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Abstract

Cooperative caching seeks to improve memory sys-
tem performance by using compiler locality hints to
assist hardware cache decisions. In this paper, the
compiler suggests cache lines to keep or evict in set-
associative caches. A compiler analysis predicts data
that will be and will not be reused, and annotates the
corresponding memory operations with a keep-me or
evict-me hint. The architecture maintains these hints on
a cache line and only acts on them on a cache miss.
Evict-me caching prefers to evict lines marked evict-
me. Keep-me caching retains keep-me lines if possi-
ble. Otherwise, the default replacement algorithm evicts
the least-recently-used (LRU) line in the set. This pa-
per introduces the keep-me hint, the associated compiler
analysis, and architectural support. The keep-me archi-
tecture includes very modest ISA support, replacement
algorithms, and decay mechanisms that avoid retaining
keep-me lines indefinitely. Our results are mixed for our
implementation of keep-me, but show it has potential.
We combine keep-me and evict-me from previous work,
but find few additive benefits due to limitations in our
compiler algorithm which only applies each indepen-
dently rather than performing a combined analysis.

1 Introduction

The gap between processor and memory speed contin-
ues to grow and memory accesses increasingly are the
main processor performance bottleneck. Furthermore,
to attain small memory latencies in future technologies
designers are maintaining or shrinking or partitioning
caches [3, 24]. Modern memory systems use cache hier-
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archies with small degrees of set associativity and tech-
niques like hardware prefetching to hide memory laten-
cies [18, 33]. These trends and large data sizes are ex-
acerbating capacity and conflict misses. Unfortunately,
the typical ISA interface to this parallel and complex
memory system remains entrenched in a 30 year old de-
sign as a simplistic load/storeeye dropperwith perhaps
a software prefetch. To attain improved performance on
next generation memory systems, the ISA will need to
broaden its interface. This paper continues in the vein
of prior work [12, 43, 44, 46] that suggests using com-
piler analysis together with modest hardware support to
improve memory efficiency and effectiveness. Here, we
consider improving set-associative cache decisions.

Set-associative caches typically use an Least-
Recently-Used (LRU) replacement policy. When the
cache brings in a new line, it evicts the LRU data from
the set. For many programs, this policy does not perform
well [3, 10, 31]. The current hardware-only approach is
inherently limited because it can only ever use the past
to predict the future. A software-only approach is also
inherently limited because although the compiler can ac-
curately predict data reuse within a procedure, it quickly
loses accuracy beyond this scope.

Our research focuses on a cooperative soft-
ware/hardware approach that strives to combine the best
of both static and dynamic information. The compiler
provides hints as to which data to keep or evict in set-
associative caches. When the hardware is performing
well, and program references hit in the cache, it ig-
nores the hints. However on a miss, it uses the hints to
guide its replacement decisions. Thus, the hardware de-
faults to its statistical decisions that use past history and
wide scope, but uses compiler guidance when needed
and available.

Wang et al. first proposedevict-mecaching [44].
The evict-me compiler analysis finds array references



in loops that the program will not use again soon, and
sets anevict-mehint bit on the memory instruction
(load/store). The hardware stores the hints on the cache
line. On a miss, the hardware preferentially evicts evict-
me cache lines rather than the LRU line. If the com-
piler guarantees the reuse distances of evict-me data are
longer than other data, Wang et al. prove this cache will
perform better than LRU or at least as well.

This work introduces a complementary cooperative
policy calledkeep-me. The keep-me compiler analysis
finds array accesses with temporal and spatial reuse that
the cache has sufficient capacity to retain, and marks
the first memory instruction with keep-me. We exper-
iment with several compiler keep-me heuristics. The
hardware acts on this hint on a miss. The keep-me re-
placement algorithm evicts cache linesnot marked with
keep-me in LRU order. If all lines are keep-me, it de-
faults to LRU. However, if the cache never evicts keep-
me lines, they would eventually monopolize the cache
and all replacement would revert to LRU. To gradually
decay keep-me, the hardware uses a keep-me counter
which it decrements on each replacement. Because the
hardware support adds only a few bits to the LRU com-
parison and performs the comparison only on a miss, it
will not change hit or miss times.

We implement our compiler algorithm in the Scale
compiler [29] and the hardware component in Sim-
pleScalar [4], a hardware simulator. We use five bench-
mark programs from SPEC 2000, NAS, and Perfect, and
four kernels with selection of modern cache configura-
tions. Our results demonstrate that the effectiveness of
cooperative caching is highly dependent on the bench-
mark, data sizes, and cache configuration. Our best com-
piler heuristic heuristics for keep-me yields mixed re-
sults. In the worst result, keep-me degrades performance
by 7%. In the cache configuration with the best aver-
age results, keep-me improves performance by 6% for
one program, and deteriorates performance by 1% for
another. Keep-me and evict-me together improve total
simulated performance by 6% to -1%. For another cache
configuration, they improve simulated performance by
as much as 35.7%. Thus, we find potential for keep-me
but have not yet delivered a system that only maintains
or improves performance.

Keep-me and evict-me should be more than additive
since they reduce misses in different ways. Evict-me
improves cache performance by improving replacement
decisions due to conflict or capacity misses, whereas
keep-me targets capacity misses by explicitly choosing
the data to keep in the cache. This work simply com-
bines the algorithms. A better compiler algorithm that

program toybench
integer a(2000), b(400,2000),c(400,2000)
integer p(400, 2000),r(400, 200)

do j = 1,400
do k = 1,2000

p(j,k) = p(j,k) + b(j,k)*a(k)
enddo

do m = 1,2000
r(j,m) = r(j,m) + c(j,m)*a(m)

enddo
enddo

end

Figure 1. Fortran Example to Illustrate Keep-me

explicitly reasons about both at the same time should be
able to perform better than the results we show here. We
leave that exploration for future work.

