assignment of i is random, but nappstill influences the
final result; thus, the higher the sharing factor, the higher the score. Note that the value
of i assigned to a particular application is nondeterministic, so the applications are
weighted differently for each code sequence. The reason for introducing some controlled
randomness is to distribute scores in a more flexible way, since there are other factors
that we do not consider in our current heuristics.

3.4. Evaluation: Estimating Performance and Area

Finally, in Step 4 from Figure 2, we evaluate the effectiveness of the custom instruc-
tions identified by the previous three steps. Informed by the prioritization of custom
instructions by the scoring heuristics in Step 3, we feed top custom instructions into
a hardware description language conversion tool that creates a preliminary hardware
implementation (label 4.1 in Figure 2). This implementation verifies that the identi-
fied sequences of code can be implemented as hardware structures and double-checks
the scoring techniques. The hardware implementation, using information from the ap-
plication profile, is fed into a model that estimates the achievable speedup and area
occupied by each custom instruction (label 4.2 in Figure 2). Area estimates are obtained
through hardware synthesis as we will explain in Section 4.1.

We estimate the speedup each custom instruction can achieve for each identified
sequence of code as follows. Consider a custom instruction that would be invoked at
n different locations in the code of a particular application, that covers ninst normal
instructions, and that is executed nfreq times at a particular location. Further assume
that hardware synthesis estimates the custom instruction to take hw cycles to execute.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 47, Publication date: December 2013.

Accelerating an Application Domain with Specialized Functional Units 47:11

Consider also a cost of Cin cycles to move input data from the register file to the
SFU before the custom instruction starts and a Cout cost to move outputs back to the
register file at the end of the accelerated execution. Both costs depend on the number
of input and output parameters of a particular custom instruction and the available
register ports in the baseline processor. We first estimate the execution time in cycles
of all uses of the custom instruction (on the SFU) as: Tw/ ci = ∑n

i=1 nfreqi × (hw cycles+
Cini + Couti), or the number of times the custom instruction is invoked multiplied
by its execution time in cycles. Then, we estimate the number of cycles that the same
sequences of code would take on the uncustomized processor (without using the custom
instruction): Tw/o ci = ∑n

i=1 ninsti × nfreqi × CPI, with CPI as the cycles per instruction
of the application on the target processor.

We define T as the total application execution time in cycles on the target processor
(without using the custom instruction). We then can find the difference between the
number of cycles our candidate sequences take on the uncustomized processor versus
using custom instructions, and subtract this from T to approximate the accelerated
performance. Formally, the estimated total application time when using custom in-
structions is T − (Tw/o ci − Tw/ ci). We then divide that estimated time by T to calculate
the SFU’s achievable speedup. This is a conservative estimate since we do not take
into account the potential instruction-level parallelism between regular and custom
instruction execution, which would result in higher speedups.

With this evaluation step, we are able to compare the potential performance improve-
ments that a set of custom instructions, whether including just application-specific cus-
tom instructions, domain-specific instructions, or both, can provide to an application
or set of applications.

4. EXPERIMENTAL SETUP

We briefly detail the implementation details of our specialized functional unit de-
sign exploration framework, including the software and hardware tools used, and our
benchmarks.

4.1. Framework

We use the LLVM compiler infrastructure [Lattner and Adve 2004] as the front-end
to our custom instruction design exploration framework. We modify the LLVM code
generation module to find maximum valid subDFGs for DFG exploration (Step 1 in
our framework). We perform graph isomorphism detection using the NetworkX library
[Hagberg et al. 2008] and construct the TED representations using the variable algebra
analysis part of Sage [Stein et al. 2013]. We obtain an execution profile for each of our
applications using the LLVM binary interpreter. The profile indicates the frequency of
execution for each basic block and is used in Steps 2 to 4 of our framework.

We assume that the target architecture has a spare core area tightly coupled to
the processor core to implement the configurable SFU, as shown in Figure 1. We con-
sider a single-core single-thread OpenSPARC T1 as the baseline architecture, which
has been adapted previously for research on embedded applications [SRISC 2012;
González-Álvarez et al. 2011]. The register file that both the ALU and the SFU access
consists of thirty-two 64-bit registers with three read, two write, and one transport
ports. The instruction encoding allows moving two input operands to the SFU with no
additional cost. Any extra inputs are sent in groups of three, with a cost of one cycle
per transfer, before the custom instruction execution starts. When the instruction ends,
outputs are packed together in groups of two and moved back to the register file, with
a cost of one cycle per transfer.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 47, Publication date: December 2013.

47:12 C. González-Álvarez et al.

