
author’s preprint, to appear in the proceedings of ONWARD! 2015

Just-in-Time Data Structures

Mattias De Wael
Software Languages Lab, VUB

(Belgium)
madewael@vub.ac.be

Stefan Marr
RMoD, INRIA Lille Nord Europe

(France)
stefan.marr@inria.fr

Joeri De Koster
Software Languages Lab, VUB

(Belgium)
jdekoste@vub.ac.be

Jennifer B. Sartor
VUB and Ghent University (Belgium)

jsartor@vub.ac.be

Wolfgang De Meuter
Software Languages Lab, VUB (Belgium)

wdmeuter@vub.ac.be

Abstract
Today, software engineering practices focus on finding the
single “right” data representation for a program. The “right”
data representation, however, might not exist: changing the
representation of an object during program execution can
be better in terms of performance. To this end we introduce
Just-in-Time Data Structures, which enable representation
changes at runtime, based on declarative input from a per-
formance expert programmer. Just-in-Time Data Structures
are an attempt to shift the focus from finding the “right” data
structure to finding the “right” sequence of data representa-
tions. We present JitDS, a programming language to develop
such Just-in-Time Data Structures. Further, we show two ex-
ample programs that benefit from changing the representation
at runtime.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

Keywords data structures, algorithms, dynamic reclassifica-
tion, performance

1. Introduction
Choosing the “right” combination of a data representation and
an algorithm is important for performance. Books, courses,
and research papers on algorithms and data structures typi-
cally discuss the one in function of the other [7]. This makes
choosing the right data representation-algorithm combina-
tion relatively easy. For instance, in the context of a linear

[Copyright notice will appear here once ’preprint’ option is removed.]

indexable data structure, e. g., List in Java, an algorithm
that heavily relies on insertions and deletions of elements
will likely benefit from a pointer-based implementation of
List, e. g., LinkedList in Java. On the other hand, an al-
gorithm that heavily relies on random indexed accesses in
a List, will benefit from an array-based implementation,
e. g., ArrayList in Java. Larger software systems, however,
rarely consist of a single algorithm but rather of a complex
interweaving of multiple algorithms. Finding the right data
representation for a set of algorithms becomes cumbersome
due to the increasing number of, possibly conflicting, require-
ments of these algorithms.

To facilitate the implementation of a more efficient data
structure in later stages of a software development cycle, it
has become best practice to program against a data interface.
In this text we refer to data interface as the set of operations
which define an abstract data type [18]. We will call a concrete
implementation of a data interface a data representation.
Together, data interface and data representation form a
classic data structure. Above we argue that finding the “right”
data representation for a data interface is much less trivial
when the number of algorithms using the data interface
increases because the number of requirements increases.
Imagine a program that first builds a list of sorted elements, in
order to heavily query the list later. Such a program consists
of two phases that prefer the LinkedList representation and
the ArrayList representation respectively. Choosing one
in favor of the other is not trivial. Moreover, we show in
the next section that a program that relies on a single data
representation can be less performant compared to a program
that changes data representations at runtime.

Today, data representation changes are implemented in
an ad hoc way because a systematic approach does not exist.
In this paper we introduce Just-in-Time Data Structures, a
language construct where a set of data representations for
a single data interface is augmented with declarative input
from a performance expert programmer. This declarative

Just-in-Time Data Structures, author’s preprint 1 2015/8/20

input defines which representation is to be used in which
circumstances. We show that it is possible for a program with
Just-in-Time Data Structures to obtain better performance
than the same program that uses one single representation for
the data. Moreover, Just-in-Time Data Structures allow de-
velopers to disentangle “application logic” and “performance
engineering tasks”.

The contributions of this paper are: 1. a taxonomy of
data representation changes; 2. the introduction of Just-in-
Time Data Structures; 3. the introduction of homomorphic
reclassification, an implementation technique that we use to
compile a Just-in-Time Data Structure into Java.

The remainder of this text is organized as follows: In
Section 2 we elaborate on a use case where changing the
representation of a data structure at runtime improves perfor-
mance. In Section 3 we introduce a taxonomy of how data
representation selection and data representation changes can
be realized. Section 4 introduces Just-in-Time Data Struc-
tures, which generalizes the idea of changing representation
at runtime, and introduces the new language constructs we
propose to define such a data structure. Section 5 discusses
how to compile the definition of a Just-in-Time Data Structure
into Java. In Section 6 we give two examples of how a devel-
oper can implement Just-in-Time Data Structures to obtain
better performance. Both the related work on data structure
selection, as well as the work related to our compiler im-
plementation techniques are discussed in Section 7. Finally,
Sections 8 and 9 conclude this text and present ongoing and
future work.

2. Motivating Example
In this section, we first introduce the data interface Matrix
and two possible data representations. Then, we introduce
the classic algorithm to multiply two matrices and study the
effect of the chosen data representation on performance. The
matrix multiplication is an example of a computation that
operates on two objects with the same data interface, but
which accesses the two objects with a different data access
pattern. The example shows that changing the representation
of the data objects to match the access patterns at runtime
improves performance.

The Matrix Data Interface. The running example through-
out this text is built around the mathematical concept of a
two-dimensional matrix, i. e., a conceptually rectangular ar-
ray of numeric values. Here, we define the data interface of
a Matrix to be: a constructor that creates a rows by cols
matrix of zeroes; an accessor get and a mutator set which,
based on a row and a col parameter, respectively returns or
sets a value in the matrix. Listing 1 shows this data interface
as a Java abstract class definition. Note that we use abstract
class instead of interface in this code example. The rea-
son thereof is twofold. First, we want to show in this example
that the constructor to create an initial matrix always takes
two arguments, which is not expressible in a Java interface.

Listing 1: Data interface for Matrix.
1 public abstract class Matrix {
2 // create a Matrix of rows by cols
3 Matrix(int rows , int cols) { ... }
4
5 // accessor to read the number of rows
6 int getRows () { ... }
7
8 // accessor to read the number of columns
9 int getCols () { ... }

10
11 // accessor to read the value of a cell
12 double get(int row , int col) { ... }
13
14 // mutator to set the value of a cell
15 void set(int row , int col , double val) { ... }
16 }

Listing 2: Classic matrix-matrix multiplication algorithm of
two N ×N matrices.

1 Matrix mul(Matrix A, Matrix B) {
2 Matrix C = new Matrix(N, N);
3
4 for (int i=0 ; i<N ; i++) {
5 for (int j=0 ; j<N ; j++) {
6 for (int k=0 ; k<N ; k++) {
7 temp = C.get(i, j) +
8 (A.get(i, k) * B.get(k, j))
9 C.set(i, j, temp) }}}}

Second, as exemplified by the first reason, the Java interface
and our data interface are not identical concepts. In Java,
an interface is a language construct that defines (potentially)
only a part of a class’s type. The data interface is the set of
characterizing operations, i. e., the complete structural type.

Two Matrix Data Representations. Let us now consider
two similar data representations for the data interface defined
above. Both representations store the elements of the concep-
tually two-dimensional data structure in a one-dimensional
array. One representation, RowMajorMatrix, stores elements
of the same row next to each other. The second data repre-
sentation, ColMajorMatrix, stores elements of the same
column next to each other.

The Matrix-Matrix Multiplication Algorithm. The classic
matrix multiplication algorithm takes two matrices as input
parameters (i. e., A and B in Listing 2) and has a third matrix
as output (i. e., C in Listing 2).1 For each of the elements of
C, the dot-product of the corresponding row of A with the
corresponding column of B is computed. This dot product
is computed by the inner-most loop, i. e., lines 6–9, which
accesses A in row-major order and B in column-major order.