The remainder of this paper is organized as follows.
Section 2 presents an example to illustrate the potential
of keep-me. Section 3.1 describes the software imple-
mentation and a range of heuristics that mark tempo-
ral and spatial data. Section 3.2 discusses the hardware
modifications to effectively use the compiler informa-
tion. Section 4 discusses the experimental framework
and simulation results. Section 5 discusses related work
and then we conclude.

2 Motivating Example

This section presents an example that shows potential
miss rate reductions by using keep-me to target temporal
loads. In Figure 1, arraya has temporal reuse between
the innerk andm loops. If there is insufficient capac-
ity or poor choice of replacement, all accesses toa can
miss. Assuminga is less than the cache size, the po-
tential benefit of keep-me is to assure that them loop’s
accesses toa are hits.

Assume a fully associative 8k (8192 bytes) L1 cache
with LRU replacement and 4 byte integers. Consider
one iteration of the outer (j) loop. Sincej is a constant
in the k loop, each of arraysb, a, andp touches 8000
bytes, 24000 bytes total which is roughly three times
the cache capacity. Initially, thek loop will experience
a cold misses. When loop volume reaches 8192 bytes,
subsequent loop accesses will then replace LRU data
(around 16000 bytes), evicting all three arrays roughly
equally. In them loop with LRU, there will be capacity
misses toa and cold misses tor andc. Thus LRU attains
a miss rate of 100%. If the compiler marks the accesses
to a in thek loop with keep-me, the miss rate can drop
to 86% (40000/48000).

Keep-me improvements are very dependent on the
cache and data size match. If thek loop volume is much
smaller than the cache, the cache will usually retaina
without keep-me. If the volume ofa is much larger than



setKeepMeTag()f
for each loop nestf

compute NV = nest volume
for each array reference r in nestf

if (r has temporal reuse in this nest)f
if (NV > cache size && NV< 2 * cache size)f

mark r with keep-me
set keep-me counter to max value (implicit)g

else if (NV unknown && r has temporal reuse with next loop)f
mark r with keep-me
set keep-me counter to max value (implicit)g g g g g

Figure 2. Temporal Keep-me Heuristic Pseudocode

the cache, caching all ofa is not possible and marking
thek loop accesses toa with keep-me is insufficient. We
leave this case for future work.

3 Keep-Me
Keep-me caching requires compiler analysis and archi-
tectural support. The compiler uses dependence anal-
ysis to detect reuse, and replaces the first load/store to
that data with a special keep-me load/store. The hard-
ware support adds keep-me bits to the LRU bits. On
a keep-me load/store, it sets the keep-me flag bit and
counter bits. On a miss, it uses the bits to select a re-
placement line. To prevent the cache from keeping this
data forever, the replacement algorithm decrements the
keep-me counter bits on misses to the set. When the
counter reaches zero, the cache reverts to the LRU re-
placement policy for this line. The remaining sections
describes our system, policies, and potential variations
in more detail.

3.1 Keep-me Compiler Analysis

Our compiler analysis identifies and marks array refer-
ences with temporal and spatial reuse with keep-me that
it predicts the cache has sufficient capacity to exploit.
Table 1 enumerates the compiler heuristics that vary in
both the percent of memory instructions they mark, and
the reuse distance they attempt to tolerate. It also in-
dicates whether each heuristic targets temporal and/or
spatial reuse. We discuss them in logical order, each im-
proving upon the last. All of our results use thecspatial
heuristic described at the end of the section.

3.1.1 Heuristics

Thetemporalkeep-me heuristic identifies data with tem-
poral reuse within the same loop nest. Figure 2 shows
the pseudo-code which first computes the loop nest vol-
ume of each nest. If an array reference has temporal
reuse within a loop nest, the algorithm checks the nest
volume. If the nest volume is larger than the cache size,
but less than twice the cache size, the compiler marks the

array reference with keep-me. If the total nest volume is
less than the cache size, the cache will naturally keep all
data from the nest. If the nest volume is larger than twice
the cache size, there is a chance that reuse distances will
be too large to effectively keep the corresponding array
volume in the cache.

Often the compiler cannot statically determine loop
nest volume because of unknown loop bounds. In this
case, thetemporalalgorithm marks the access keep-me
if the array reference has temporal reuse with the adja-
cent loop at the same depth. This heuristic assumes that
the volume of the two loops does not greatly exceed the
cache size. When this assumption is wrong, the cache
will perform poorly regardless, and keep-me should not
exacerbate it.

The temporalheuristic marks relatively few loads as
keep-me. We also tried an aggressive heuristic called
indiscriminatethat marks all loads as keep me if they
have any temporal reuse within the nest. This heuristic
marks significantly more keep-me memory references
compared with thetemporalheuristic. Indiscriminate
decreases memory miss rates more thantemporal for
some programs. Unfortunately, it sometimes substan-
tially increases miss rates because it floods the cache
with keep-me bits that mask their LRU position.

Trying to find a sweet-spot between the two, we im-
plemented thecap heuristic by modifyingindiscrimi-
nate. Cap marks array references with keep-me until
it reaches a threshold percentage of the loads in the nest.
We experiment with thresholds of 25%, 50%, and 75%.
Capslightly improves performance overindiscriminate,
and limits its exposure to large performance degrada-
tions. Instead of selecting references on a first-come-
first-serve (FCFS) basis ascap does, we implemented
an algorithm that prioritized references to arrays that it
marked keep-me from prior loops. This scheme prefer-
entially marks the arrays with a keep-me history in sub-
sequent loops. If these references are insufficient to sat-
isfy the cap, the compiler reverts to FCFS until it meets
the cap. This priority scheme made little difference to
the results ofcap, and thus we do not explore it further.

