
Towards Composable Concurrency Abstractions

Janwillem Swalens, Stefan Marr, Joeri De Koster and Tom Van Cutsem

Software Languages Lab, Vrije Universiteit Brussel, Belgium
{jswalens,smarr,jdekoste,tvcutsem}@vub.ac.be

Abstract

In the past decades, many different programming models for managing concurrency
in applications have been proposed, such as the actor model, Communicating Sequential
Processes, and Software Transactional Memory. The ubiquity of multi-core processors has
made harnessing concurrency even more important. We observe that modern languages,
such as Scala, Clojure, or F#, provide not one, but multiple concurrency models that help
developers manage concurrency. Large end-user applications are rarely built using just a
single concurrency model. Programmers need to manage a responsive UI, deal with file or
network I/O, asynchronous workflows, and shared resources. Different concurrency models
facilitate different requirements. This raises the issue of how these concurrency models
interact, and whether they are composable. After all, combining different concurrency
models may lead to subtle bugs or inconsistencies.

In this paper, we perform an in-depth study of the concurrency abstractions provided
by the Clojure language. We study all pairwise combinations of the abstractions, noting
which ones compose without issues, and which do not. We make an attempt to abstract
from the specifics of Clojure, identifying the general properties of concurrency models that
facilitate or hinder composition.

1 Introduction

A typical interactive computer program with a graphical user interface needs concurrency : a
number of activities need to be executed simultaneously. For example, a web browser fetches
many files over the network, renders multiple documents in separate tabs, runs plug-ins in
the background, and needs to keep the user interface responsive. Since the last decade multi-
core processors have become ubiquitous: servers, laptops, and smartphones contain multi-core
processors. This has made it possible to perform these concurrent activities simultaneously.

To express the interactions between these activities, a number of concurrency models have
been developed. For example, the Actor Model [1] introduces actors to represent components of
a system that communicate using asynchronous messages, while Software Transactional Memory
(STM) [7, 4] coordinates the access of concurrent activities to shared memory using transactions.

Because of the varying and extensive requirements of interactive end-user programs, devel-
opers choose to combine different models [8]. For example, a web browser might use actors to
run separate tabs in parallel, and manipulate the DOM (Document Object Model) of a web
page using STM. We also see that many programming languages support a number of these
models, either through built-in language support or using libraries. For example, the Akka
library1 for Java and Scala provides STM, futures, actors, and agents. Similarly, Clojure2 has
built-in support for atoms, STM, futures, and agents.

However, the concurrency models are not necessarily well-integrated: programmers may
experience subtle problems and inconsistencies when multiple concurrency models interact. In
this paper, we analyze some problems that arise when combining different concurrency models
and outline potential directions for composable concurrency abstractions.

1http://akka.io/
2http://clojure.org/

1

http://akka.io/
http://clojure.org/


Towards Composable Concurrency Abstractions Swalens, Marr, De Koster, and Van Cutsem

2 Concurrency Models

In this paper, we study the combination of atomics, STM, futures and promises, as well as ap-
proaches for communicating threads (actors and CSP). To illustrate the usefulness of combining
these approaches, we consider how they could be used in a modern email application.

Atomics Atomics are variables that support a number of low-level atomic operations, e. g.,
compare-and-swap. Compare-and-swap compares the value of an atomic variable with a given
value and, only if they are the same, replaces it with a new value. This is a single atomic
operation. Operations affecting multiple atomic variables are not coordinated, consequently
when modifying two atomic variables race conditions can occur. Atomics are typically used
to share independent data fragments that do not require coordinated updates. For example, a
mail client might use an atomic variable to represent the number of unread mails.

In Clojure, atoms are atomic references. Their value can be read using deref. Atoms are
modified using swap!, which takes a function that is evaluated with the current value of the
atom, and replaces it with the result only if it has not changed concurrently, using compare-
and-swap to compare to the original value. If it did change, the swap! is automatically retried.