1 For the ease of implementation of the example code we only consider
square matrices of size N ×N .

Just-in-Time Data Structures, author’s preprint 2 2015/8/20

Effect of Implementation on Performance. A simple ex-
periment shows that the choice of data representations of the
matrices A and B has a significant effect on the execution time.
We executed the mul function with all combinations of data
representations for both input matrices, while we kept the
data representation of the matrix C, the output variable, fixed
in the RowMajorMatrix representation. The execution times
for all combinations are shown in Table 1.2

Data Representation Execution Time
A B
Row Major Order Col Major Order 6.33 s
Col Major Order Col Major Order 10.29 s
Row Major Order Row Major Order 13.72 s
Col Major Order Row Major Order 25.83 s

Table 1: The execution time of multiplying two 1250× 1250
matrices depends on the chosen data representation.

The execution time is significantly lower when the
data access pattern (computation) matches the data repre-
sentation, i. e., RowMajorMatrix×ColMajorMatrix. Con-
versely, when the data access pattern and data representation
conflict for both matrices, the execution time is significantly
higher.

As a second experiment we computed the product of two
row-major matrices where the representation of the second
matrix B was changed to column-major order just before
the actual multiplication. The overall execution time, thus
including the cost of a transposition, is only 6.42s. Paying
the extra cost of changing the representation proves to be
more efficient than keeping the representation fixed for both
matrices.

This matrix multiplication example shows the existence of
computations that operate on a single data interface but where
choosing a single data representation results in suboptimal
performance. Conversely, paying the cost of a representation
change at runtime results in better performance compared to
relying on a single fixed data representation.

3. Taxonomy of Changing and Selecting Data
Representation

Just-in-Time Data Structures, as we introduce in Section 4,
change the data representation to match the computation
in order to achieve better performance. The design space
for techniques to change and select data representations for
programs is vast. Based on the examined work (cf. Section 7),
we developed a taxonomy according to which existing efforts

2 We gathered these numbers from a C++ implementation, compiled with
−O3 where we multiplied two matrices of 1250 × 1250 elements. The
resulting binary was executed on a 2.6 GHz processor with 256 KiB of L2
cache. While the presented numbers are the result of a single run only, we
observed that they are representative for all runs. The code for this small
experiment is available on our website.
http://soft.vub.ac.be/~madewael/jitds/

Listing 3: Internal transformation logic.
1 Matrix A = new RowMajorMatrix(rs, cs);
2 Matrix B = new TransposableMatrix(rs, cs);
3
4 // internal to TransposableMatrix
5 B.enforceColMajorOrder ();
6 Matrix C = mul(A, B);

Listing 4: External transformation logic.
1 Matrix A = new RowMajorMatrix(rs, cs);
2 Matrix B = new RowMajorMatrix(rs, cs);
3
4 // external to RowMajorMatrix
5 B = new ColMajorMatrix(B);
6 Matrix C = mul(A, B);

can be categorized. Below we introduce this taxonomy and
explain the axes based on the matrix multiplication example.
In Section 7 we present and position the related work along
the relevant axes for each approach.

Internal or External Transformation Logic. A data struc-
ture does not automagically know how to change its repre-
sentation. Clearly, there has to be some code fragment re-
sponsible for the actual conversion from one representation
to the other. The code fragment that expresses this transition
is called the transformation logic.

We observe that the transformation logic can either be
a part of the definition of a data structure (encapsulated)
or not. Data structures with internal transformation logic
encapsulate the logic that describes the representation change,
within their implementation. Otherwise, we refer to them as
data structures with external transformation logic.

By a call to enforceColMajorOrder, on line 5 in
Listing 3, we rely on the encapsulated functionality of
TransposableMatrix to change its internal representation.
The RowMajorMatrix does not provide this functionality but
relies on the constructor of ColMajorMatrix (line 5 in List-
ing 4) to handle the change in representation. Note that here,
the internal transformation logic example keeps the object’s
identity intact, e. g., the reference B in Listing 3 points to the
same object before and after the call to enforceColMajor-
Order, whereas the reference B in Listing 4 points to a new
— ColMajor — object on line 5.

Internal or External Change Incentive. A data structure
does not automagically know when to change its represen-
tation. We call the code fragment that is responsible for ini-
tiating a representation change the representation change
incentive code. We differentiate between approaches where
the representation change incentive code is encapsulated in
the data structure’s definition and those where it is not. Rep-
resentation changes with internal incentive are initiated by
the data structures itself, i. e., as part of their implementation.

Just-in-Time Data Structures, author’s preprint 3 2015/8/20

Listing 5: Choosing a data representation.
1 // Static Selection of Representation
2 Matrix a = new RowMajorMatrix(rs, cs);
3 Matrix b = new ColMajorMatrix(rs, cs);
4
5 // Dynamic Selection of Representation
6 Matrix c = MatrixFactory.createMatrix(...);

Listing 6: Choosing a representation offline.
1 Matrix A = new RowMajorMatrix(rs, cs);
2 Matrix B = new ColMajorMatrix(rs, cs);
3
4
5 Matrix C = mul(A, B);

Conversely, when a new representation is imposed on the
data structure from the outside the data structure, we say the
representation change incentive is external.

Listings 3 and 4 are both examples of external representa-
tion incentive code, because it is the code using the matrix B
that is responsible for initiating the change in representation.
Prototypical examples of internal incentives can be found in
the class of self-adapting data structures. An AVL tree, for
instance, rebalances itself upon insertion.

Table 2 further clarifies the difference between represen-
tation change incentive and representation transformation
logic. The example used in the code fragments deals with a
list with sorted data to which elements can be added.

Online or Offline. Listings 3 and 4 are two examples of
data representation changes that happen online, during the
execution of the program (i. e., at runtime). In the more classic
approach, e. g., on line 2 of Listing 6, the representation of
a data structure does not change at runtime, but is chosen
during the development of an application, i. e., static data
representation selection. Alternatively, the data representation
selection is delayed until runtime (e. g., Listing 5) but the
representation remains fixed during the execution of the
program, i. e., dynamic data representation selection. We call
data representation selection an offline approach.

Developer or Environment. At first sight, the choice of
data representation is the responsibility of the developer, as
is illustrated in the examples in Listings 3, 4 and 6. However,
there also exist environments (e. g., compilers, interpreters,
or dynamic optimization systems) that change the physical
representation of data behind the scenes. The developer
using these techniques is thus not necessarily aware of them.
For instance, the Javascript V8 engine does not guarantee
that an array uses contiguous memory, but chooses the
representation it sees fit (e. g., sparse representation). Thus,
the Developer–Environment-dimension stipulates the level of
abstraction on which the choice of data representation takes
place.

Listing 7: Maintaining multiple representations.
1 public class AmbiguousMatrix
2 implements TransposableMatrix {
3
4 RowMajorMatrix rm;
5 ColMajorMatrix cm;
6 boolean rowActive = true;
7 ...
8 public void enforceRowMajorOrder () {
9 rowActive=true;

10 }
11
12 public void enforceColMajorOrder () {
13 rowActive=false;
14 }
15
16 public void set(int r, int c, int v) {
17 rm.set(r,c,v);
18 cm.set(r,c,v);
19 }
20
21 public int get(int r, int c) {
22 rowActive?rm.get(r,c):cm.get(r,c);
23 }
24 }

Gradual or Instant. When it is possible to unambiguously
determine the current representation of a data structure at
any point during the execution we say the representation
change is instant. The matrices in Listing 4 are either in row-
major representation or in col-major representation, but never
in both nor in a hybrid form. Alternatively, data structures
can also be implemented to (partially) maintain multiple
representations simultaneously. For such data structures it
is not possible to pinpoint the current representation, as it is
gradually changing between different representations. For
instance, consider AmbiguousMatrix, implemented as in
Listing 7. While an instance of AmbiguousMatrix has a
“principal representation” (cf. rowActive, a boolean that
represents the active state) it uses for access, is also maintains
the “other representation” during mutation.