None of the above heuristics explicitly target data
with short distance spatial locality. To determine if keep-
me was disturbing this spatial locality which a conven-
tional cache would capture, we introduced theispatial
heuristic. Ispatial adds short spatial reuse toindiscrim-
inate. The compiler thus marks spatial data as keep-me
and spatial. The compiler communicates both the keep-
me and the spatial keep-me hints to the architecture in
memory instructions. The architecture turns off the spa-
tial bit when the program touches the last element in the



(s)patial/
(t)emporal

Name bits Description
temporal t Keep-me is marked on temporal loads based on nest volume
indiscriminate t Keep-me is marked on all temporal loads irrespective of nestvolume
cap t Keep-me is marked on temporal loads up to a maximum of a fixed percentage of loads per nest
ispatial s/t Similar to indiscriminate. The compiler also marks all spatial loads with spatial keep-me
cspatial s/t Combinesispatial andcap

Table 1. Compiler Heuristics

setKeepMeTag()f
for each loop nestf

for each array reference r in nestf
if (r has temporal reuse in this nest)f

if (less than CAP% of refs in this loop are marked with keep-me) f
mark r with keep-megg

else if (r has spatial reuse in this nest)f
if (less than CAP% of refs in this loop are marked with keep-me) f

mark r with spatial keep-meg g g g g
Figure 3. Cspatial Keep-me Heuristic Pseudocode

line. It thus reduces the time it keeps spatial data as
compared with temporal keep-me data. This heuristic
eliminated some keep-me degradations when temporal
keep-me data interfered with and spoiled spatial reuse.

Our best heuristic combinescap and ispatial which
limits the number of memory instructions set with tem-
poral and spatial keep-me. Figure 3 presents the pseudo-
code for thecspatialheuristic. It combines the improved
performance ofcapoverindiscriminate, but also insures
that keep-me does not disturb short distance spatial lo-
cality. The remainder of this paper uses thiscspatial
heuristic with loop cap thresholds of 25%, 50%, and
75%.

3.1.2 Potential Improvements

All our heuristics use the same keep-me decay counter
value, as shown in both branches of the inner if-then-
else in Figure 2. In the current implementation (see Sec-
tion 3.2), the hardware sets the counter value based on
the set-associativity of the cache. Since the hardware de-
cays the counter on each replacement until it invalidates
keep-me, higher counter value will retain the line longer
in the cache. Experiments varying this counter value did
not change the results much.

However, by adjusting the counter on a per-reference
basis, the compiler could differentiate data with short
reuse over data with a longer reuse distance. For ex-
ample, if the nest volume falls between zero and the
cache size, we could mark the array reference with keep-
me and reduce the initial value of the keep-me counter.

Procedure A

Load a 
cacheline

Procedure A

No operation

Set the keep−me
bits

If it is a keep−me
line, then
set the keep−me
bits

If it is a keep−me
line, then
set the keep−me
bitsbits

 Procedure A:
 1. Decrement keep−me counters for all lines in this set
 2. Pick up a victim
 3. If it is a keep−me line set the keep−me bits

L2cache:1

L2cache:2

L1 cache

Hit

Miss

Hit

Miss

Miss

Hit

Figure 4. State diagram of L1 and L2 cache behavior in a keep-
me cache

These changes would modify the secondif in Figure 2
and require dedicating instruction bits to pass the max-
imum counter. We believe this feature may provide a
benefit in future investigations.

3.2 Keep-me Hardware Support

This section discusses keep-me instruction-set archi-
tecture (ISA) support, policies for decaying the keep-
me counter, and policies for using keep-me in multiple
cache levels (we use two levels).

The simplistic load/store memory/system interface
is increasingly showing its age. Since these instruc-
tions determine more of processor performance, next
generation ISAs will need to support specialized ver-
sions. This trend is already apparent with the addition
of prefetch and write-no-fetch instructions in many ar-
chitectures. We recommend special keep-me and evict-
me instructions with additional bits for spatial, temporal,
and counter tags, following Wang et al. [44].



The Alpha ISA [23] and SimpleScalar [4] infrastruc-
ture limit our prototype keep-me ISA implementation.
We steal three bits from the load offset. (In our bench-
marks, fewer than 1% of loads use these bits [42], and
we inhibit the hints on them.) We use two bits for keep-
me and one for evict-me. Wang et al.’s evict-me imple-
mentation used 4 bits: the evict-me flag, a spatial direc-
tion bit, and two bits for the spatial stride. A non-zero
spatial stride flagged spatial locality. Wang et al.’s evict-
me implementation had this extra information and thus
performs better with spatial data than this evict-me im-
plementation which must share its bits with keep-me.
The previous evict-me evaluation differs also because it
used a different ISA and simulator, URSIM [12].

For keep-me, the first bit turns keep-me on, and the
second flags stride-one forward spatial reuse. With a
spatial keep-me, the hardware tracks cache line hits.
When the program accesses the last element in the line,
the hardware turns off the keep-me bit. This mechanism
insures the cache exploits short distance spatial local-
ity but does not keep the line longer than necessary. If
the compiler detects both temporal and spatial keep-me
reuse, it does not set the spatial bit.

To decay the keep-me hints, the hardware adds a
keep-me counter to each keep-me cache line. Without
a counter, a keep-me line could potentially stay forever
in the cache or if all lines are keep-me, the replace-
ment algorithm will revert to LRU. If too many lines
are keep-me, degradations compared with LRU may re-
sult for two reasons. First, the keep-me lines may cause
the eviction of other lines, reducing their cache resi-
dency time and disrupting their reuse. Second, this in-
crease in misses will decay the keep-me counter more
rapidly, and may lead to keep-me lines being evicted be-
fore its intended reuse. The hardware initializes a keep-
me counter to a value equal to the set-associativity of
the cache, but other hardware defaults or software con-
trolled values are possible.

Our keep-me implementation is described in the form
a state diagram in Figure 4. The state diagram depicts
what happens as a load is serviced through the L1 and
L2 caches.

On a hit, the hardware updates the line’s LRU posi-
tion, but takes no other action. On a miss, the hardware
decrements the keep-me counters in the set. When the
counter reaches zero, the hardware ignores the keep-me
bit. At a minimum, this algorithm will keep this line in
the cache one replacement longer than LRU. On a miss,
the hardware selects a line without keep-me if possible.
It first examines the LRU position. If keep-me is set
and its counter is non-zero, it inspects the next line in

the LRU list. This process continues until it finds a line
without keep-me, or defaults to LRU. With evict-me or
with both keep-me and evict-me, the replacement algo-
rithm selects the LRU evict-me line if one exists. Since
keep-me and evict-me take no action on a hit, they do not
increase hit cycle times. On a miss, they require mini-
mal additional logic and can examine replacement bits
in parallel, all of which can be accommodated within
the miss latency.