Software Transactional Memory (STM) STM [7, 4] is a concurrency model that allows
many concurrent tasks to write to shared memory. Each task accesses the shared memory
within a transaction, to manage conflicting operations. If a conflict is detected, a transaction
can be retried. A mail client can use STM to keep information about mails consistent while
updates from the server, different devices, and the user are processed at the same time.

Clojure’s STM provides refs, which can only be modified within a transaction. They are
read using deref and modified using ref-set. Transactions are represented by a dosync block.
Outside a dosync block, refs can only be read.

Futures and Promises Futures and promises3 are placeholders for values that are only
known later. A future executes a given function in a new thread. Upon completion, the future
is resolved to the function’s result. Similarly, a promise is a value placeholder, but it can be
created independently and its value is ‘delivered’ later by an explicit operation. Reading a
future or a promise blocks the reading thread until the value is available. A mail client can use
futures to render a preview of an attachment in a background thread, while the mail body is
shown immediately. When the future completes, the preview can be added to the view.

In Clojure, futures are created using future. Promises are created using promise and
resolved using deliver. Futures and promises are read using deref, which potentially blocks.

Communicating Threads We classify concurrency models that use structured communi-
cation in terms of messages, instead of relying on shared memory, as communicating threads.
Often, each thread has only private memory, ensuring that all communication is done via mes-
sages. This, combined with having each thread process at most one message at a time, avoids
race conditions. However, models and implementations vary the concrete properties to ac-
count for a wide range of trade-offs. We distinguish between models that use asynchronous
messages, such as actors [1] or agents (as in Clojure and Akka), and models that communicate
using synchronous messages, such as CSP [5]. In a mail client, typical use cases include the
event loop of the user interface as well as the communication with external systems with strict
communication protocols, such as mail servers.

Clojure agents represent state that can be changed via asynchronous messages. send sends
a message that contains a function which takes the current state of the agent and returns a
new state. The current state of an agent can be read using a non-blocking deref. The await

3Literature uses various different definitions of futures and promises. We use those of amongst others Clojure
and Scala here.

2



Towards Composable Concurrency Abstractions Swalens, Marr, De Koster, and Van Cutsem

atoms agents STM futures promises core.async
create atom agent ref future promise chan

read deref deref deref deref ⊗ deref ⊗ <! ⊗
write reset! ref-set deliver >! ⊗

swap! 	 send alter
block dosync 	 go
other await ⊗ <!! >!! ⊗

take! put!

Figure 1: Operations supported by Clojure’s concurrency models. ⊗ indicates a (potentially)
blocking operation, 	 an operation that might be re-executed automatically.

function can be used to block until all messages sent to the agent so far have been processed.
Clojure’s core.async library implements the CSP model. A new thread is started using a go

block, channels are created using chan. Inside a go block, values are put on a channel using
>! and taken using <!. Outside go blocks, >!! and <!! can be used. These operations block
until their complementary operation is executed on another thread.

All operations described above for Clojure are summarized in figure 1, highlighting blocking
and re-execution.

3 Integration Problems of Concurrency Models

3.1 Criteria for composability

We study pairwise combinations of the five concurrency models described in the previous section.
Two correctness properties are evaluated: safety and liveness [6]. For each combination we study
whether additional safety or liveness issues can arise, emerging from the interactions between
the two models. We consider two models composable if combining them cannot produce new
safety or liveness issues.

Safety Safety means that, given a correct input, a program will not produce an incorrect
result. In our context, many concurrency models are designed to avoid race conditions to
achieve safety. They do this by managing shared resources: STM only allows shared memory
to be accessed through transactions, while CSP or the actor model only allow threads to share
data through explicit message passing.

When combining two models, new races could be introduced unexpectedly. For example,
some implementations of STM have been proven linearizable [7]: every concurrent execution is
equivalent to a legal sequential execution. However, this assumes that all shared resources are
managed by the STM system, which is not true if a thread communicates with other threads,
e. g., using CSP. This can cause unexpected interleavings that eventually lead to race conditions.
This is not dissimilar to the problem of feature interaction [2], where several features that each
function correctly separately, might behave incorrectly when combined.