Table I. Description of the Evaluated Application Benchmarks and Their Input Files

Benchmark Description Input

aacenc AAC audio compression format encoder 33.9MB WAV
cjpeg JPEG image format compressor 1.2MB PPM (Mediabench)
djpeg JPEG image format decoder 12.8kB JPEG (Mediabench)
face Face detection on bitmap files 734.5kB bitmap
tmndec H263 video format decoder (TMN impl.) 114kB H263 (Mediabench)
tmnenc H263 video format encoder (TMN impl.) 5.5MB YUV (Mediabench)
mpeg2dec MPEG2 video format decoder 34.9kB (Mediabench)
mpeg2enc MPEG2 video format encoder 506.9kB (Mediabench)
opt_flow Optical flow for motion estimation 884kB images

To evaluate the selected custom instructions, we first translate their functionality to
C code. For a given application, custom instructions that are functionally equivalent
are translated to one common piece of code. Across applications, for a given set of sec-
tions of code identified as functionally equivalent, we provide an implementation of the
custom instruction execution path for each application involved. Later, we choose the
best among them for the performance model. We use the Vivado HLS suite to perform
C to HDL conversion on those C-code segments. For feasibility reasons, our automatic
toolchain uses the default optimizations of Vivado HLS [Xilinx 2012]. Any further im-
provements to the hardware implementation with specifically set optimizations would
result in better overall speedups. The Xilinx ISE tool performs the synthesis of the
design, using the Virtex 5 FPGA as a target, which estimates the new hardware’s area
(per custom instruction) as a number of look-up tables (LUTs) and slices. We report area
estimates relative to the OpenSPARC T1 core area, which is also mapped onto a Xilinx
Virtex 5 FPGA for apples-to-apples comparison. Although this work currently targets
an ASIP for which the instruction-set architecture is configured at boot time, we use an
FPGA model to keep open the option of exploring ASIPs with runtime programmable
ISAs in the future. We also use the Xilinx ISE reports to estimate the number of cy-
cles per custom instruction, which we use to estimate performance speedup through
acceleration as previously explained.

4.2. Benchmarks

Table I shows the list of benchmarks that we use for our experiments, with their
descriptions and input files. All of the applications belong to the media domain. The
optical flow kernel and the face detection benchmark are part of the OpenCV library
[Bradski 2000]. The AAC (audio compression) encoder is based on a program provided
by Renesas Technology and Hitachi Ltd. The rest of the applications and their input
files belong to the Mediabench benchmark suite [Fritts et al. 2009].

5. ESTIMATED PERFORMANCE RESULTS

In this section, we present the experimental results obtained using the custom in-
struction design exploration framework presented in Section 3. We first compare the
speedup that we can achieve using the DAG, TED, and Hybrid clustering techniques
described in Section 3.2, showing in Section 5.1 that the TED and Hybrid techniques
by far outperform DAG for identifying custom instructions across a domain. We then
show differences between our four new scoring heuristics (from Section 3.3) across
benchmarks, demonstrating in Section 5.2 that, on average, the random-scaled shar-
ing heuristic works best for our applications. In contrast to Sections 5.1 and 5.2, fo-
cusing only on domain-specific custom instructions, we then evaluate the differences
in speedup that can be achieved using only domain-specific, only application-specific,

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 47, Publication date: December 2013.

Accelerating an Application Domain with Specialized Functional Units 47:13

Table II. Number of Code Sequences and Custom Instructions Found in Each Application with DAG, TED, and
Hybrid Methods, and the Percentage of Dynamic Instructions Covered by Them

These results use the random-scaled sharing heuristic and are for unlimited core area.

Num. code sequences Num. custom instr. % dynamic instr.
% Benchmark DAG TED Hybrid DAG TED Hybrid DAG TED Hybrid
aacenc 81 73 72 29 32 27 10.5 6.1 4.9
cjpeg 126 138 140 53 41 41 3.5 10.8 10.9
djpeg 115 119 119 52 43 43 2.0 16.9 16.9
face 165 211 211 45 66 66 0.9 9.3 9.4
tmnenc 89 116 121 29 37 38 0.5 0.9 0.8
tmndec 51 68 70 31 43 45 2.8 6.6 6.6
mpeg2dec 75 83 86 44 40 43 24.1 16.6 21.2
mpeg2enc 106 164 172 51 68 72 2.1 9.0 9.7
optflow 1 7 7 1 6 6 0.0 27.2 27.2

or a mix of both kinds of custom instructions in Section 5.3. With the whole core area
at our disposal, application-specific custom instructions achieve the highest speedup;
however, at lower core areas, domain-specific custom instructions perform well, but al-
ways benefit from the addition of application-specific custom instructions. Using both
kinds of custom instructions, we achieve the highest speedups. In Section 5.4, we per-
form a detailed analysis of the custom instructions included at particular percentages
of the core area for application-specific, domain-specific, and mixed configurations. We
reveal insights about the number of small, medium, and large custom instructions; the
average number of inputs and outputs; and the number of applications each config-
uration can target. Finally, in Section 5.5, we evaluate a more realistic setting using
cross-validation, evaluating how a set of custom instructions identified as useful for a
group of applications perform for another, previously unseen, application.