Dedicated or General. Representation changing techniques
can be deployed in two possible ways. First, we see dedicated
techniques that are tailored towards a well defined set of
use-cases, which can be deployed as-is, off the shelf. These
dedicated approaches include — but are not limited to —
libraries, runtimes, and self-adapting data structures. Other
techniques, however, are more general. These techniques
provide a set of concepts and insights, but leave the concrete
implementation to the developer. An example of such a
general concept is “transposing” data as is shown in the
concrete example of matrix multiplication. On the other
hand, this technique is general enough to be applied in other
contexts as well. The “array-of-structs” versus “struct-of-
array” discussion, for instance, applies the same technique to
more heterogeneous data.

Just-in-Time Data Structures, author’s preprint 4 2015/8/20

Transformation Logic
Internal External

C
ha

ng
e

In
ce

nt
iv

e

In
te

rn
al

1 // User Code:
2 myList.add(x);
3
4 // Representation Code:
5 public void add(Object x) {
6 this.data.add(x);
7 this.sort ();
8 }

1 // User Code:
2 myList.add(x);
3
4 // Representation Code:
5 public void add(Object x) {
6 this.data.add(x);
7 Collections.sort(this);
8 }

E
xt

er
na

l 1 // User Code:
2 myList.add(x);
3 myList.sort ();
4
5 // Representation Code:
6 public void add(Object x) {
7 this.data.add(x);
8 }

1 // User Code:
2 myList.add(x);
3 Collections.sort(myList);
4
5 // Representation Code:
6 public void add(Object x) {
7 this.data.add(x);
8 }

Table 2: A list with internal/external transition logic and internal/external incentive code to change representation.

We identified that data representation selection strategies
can be categorized according to the following axes: Internal
or External Transition Logic, Internal or External Change
Incentive, Online or Offline, Developer or Environment, Grad-
ual or Instant, and Dedicated or General. In Section 7 we
taxonomize the work related to our Just-in-Time Data Struc-
tures according to these axes. We observe that, besides ad-hoc
implementations, there does not exist a general approach that
gives the developer the power to easily change the chosen data
representations online. Our Just-in-Time Data Structures fill
this hole. Just-in-Time Data Structures is a general approach
that provides developers with the infrastructure to create data
structures that can swap representation online using internal
transition logic. Furthermore, our approach supports both
internal and external representation change incentive code.
Currently, we only support instant representation changes,
but we foresee including gradual representation changes as
future work.

4. Just-in-Time Data Structures
The idea of separating data interface from data representa-
tion is almost as old as computer science itself. The rationale
of programming against an interface as opposed to program-
ming with the representation directly is mainly driven by
software engineering advantages such as modularity, main-
tainability, and evolvability. It can also be motivated by per-
formance. For instance, in software engineering it is a tried
and true approach to first implement a trivial but working rep-
resentation for a data structure. Only if the initial implementa-
tion proves to be a performance bottleneck, the programmer

should consider to optimize the initial implementation (i. e.,
avoid premature optimizations).

With the advent of object-technology it became possible to
have multiple data representations for a single data interface
available at runtime. In class-based object-oriented languages,
for instance, this is realized by implementing multiple classes
that extend the same base class. The data representation
is usually chosen statically (lines 2-3 in Listing 5) and
occasionally chosen dynamically (line 6 in Listing 5). In
either case, even with the aforementioned object technology,
the representation chosen at allocation time remains fixed
during the remainder of the data object’s lifetime.

Adhering to one representation during a object’s lifetime
is sufficient for data structures that are used for a single role
in a single algorithm. In Section 2 we showed an example of
a program where relying on a single representation hampers
performance. In theory, one could implement a representation
that performs well in “all” situations. In practice however,
such implementation are hard to find and hard the develop.
Alternatively, one could implement an ad-hoc representation
change. The problem with ad-hoc representation changes is
that they usually do not preserve object identity. The other
references to the original object still point to the original
representation and multiple versions of the same mutable
data are kept together in memory.

We propose Just-in-Time (JIT) Data Structures, a data
structure with the intrinsic property of changing its underly-
ing representation. To facilitate the development of Just-in-
Time Data Structures, we have implemented an extension of
Java called JitDS-Java. We use this language to informally
introduce the concepts needed to implement Just-in-Time

Just-in-Time Data Structures, author’s preprint 5 2015/8/20

Listing 8: The class Matrix combines two representations.
1 class Matrix
2 combines RowMajorMatrix , ColMajorMatrix {
3
4 RowMajorMatrix to ColMajorMatrix {
5 target(source.getCols(),
6 source.getRows(),
7 source.getDataAsArray ());
8 target.transpose ();
9 }

10
11 ColMajorMatrix to RowMajorMatrix {
12 target(source.getCols(),
13 source.getRows(),
14 source.getDataAsArray ());
15 target.transpose ();
16 }
17
18 swaprule Matrix Utils.mul(Matrix a, Matrix b) {
19 if ((a.getRows ()*a.getCols ()) > LARGE)
20 swap a to RowMajorMatrix;
21 if ((b.getRows ()*b.getCols ()) > LARGE)
22 swap b to ColMajorMatrix;
23 proceed;
24 }
25 }

Data Structures. In Section 5 we explain how we transpile
JitDS-Java to Java.

Combining Representations. Implementing a data struc-
ture in Java is realized by declaring a new class, e. g.,
RowMajorMatrix or ColMajorMatrix. Implementing a
JIT Data Structure in JitDS-Java is realized by declaring a
new JIT class which combines multiple representations (lines
1 and 2 in Listing 8). The representations themselves are
implemented as traditional Java classes. An instance of a JIT
class can be the target of a swap statement (e. g., lines 20 and
22 in Listing 8), which forces the data structure to adhere
to the instructed representation. An instance of a JIT class
implements the union of the methods implemented by its
representing classes. Assume for now that all representing
classes implement the same set of methods. Thus, an instance
of the JIT class Matrix is able to respond to the methods
int getRows(), int getCols(), int get(int, int),
and void set(int, int, int) (cf., Listing 1).

Listing 9 introduces a second example which models a
File that can be in one of three states: open, closed, or
locked (forever closed). To this end File combines three
representation classes (lines 1 and 2).

A swap statement potentially causes the JIT Data Structure
to change its representation, which is a non-trivial transfor-
mation. To express such transformations3 we introduce a
new kind of class member in the body of a Just-in-Time
class: the transition function. A transition function defines
the transition from a source representation to a target repre-

3 In the work on object evolution these are called evolvers [6]. In [1] they are
described as coercion procedures

Listing 9: The class File combines three representations.
1 class File
2 combines OpenFile , ClosedFile , LockedFile {
3 OpenFile to ClosedFile as close { ... }
4 ClosedFile to OpenFile as open { ... }
5 ClosedFile to LockedFile as lock { ... }
6 }

sentation. For instance, the transition function on lines 4–9 in
Listing 8 transforms a RowMajorMatrix into a ColMajor-
Matrix. The body of the transition function (between curly
braces) shows much resemblance with the body of a parame-
terless constructor. Within the body of a transition function
two new keywords can be used: target and source. These
denote the object in the new representation and the object
in the old representation respectively. Outside the body of
a transition function these keywords have no meaning. The
intentional semantics of a transition function are as follows:
1. before the execution of the body the original object is as-
signed to source, 2. the first statement in the body invokes
a constructor of the target representation and assigns the re-
sulting object to target, 3. during the execution of the body
both target and source exist as separate objects, 4. after
the execution of the body the original object replaces the ob-
ject denoted by target. Optionally, a transition function can
be named, as shown in Listing 9. The named transition func-
tion can be invoked by calling it as a parameterless method,
e. g., myFile.close().

In the definition of the JIT class File (Listing 9), there are
three transition functions defined. From these, it is possible
to construct the finite state graph shown in Figure 1, which
we call the transition graph. The transition graph of File
shows that it is not possible to transition from a locked file
to any other representation. When such a swap is issued at
runtime, an UnsupportedSwapException is thrown.