Concretely, we study whether the combination of two concurrency models can introduce
race conditions: incorrect results caused by unexpected interleavings.

Liveness Liveness guarantees a program will terminate if its input is correct. In our context,
two problems can occur: deadlocks and livelocks. Deadlocks are introduced by operations that
block, waiting until a certain condition is satisfied, but the condition is continually not satisfied.
Livelocks appear when code is re-executed under a certain condition, and this condition is
continually satisfied. Some concurrency models have proven liveness properties, for instance,
STMs are usually non-blocking [7]. Others try to confine the problem by limiting blocking to

3



Towards Composable Concurrency Abstractions Swalens, Marr, De Koster, and Van Cutsem

Safety Liveness
aaaaa
in used atoms agents refs futures

promises channels atoms agents refs futures
promises channels

atoms 7 7 7 7 7 3 3 3 3 7

agents 3 3 3 3 3 3 3 3 7 7

refs 7 3 3 7 7 3 3 3 3 7
futures

promises 3 3 3 3 3 3 7 3 7 7

channels 3 3 3 3 3 3 7 3 3 7

Figure 2: This table shows when safety and liveness issues can arise by combining two models
in Clojure. The model in the column is used in the model in the row.

(def notifications (agent ’()))
(def unread-mails (atom 0))

(swap! unread-mails
(fn [n]
(send notifications
(fn [msgs] (cons "New mail!" msgs)))

(inc n)))

(a) Sending a message to an agent, in swap!. Send
may happen more than once.

(def notifications (agent ’()))
(def mail (ref {:subject "Hi" :archived false}))

(dosync
(ref-set mail (assoc @mail :archived true))
(send notifications
(fn [msgs] (cons (str "Archived mail " (:subject

@mail)) msgs))))

(b) Sending a message to an agent, in a dosync.
Send is delayed until the transaction is committed.

Figure 3: Sending a message to an agent, in a block that might re-execute (swap! and dosync).

a small set of operations. For example, futures only provide one blocking operation, reading,
which waits until the future is resolved. As long as the future eventually resolves, no deadlocks
will happen.

Again, when concurrency models are combined, unexpected deadlocks and livelocks might
arise. An STM transaction that uses blocking operations of another model, such as CSP, is
not guaranteed to be non-blocking anymore. Or, a future that contains blocking operations
from another model might not ever be resolved, in other words, combining futures with another
model can introduce unexpected deadlocks.

We study whether the combination of two concurrency models can introduce new deadlocks,
by studying the blocking operations offered by a model, and/or new livelocks, by studying the
operations that can cause re-execution.

3.2 Integration Problems in Clojure

We examine these combination issues specifically for Clojure. Each of the five concurrency
models from section 2 is embedded in each of the models (including itself). The complete set
of results is shown in the table in figure 2. For example, we embed a send to an agent (1) in an
atom’s swap! block (figure 3a), (2) in another agent action, (3) in an STM transaction (figure
3b), (4) in a future, and (5) in a go block (these results form the second column of figure 2).
Even though some of these individual results are already known, we systematically study each
pairwise combination of models, in an attempt to provide a comprehensive overview of safety
and liveness issues. A discussion of the most interesting results is given below, a complete
discussion of all results in the table is given in the online appendix.

Safety We first look at the possibility of race conditions (left side of table 2). Race conditions
are caused by an incorrect interleaving between two models.

4



Towards Composable Concurrency Abstractions Swalens, Marr, De Koster, and Van Cutsem

When using any concurrency model in the function given to an atom’s swap! operation
(first row of the table), race conditions are possible, because the function might be re-executed
if the atom changed concurrently. For example, when this function sends a message to an
agent, it could be sent twice (figure 3a). Moreover, because operations on multiple atoms are
not coordinated, their updates are inherently racy.

For STM, actions inside a dosync block are re-executed if the transaction is retried, and
therefore no irrevocable operations should happen inside dosync. However, there are two safe
combinations. Firstly, when a message is sent to an agent inside a dosync block (figure 3b),
Clojure does not send this message immediately. Instead, it delays the send until the transaction
is successfully committed. Secondly, embedding one dosync block in another means the inner
transaction will be merged with the outer one, and as a result transactions are combined safely.