5.1. DAG versus TED versus Hybrid

We first evaluate the effectiveness of using a directed-acyclic graph to guide pattern
matching between code sequences (DAG) versus using a canonical approach to clus-
ter code sequences (TED). We compare their effectiveness considering all applications
from the domain. Table II compares the three techniques for each benchmark in the
number of code sequences they identified, number of custom instructions selected, and
percent of total dynamic instructions that can be converted to custom instructions.
These numbers were gathered using the random-scaled sharing heuristic to rank can-
didates and devoting an unlimited core area to the SFU. We select a custom instruction
if it can accelerate two or more code sequences from different benchmarks. For all but
one benchmark (aacenc), the TED and Hybrid techniques find a larger number of code
sequences than DAG. For all but two benchmarks (cjpeg and djpeg), TED and Hybrid
also select about the same or a larger number of custom instructions. Even with cjpeg
and djpeg, we see TED and Hybrid cover significantly more dynamic instructions than
DAG, which is also the case for all other benchmarks except aacenc and mpeg2dec.
Because the selection heuristic discards instructions that might cover more execution
time, TED and Hybrid perform slightly worse for aacenc and mpeg2dec.

Figure 4 presents a graph for each benchmark with a range of core areas dedicated
to the SFU on the x-axis and speedup on the y-axis. Here, we only include domain-
specific custom instructions, or those that accelerate more than one application. These
results use the best-performing scoring heuristic (random-scaled sharing), which we
discuss in detail in the next section. Each point on the graph represents a group of
domain-specific custom instructions that can be used by that benchmark and that fit
inside that core area (x-axis), which together can achieve that speedup (y-axis) for a

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 47, Publication date: December 2013.

47:14 C. González-Álvarez et al.

Fig. 4. Results of benchmark speedup versus custom instruction area for DAG, TED, and Hybrid methods,
with domain-specific custom instructions using random-scaled sharing scoring.

given benchmark. Note that each benchmark has a different x-axis scale because these
are the area percentages used per benchmark, not for the entire SFU. In all following
sections, we consider the entire SFU design when discussing area. The average of all
applications (using total SFU area) is shown in Figure 5(a).

On average, the Hybrid technique, which uses the TED representation when it is able
and otherwise uses DAG, is the most effective technique at finding domain-specific cus-
tom instructions (see Figure 5(a)). The Hybrid technique achieves higher speedups at
smaller areas (left-hand side on the graphs in Figure 4), always increasing the speedup
faster than the other two techniques. All but two benchmarks show the best speedups
with TED and Hybrid techniques regardless of area, and for tmnenc, DAG performs
best only between 6% and 12% of the core area. When given an unbounded core area,
only one benchmark, mpeg2dec, performs better with the DAG clustering technique
than with Hybrid. This happens because the Hybrid technique first tries to identify
custom instructions using TED, and when it cannot find any more, it complements
with DAG. If part of an application’s code is represented by TEDs and creates a less

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 47, Publication date: December 2013.

Accelerating an Application Domain with Specialized Functional Units 47:15

Fig. 5. Average over all applications for DAG, TED, and Hybrid methods, using random-scaled sharing
scoring, for domain-specific (a) and application-specific (b) custom instructions.

efficient custom instruction than a DAG design would, then the Hybrid technique would
not be able to take advantage of the better DAG implementation. We also see that for
most benchmarks, Hybrid and TED techniques perform very similarly. However, for
mpeg2dec, which reveals a large opportunity with the DAG technique, Hybrid can
achieve higher speedups than the TED technique alone because it can benefit from the
code sequences that can only be represented in a DAG.

Figure 5(a) shows that on average across our benchmarks, TED and Hybrid achieve
around 12% and 13% speedup, respectively, when using only 20% of the core area for
domain-specific custom instructions, while DAG obtains only 4% speedup. We contrast
this with Figure 5(b), which shows the average area and speedup numbers across
our benchmarks for the three clustering techniques when we only include application-
specific custom instructions. (We further compare application-specific versus domain-
specific designs in Section 5.3.) While TED’s canonical representation does not make
a large difference when clustering code sequences within the same application, we see
that it is very important to achieve higher speedups when generating domain-specific
custom instructions. The key insight here is that individual applications are coded
following the same style, so the benefit of a canonical representation is not so clear.
However, as we move across applications, we find different code styles and a canonical
representation is key to identifying acceleration opportunities.

5.2. Domain-Specific Scoring

We next compare the four new scoring heuristics that we explain in Section 3.3. Figure 6
presents a graph for each benchmark of the speedup that each heuristic predicts for a
given SFU area. For these graphs, we use the Hybrid clustering technique and include
only domain-specific custom instructions. Note that in these and all following sections,
we consider the entire SFU design and its area, not only those custom instructions
useful per application. Thus, area always ranges between 0% and 100% of the core.
The average across all benchmarks is presented in Figure 7 for 100% of the area, and
on the right we zoom in on smaller, more realistic areas of 0% to 20%.

Across all benchmarks, we see that the fourth scoring technique, or random-scaled
sharing, performs best on average. In Figure 7, it achieves higher speedups quicker
at lower areas, and at an unlimited area, it performs the best. At 20% area, shown
in Figure 7(b), this technique achieves similar speedups to scaled-by-sharing. There
are some variations across benchmarks in Figure 6. For face, the geometric mean

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 47, Publication date: December 2013.

47:16 C. González-Álvarez et al.