Once the counter reaches zero, our hardware imple-
mentation treats the keep-me and spatial keep-me lines
the same as any other line. Our implementation does
not turn off the keep-me bits, because it migrates the
information to the next cache level (from the L1 to L2
in our experiments). We implement a mostly inclusive
cache that follows the P4’s policies [18] in which the
hardware places a line in both caches on its first access,
but makes independent replacement decisions.� Our im-
plementation sets keep-me in both caches and uses the
above policies. However, when the hardware evicts a
keep-me line from the L1 that is resident in the L2, it
reinitializes the L2 keep-me counter to attain longer dis-
tance reuse, if possible. Simulation results show that this
migration feature improves keep-me performance. If the
line is not resident in the L2, the hardware does not in-
sert it.

We also implement an enhancement on a hit. On a
keep-me memory instruction hit, if the line is not set to
keep-me, the hardware sets the keep-me bits. We also
replicate the hint in the corresponding line in the L2.
This logic can proceed independently of the hit service.
This enhancement on a hit is described in Figure 4 in the
box named L2cache:1.

In addition to the software heuristics that limit the
number of keep-me lines, we explored hardware solu-
tions when too many lines are keep-me. We experiment
with a bound on the number of keep-me lines in a set.
For example, with a 4-way set associative cache and a
50% bound, if two keep-me lines with non-zero coun-
ters are already in the set the hardware turns off keep-me
in subsequent keep-me lines by setting their counters to
zero. We use this implementation instead of simply turn-
ing off the keep-me bit, so the hardware can migrate this
keep-me line to the next level cache, provided the line is
resident and the set has not yet reached its bound.

4 Experimental Results

This section first overviews our compiler, simulator, and
benchmarks. It then presents results. We include statis-�Another possible implementation is the AMD Athlon on-die L2,
non-inclusive cache hierarchy in which the hardware puts first accesses
only in the L1, but then puts all evicted L1 lines in the L2.



tics on the static and dynamic number of keep-me hints,
and show that keep-me sometimes improves and de-
grades cache hit rates with the expected impact on simu-
lated performance. In one case, combining evict-me and
keep-me attains substantial benefits, but on average pro-
vides no synergistic benefits in our current implementa-
tion.

4.1 Experimental Framework

Compiler Infrastructure. We use Scale, a research
compiler infrastructure for Fortran and C program writ-
ten in Java [29]. Scale uses static-single-assignment
and performs many classic compiler optimizations (con-
stant propagation, value numbering, register allocation,
alias analysis, etc.). Although it is a research compiler,
it achieves competitive performance for the Alpha and
Sparc architectures. For example, on SPEC2000 INT on
the Alpha, its average performs is a few percent worse
than gcc and 35% worse than the native Alpha compiler.
On SPEC2000 FP, it achieves performance on average
2.5 times better than gcc, but 2 times worse than the na-
tive Alpha compiler. It thus provides a good base exper-
imental platform.

Scale includes an implementation of evict-me. We
add the keep-me compiler analysis, as described in Sec-
tion 3.1. Both keep-me and evict-me require the com-
piler to generate a data dependence graph [15, 36] and
perform regular section analysis [17]. Our dependence
testing is based on the Omega library [36, 41]. Keep-
me and evict-me introduce hints by embedding them
separately in the assembly code output for the Alpha.
We post-process the commented assembly code and en-
code the hints directly into the assembly using unimple-
mented alpha instructions. We then statically link the
assembly code on a native alpha machine and run the
code in our simulator.
Simulator Infrastructure. We modified SimpleScalar
for this work. SimpleScalar simulates an out-of-order
issue processor, with non-blocking caches, speculative
execution and branch prediction [4]. SimpleScalar splits
the L1 cache into instruction and data caches, and has a
shared L2 cache. We model an alpha-like machine with
a 1.6 GHZ, 4-way issue, 64-entry RUU (reorder buffer),
out-of-order core combined with an effective 800-Mhz,
4-channel Rambus memory system. We model two lev-
els of non-blocking caches, each with 8 miss status han-
dler registers (MSHR). We modify the simulator to rec-
ognize keep-me and evict-me hints and handle cache
replacement accordingly, including keep-me bits, evict-
me bits, and the keep-me and evict-me replacement poli-
cies. Simulator flags turn on/off keep-me and evict-me
independently in either cache level. Table 2 lists our four

Con. 1 Con. 2 Con. 3 Con. 4
Level 1 8K, 2-way 16K, 4-way 32K, 2-way 32K, 4-way

32 byte cache line; 3 cycle latency
Level 2 128K, 2-way 128K, 4-way 128K, 4-way 256K, 2-way

128 byte cache line; 12 cycle latency

Table 2. Cache Configurations

cache configurations. We use a modest L2 sizes to in-
crease memory pressure. All of the configurations have
the same cache line sizes and latencies. The average la-
tency for memory access is around 200 cycles.
Benchmarks.We use nine benchmarks. Liv18, Vpenta,
Erlebacher, and Jacobi are kernels. Swim, Mgrid and
Applu are from Spec00. Arc2d is a Perfect bench-
mark and Appsp is from the Nas Benchmarks. We se-
lect benchmarks that lose substantial performance due
to data memory stalls (see Figure 6(b)), and benchmarks
that Scale compiles. We do not claim these benchmarks
are representative.

4.2 Static and Dynamic Counts

This section presents static and dynamic counts of keep-
me, and analyzes how keep-me changes cache replace-
ment decisions. Unless otherwise noted, we use a soft-
ware cap of 75%. We break down keep-me into its tem-
poral and spatial components which indicate how much
reuse is available in each benchmark as well as the ratios
between temporal and spatial reuse.