An obvious critique to this approach is a potential combi-
natorial explosion of the number of transition functions that
need to be implemented as the number of representations
grows. We argue, however, that in practice this will not be an
issue because of the following reasons:

• First, when we look at existing libraries, the number
of different representations for a single interface is rel-
atively small. In Java for instance there are only three
implementations for the List interface (i. e., ArrayList,
LinkedList, and Vector). Then, the number of transi-
tion functions stays within acceptable bounds.

• Second, we conjecture that most data interfaces can be
enriched such that it is possible to implement a transition
function that is generic enough to transition from any
representation to any other representation. An example of
such a general transition function for the Matrix example
is shown in Listing 10. Such a general transition function
can replace all other specialized transition functions. Of

Just-in-Time Data Structures, author’s preprint 6 2015/8/20

Listing 10: A transition function that is generic enough to
transition a Matrix from any representation to any other
representation.

1 Matrix to Matrix {
2 target(source.getRows(), source.getCols ());
3 for (int r=0 ; r<source.getRows () ; r++) {
4 for (int c=0 ; c<source.getCols () ; c++) {
5 target.set(r, c, source.get(r,c));
6 }
7 }
8 }

course, from the performance perspective, specialized
transition functions are likely to be preferred. An example
of a specialized transition function in the matrix example
is the transpose function which expresses the transition
from a RowMajorMatrix to a ColMajorMatrix, and
vice versa. These specialized transition functions are
shown in Listing 8 (lines 4–9 and 11–16).

• Third, the set of available specialized transition functions
can be used transitively. In the file example we can transi-
tion from an open file to a locked file by combining two
transitions, i. e., myFile.close(); myFile.lock().
Again, a specialized and direct transition function might
be preferred in terms of performance.

• A final argument to counter the “transition function explo-
sion” is that some transitions between two representations
are unlikely or even impossible to occur. Implementing a
specialized transition function in such a case, serves no
practical purpose. For instance, the LockedFile repre-
sentation does not allow transitions to any other represen-
tation.

+path()
+ write(String)

OpenFile
+ path()
ClosedFile

+ path()
LockedFile

close()

open() lock()

close() + lock()

Figure 1: The states of a File: Open, Closed, Locked.

What we have now is a data structure that, when instructed,
is able to transition between representations, given its tran-
sition graph. The remainder of this section introduces swap
rules, the language constructs to induce a representation
change; and specialized swaps, i. e., implicit representation
changes imposed by JitDS-Java.

4.1 Swap Rules
Swap rules are the constructs in our language that allow the
developer of JIT Data Structures to express when a repre-
sentation swap is needed. In general, a swap rule expresses
what events are important to observe and how to react to
them accordingly. Based on the observed usage of a JIT Data
Structure a reaction can be formulated in the form of a tran-

sition from one representation into another. We identify two
levels of granularity on which to make these observations.
The coarsest level of granularity we consider is the level of
computation. Observing an invocation of the matrix multi-
plication method mul, for instance, is a computation level
observation. Based on the expert knowledge about the affin-
ity of mul for the row-major × col-major representations it is
beneficial for performance to impose a representation change
on the arguments of mul. Alternatively, a more fine-grained
observation is on the level of a data structure’s operations,
i. e., invocations of the methods. In the matrix example these
are for instance get(row, col) or set(row, col, val).
The observation that set is mostly called with val==0 makes
a sparse matrix representation a viable candidate to swap to.
Note that interface invocation observations imply a reasoning
from a perspective internal to the JIT Data Structure. The
two levels of granularity coincide with the external versus
internal representation change incentives introduced in Sec-
tion 3. Consequently, we introduce external swap rules that
express representation changes on the computation level; and
we introduce internal swap rules that express representation
changes on the interface level.

External Swap Rules are swap rules that invoke a repre-
sentation change on the level of computations. In an object-
oriented language, methods are a straightforward boundary
of computation. Therefore we restrict ourselves to method
invocations as join points4 at which to introduce representa-
tion changes. To capture the invocation of a single method,
the header of an external swap rule looks like the header of a
Java method definition (i. e., list of modifiers, a return type, a
name, and a list of formal parameters), prepended with the
keyword swaprule (Listing 8, line 18). Note that the name
used in the swap rule should be fully qualified to capture the
method in the intended class. The body of an external swap
rule consists of three parts: a set of statements, a proceed
statement, and again a set of statements (Listing 8, lines 18–
24). All statements in the body have access to the arguments
of the method invocation and can perform any necessary com-
putation to decide whether or not to invoke a representation
swap. The proceed statement represents the actual invocation
of the advised method call. The relation between external
swap rules and AOP is discussed in Section 5.

On lines 18–24 of Listing 8 an external swap rule is
defined that captures all the invocations of the method mul
(matrix multiplication) defined in some class named Utils.
When the arguments, both instances of the JIT class Matrix,
are “large enough” to benefit from a representation that is
aligned with the computation, a representation swap is issued.
An invocation of doCommute (also in Utils, see Listing 11),
then implies potentially four representation changes.

4 Other researchers explicitly study language constructs to express more fine
grained join points [16].

Just-in-Time Data Structures, author’s preprint 7 2015/8/20

Listing 11: Swapping a swappable Data Structure
1 boolean doCommute(Matrix a, Matrix b) {
2 return mul(a, b). equals(mul(b, a));
3 }

Listing 12: Internal swap rule to RowMajorMatrix based on
the number of non-zero elements.

1 swaprule SparseMatrix {
2 int size = getRows ()* getCols ();
3 if (getNonZeroCount () > size *0.25) {
4 this to RowMajorMatrix;
5 }
6 }

Internal Swap rules are swap rules that describe for which
“state” of a JIT Data Structure it becomes opportune to is-
sue a representation change. Conceptually, these checks are
performed continuously during the execution of a program.
For performance reasons, however, continuously performing
these checks might not be optimal. Finding the right bal-
ance between responsiveness and performance has not yet
been investigated, but is discussed in Section 8. Listing 12
shows an example of an internal swap rule. On the first line
the swap rule reveals for which representations the rule is
applicable, here SparseMatrix. The body of the internal
swap rule states that the data structure should swap to the
RowMajorMatrix representation when less than 25% of the
values in the matrix are zero.

4.2 History Based and Learned Reactions
It is possible to implement more complex and expressive
swap rules than the examples presented above. First, these
“simple” swap rules are based on readily observable state,
e. g., invocation of the mul method, current representation
and size. Second, these swap rules express a change into a
developer-defined representation. Orthogonal to the choice of
implementing internal or external swap rules, we also allow
observations based on the history of the data structure’s usage
and we allow learning, to find the best target representation
of a swap rule.

History Based Reactions. Because swapping comes at a
certain cost, it is not always economical to change the rep-
resentation eagerly. For instance, swapping from RowMajor-
Matrix to SparseMatrix on the first call to set with a zero
value would be counterproductive. In such cases, it is more
interesting to react to a pattern of observations, that was seen
over time. Some representation changes should therefore be
based on a history of observations.

To facilitate the bookkeeping of history information, exter-
nal swap rules have access to statically defined member fields
in the JIT class. Internal swap rules have access to instance
member fields of a JIT class. Internal swap rules can also

Listing 13: Internal swap rule to SparseMatrix based on
estimated sparsity.

1 #set(int row , int col , int val);
2
3 #zeroSet as set(int row , int col , int val) {
4 count-if (val == 0);
5 }
6
7 #nonZeroSet as set(int row , int col , int val) {
8 count-if (val != 0);
9 }

10
11 swaprule RowMajorMatrix {
12 if ((#set > FREQUENT_SET) &&
13 (# zeroSet > #nonZeroSet *# nonZeroSet)) {
14 this to SparseMatrix;
15 }
16 }

make use of a special kind of history information, in the form
of Invocation Count Expressions.