Fig. 6. Results of benchmark speedup versus SFU area for scoring techniques, with domain-specific custom
instructions created with the Hybrid technique.

scoring takes more area to achieve similar speedups, probably because it dampens the
importance of a domain-specific custom instruction that only performs well for one
application. For djpeg, the geometric scoring heuristic cannot achieve the speedups
the other three techniques achieve, and for tmndec, we see random-scaled sharing
more than doubling the speedup of any other heuristic at any given area. For mpeg2dec,
and to a lesser extent, mpeg2enc and tmnenc, the geometric mean heuristic that av-
erages the benefit each application can receive does rise to higher speedups at lower
areas. Only for mpeg2dec does the geometric mean technique get larger speedups than
the random-scaled sharing heuristic at high areas. In this particular case, the geomet-
ric mean heuristic ranks a pair of custom instructions with low reutilization higher
compared to the other scoring heuristics. The other heuristics did not rank these cus-
tom instructions as high because of previously identified, partially overlapping custom
instructions. For aacenc, random-scaled maximizes the speedup at smaller areas. In
particular, a custom instruction that causes a 6% speedup improvement is selected
with that scoring three positions earlier than with scaled-by-sharing. However, for
cjpeg, the scaled-by-sharing heuristic is the one that raises to high speedup values

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 47, Publication date: December 2013.

Accelerating an Application Domain with Specialized Functional Units 47:17

Fig. 7. Average over all applications for scoring techniques, with domain-specific custom instructions created
with the Hybrid technique.

at lower areas. We find here a counterexample: scaled-by-sharing selects a custom in-
struction that contributes 5% to the speedup improvement five positions earlier than
random-scaled. A closer look at the groups of code sequences that are clustered into
those custom instructions tell us that in both cases the coverage across applications
is maximized. However, random-scaled prioritizes less aggressively, and custom in-
structions with a medium number of applications but good overall performance will
still rank high. Therefore, we use that scoring as our default in the other experiments
reported in the article.

5.3. Application-Specific Versus Domain-Specific Configurations

Up until now, we have analyzed the potential of only domain-specific custom instruc-
tions. But our framework allows us to compare the performance of potential application-
specific custom instructions as well. In this section, we compare the speedups that can
be achieved using a part of the core area dedicated to only application-specific, only
domain-specific, or a mixture of both kinds of custom instructions. Our goal here is to
understand how to best configure an SFU to optimize full-system performance across
applications subject to area constraints. Or in other words, for a given core area, are we
better off choosing application-specific only, domain-specific only, or both application-
and domain-specific custom instructions for the SFU?

Figure 8 presents the speedup for each benchmark across a range of areas, including
only application-specific, only domain-specific, and both kinds of custom instructions.
We analyze performance when the SFU takes 0% to 100% of the core area. Figure 9
shows the averages across all benchmarks, using up to 100% of the core’s area, and
zooming in on small, more realistic areas from 0% to 20%. For all of these graphs,
we use the Hybrid clustering technique, and we use the application-specific scoring
for application-specific custom instructions, and the random-scaled sharing scoring for
domain-specific.

Our results reveal that, if given an unlimited area, using only application-specific
custom instructions can achieve the maximum speedup (34%, on average) for our
benchmarks. However, a potentially surprising result is that using both application-
and domain-specific custom instructions together approaches the performance of us-
ing only application-specific custom instructions (29%) and obtains higher speedups
at lower areas as compared to only application-specific. While using only domain-
specific custom instructions limits maximal speedup to around 13%, we see that this

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 47, Publication date: December 2013.

47:18 C. González-Álvarez et al.

Fig. 8. Results of benchmark speedup versus SFU area using only application-specific, application- and
domain-specific, or only domain-specific custom instructions. Results gathered using the Hybrid technique.

technique is more effective than application-specific at obtaining speedups at very small
areas. Given 20% area, application-specific achieves 8% speedup, while domain-specific
achieves 10% and both together achieve 23%. Furthermore, for several benchmarks,
namely, aacenc, face, optflow, and mpeg2dec, using only domain-specific custom in-
structions performs close to the best of the other two techniques.

The key insight here is that, while using only application-specific custom instructions
results in the highest possible speedups at large or unbounded core areas, considering
domain-specific custom instructions next to application-specific custom instructions
yields the highest possible speedup at realistic, smaller core areas. The reason is that
the domain-specific custom instructions benefit several applications, which are more
area efficient compared to application-specific custom instructions, which benefit a
single application only, and therefore have limited contribution to overall system per-
formance. A corollary of this finding is that, in order for hardware acceleration to
deliver substantial speedups, some notion of application-specific hardware accelera-
tion is needed (even at small areas). This requires knowing the target domain and

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 47, Publication date: December 2013.

Accelerating an Application Domain with Specialized Functional Units 47:19

Fig. 9. Average over all applications using only application-specific, application- and domain-specific, or
only domain-specific custom instructions. Results gathered using the Hybrid technique.