Table 3 shows the static and dynamic counts of keep-
me hints in Con. 1 (see Table 2). Columns 2, 3, and 4
show the percentage of static memory instructions that
Scale marks with keep-me. Columns 5 through 7 and
9 through 11 show the number of memory instructions
Scale marks with keep-me as a percentage of dynamic
cache accesses in the L1 and L2 respectively. Columns
2, 5, and 9 show the percentage with spatial keep-me,
whereas columns 3, 6, and 10 show the percentage with
temporal keep-me. Columns 4, 7, and 11 present keep-
me hints as a percentage of all memory instructions.
Columns 8 and 12 show the percentage of cache replace-
ment decisions that were different from LRU decisions
due to keep-me hints.

For almost all benchmarks, the compiler marks a high
percentage of static loads and stores with spatial reuse
and temporal reuse. Keep-me analysis marks on av-
erage 56% of the static memory instructions in loops,
reflecting the 75% cap. At runtime, the table shows a
wide range in executed keep-me memory instructions.
It should be noted that only a very small percentage of
memory instructions (2.8%) at runtime have temporal
keep-me set when they reach the L2.
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Figure 5. Comparing Keep-me Results with Four Memory Configurations



Static Dynamic (Con. 1)
spatial temporal total L1 spatial L1 temporal L1 total L1 Repl. L2 spatial L2 temporal L2 total L2 Repl.

keep–me keep–me keep–me keep–me keep–me keep–me keep–me keep–me keep–me
vpenta 7.76 55.33 63.1 27.39 44.24 71.63 21.71 2.38 18.97 21.35 16.61
jacobi 28.57 28.57 57.14 14.91 14.03 28.94 59.63 14.15 0 14.15 0.23
liv18 36.17 34.04 70.21 22.21 13.83 36.05 27.66 24.41 0 24.41 21.87

erlebacher 27.57 15.42 42.99 7.27 14.15 21.43 25.97 15.27 4.76 20.03 11.76
mgrid 15.62 41.14 56.77 3.07 29.92 32.99 23.96 5.55 0 5.55 19.90
applu 32.57 26.68 59.25 14.61 15.19 29.81 16.02 0.29 0.09 0.39 0.03
swim 19.41 22.35 41.76 33.09 27.73 60.83 28.97 16.86 0.02 16.88 10.76
arc2d 21.8 34.52 56.32 14.70 13.38 28.09 23.02 17.02 1.20 18.23 18.81
appsp 25.25 32.45 57.71 17.52 15.42 32.95 26.09 15.18 0.42 15.60 22.80

Average 23.85 32.27 56.13 17.19 20.87 38.08 28.11 12.34 2.82 15.17 13.64

Table 3. Static and Dynamic Keep-Me Statistics

4.3 Effect of Hardware Configuration,
Associativity, and Software Cap on Keep-Me

This section compares the number of misses for vari-
ous cache configurations. We experiment with various
cache configurations because we find keep-me is very
sensitive to factors such as cache size and associativity,
as is evict-me. We examine the effect of the cache size
and associativity on misses. We then show our default
75% cap improves over 25% and 50% caps.

The next section presents simulated cycle times, in
addition to number of misses for our best configuration,
comparing keep-me, evict-me, and their combination.
The last section discusses the effect of hardware bounds
on keep-me performance. In general, we see very mixed
results for keep-me which sometimes improves perfor-
mance and sometimes deteriorates it.

Figure 5 shows keep-me performance for each mem-
ory configuration (see Table 2). We present the percent-
age improvement of keep-me over LRU with respect to
the absolute number of misses for a software cap of 75%.
For each benchmark the graph presents the misses for
the L1 cache and L2 cache for three keep-me variants:
use keep-me (1) only in the L1, (2) only in the L2, or
(3) in both the caches. The same results are present in a
tabular form in table 6 in the Appendix. Unfortunately,
the cspatialkeep-me heuristic does not always reduce
the number of cache misses.

For mgrid, appluandappsp, restricting keep-me to
the L1 cache tends to increase misses for small L1
caches. Better performance is obtained in a larger L1
cache (Con. 3 and Con. 4). In small L1 caches, the keep-
me heuristic is not managing the L1 cache well or has
little effect on it. We believe a more careful orchestra-
tion of keep-me and evict-me, perhaps augmented with
runtime volume information, may improve over these re-
sults.

Restricting keep-me to the L2 cache has little impact
on most programs, howevervpentaimproves between

6% and 18% on all configurations. The large L2 size
(Con. 4) is basically insensitive to keep-me. Our anal-
ysis focuses on reuse distances that are likely less than
the L2 cache size, which these results confirm. Using
the keep-me policy in both the L1 and L2 caches does
not perform as well as L2 only because the poor L1 re-
sults continue to degrade the L1 and further degrade L2
replacements. However, the results are highly depen-
dent on the combination between a benchmark, its data
set size, and cache configuration.

Figure 5 shows a few benchmarks experience large
miss increases. For instance,mgrid experiences an in-
crease in L1 misses of over 50% in Con. 2. We examined
mgrid and found thatmgridhas a large percentage of dy-
namic spatial loads. When the compiler marks too many
spatial loads with keep-me, it renders keep-me on tem-
poral loads ineffective. Although the temporal loads will
stay in the cache longer, it is not long enough to attain
their reuse. To test this theory, we set spatial keep-me
counters to zero and left temporal counters equal to the
cache associativity. This change eliminates large perfor-
mance degradations. For instance, with keep-me set in
L1 and L2 for For Con. 2, mgrid degrades 3.5% com-
pared to the prior 57% degradation. We need to develop
a keep-me compiler algorithm that can make this deci-
sion systematically.