Invocation Count Expressions. To make counting the num-
ber of invocations of member methods easier, we introduce
invocation count expressions. The need for similar informa-
tion to decide whether or not to issue a representation change
is also identified by Shacham et al. [19], i. e., “opCounts”,
and by Xu [23], i. e., “swap conditions”. In its simplest form,
an invocation count expression is a hash-symbol followed
by a method-name and a list of formal parameters between
braces (line 1 in Listing 13). Such an expression evaluates
to the number of invocations of the matching method, here
set. Adding a body to an invocation count expression allows
for more complex statistics, i. e., only those invocations for
which at least one count-if-statement evaluates to true
are counted. Optionally, an invocation count expression can
be given a more revealing name. An example of invocation
count expressions with names and bodies is given in List-
ing 13 (lines 3–5 and 7–9). The value of an invocation count
expression can be used in the body of an internal swap rule
by referring to it by its name preceded by a hashtag, e. g.,
the ratio of zeroSet and nonZeroSet is used to estimate
the “sparsity” of a matrix (line 13) and potentially invoke a
representation change.

Learned Reactions. All example swap rules presented hith-
erto express transitions to a representation defined by the
developer. Alternatively, the “right” representation to swap
to can be learned, using machine learning techniques. In Sec-
tion 6.1, we use epsilon-greedy Q-learning to find the best
representation for A and B in mul. Assume qLearner4Mul
to be an object that implements this learning algorithm. The
swap rule in Listing 14 first asks qLearner4Mul for the
“best” representations; then the multiplication is performed
and its execution time is measured; finally, qLearner4Mul is
informed about the time needed to execute mul and “learns”

Just-in-Time Data Structures, author’s preprint 8 2015/8/20

Listing 14: Learned Reaction to the occurrence of a call to
mul

1 static QLearner qLearner4Mul = new QLearner (2);
2
3 swaprule Matrix Utils.mul(Matrix A, Matrix B) {
4 A to qLearner4Mul.getRepresentation (0);
5 B to qLearner4Mul.getRepresentation (1);
6 long begin = System.currentTime ();
7 proceed;
8 long end = System.currentTime ();
9 qLearner4Mul.minimize((end-begin) ,

10 representationOf(A), representationOf(B));
11 return C;
12 }

which representations for A and B it should suggest the next
time mul is called.

Note that Listing 14 reveals two properties of JitDS-Java
that where not yet discussed. On the one hand, it shows how
external swap rules can access static members of a JIT class.
On the other hand, it shows how representation types are first
class values in JitDS-Java. They can be the result of a function
call (line 4 and 5) and they can be passed as arguments to a
function call (lines 9 and 10). In Section 5 we also show that
they can be assigned to a variable, and we show how this is
implemented in the compiler.

4.3 Specialized Swaps
If we relax the assumption that all representing classes im-
plement the same set of methods, then we can partition the
set of methods into the core methods, i. e., those methods
implemented by all representing classes, and the specialized
methods, i. e., those methods implemented by one represent-
ing class. To execute a specialized method, a data structure
has to adhere to the correct representation. The Specialized
Swap is the implicit representation change imposed by our
language to allow the execution of such a specialized method.

For instance, consider the class SparseMatrix, a third
representation for our JIT class Matrix. Besides the methods
as defined in Listing 1, this class also provides a method
Iterator nonZeroElementsIterator() which is not
part of the core of the Matrix data type. When this method is
invoked, as on line 3 in Listing 15, the matrix m is implicitly
converted into a SparseMatrix.

5. Compiling Just-in-Time Data Structures
into Java

We now describe the transpiler which we implemented to
translate the specification of a JIT class written in JitDS-Java
into Java.

Just-in-Time Class Definition. The definition of a JIT
class (e. g., Matrix) is compiled directly into a simple
class definition with the same name and package. Then,
we compute for each of the representation classes (e. g.,

Listing 15: Counting the number of non-zero elements im-
plies an implicit representation swap.

1 int numberOfNonZeroElements(Matrix m) {
2 int count = 0;
3 Iterator it = m.nonZeroElementsIterator ();
4 while(it.hasNext ()) {
5 it.next ();
6 count ++;
7 }
8 return count;
9 }

RowMajorMatrix, ColMajorMatrix, and SparseMatrix)
the set of public, non-static methods. We add a (static)
interface (here Matrix.Interface) which contains the
union of the above described set of methods augmented
with a void swap(Representation) operation and a
Representation representationOf() operation. Then
we add a non-static member class definition to the “JIT
class” for each of the representations, which we call the
local representation class. These local representation classes
extend a single representation class and implement the newly
defined interface. Finally, the JIT class holds a reference
to an instance of the Interface type in a field member
called instance. All methods of the Interface type
are implemented by the JIT class by forwarding the call
to the instance. For those methods implemented by the
instance’s super class (representation class) no new imple-
mentation needs to be provided, rather Java’s polymorphism
takes care of those. The specialized methods need special
care of the compiler. These are implemented as a call to swap,
which changes the representation, followed by re-invocation
of the intended method. Now the new instance does adhere
to the correct representation and, by construction, knows how
to respond to the invocation.

Homomorphic Reclassification. The swap method is im-
plemented in each of the local representation classes as a
switch statement: if swap is called using the current repre-
sentation, nothing happens; if swap is called using a rep-
resentation for which a transition function is defined, the
instance is set to a new object with the corresponding rep-
resentation using the transition function. Finally, if swap is
called using a representation for which no matching transition
function exists, an IllegalSwapOperationException is
thrown. This functionality of changing the representation of
an object at runtime while retaining its identity, is known as
dynamic object reclassification [11]. Because the JIT Data
Structure never loses properties (i. e., all operations of the
data interface have to be defined), the swap is a restricted
form of dynamic reclassification called monotonic reclas-
sification [6]. Moreover, a JIT Data Structure never gains
properties either, which makes the swap an even more re-
stricted form of dynamic reclassification which we will call
homomorphic reclassification. Our implementation of ho-

Just-in-Time Data Structures, author’s preprint 9 2015/8/20

momorphic reclassification explained above resembles the
Inheritance–Evolution technique from [6] and is effectively a
more elaborate variant of the bridge pattern [13].

External Swap Rules. Both the syntax and intended behav-
ior of external swap rules have the look-and-feel of aspect-
oriented programming. More precisely, our external swap
rules provide a static quantification of when to execute a
certain representation change [12]. It will therefore come as
no surprise that our compiler translates external swap rules
directly into an “around advice” with operates on a “execute
pointcut” expressed in AspectJ [17]. In future work, however,
we want to do the code weaving ourselves to gain more fine
grained control.

Internal Swap Rules. An internal swap rule provides a dy-
namic quantification of when to execute a certain representa-
tion change [12]. Opposed to our implementation of external
swaprules, we implemented the weaving of internal swaprules
ourselves. All bodies of the internal swap rules that apply to
a representation class are combined into a private method in
this representation class. This method is invoked “regularly”.
That is, our current compiler inserts a call to this method be-
fore each core method invocation. Below and in Section 8 we
hint at reducing this overhead by relying on thorough (static)
analysis of the code (e. g., counters being changed, combining
multiple swap rules into one, or with runtime sampling).

Invocation Count Expressions. For each of the declared
invocation count expressions, a private int member is added
to the representation class. The body of each method captured
by an invocation count expression is prepended with a con-
ditional increment instruction of this member. References to
these counters in the body of an internal swap rule are simply
converted to the correct name.