Table III. Classification of Custom Instructions (CI) in a Full-System Configuration of 5%, 10%, and 15%
of the SPARC Area

AS = application-specific, DS = domain-specific. Small = 1–5 regular instructions; Medium = 6–15 instructions;
Large = >15 instructions.

Small sized Medium sized Large sized
%area Config # CI in out # CI in out # CI in out #app Spdup

only AS 2 2.5 2 0 − − 2 38 2.5 4 1.07×
5% AS/DS 6(0/6) 5.3 2.2 2(0/2) 10 5 6(6/0) 26.5 8.2 9 1.22×

only DS 7 4.8 2 1 9 5 0 − − 9 1.07×
only AS 4 2.7 1.5 0 − − 2 38 2.5 6 1.07×

10% AS/DS 8(0/8) 5.4 2.3 4(2/2) 11.25 5.25 6(6/0) 26.5 8.2 9 1.24×
only DS 11 4.6 1.8 3 11.33 5.33 0 − − 9 1.10×
only AS 15 4.9 2.3 1 9 5 3 31.6 7 9 1.13×

15% AS/DS 9(0/9) 4.7 1.8 4(2/2) 11.25 5.25 6(6/0) 26.5 8.2 9 1.24×
only DS 13 4.8 2 4 12 6.5 0 − − 9 1.10×

its applications at SFU configuration time so that some application-specific custom
instructions can be included. Alternatively, one could devote a fraction of the SFU die
area to domain-specific and application-specific custom instructions that are known to
perform well given the applications known at design time.

5.4. Custom Instruction Analysis

In order to reveal further insights about how to build future specialized computing
units, and which custom instructions offer the most benefit inside an application do-
main, we present an analysis of the custom instructions identified as the most effective
at a few particular core areas. We compare the details of the SFU for designs with
application-specific, domain-specific, and a mixture of both kinds of custom instruc-
tions. We show custom instruction statistics for core area percentages 5%, 10%, and
15% in Table III, taking the best configurations as shown in Figure 8.

Table III shows three configurations: using only application-specific custom instruc-
tions (only AS), using only domain-specific custom instructions (only DS), and using
both (AS/DS, with the specific AS and DS portions in parentheses). We define three
sizes of custom instructions, depending on the number of instruction primitives that
each custom instruction implements. A small-sized custom instruction has one to five
instructions, a medium-sized one has six to 15, and a large-sized one has more than 15.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 47, Publication date: December 2013.

47:20 C. González-Álvarez et al.

We also present the average number of inputs and outputs for each size class; however,
these do not affect the size class (i.e., small custom instructions could have a large
number of inputs or outputs). Finally, we show the number of applications that each
configuration can cover in the second-to-last column and the speedup it achieves.

We can draw a few interesting conclusions from the best-performing custom instruc-
tion configuration statistics. First, using both application- and domain-specific custom
instructions already achieves 22% speedup using only 5% of the SPARC core’s area.
At the same area, using only application-specific custom instructions targets only four
applications and can get only 7% speedup, which raises to 13% when using 15% of
the core (while covering all nine applications). Interestingly, application-specific cus-
tom instruction configurations usually include small- and large-sized custom instruc-
tions but few medium-sized ones; in comparison, domain-specific custom instruction
configurations include no large-sized custom instructions, instead prioritizing custom
instructions with fewer than 15 base ISA instructions. Using both kinds of custom in-
structions (AS/DS), we find more domain-specific small-sized custom instructions, but
more application-specific ones of the large size. We also see that, though the average in-
put and output sizes are independent of the number of regular instructions per custom
instruction, in general, the numbers of inputs and outputs grow as we go from small- to
medium- to large-sized custom instructions. Interestingly, the mixed application and
domain configurations include custom instructions from each size class and achieve the
highest speedup for our applications. This suggests that the best-performing machine
should include both application- and domain-specific custom instructions.

5.5. Cross-Validation

In all previous experiments, we generated candidate domain-specific custom instruc-
tions from code sequences using the entire set of benchmarks. In this final section,
we evaluate a realistic setting where the machine is configured with a set of custom
instructions for a particular application domain, but then an as-yet-unseen application
runs upon it and tries to take advantage of the flexibility of the domain-specific custom
instructions (generally known as cross-validation). In Step 3 of our methodology, shown
in Figure 2, we cluster code sequences from N−1 of our benchmarks, prioritizing using
our random-scaled scoring heuristic, and then in Step 4, we evaluate the effectiveness
of those custom instructions on a different, the Nth, application.

Figures 10 and 11 show our cross-validation results for each benchmark and the
average across benchmarks, respectively. When given the total core area, all but two
benchmarks can reach the maximal speedup (obtained using domain-specific custom
instructions identified over all benchmarks, as in Section 5.3, when given unlimited
area). Benchmarks optflow and tmnenc cannot achieve their maximum speedup us-
ing our cross-validation approach. optflow achieves its speedup when using only one
custom instruction; in addition, as shown in Figure 8, optflow does achieve its max-
imum speedup when we include domain-specific custom instructions identified from
all benchmarks, whereas tmnenc can only benefit from application-specific custom in-
structions (achieving very limited speedup overall). The other seven benchmarks can
take advantage of custom instructions deemed useful for the domain, and especially
aacenc, face, mpeg2dec, tmndec, and djpeg achieve high speedups at very low core area
percentages. At only 20% of the core area (Figure 11), our applications achieve over 7%
speedup on average, which is a significant percentage of the maximum of 10%.