The memory configuration that performs the best is
the 2-way set-associative L1 and L2 (Con. 1). This result
seems to be counter-intuitive as we would expect keep-
me to perform better with a larger set-associativity since
it provides more replacement choices. Table 3 shows
however that keep-me influences only 28% of dynamic
replacement decisions in a two-way set-associative L1
cache, and thus on average, each set typically contains
only one or no keep-me lines. Thus, increasing set as-
sociativity will not help to discriminate among multiple
keep-me lines and as the results bear out, does not im-
prove keep-me performance with our current compiler



heuristic.
All of the results use a cap of 75%, but we also ex-

perimented with a cap of 25% and 50%, and found that
on average a cap 25% and 50% perform worse because
they do not mark keep-me as aggressively.

The performance of our keep-me policies is highly
sensitive to benchmark, cache configuration and cap
combinations. Although, we demonstrate some poten-
tial for keep-me, we need a better keep-me heuristic that
suffers no pathologies.

4.4 Keep-Me, Evict-me, and the Combination

This section presents simulated cycle times for the best
configurations of keep-me. It also compares keep-me,
evict-me, and their combination. We use Con. 1 and
set keep-me only in the L2 cache where it achieved its
lowest miss rates. We analyze number of misses nor-
malized to LRU. We also examine the cycle count for
each of these normalized to LRU, and present the per-
cent of cycle time lost to memory latency, also normal-
ized to LRU. Overall, keep-me and evict-me together
improve performance better than keep-me alone. When
we combine keep-me and evict-me, the compiler applies
each independently. However, we believe the compiler
should orchestrate them together to attain better results.

Figure 6(a) compares the L2 misses of keep-me,
evict-me, and their combination, all normalized to the
LRU replacement policy. Figure 6(b) shows their simu-
lation cycles normalized to LRU. Figure 6(b) also breaks
down the total simulation cycles into the cycles spent
waiting for L1 and L2 misses and other cycles. The top
parts of the bars show that the performance lost due to
L1 and L2 memory stalls is substantial, and furthermore
our techniques are not eliminating all these stalls.

With the current trend of increasing L2 memory la-
tencies, the potential performance gains obtained from
eliminating L2 misses is substantial. Forvpenta, keep-
me decreases L2 misses by 8.7% over LRU and ob-
tains an improvement of over 6% in cycle time. Even
if there is a slight decrease in the corresponding L1 per-
formance, L2 performance usually dominates. Since the
L1 misses do not vary much, we omit them here.

Figure 6(a) shows that evict-me does not always per-
form better than LRU, contrary to previous results [44].
For example,erlebacherand liv18 deteriorate by 9%
and 5% respectively. This result is due to a limitation
in our evict-me implementation. Since we need bits for
keep-me and are limited by the Alpha ISA, we gave
evict-me only 1 bit whereas it performs best with 4 bits
which include spatial reuse and stride information (see
Section 3.2). Evict-me uses spatial stride bits to insure
the line first satisfies its spatial needs before eviction.

benchmark cache KL1 KL2 KL1KL2

vpenta L1 -0.66 0.99 1.53
vpenta L2 -5.01 20.73 17.40

jacobi L1 -0.19 0 -0.19
jacobi L2 0 0 0

liv18 L1 -1.34 0 -1.34
liv18 L2 0 0 0

erlebacher L1 1.77 0 1.77
erlebacher L2 -0.05 0.01 -1.3

mgrid L1 -25.88 0.00 -25.88
mgrid L2 -0.14 -0.07 -0.41

applu L1 -1.12 0 -1.12
applu L2 0 0 0

swim L1 0 0 0
swim L2 0.01 -0.02 -0

arc2d L1 3.80 0.01 3.81
arc2d L2 5.05 0.10 2.95

appsp L1 -0.94 0.09 -0.88
appsp L2 0.31 2.24 1.35

Table 4. Miss Improvement Percentages for Con. 2, 75% Cap,
50% Hardware Bound with Increased Counters

Without them, the hardware will occasionally act on an
evict-me hint precipitously.

As we compare the percentage improvement based
on regular misses in the L2 cache, we see that keep-me
and evict-me together (KE) perform at least as well as
the best of keep-me or evict-me in all butvpenta. In
vpenta, however, KE performs slightly better than LRU.
For all of the benchmarks exceptapplu, KE performs
better than evict-me alone. We obtain our best cycle
time improvement of 35.7% onvpentausing keep-me
and evict-me in both the L1 and L2 caches with Con. 3
and a 50% cap. (This configuration is not best on av-
erage for all benchmarks though.) This improvement
comes from reducing L1 misses by 9.9% and L2 misses
by 43.7%. These results demonstrate the potential for
keep-me and evict-me together to dramatically improve
memory performance.

4.5 Hardware heuristics

This section briefly describes using the hardware bound
to control keep-me. The hardware bound prevents a set
from degrading to LRU when all the lines are keep-me
(see Section 3.2), or degrading further if many of the
lines are keep-me. A 25% hardware bound on Con. 2
which is 4-way set associative completely eliminates the
degradations shown in Figure 5 and Table 6 improv-
ing average performance. We believe this improvement
comes from two sources. (1) The bound prevents keep-
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me from completely obscuring the LRU position. (2) It
prevents the hardware from trying and failing to keep too
many cache lines by selecting only (in this case) two to
keep. Currently we do not distinguish spatial and tem-
poral loads for the bounds, but believe addressing this
problem will further improve performance.

To attain reuse beyond one replacement with the
keep-me counter, we experimented with increasing its
value from 4 to 8 on Con. 2. Increasing the counter ei-
ther requires additional bit(s), or could be implemented
by only decrementing the counter when the line is in the
LRU position, instead of on every miss to the set. Ta-
ble 4 shows the number of misses for a hardware bound
of 50% with a temporal keep-me counter of 8 for Con. 2
at a software cap of 75%. This configuration elimi-
nates poor miss behavior, with a few modest improve-
ments. Reducing the hardware bound to 25%, reduces
the degradations. For examplemgrid shows a marginal
deterioration of 1.72% for the L1 from about 26% pre-
viously. However the maximum gains obtained in this
configuration are also reduced. For instancevpenta
shows a L2 miss rate improvement of 17.4% with a 50%
bound, shows only a 8.9 % improvement with the 25%
bound. Table 5 in the Appendix shows the results for
a hardware bound of 25% for Con. 2. A 50% bound

on Con. 2 improves helps this 4-way cache. However,
putting a 50% bound on the 2-way Con. 1 reverts to the
mixed results obtained without a hardware bound since
the software cap generally limits conflicts in this case.