Discussion. The compiler in its current form allows ex-
pressing all of our new constructs and compiles them to Java
(i. e., JIT classes, transition functions, named swap rules, inter-
nal swap rules, external swap rules, and invocation count ex-
pressions). What is currently missing is (static) analysis to aid
the compiler in reducing the amount of overhead introduced
in the code, and to check for anomalies in the combination of
representation classes, e. g., colliding method signatures. The
source files needed to build the compiler are available on our
website.5

6. Evaluation: JITMatrix and JITList
In this section we present two Just-in-Time Data Structures,
that we implemented to serve as example programs. Both
examples are chosen such that they exemplify the complexity
of different kinds swap rules presented in Section 4. The first
example is an extension of the running example of this text:
the Matrix and its multiplication. In the Matrix-example we
show the difference between learned and developer defined

5 http://soft.vub.ac.be/~madewael/jitds

transitions. In the second example we present a Just-in-
Time List which is used to find prime numbers using the
traditional sieve. The List-example shows how to use the
fine grained observations at the interface invocation level in
combination with a history based reaction. The benchmarks
were executed on an Ubuntu 14.04.2 server, kernel version
3.13.0-44-generic, with four AMD Opteron 6376 processors
at 2.3 GHz with 64 GB of memory with NUMA (non-uniform
memory access) properties. All experiments are run 30 times
and the aggregated results are presented in the graphs (and
text).

In the code fragments — and in the accompanying text
— a lot of seemly random numbers are used, i. e., problem’s
input sizes and the “magic numbers” in the representation
swaprules. The input sizes are chosen in function of the
presentation of this text, e. g., to show the difference between
small and large input sizes. The numbers in the swaprules,
however, are the result of the tedious work performed by
a performance expert. Because performance engineering is
difficult [9], we consider the separation of application logic
and representation change logic as a key benefit of our Just-
in-Time Data Structures.

6.1 Matrices and Matrix Multiplication

Listing 16: Raising a matrix A to the nth power.
1 public static Matrix pow(Matrix A, int n) {
2 Matrix C = makeIdentityMatrix(A.getCols ());
3 for (int i=0 ; i<n ; i++) {
4 C = mul(A, C);
5 }
6 return C;
7 }

As already shown, the data access pattern for the ma-
trix multiplication algorithm, mul(A, B), prefers A to be
stored in row-major order and B to be stored in col-major
order for better performance. Our benchmark program im-
plements a power function pow(Matrix m,int n), which
raises the matrix m to the nth power (Listing 16). Thus, pow
iteratively calls mul. We measure the execution time of rais-
ing a 512× 512 matrix to the 16th power. In our experiment
we compare three approaches: 1. We consider Matrix to be
a JIT class without any swap rules and thus without any rep-
resentation changes, 2. The Matrix from (1) with the swap
rule from Listing 8 to enforce a multiplication of RowMajor
x ColMajor, and 3. The Matrix from (1) with the swap
rule from Listing 14, which implements the epsilon-greedy
Q-learning algorithm [21] to learn the best representation
based on execution time.6

Figure 2 shows a box-plot of the execution times of raising
a 512× 512 matrix to the 16th power. The graph summarizes
the executions times of 30 runs. As expected, the versions

6 The machine learning technique used here is the basic epsilon-greedy Q-
learning algorithm, and serves as a prototypical implementation. Hitherto,
no further research was conducted in the area of self-learning swaprules

Just-in-Time Data Structures, author’s preprint 10 2015/8/20

Developer-defined
(listing 8)

Learning
(listing 15)

None

Type of swap rule used

15

16

17

18

19

20

R
un

ti
m

e
(s

)

Figure 2: Raising a 512× 512 matrix to the 16th power.

with swap rules outperform the version where all matrices
have a single representation. The outliers in the learned
version are those runs where the machine learning algorithm
is trying to find an optimum. As already shown in Section 2,
changing the representation of the matrices yields better
performance, and thus also when running the code generated
by our compiler. Also the version using the learning swap
rule performs clearly better than than the program without
representation changes.
6.2 Search for Primes in a List
In Java the List interface comes with three standard im-
plementations, i. e., LinkedList, ArrayList, and Vector.
The implementations ArrayList and Vector are roughly
equivalent up to synchronization and are based on an array
of Objects. The LinkedList implementation on the other
hand is based on the helper-class Entry which holds a ref-
erence to a previous and next Entry and a reference to a
value. Consequently, the LinkedList is pointer based with-
out guarantees on the memory layout.

Intuitively, the LinkedList is better for dynamic lists, or
those with frequent insertions and deletions of elements. The
ArrayList is expected to outperform in random access, e. g.,
getting and setting elements. This intuitive characterization is
summarized in Table 3. As shown by other researchers (e. g.,
[3, 23]), making a fixed choice of implementation before (or
at) start-up time can be suboptimal. For instance, in programs
that exhibit phased behavior [20], e. g., phases of frequent
inserts followed by phases of frequent selects, and vice versa.
Sometimes this phase shift is lexically (e. g., one specific line
of code) observable in the program’s code. In the following
example we present a program where the phase shift is not
lexically observable: in one of the iterations of the while loop
(Listing 17, lines 19–23).

get/set add/remove
(random position) (current position)

ArrayList O(1) O(n)
LinkedList O(n) O(1)

Table 3: Intuitive performance characteristics of List-
representations in Java.

Listing 17: Implementation of the sieve of Eratosthenes.
1 JITList primes = new JITList ();
2
3 for (int i=N ; i>=2 ; i--) {
4 primes.add(0, i);
5 }
6
7 for (int idx=0 ; idx <primes.size() ; idx ++) {
8 /* Get idx’th prime */
9 int prime = primes.get(idx);

10
11 /* Advance Iterator */
12 primes.startIterator ();
13 while (primes.hasNext () &&
14 (primes.next()<=prime)) {
15 /* do nothing */
16 }
17
18 /* Remove Multiples */
19 while (primes.hasNext ()) {
20 if ((primes.next ()% prime) == 0) {
21 primes.remove ();
22 }
23 }
24 }

The “sieve of Eratosthenes” is an algorithm to find all
prime numbers smaller than N . The algorithm starts with
a sequence of integers from 2 till N . Then, it iteratively
filters all multiples of all found primes. An implementa-
tion in Java is shown in Listing 17 and was designed to
play off the ArrayList implementation of List against the
LinkedList implementation. On line 4, for instance, an ele-
ment is added to the front of the list which is an increasingly
expensive operation for the ArrayList.7 Then, at line 7 the
iterative sieving starts. Each iteration consists of a random ac-
cess (line 9), iterating through the list to the wanted position
(line 12–16), and finally, iterating further while potentially
removing elements (lines 19–23).

Listing 18: A set of invocation count expressions used in the
JitList.

1 #iter as next ();
2 #del as remove ();
3 #insert as add(int i, int v);
4 #get as get(int i);

7 The implementation of add(int,Object) in ArrayList requires a call
to System.arraycopy and potentially a second call if the underlying array
is too small. Conversely, add(int,Object) in LinkedList simply creates
a new Entry and adjusts a single reference.

Just-in-Time Data Structures, author’s preprint 11 2015/8/20

Listing 19: Swap rule from ArrayList to LinkedList
1 swaprule ArrayList {
2 if ((size () >1000) && (#insert >10*# get)) {
3 this to LinkedList;
4 }
5 }

Listing 20: Swap rule from LinkedList to ArrayList
1 swaprule LinkedList {
2 if ((size () >1000) && (10*# del < #iter)) {
3 this to ArrayList;
4 }
5 }

We implemented a JITList in JitDS-Java which is an
JIT Data Structure that is able to swap between represen-
tations based on ArrayList and LinkedList. Listings 19
and 20 show the logic that describes when to swap from one
representation to the other.

Implementation Details. Note that there are two differ-
ences between the original List from Java and the JitList
as used in Listing 17. First, we do not consider generic types
in our language and therefore JitList is assumed to be
be like List<Integer>. The second difference is the use
of the JitList as an Iterator instead of requesting an
Iterator (i. e., Iterator it = primes.iterator();).
The latter difference is more fundamental and therefore fur-
ther discussed in Section 8.