6. RELATED WORK

Here, we first survey work on application-specific custom instruction design, then detail
domain-specific techniques, and finally describe a few holistic system designs.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 47, Publication date: December 2013.

Accelerating an Application Domain with Specialized Functional Units 47:21

Fig. 10. Results of benchmark speedup versus SFU area for cross-validation per application using domain-
specific custom instructions. Results gathered using the random-scaled sharing scoring and the Hybrid
technique.

Fig. 11. Average over all applications for cross-validation results using domain-specific custom instructions.
Results gathered using the random-scaled sharing scoring and the Hybrid technique.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 47, Publication date: December 2013.

47:22 C. González-Álvarez et al.

Application-specific acceleration. Some research identifies custom instructions for par-
ticular applications, for performance and/or power reasons. Early works [Yu and Mitra
2004, 2007] established the baseline of the analysis using Data Flow Graphs (DFG),
and showed the importance of preserving graph convexity. They differentiated the
search process into identification and selection phases. Constraints such as the number
of input and output nodes of the DFG help to prune the search space during identifi-
cation. Later work coupled the identification and selection phases [Pozzi et al. 2006],
which resulted in relaxing the constraints and opening up the possibility of approxi-
mate techniques that are less computationally expensive. They use heuristics to gen-
erate instruction patterns, maximizing instruction coverage, but do not explicitly rank
the instructions as in our scoring methodology. Others, such as Verma et al. [2007],
assume that the core processor must be an RISC, which also relaxes constraints. This
implies a limited number of inputs and outputs, which prunes the results, in order to
minimize the number of registers used. In our exploration, we accept any number of
inputs and outputs for the custom instruction generation to maximize acceleration.

Symbolic algebra helps to identify and minimize the size of custom instructions
[Peymandoust and Pozzi 2003]. However, this work did not use polynomials in a canon-
ical form, as we do using TEDs. In addition, we use symbolic algebra for a different
purpose, namely, to find code commonalities. We follow a previously proposed fast
enumeration algorithm [Li et al. 2009] that we extend beyond their only application-
specific applicability. Other authors [Arora et al. 2010] apply a predefined set of rules,
in a specific order, to obtain a DAG representation of code functionality. This work, in
contrast to ours, does not consider TEDs or domain-specific custom instructions.

In contrast with some later works [Murray et al. 2009; Atasu et al. 2012] that rely
on integer linear programming, our final selection of custom instructions is based
on a heuristic-based search. Other works with heuristics [Cong et al. 2004] forecast
the gain of an instruction as a function of the instruction’s frequency of execution and
latency. They also use a dynamic programming algorithm to optimize for area, while our
scoring focuses on coverage of the critical path, potential reutilization, and equality in
the custom instruction’s sharing across applications. Heuristics of application-centered
works [Pothineni et al. 2007; Verma et al. 2007, 2010] maximize speedup with software
and hardware latency estimations, which we use for modeling purposes.

Domain-Specific Acceleration. Previous works on domain-specific processors [Arnold and
Corporaal 2001] or custom units [Clark et al. 2005] build their new instructions from
small subDAGs extracted from the DFG. The former [Arnold and Corporaal 2001]
limits the instruction patterns to three-node DAGs to limit the search space. The latter
[Clark et al. 2005] uses a pattern-matching approach on DAGs that are developed in
a bottom-up fashion using heuristics. They define guide functions that prune the DFG
exploration space, using the criticality of the data path, latency, and area as metrics. In
contrast to these prior works, we propose and use TEDs as a generalized representation
to improve custom instruction coverage across applications. In addition, we propose
scoring heuristics specifically designed to select domain-specific custom instructions,
with the benefit of preserving maximal subgraphs. We do not consider area in our
heuristics, but we take area into account to study application-specific versus domain-
specific specialization, which reveals the importance of domain-specific custom units
at small areas.

System Design. A few previous hardware acceleration design papers have been
more holistic in nature, addressing the entire execution stack from the programming
language to the compiler and the target platform. Almer and Bennett [2009] introduce
support for application-specific instruction set extensions into a complete framework
built on top of GCC. Our work also presents custom instruction generation as part

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 47, Publication date: December 2013.

Accelerating an Application Domain with Specialized Functional Units 47:23

of a framework based on the (LLVM) compiler but targets domain-specific custom
instruction designs. Another work targets health care applications [Cong et al. 2011]
but requires programmer support, while our methodology requires no user input.

7. SUMMARY

Hardware specialization is a promising paradigm to improve performance and energy
efficiency in the absence of Dennard scaling. However, a customized processor tailored
to a specific application delivers high performance for that specific application only
and is costly to manufacture. In contrast, a customized processor targeting an entire
application domain, while being less effective for an individual application, may deliver
better overall system performance when different applications run on the device and
may be more economically viable by targeting a larger market.