5 Related Work
This section briefly overviews related work on replace-
ment algorithms, cache design, prefetching, and com-
piler algorithms for improving locality.

5.1 Replacement Algorithms

Early work studied the limits of cache replacement algo-
rithms using program traces. Belady [7] pioneered this
area by comparing random cache replacement, LRU,
and an optimal algorithm that looks into the future.
Sugumar and Abraham [39] used Belady’s algorithm to
characterize capacity and conflict misses. Temam [40]
extended Belady’s optimality result by simultaneously
exploiting spatial and temporal locality. These studies
seek to understand cache characteristics rather than to
implement a real cache and related algorithms since the
architecture cannot peer into the future.

The Early Eviction LRU (EELRU) [38] paging al-
gorithm motivates and indicates additional potential for
keep-me. EELRU improves over LRU when data sizes
slightly exceed cache size. It chooses to evict the LRU



page or theeth most recently used page. Reference his-
tory determinese, theearly eviction point, a point that
is expected to be accessed farther in the future than the
LRU position. A similar implementation for caches is
too expensive because the high overhead of maintaining
the reference history. Our approach offers a lightweight
mechanism in which a variant of our compiler analysis
could generate early eviction points.

Previous work on evict-me uses static compiler anal-
ysis to predict which data the program will not reuse
soon and prefers to evict that line on a replacement [44].
Our approach is complementary and builds on evict-me.
Keep-me predicts which data will be used in the near fu-
ture and prefer to keep it in the cache. Evict-me alone
will only try to throw out data that has no potential for
reuse. It does not directly guarantee that the cache keeps
data with reuse. Thus cooperative caching can have two
goals: (1) to evict data which has no reuse using evict-
me and (2) to retain data the program does reuse with
keep-me.

Yang et al. evaluate an evict-me style approach us-
ing the ’nt’ (non-temporal) hint on the Itaniam architec-
ture. They generally improve matrix multiply,vpenta,
andtomcatvdepending on the cache configuration, but
occassionally degrade performance [46]. Their compiler
algorithm uses bin packing and explicitly models cache
occupancy. We instead use reuse to guide our hints.
Perhaps their more accurate model of cache occupancy
is what cooperative caching needs to achieve consistant
improvements.

5.2 Cache Hardware Design

Numerous hardware techniques have been proposed
to reduce cache misses [2, 19, 20]. The victim
cache was originally designed to enhance direct-mapped
caches [20] aimed at reducing conflict misses closely
spaced in time. It is probabilistic, rather than predic-
tive. Johnson et al. propose a run time spatial locality
detection mechanism [19]. They use a hardware table
to keep track of spatial locality dynamically. The fetch
size can be varied depending on the spatial locality of
fetched data. Their work does not address cache replace-
ment. Rivers et al. use a hardware history to track reuse
at run time and to categorize accesses as temporal/non-
temporal and cacheable/non-cacheable [37]. Lai et al.
use a hardware history table to predict when a cache
block is dead and which block to prefetch to replace the
dead one [25]. Our technique is based on static com-
piler analysis and does not require substantially addi-
tional hardware.

Researchers have explored many statistical tech-
niques to reduce interference in set associative

caches such as reactive-associative, skewed associative,
column-associative, and other cache designs [2, 6, 9, 11,
22, 35]. These designs seek to combine the hittime of
direct-map and the hitrate of set associativity. These
caches change where data is mapped, instead of explic-
itly guiding replacement. Evict-me and keep-me are an-
alytical rather than statistical.

McKee et al. propose a stream buffer to bypass
stream-like data [28]. We mark stream data asspa-
tial keep-me. Our solution works on cache replacement
directly and does not require an extra buffer. The In-
tel IA-64 provides instructions to control caching [13].
The non-temporal load/store bypasses the cache to avoid
cache pollution due to streaming data. IA-64 supports
locality hints used by prefetch, load, and store instruc-
tions to control placements of cache lines in either a
“temporal structure” or “non-temporal structure”. The
hints do not direct cache replacement.

Wong and Baer target reducing temporal misses in
the L2 cache [45], but this requires profiling while keep-
me analysis is entirely a cooperative effort between the
compiler and the hardware and does not require profil-
ing.

Our work takes a different approach than hardware
and software data prefetching [5, 20, 27, 32, 34]. Data
prefetching tries to fetch data which will be used in the
near future to reduce miss penalties. Keep-me tags in-
stead predict which data in the cache the program will
use again in the near future, and keep them in the cache.
Keep-me does not bring new data into the cache and thus
does not have higher bandwidth and other overheads of
prefetching. Prefetching can pollute the cache when
it brings in useless data unlike evict-me and keep-me.
Alpha’s prefetch and evict-nextinstruction loads a line
into the level 1 cache and evicts it on the next miss to
the cache set [23]. Implementing an instruction such as
prefetch and keep-nextwill not be very effective because
temporal loads typically have larger reuse distances.

Abu-Sufah was the first to have the idea of a soft-
ware managed cache in order to improve the perfor-
mance of virtual memory [1]. Recently, more radi-
cal cache designs such as Hallnor and Reinhardt pro-
pose a software managed cache to reduce DRAM laten-
cies [16]. Region-Based Caching adds to the L1 cache
small caches specifically for stack and global data in or-
der to reduce power [26]. Although the cooperation be-
tween the compiler and architecture is important to these
cache designs, they require more hardware support and
focus on different aspects of performance as compared
with keep-me. Keep-me focuses on miss rate improve-
ment and cycle time reduction. However keep-me could



work in these more radical caches.

5.3 Cache Performance Evaluation

Previous studies found that although conflict misses
dominate, capacity misses between loop nests are a sig-
nificant source of misses [31]. They find most inter-nest
misses are temporal in nature. Keep-me targets this tem-
poral reuse.