As an experiment we compared the execution times of
running the “‘sieve” application with an ArrayList, a
LinkedList, and a JITList with the swap rules and in-
vocation counters introduced above (Listings 18 to 20). The
internal swap rule in Listing 19 is designed to change an
ArrayList into a LinkedList when the number of inserts
becomes too high compared to the number of random reads
(#get). The magic constant, 10, was introduced as damp-
ening factor to avoid premature representation changes and
is determined by trial-and-error. The internal swap rule in
Listing 20 is designed to change a LinkedList into an
ArrayList when the list is mainly iterated over (#iter)
compared to the number of deletions (#del). Again, the
magic constant is a dampening factor determined by trial-
and-error. Further, we vary the number of elements initially
added to the list. Figure 3 summarizes the executions times of
30 runs in three box-plots, one for each input size. Comparing
the ArrayList and the LinkedList implementations, we
observe that for the smallest input, LinkedList outperforms
ArrayList, whereas for the larger inputs the situation is
reversed.

When analyzing the representation changes of the JIT-
List, we observe a first transition from ArrayList to
LinkedList early in the program’s execution (i. e., dur-
ing the building of the list). A second transition, i. e., from
LinkedList to ArrayList, is observed during one of the
early iterations of the sieve loop. We conclude, by comparing
the execution time needed by the JITList with the others,

ArrayList LinkedList JITList
18

20

22

24

26

28

30

R
un

ti
m

e
(s

)

Primes below
300000

(a) Time to find all primes below 300,000.

ArrayList LinkedList JITList
40

45

50

55

60

65

70

R
un

ti
m

e
(s

)

Primes below
400000

(b) Time to find all primes below 400,000.

ArrayList LinkedList JITList
60

70

80

90

100

110

120

R
un

ti
m

e
(s

)

Primes below
500000

(c) Time to find all primes below 500,000.

Figure 3: Varying the initial number of elements added to the
list.

that the representation changes allow the JITList to com-
bine the best of both classic list representation, and eventually
outperforms both (Figure 3c).

Just-in-Time Data Structures, author’s preprint 12 2015/8/20

7. Related Work
This section on related work is divided into two parts. In the
first part we present work related to the techniques needed to
implement Just-in-Time Data Structures. In a second part we
discuss the work related to data structure selection in general.

7.1 Implementing a Just-in-Time Data Structure
In Section 4 we showed that changing data representation
at runtime can be implemented using a restricted form of
dynamic reclassification which we called homomorphic re-
classification. The idea of using a restricted form of dynamic
object reclassification is explored by Tal Cohen et.al. in [6].
They present three implementation techniques of which we
use the inheritance-based technique. This technique effec-
tively implements the bridge design pattern as described in
[13], in a different context. Similar ideas have been explored
in the context of objects and their identity in the language
Gilgul by Costanza [8]. More general forms of dynamic ob-
ject reclassification can be found for instance in the language
Fickle [11] and in Smalltalk (cf. become:).

To implement JIT Data Structures, we observe the usage
of the data structure and react accordingly. Our strategy to im-
plement the observations and reactions and merge them with
the application logic could also be realized through aspect-
oriented programming [16], i. e., we disentangle the logic for
data structure selection from the rest of the application logic.
While our work is not focussing on AOP as such, it is inter-
esting to consider the work on domain-specific approaches in
the context of performance. Introducing representation swaps
at a non-lexical place in a program, as discussed in Section 4,
implies the need for selecting a specific kind of join point.
Similarly, LoopsAj introduces expressiveness dedicated to
join points for loops [14], which in turn allows parallelization
of the code and improves performance.

7.2 Data Structure Selection
Above we compared our implementation of JitDS-Java with
other software engineering efforts. Here we focus on four
approaches that have the same goal as Just-in-Time Data
Structures, i. e., selecting the best possible data representation
for an application. We classify the approaches according to
the axes presented in Section 3.

Brainy is a general program analysis tool that automati-
cally selects the best data representation for a given program
on a specific micro-architecture [15]. Brainy makes an offline
decision by observing interface invocations of a sample run
and feeds this information into an machine learning algo-
rithm, which takes architecture-specific characteristics into
account.

Most of the other related work is dedicated to collections.
Chameleon is a tool that assists the developer in choosing the
appropriate collection representation [19]. Chameleon makes
its offline decisions based on a rule-engine and the collection’s
behavior gathered during sample runs of the program. The

rules for the Chameleon engine are expressed in a DSL where
“number of interface operation invocations” is one of the
possible expressions.

CoCo on the other hand, is an online application-level
optimization technique for collections [23]. CoCo exploits
the known algorithmic characteristics of Java collections to
improve performance. CoCo differs from other online ap-
proaches because it allows a gradual transition between rep-
resentations, i. e., CoCo is able to provide a “cheap transition
function” to revert a representation swap. We have not yet
considered this in our approach, but it is an interesting avenue
of future work.

In PyPy, the homogeneity of collections in dynamic lan-
guages can be exploited by changing the strategy for storing
elements [3]. Also in the V8 JavaScript interpreter the un-
derlying representation of data is changed based on the cur-
rent content and usage.8 These ideas date back to maps, one
of the implementation techniques of SELF’s object storage
model [4].

A more established form of representation changes are the
offline representation changes introduced by compilers. Auto-
boxing and unboxing are examples thereof.9 Typecasting and
coercion are two other examples of established forms of rep-
resentation changes readily available in many languages [1].

A final body of related work tackles performance from
the opposite angle and changes the computation — as op-
posed to the data -£– to improve a program. The amount of
work in this area (i. e., compiler technology) is vast. Tang
et al. [22], for instance, develop a special purpose compiler
to improve the performance of stencil computation based on
the target hardware and the shape of the stencil. Based on
the polytope model, dependency graphs, and other theoreti-
cal properties, compilers are allowed to “rearrange” nested
loops to improve performance while keeping semantics intact.
From these efforts, the work of Ansel et al. [2] resembles
our work the most. In their language a developer can “com-
bine” multiple algorithms to solve the same problem (e. g.,
insertion-sort or merge-sort) into a single algorithm (e. g.,
sort). Much like qsort is currently implemented manually in
the standard C headers, the PetaBricks language chooses the
“right” algorithm to be used at runtime based on the data.

8. Discussion and Future Work
We presented JitDS-Java, an extension of Java, to define
Just-in-Time Data Structures and discussed a straightforward
compiler that translates the new constructs into Java. More-
over, in Section 6, we showed two example programs that
benefit from using a JIT Data Structure. In its current form

8 V8 JavaScript Engine - Google Project Hosting, V8 project authors, access
date: December 21st 2014 https://code.google.com/p/v8/source/
browse/trunk/src/array.js#89
9 Autoboxing and Unboxing, Oracle, access date: April 1st 2015
https://docs.oracle.com/javase/tutorial/java/data/
autoboxing.html

Just-in-Time Data Structures, author’s preprint 13 2015/8/20

the compiler is a prototype for fast development of JIT Data
Structures (e. g., JitMatrix, JitList, or JitFile). There
are a number of points on which JitDS-Java and its compiler
need to be further refined in order to allow for better usability.

Engineering: Reducing the Overhead. Currently, the com-
piler is implemented straightforwardly, as discussed in
Section 5 and therefore would benefit from a more ma-
ture implementation which generates code with less per-
formance overhead. First, we want to reduce the method
invocation overhead introduced by the extra level of indi-
rection of using the bridge pattern. Technically, the cheap
invokeVirtual of a simple method call is, in our imple-
mentation, replaced by an invokeVirtual followed by an
(expensive) invokeInterface. Second, in its current form,
the compiler introduces a lot of checks for potential internal
swap rule invocations that are not strictly necessary, i. e.,
before every core method invocation. We plan to turn this
around and invoke only those swap rules which can trigger
because of newly updated counters or values, i. e., push-based
instead of pull-based. For this we are looking in the direction
of expert systems and rule engines.