This article explores this tradeoff between application-specific versus domain-specific
hardware specialization and makes a number of contributions with respect to acceler-
ating an application domain by identifying custom instructions to add to an existing
ISA. We propose the use of Taylor Expansion Diagrams (TEDs), canonical represen-
tations of code sequences, previously used for circuit verification, to identify custom
instruction opportunities. We find TEDs to be substantially more effective at identi-
fying functionally equivalent code sequences across applications than the previously
used directed acyclic graph (DAG) representation; combining TEDs with DAGs is even
more effective at accelerating applications. To be able to quickly compare and rank
potential domain-specific custom instructions during exploration, we propose scoring
heuristics that take into account the frequency of custom instruction use both within
and across applications. We use both TEDs and our scoring heuristics in our custom in-
struction exploration framework, along with performance and area estimation. We find
that while application-specific custom instructions result in the highest possible perfor-
mance at large or unbounded core areas, including domain-specific custom instructions
yields the highest possible speedup at small, more realistic core areas. This finding un-
derlines the need for domain-specific instructions for practical and flexible hardware
specialization. In addition, we demonstrate that the identified custom instructions us-
ing our exploration framework are effective for previously unseen applications within
the same domain, making specialization more generally applicable.

ACKNOWLEDGMENTS

We thank the anonymous referees and the associate editor for their valuable feedback and suggestions. This
work is supported by the Ministry of Science and Technology of Spain and the European Union (FEDER
funds) under contract TIN2012-34557, by the Generalitat de Catalunya (contract 2009-SGR-980), and by
the HiPEAC3 Network of Excellence (FP7/ICT 287759). Additional support is provided by the FWO project
G.0179.10N, the UGent-BOF project 01Z04109, and the European Research Council under the European
Community’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no. 259295. We would
also like to thank the Xilinx University Program for its hardware and software donations.

REFERENCES

ALMER, O. AND BENNETT, R. 2009. An end-to-end design flow for automated instruction set extension and
complex instruction selection based on GCC. In Proceedings 1st International Workshop on GCC Research
Opportunities (GROW’09).

ALTERA CORPORATION. 2013. Altera Nios II. Retrieved November 26, 2013 from http://www.altera.com/
devices/processor/nios2/ni2-index.html.

ARNOLD, M. AND CORPORAAL, H. 2001. Designing domain-specific processors. In Proceedings of the 9th Interna-
tional Symposium on Hardware/Software Codesign. ACM, New York, NY, 61–66.

ARORA, N., CHANDRAMOHAN, K., POTHINENI, N., AND KUMAR, A. 2010. Instruction selection in asip synthesis using
functional matching. In Proceedings of the International Conference on. 146–151.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 47, Publication date: December 2013.

47:24 C. González-Álvarez et al.

ATASU, K., LUK, W., MENCER, O., OZTURAN, C., AND DUNDAR, G. 2012. FISH: Fast Instruction SyntHesis for
Custom Processors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 20, 99, 1–1.

ATASU, K., MENCER, O., LUK, W., OZTURAN, C., AND DUNDAR, G. 2008. Fast custom instruction identification
by convex subgraph enumeration. In Proceedings of the 2008 International Conference on Application-
Specific Systems, Architectures and Processors (ASAP’08). IEEE Computer Society, Washington, DC,
1–6.

BRADSKI, G. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools.
CIESIELSKI, M., KALLA, P., AND ASKAR, S. 2006. Expansion diagrams: A canonical representation for verification

of data flow designs. IEEE Transactions on Computers 55, 1188–1201.
CLARK, N. T., ZHONG, H., AND MAHLKE, S. A. 2005. Automated custom instruction generation for domain-specific

processor acceleration. IEEE Transactions on Computers 54, 2005.
CONG, J., FAN, Y., HAN, G., AND ZHANG, Z. 2004. Application-specific instruction generation for configurable

processor architectures. In Proceedings of the 2004 ACM/SIGDA 12th International Symposium on Field
Programmable Gate Arrays (FPGA’04). ACM, New York, NY, 183–189.

CONG, J., SARKAR, V., REINMAN, G., AND BUI, A. 2011. Customizable domain-specific computing. IEEE Design &
Test of Computers 28, 2, 6–15.

DENNARD, R. H., GAENSSLEN, F. H., YU, H., RIDEOUT, V. L., BASSOUS, E., AND LEBLANC, A. R. 1974. Design of
ion-implanted MOSFET’s with very small physical dimensions. IEEE Journal of Solid-State Circuits 9,
256–268.

ESMAEILZADEH, H., BLEM, E., ST. AMANT, R., SANKARALINGAM, K., AND BURGER, D. 2011. Dark silicon and the end of
multicore scaling. In Proceedings of the 38th Annual International Symposium on Computer Architecture
(ISCA’11). ACM, New York, NY, 365–376.

ESTRIN, G. 1960. Organization of computer systems. In Proceedings of the Western Joint IRE-AIEE-ACM
Computer Conference (Western’60). ACM Press, New York, 33.