Bhandarkar and Ding point out that during L2 misses
on the Pentium Pro that the CPU can exhaust ma-
chine resources causing back pressure on earlier pipeline
stages [8]. A substantial portion of program stalls are a
consequence of these indirect and the direct effects of
L2 cache misses. For this reason, we make a point to
pass keep-me hints to the L2 cache.

5.4 Compiler Locality Analysis

Our reuse analysis is based on dependence testing [15,
36] and regular sections [17], but may benefit from anal-
yses such as Ghosh et al.’s miss equations that precisely
compute cache misses [14]. Researchers have also used
data dependence analysis for loop and data transforma-
tions to improve data locality by moving temporal reuse
closer together in time and by introducing spatial local-
ity [1, 21, 30]. These algorithms are synergistic with
keep-me and should improve its effectiveness further.

6 Conclusion

Technology trends will cause programs to lose more and
more performance to memory latencies. Even in current
technologies, programs suffer substantial performance
penalties due to cache misses. We present a cooperative
approach for keep-me caching with a range of compiler
and hardware heuristics that vary from highly conserva-
tive to highly aggressive. We also explore the interplay
of keep-me with evict-me caching. Overall our imple-
mentation of keep-me produces mixed results, leaving
open to future work the design of cooperative caching
policies that suffer no pathologies yet obtain the best
demonstrated improvements.
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8 Appendix
Table 5 shows the Miss percentage improvement for a
hardware bound of 25%, software cap of 75% for Con. 2.
The temporal counters used for this experiment are equal
to twice the cache associativity.

Table 6 shows results for keep-me across the four
cache configurations (see Table 2) with a 75% cap. We
present the percentage improvement of keep-me over
LRU with respect to the absolute number of misses.
Columns 3, 6, 9, and 12 show results for turning on
keep-me only in the L1 cache. Columns 4, 7, 10, and
13 similarly show results for keep-me in the L2 cache
alone. Columns 5, 8, 11, and 14 show results for keep-
me in both cache levels. Unfortunately, thecspatial
keep-me heuristic does not always reduce the number
of cache misses.

benchmark cache KL1 KL2 KL1KL2

vpenta L1 -0.34 0.51 1.43
vpenta L2 -3.05 10.19 8.90

jacobi L1 -0.19 0 -0.19
jacobi L2 0 0 0

liv18 L1 -1.73 0 -1.73
liv18 L2 0 0 0

erlebacher L1 0.89 0 0.89
erlebacher L2 -0.03 0.00 -0.03

mgrid L1 -1.72 0.00 -1.72
mgrid L2 -0.06 -0.03 -0.07

applu L1 0 0 0
applu L2 0 -0 0

swim L1 0 0 0
swim L2 0.00 -0 -0

arc2d L1 2.69 0.00 2.69
arc2d L2 2.18 -0 0.96

appsp L1 -0.43 0.05 -0.42
appsp L2 0.20 1.63 1.01

Table 5. Miss Improvement Percentages for Con. 2, 75% Cap,
25% Hardware Bound with Increased Counters



Con. 1 Con. 2 Con. 3 Con. 4
benchmark cache KL1 KL2 KL1KL2 KL1 KL2 KL1KL2 KL1 KL2 KL1KL2 KL1 KL2 KL1KL2

vpenta L1 -0.14 0.12 -0.01 -0.12 1.84 2.56 2.70 2.18 4.23 1.13 0.11 1.23
vpenta L2 0.04 8.71 7.99 -4.74 13.62 9.60 1.20 17.76 15.83 -3.31 6.53 0.91

jacobi L1 1.73 0 1.72 -12.48 0 -12.48 -24.78 0 -24.81 -0.04 0 -0.04
jacobi L2 0 0 -0.09 -0 -0 -0 -0 -0.12 -16.56 -0 -0 -0

liv18 L1 -3.88 0 -3.89 -1.23 0 -1.24 -1.28 0 -1.27 -1.19 0 -1.19
liv18 L2 0.01 0 -0.79 0.06 0 -8.67 0.13 0 -18.28 0.01 0 -0.5

erlebacher L1 -0.68 0.00 -0.69 -0.61 0 -0.61 -0.43 0 -0.43 -0.25 -0 -0.25
erlebacher L2 -0.12 -0.62 -1.06 0.02 -0.54 -0.57 0.10 -1.01 -4.61 0.23 -0.64 -0.75

mgrid L1 -19.96 -0 -19.95 -57.63 -0 -57.62 -2.54 -0 -2.53 -3.69 0 -3.68
mgrid L2 -0.37 -0.01 -0.67 -0 -0 -0.53 0.45 -0.07 0.21 -0.1 -0 -0.34

applu L1 -16.94 -0.14 -16.94 -8.92 -0.16 -8.92 -3.36 -0.09 -3.36 -4.29 -0.02 -4.29
applu L2 0.06 -1.84 0.08 0.04 -1.64 0.04 -0.01 -1.58 0.03 0.00 -0.62 0.01

swim L1 -0.68 0.00 -0.68 -0.17 0 -0.17 -0.17 0 -0.17 -0.11 -0 -0.11
swim L2 -0.28 -0.01 -2.19 0.01 -0.02 -2.06 -0.03 -0.01 -3.32 -0.02 -0 -2.27

arc2d L1 -1.78 -0.05 -1.86 -2.33 0.00 -2.39 -2.25 -0.03 -2.29 -4.55 -0 -4.59
arc2d L2 -0.25 4.65 1.42 0.78 1.02 -7.79 -0.34 -0.04 -10.65 -0.03 0.02 -3.79

appsp L1 -6.57 0.06 -6.49 -7.04 0.11 -6.83 -4.01 0.08 -3.85 -4.24 0.05 -4.21
appsp L2 -0.03 1.15 1.04 -0.16 2.13 2.16 -0.33 1.80 -0.31 -0.74 0.75 -0.64

Table 6. Percentage Miss Improvements with Keep-me