Based on these results we conclude that if the ‘outer’ model might re-execute code it is given,
and the ‘inner’ model might perform irrevocable actions, unexpected interleavings can happen
and therefore safety is not guaranteed.

Liveness Next, we look at the liveness property (right side of table 2): deadlocks and livelocks.

Deadlocks are introduced by blocking operations (indicated in figure 1). CSP relies heavily
on blocking for communication, and as such deadlocks are possible when it is embedded in
another model (see last column). This is particularly problematic when embedded in swap!

(atoms) or dosync (STM): synchronous communication is irrevocable and should not be re-
executed.

Reading a future or a promise blocks until its value is available. This can cause a deadlock
when a promise is embedded in an agent (fourth column), because one thread might send an
action to an agent, which reads a promise that is delivered in a later action sent to that same
agent, possibly from another thread. Reading futures inside another future can also cause a
deadlock when mutually recursive futures are allowed, as is the case in Clojure.

Finally, the agents’ blocking await operation can cause deadlocks in a go block or a future
(second column). In agent actions and STM transactions this situation is prevented by raising
an exception. We conclude that if the ‘inner’ model might block, and the ‘outer’ model does not
expect this, a deadlock is possible.

Livelocks appear when code is re-executed (operations that can cause re-execution are in-
dicated in figure 1). An STM transaction is retried when it conflicts with another one, causing
a livelock if the conflict would consistently occur. However, Clojure’s STM prevents such
deadlocks and livelocks dynamically [3]. In general, a livelock can appear when a model that
re-executes code is combined with a model that causes this re-execution to continually happen.
However, this occurs in none of the examined cases in Clojure.

4 Solutions and Open Questions

In the discussion of the previous section, we already pointed out some places where bad inter-
actions between models are avoided by Clojure. Specifically: (1) Sending a message to an agent
in an STM transaction is delayed until the transaction has been committed. (2) await is not
allowed in STM transactions, nor in actions sent to agents. (3) A dosync block embedded in
another will not start a new transaction: the inner transaction is merged into the outer one.
These mechanisms could be replicated in some other cases: similar to sending a message to
an agent in a transaction, delivering a promise could also be delayed until the transaction has
been committed. The combination of futures and transactions could further be improved by
canceling futures started in a transaction if the transaction is aborted.

5



Towards Composable Concurrency Abstractions Swalens, Marr, De Koster, and Van Cutsem

A solution to deadlocks caused by the combination of agents and futures/promises is to
disallow reading a future/promise in an agent action, an operation that potentially blocks the
agent. Instead, the future/promise would need to be read before sending the message.

To remove the unsafe combinations of atoms with any other model, some of the mechanisms
of combinations with STM could be replicated (e. g., delaying sends to agents). However, this
can be considered contrary to the purpose of atoms: they are low-level and uncoordinated, and
accordingly offer no safety guarantees. Similarly, the CSP model uses synchronous, blocking
operations by design, and therefore liveness issues are inherent to this model. Trying to avoid
these would be contradictory to the nature of the model.

In general, in future research we would like to decompose several concurrency models into
their components, or “building blocks”. For example, we observe that some common elements
are: (1) most models supply a way to create new threads (e. g., agent, future, go); (2) agents,
actors, futures, promises and CSP provide message passing (asynchronous or synchronous);
(3) agents, actors, and CSP have private memory per thread, while (4) atomics and STM
provide a way to manage shared memory.

We want to extract such common elements and provide a way to compose them safely and
efficiently. For example, different threads could have some private memory, communicate using
message passing (as in the actor model and CSP), but also share a section of memory (e. g.,
using STM). Using these composable concurrency abstractions, it should be possible to express
existing concurrency models as well as combinations of them correctly. In the end, it should
be possible to write complex applications, such as the email client example of section 2, using
a combination of concurrency models, without introducing new safety or liveness issues caused
by interactions between the models.