FRITTS, J. E., STEILING, F. W., TUCEK, J. A., AND WOLF, W. 2009. MediaBench II video: Expediting the next
generation of video systems research. Microprocess. Microsyst. 33, 4, 301–318.

GOMEZ-PRADO, D., REN, Q., ASKAR, S., CIESIELSKI, M., AND BOUTILLON, E. 2004. Variable ordering for taylor
expansion diagrams. In Proceedings of the 9th IEEE International High-Level Design Validation and
Test Workshop (HLDVT’04). IEEE Computer Society, Washington, DC, 55–59.

GONZALEZ, R. 2000. Xtensa: A configurable and extensible processor. IEEE Micro 20, 2, 60–70.

GONZÁLEZ-ÁLVAREZ, C., FERNÁNDEZ, M., JIMÉNEZ-GONZÁLEZ, D., ALVAREZ, C., AND MARTORELL, X. 2011. Automatic
generation and testing of application specific hardware accelerators on a new reconfigurable OpenSPARC
platform. In Proceedings of the Workshop in Reconfigurable Computing (HiPEAC’11). 85–94.

HAGBERG, A. A., SCHULT, D. A., AND SWART, P. J. 2008. Exploring network structure, dynamics, and function
using NetworkX. In Proceedings of the 7th Python in Science Conference (SciPy’08). 11–15.

HAMEED, R., QADEER, W., WACHS, M., AZIZI, O., SOLOMATNIKOV, A., LEE, B. C., RICHARDSON, S., KOZYRAKIS, C., AND

HOROWITZ, M. 2010. Understanding sources of inefficiency in general-purpose chips. In Proceedings of
the 37th Annual International Symposium on Computer Architecture (ISCA’10). ACM, New York, NY,
37–47.

LATTNER, C. AND ADVE, V. 2004. Llvm: A compilation framework for lifelong program analysis & transfor-
mation. In Proceedings of the International Symposium on Code Generation and Optimization(CGO’04).
IEEE Computer Society, Washington, DC, 75.

LI, T., SUN, Z., JIGANG, W., AND LU, X. 2009. Fast enumeration of maximal valid subgraphs for custom-
instruction identification. In Proceedings of the 2009 International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems (CASES’09). ACM, New York, NY, 29–36.

MURRAY, A. C., BENNETT, R. V., FRANKE, B., AND TOPHAM, N. 2009. Code transformation and instruction set
extension. ACM Transactions on Embedded Computing Systems 8, 4, 1–31.

PEYMANDOUST, A. AND POZZI, L. 2003. Automatic instruction set extension and utilization for embedded
processors. In Proceedings of the 14th International Conference on ASAP, Application-Specific Systems.

POTHINENI, N., KUMAR, A., AND PAUL, K. 2007. Application specific datapath extension with distributed i/o
functional units. In Proceedings of the 20th International Conference on VLSI Design Held Jointly with
6th International Conference: Embedded Systems (VLSID’07). IEEE Computer Society, Washington, DC,
551–558.

POZZI, L., ATASU, K., AND IENNE, P. 2006. Exact and approximate algorithms for the extension of embedded
processor instruction sets. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 25, 7, 1209–1229.

SRISC. 2012. Simply risc s1 core.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 47, Publication date: December 2013.

Accelerating an Application Domain with Specialized Functional Units 47:25

STEIN, W. ET AL. 2013. Sage Mathematics Software (Version x.y.z). The Sage Development Team. Retreived
from http://www.sagemath.org.

VASSILIADIS, S., WONG, S., GAYDADJIEV, G., BERTELS, K., KUZMANOV, G., AND PANAINTE, E. 2004. The MOLEN
polymorphic processor. IEEE Transactions on Computers 53, 11, 1363–1375.

VENKATESH, G., SAMPSON, J., GOULDING, N., GARCIA, S., BRYKSIN, V., LUGO-MARTINEZ, J., SWANSON, S., AND TAYLOR,
M. B. 2010. Conservation cores: reducing the energy of mature computations. SIGARCH Comput. Archit.
News 38, 1, 205–218.

VERMA, A. K., BRISK, P., AND IENNE, P. 2007. Rethinking custom ISE identification: A new processor-agnostic
method. In Proceedings of the 2007 International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems (CASES’07). ACM, New York, NY, 125–134.

VERMA, A. K., BRISK, P., AND IENNE, P. 2010. Fast, nearly optimal ise identification with I/O serialization
through maximal clique enumeration. Trans. Comp.-Aided Des. Integ. Cir. Syst. 29, 3, 341–354.

XILINX. 2012. Vivado Design Suite User Guide.
YU, P. AND MITRA, T. 2004. Scalable custom instructions identification for instruction-set extensible proces-

sors. In Proceedings of the 2004 International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES’04). ACM, New York, NY, 69–78.

YU, P. AND MITRA, T. 2007. Disjoint pattern enumeration for custom instructions identification. In Proceedings
of the International Conference on Field Programmable Logic and Applications (FPL’07). 273–278.

Received June 2013; revised November 2013; accepted November 2013

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 47, Publication date: December 2013.