Expensive and Invalid Transitions. Writing program logic
with JIT Data Structures allows the developer of the code
to be oblivious of the actual representation of the data
structures. For instance, using a lot of specialized methods
potentially causes a lot of representation swaps invisible to the
programmer. Moreover, some transitions can be invalid (cf.
the file example, Figure 1). In these cases, the programmer
should be warned of the potentially expensive or invalid code.
We want to introduce a type system in our language that
allows for static warnings when code becomes potentially
expensive, and for static errors (rejected program) when the
program will run into an unacceptable transition. DeLine
and Fähndrich [10] present a type system which allows static
reasoning about the “state”, here the current representation,
of objects.

Escaping Pointers. It is common in programs for member
functions to return a value which holds, direct or indirect,
a reference to the object itself. For instance, Iterators as
obtained from a List need a reference to the list to be able to
iterate. While passing references around is generally legit in
OOP. In the context of JIT Data Structures, however, it raises
some problems. If a reference to an internal representation is
passed outside the boundaries of the JIT Data Structure, the
object identity is not longer maintained.

An iterator obtained from a JitList before a swap will
no longer be able to correctly iterate over the list after a
swap. We call this the problem of escaping pointers. We
want to introduce ownership types [5], to aid the developer
in programming with JIT Data Structures and to allow the
compiler to introduce guards.

Freezing and Thawing. One of the benefits of implement-
ing JIT Data Structures is that it is possible to express rules
on a conceptual level when it is beneficial to swap represen-
tations. In practice, however, it is possible that multiple rules
should be triggered at the same time, causing a ping-pong
effect of representation swaps. These cascading transitions
can even be caused by a transition from one representation
to another. To avoid polluting the invocation counters we are
currently investigating the Freezing and Thawing of our JIT
Data Structure’s swapping capability, i. e., disallowing swaps
for a certain period. Currently, our compiler already “freezes”
the data structure during a swap, such that a swap caused by
a swap is not possible.

Interfering Swap Rules. When the number of swap rules
increases, it becomes likely that they will interfere with each
other. We want to give external swap rules priority over
internal swap rules, i. e., internal swap rules do not trigger
within the execution flow of an external swap rule. In general,
however, the interplay between multiple swap rules needs
further investigation.

9. Conclusion
In this text we introduced Just-in-Time Data Structures, a
general approach for developers to implement data structures
that can intrinsically change their representation at runtime.
This approach is beneficial for those applications where fix-
ing the data representation before execution or at allocation
time is suboptimal. We implemented JitDS-Java, a language
in which it is possible to define such Just-in-Time Data Struc-
tures. Defining swap rules for a JIT Data Structure, allows
developers to separate the core application logic from the
crosscutting concern of data structure selection. This could
ease the software engineering task by separating “engineer-
ing application logic” from “performance engineering tasks”,
which in turn could divide the software engineering efforts
over a domain-expert developer and a performance-expert
developer.

To define a Just-in-Time Data Structure, a developer com-
bines multiple data representations and provides the functions
to transition between them. Further, the performance-expert
developer implements a set of internal and external swap
rules to define which representation is to be used in which
situations. Our compiler turns these definitions into a data
structure that is intrinsically capable of changing its represen-
tation during the execution of a program.

In conclusion, this work wants to shift the focus from
“trying to find the right data representation for a program”
to “finding the right sequence of data representations for a
program”.

Acknowledgments
Mattias De Wael is supported by a research grant of IWT
(Innovation through Science and Technology, Flanders).

Just-in-Time Data Structures, author’s preprint 14 2015/8/20

References
[1] H. Abelson and G. J. Sussman. Structure and Interpretation

of Computer Programs. MIT Press, 2nd edition, 1996. ISBN
0262011530.

[2] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao,
A. Edelman, and S. Amarasinghe. Petabricks: A language
and compiler for algorithmic choice. In Proceedings of PLDI

’09, pages 38–49, 2009. ISBN 978-1-60558-392-1. .

[3] C. F. Bolz, L. Diekmann, and L. Tratt. Storage strategies for
collections in dynamically typed languages. In Proceedings of
OOPLSA ’13, pages 167–182, 2013. ISBN 978-1-4503-2374-1.
.

[4] C. Chambers, D. Ungar, and E. Lee. An efficient implemen-
tation of self a dynamically-typed object-oriented language
based on prototypes. In Proceedings of OOPSLA ’89, pages
49–70, 1989. ISBN 0-89791-333-7. .

[5] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for
flexible alias protection. In Proceedings of OOPSLA ’98, pages
48–64, 1998. ISBN 1-58113-005-8. .

[6] T. Cohen and J. Y. Gil. Three approaches to object evolution.
In Proceedings of PPPJ ’09, pages 57–66, 2009. ISBN 978-1-
60558-598-7. .

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, Third Edition. The MIT Press, 3rd
edition, 2009. ISBN 0262033844, 9780262033848.

[8] P. Costanza. Dynamic replacement of active objects in the
gilgul programming language. In Proceedings of CD ’02,
pages 125–140, 2002. ISBN 3-540-43847-5.

[9] M. De Wael, D. Ungar, and T. Van Cutsem. When spatial
and temporal locality collide: The case of the missing cache
hits. In Proceedings of ICPE ’13, pages 63–70, 2013. ISBN
978-1-4503-1636-1. .

[10] R. DeLine and M. Fähndrich. Typestates for objects. In
Proceedings of ECOOP ’04, pages 465–490, 2004. ISBN
978-3-540-22159-3. .

[11] S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and
P. Giannini. More dynamic object reclassification: FickleII.

ACM TOPLAS, 24:153–191, 2002.

[12] R. E. Filman and D. P. Friedman. Aspect-oriented program-
ming is quantification and obliviousness. Technical report,
RIACS, 2000.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley Longman Publishing Co., Inc., 1995. ISBN
0-201-63361-2.

[14] B. Harbulot and J. R. Gurd. A Join Point for Loops in AspectJ.
In Proceedings of AOSD ’06, pages 63–74, 2006. ISBN 1-
59593-300-X.

[15] C. Jung, S. Rus, B. P. Railing, N. Clark, and S. Pande. Brainy:
Effective selection of data structures. In Proceedings of PLDI

’11, pages 86–97, 2011. ISBN 978-1-4503-0663-8.

[16] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming.
In Proceedings of ECOOP ’97, pages 220–242, 1997. ISBN
978-3-540-63089-0. .

[17] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. Griswold. An overview of aspectj. In Proceedings of
ECOOP ’01, pages 327–354, 2001. ISBN 978-3-540-42206-8.

[18] B. Liskov and S. Zilles. Programming with abstract data types.
In Proceedings of Symposium on Very High Level Languages,
pages 50–59, 1974. .

[19] O. Shacham, M. Vechev, and E. Yahav. Chameleon: Adaptive
selection of collections. In Proceedings of PLDI ’09, pages
408–418, 2009. ISBN 978-1-60558-392-1.

[20] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder.
Discovering and exploiting program phases. IEEE Micro, 23:
84–93, 2003. ISSN 0272-1732. .

[21] R. S. Sutton and A. G. Barto. Introduction to Reinforcement
Learning. MIT Press, 1st edition, 1998. ISBN 0262193981.

[22] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and
C. E. Leiserson. The pochoir stencil compiler. In Proceedings
of SPAA ’11, pages 117–128, 2011.

[23] G. H. Xu. Coco: Sound and adaptive replacement of java
collections. In Proceedings of ECOOP ’13, pages 1–26, 2013.

Just-in-Time Data Structures, author’s preprint 15 2015/8/20