5 Conclusion and Future Work

There exist various different concurrency models, and in many large-scale applications these
are combined. However, subtle problems and inconsistencies can appear in the interactions
between these models. In this paper, we studied the safety and liveness issues that can appear
when the various concurrency models available for Clojure are combined.

We identified four reasons for conflicts between models. Firstly, when a model re-executes
code, and this code uses another concurrency model that performs irrevocable actions, safety is
not guaranteed. Clojure takes some special precautions in some of these cases. Secondly, when
a model re-executes code, and this code can cause the re-execution to continually happen, a
livelock is possible. In Clojure, this is prevented in the studied cases. Thirdly, when a model
that supports blocking operations is embedded in a model that does not expect this, deadlocks
become possible. Again, Clojure prevents this in some cases but not in others. Lastly, some
models do not provide safety or liveness guarantees by design.

In future work, we aim to work towards composable concurrency abstractions: we will
decompose existing concurrency models into more primitive “building blocks”, and provide a
way to compose these safely and efficiently.

References

[1] Gul A. Agha. Actors: a model of concurrent computation in distributed systems. PhD thesis, MIT,
1985.

[2] Muffy Calder, Mario Kolberg, Evan H. Magill, and Stephan Reiff-Marganiec. Feature interaction:
a critical review and considered forecast. Computer Networks, 41(1):115–141, 2003.

6



Towards Composable Concurrency Abstractions Swalens, Marr, De Koster, and Van Cutsem

[3] Chas Emerick, Brian Carper, and Christophe Grand. Clojure Programming. O’Reilly, 2012.
[4] Tim Harris, Simon Marlow, Simon P. Jones, and Maurice Herlihy. Composable memory transac-

tions. In Proceedings of the tenth ACM SIGPLAN symposium on Principles and practice of parallel
programming - PPoPP ’05, pages 48–60, New York, New York, USA, 2005. ACM Press.

[5] C. A. R. Hoare. Communicating sequential processes. Comm. of the ACM, 21(8):666–677, 1978.
[6] Leslie Lamport. Proving the Correctness of Multiprocess Programs. IEEE Transactions on Software

Engineering, SE-3(2):125–143, 1977.
[7] Nir Shavit and Dan Touitou. Software transactional memory. In PODC’95: Proc. of the fourteenth

annual ACM Symposium on Principles of Distributed Computing, pages 204–213. ACM, 1995.
[8] Samira Tasharofi, Peter Dinges, and Ralph Johnson. Why Do Scala Developers Mix the Actor

Model with Other Concurrency Models? In Proc. of ECOOP’13, Montpellier, France, 2013.

7



Towards Composable Concurrency Abstractions Swalens, Marr, De Koster, and Van Cutsem

A Appendix

This appendix discusses table 2 in more detail—not only unsafe but also safe combinations. We
first look at the safety property, next at liveness.

A.1 Safety

The following sections describe table 4 row by row : for each model we examine whether another
model can be safely embedded in it.

aaaaa
in used atoms agents refs futures

promises channels

atoms 7 7 7 7 7

agents 3 3 3 3 3

refs 7 3 3 7 7
futures

promises 3 3 3 3 3

channels 3 3 3 3 3

Figure 4: This table shows when safety issues (race conditions) can arise by combining two
models. The model in the column is used in the model in the row.

A.1.1 ... Used in swap! (Atoms)

In general, combinations with atoms are unsafe: the function given to swap! might be executed
more than once, and therefore cannot contain irrevocable actions.

Atoms Combining atoms, as illustrated in figure 5a, can lead to race conditions, because there
is no coordination between atoms.

Agents A send in a swap! block could be repeated, as shown in figure 3a: this is unsafe.

Refs A dosync block in a swap! block could be executed multiple times, which is unsafe. This
is illustrated in figure 5b.

; Number of read and unread mails
(def unread (atom 10))
(def read (atom 20))
; Thread 1: read all mail
(swap! read (fn [n] (+ n @unread)))
(reset! unread 0)
; Thread 2: mark mail as unread
(swap! unread inc)
(swap! read dec)

(a) Atoms are uncoordinated, and therefore
race conditions are possible. When this code is
executed using two threads, the sum of unread
and read mails can change erroneously.

(def unread (atom 10))
(def mail (ref {:subject "Hi" :read-count 0}))

(swap! unread
(fn [n]
(dosync
(ref-set mail
(assoc @mail :read-count
(inc (:read-count @mail)))))

(dec n)))

(b) When a mail is read, we decrement the “unread
mail” counter (shown in the UI) and increment the
“read-count” of the mail. The dosync block cannot
only be retried (safe), but also be re-executed when
the function passed to swap! is re-executed (unsafe).

Figure 5: Combinations with atoms.

8



Towards Composable Concurrency Abstractions Swalens, Marr, De Koster, and Van Cutsem

Futures/promises Reading a future or a promise in a swap! is safe: it can increase the
chance of the code being re-executed, but does not introduce race conditions. Creating a
future or a promise in a swap! block can cause it to be created multiple times, which is
undesirable but safe. Delivering a promise in a swap! block is not safe however: only the
first deliver will succeed, subsequent ones will fail silently4.

Channels Starting a go block and reading from or writing to channels can be repeated in a
swap!, this is unsafe.

A.1.2 ... Used in Agent Actions

Agents are given an action asynchronously using send, which is scheduled to be executed in the
agent thread. As only one action will be active per agent, and this action will only be executed
once, there are generally no safety problems in using other concurrency models in agent actions.

Atoms Both reading and changing atoms in agent actions is safe, and common in Clojure
code.

Agents It is possible to send actions to other agents, or the same agent, in an agent action,
this is an asynchronous operation and causes no problems.

Refs Executing a dosync block in an agent action is safe.

Futures/promises Reading a future or promise in an agent action can block, but is safe.
Creating a future or promise is safe as well. Delivering a promise is a common way for an
agent to return a value.

Channels Starting a go block in an agent action is safe (another thread is started), reading
from and writing to channels as well.

A.1.3 ... Used in Transactions (STM)

As a dosync block might be executed more than once, it is generally unsafe to combine other
models with STM. The implementation of Clojure foresees two exceptions: using agents in a
transaction, and embedding one dosync block in another.

Atoms Modifying atoms in a transaction is unsafe: the modification can be executed more
than once.

Agents Clojure deals with message sends to agents in a dosync block in a special way: the
send is delayed, until the transaction has been successfully committed. Therefore, using
agents in a transaction is safe.

Refs A dosync block embedded in another is merged into one transaction. Therefore this is a
safe combination.

Futures/promises Reading a future or a promise in a transaction is safe, although it can
increase the chance of the transaction failing on the first execution (on subsequent executions,
the read will not block). Creating a future or promise can be undesirable, but is generally
safe. However, delivering a promise is unsafe: only the first deliver succeeds, subsequent ones
fail silently. A proposed solution is to delay the deliver until the transaction is committed—
similar to send (agents).

Channels Starting a go block in a transaction, as well as reading from and writing to channels,
are irrevocable actions that should not be repeated, and are therefore unsafe.

4Delivering a promise more than once will fail silently in Clojure 1.3 or later, where subsequent calls to
deliver return nil. In previous versions, subsequent delivers would throw an exception.

9



Towards Composable Concurrency Abstractions Swalens, Marr, De Koster, and Van Cutsem

A.1.4 ... Used in Futures

Starting a future simply creates another thread. In general, it is safe to use other concurrency
models in this new thread.

Atoms Both reading and modifying atoms in a future is safe.

Agents Reading, sending and awaiting agents in a future is safe.

Refs Transactions can be executed safely in futures, and commonly are.

Futures/promises In a future, it is safe to read another future or promise, to deliver a
promise, and to create another future.

Channels In a future it is safe to create a go block (this simply starts another thread), as
well as to read from and write to channels. In many ways, future and go are similar: both
start a new thread, future returns a future that will contain the result of its body when
dereferenced while go returns a channel that will receive the result of the body.

A.1.5 ... Used in Go Blocks (CSP)

go starts a new thread, in which it is generally safe to use other concurrency models.

Atoms Atoms can be read and modified safely in go blocks.

Agents Agents can be read, sent to and awaited safely in go blocks.

Refs It is safe to embed a dosync block in a go block. It is not possible to execute <! and >!

in a transaction, as these operations can only be used directly in a go block (and not in a do

block, such as dosync). Using <!! or >!! in a dosync block is unsafe, as already discussed
in section A.1.3.

Futures/promises Reading futures and promises, creating them, and delivering promises is
safe in a go block.

Channels It is safe to start a go block in another go block.

A.2 Liveness

The following sections describe table 6 column by column: for each model we examine the
liveness issues that arise when it is embedded into another model.

aaaaa
in used atoms agents refs futures

promises channels

atoms 3 3 3 3 7

agents 3 3 3 7 7

refs 3 3 3 3 7
futures

promises 3 7 3 7 7

channels 3 7 3 3 7

Figure 6: This table shows when liveness issues (deadlocks or livelocks) can arise by combining
two models.

10



Towards Composable Concurrency Abstractions Swalens, Marr, De Koster, and Van Cutsem

(def a (atom 0))
(swap! a
(fn [x]
(swap! a inc)))

(a) swap! is called in another swap! of the same
atom. This code will always lead to a livelock: the
outer swap! executes its body in which the inner
swap! modifies the atom and therefore causes an-
other execution of the outer swap!.

(def a (atom 0))
(def b (atom 0))
; Thread 1
(swap! a
(fn [x]
(swap! b inc)
(inc x))))

; Thread 2
(swap! b
(fn [x]
(swap! a inc)
(inc x))))

(b) Two threads modify two atoms. The func-
tions given to swap! might get re-executed several
times, until eventually they happen to not overlap
and they succeed.

Figure 7: Liveness issues when combining atoms.

A.2.1 Atoms Used in ...

Atoms do not support any blocking operations, and can therefore not cause any deadlocks. The
re-execution of swap! blocks can potentially lead to livelocks however.

swap! (Atoms) A livelock will always occur when a swap! block is called inside another
swap! block on the same atom (figure 7a). When modifying two different atoms, the
program will eventually terminate (figure 7b).

Agent Actions No liveness issues arise when using atoms in an agent action.

Transactions No issues.

Futures No issues.

Go Blocks No issues.

A.2.2 Agents Used in ...

Agents support await, a function that blocks until all messages sent to that agent up to that
point in time have been processed. This can cause a deadlock in case the messages block waiting
for an action that happens after the await.

swap! (Atoms) Awaiting an agent in a swap! block increases the chance of the swap! failing
and re-executing. If the message sent to the agent causes the swap! to fail, a livelock is
possible. This is shown in figure 8a.

Agent Actions Possible deadlocks are prevented by Clojure, as it does not allow await in
actions send to agents.

Transactions Issues are again prevented in Clojure by disallowing await in dosync.

Futures A deadlock can arise when an agent is awaited in a future, and that future is deref-
erenced in another action sent to that agent (illustrated in figure 8c).

Go Blocks Deadlocks are possible when await and CSP’s blocking operations on channels are
combined (e. g., figure 8b).

11



Towards Composable Concurrency Abstractions Swalens, Marr, De Koster, and Van Cutsem

(def at (atom 0))
(def ag (agent 0))

(swap! at
(fn [_]
(send ag
(fn [_]
(swap! at inc)))

(await ag)
inc))

(a) When a swap! contains a function that sends
a message to an agent which modifies the atom,
and then awaits the agent until the message has
been processed, a livelock is possible. This is in
fact just an extended version of the example in
figure 7a.

(def c (chan))
(def ag (agent 0))

; Thread 1
(send ag (fn [_] (<!! c)))

; Thread 2
(go
(await ag)
(>! c "test"))

(b) Thread 1 sends a message to the agent, which
takes a value from a channel. In the thread that
writes to this channel, an await is inserted before
the write. This can lead to a deadlock. In complex
programs, channels and agents can be passed be-
tween, read from and written to by different threads
and such mistakes could be much more subtle.

(def mail-ui (agent {:subject "Hi" :thumbnails []}))

(defn generate-thumbnail [attachment]
(future
(let [thumbnail (create-thumbnail attachment)]
(if (nil? thumbnail)
false
(do
(send mail-ui
(fn [m] (assoc m :thumbnails (conj (:thumbnails m) thumbnail))))

(await mail-ui) ; Make sure UI has updated before proceeding
true))

(let [thumbnail1 (generate-thumbnail attachment1)]
(send mail-ui
(fn [m]
; Modify the UI based on whether thumbnail could be generated or not
(if @thumbnail1
...
...)))

(c) This code sample generates thumbnails for e-mail attachments. create-thumbnail is a computa-
tionally intensive function that creates a thumbnail given an attachment, or returns nil if no thumbnail
could be generated. We use a future to offload the thumbnail generation to another thread, this fu-
ture will resolve to true or false depending on whether the thumbnail could be generated. An agent
represents the state of the UI. If the second send occurs before the await in the future, this code will
deadlock: the agent action is waiting for the future to finish (@thumbnail1) while the future is waiting
for the agent to finish (await).

Figure 8: Liveness issues when combining agents.

A.2.3 Refs Used in ...

In general, STM does not provide any blocking operations and therefore cannot introduce
deadlocks. A livelock occurs if a transaction is continually retried, whether this is prevented
depends on the STM implementation.

swap! (Atoms) No liveness issues arise when embedding a dosync in a swap!.

Agent Actions There are no issues when embedding a transaction in an agent action.

Transactions Livelocks could exist if a transaction would be continually retried, however, this

12



Towards Composable Concurrency Abstractions Swalens, Marr, De Koster, and Van Cutsem

is dynamically prevented by the STM implementation of Clojure [3].

Futures dosync can be used in a future without issues.

Go Blocks dosync can be used in go blocks, however <!! and >!! can cause problems when
used in the dosync block (covered in section A.2.5).

A.2.4 Futures/promises Used in ...

Liveness issues arise when a future or promise is read, but never resolved. In some cases,
mistakes by the programmer can cause such a situation.

swap! (Atoms) Reading a future or a promise in a swap! can block, but won’t block again
if the swap! is re-executed. Therefore no new liveness issues arise.

Agent Actions A deadlock can occur when a promise is read by an agent, before it would
resolved by the same agent. This is illustrated in figure 9a.

Transactions Reading a future/promise in a transaction can block, but if the transaction is
re-executed the read will not block anymore. No new liveness issues arise.

Futures Clojure allows mutually recursive futures, i. e., one future could be waiting on another
while the second future is waiting on the first. This is illustrated in figure 9b.

Go Blocks Reading a future/promise can block the go routine, however, this poses no problem.

A.2.5 Channels Used in ...

The CSP model uses blocking operations, <! and >!, to read from and write to channels. As
such, deadlocks are always possible, even without combining the model with others. Additional
issues can arise when these (irrevocable) operations are used in code that might get re-executed
(swap! for atoms and dosync for STM), as the thread with which they are communicating has
already proceeded.

swap! (Atoms) Starting go blocks, as well as reading from and writing to channels, are
irrevocable actions, using them in a swap! block can lead to deadlocks when the swap! is
re-executed.

Agent Actions If <!! or >!! block in an agent, the agent is not guaranteed to progress.

(def p (promise))
(def ag (agent 0))
(send ag (fn [_] @p))
(send ag (fn [_] (deliver p 1)))

(a) This program will deadlock, as the agent blocks until the
promise is resolved, but this promise will only be resolved by
that same agent in a later action sent to the same agent. This
example is simple, in more complex programs the two sends
might come from different threads and contain more complex
logic.

(declare f2)
(def f1
(future
@f2
1))

(def f2
(future
@f1
2))

(b) This program always deadlocks.
The programmer must not write mu-
tually recursive futures.

Figure 9: Liveness issues when combining futures.

13



Towards Composable Concurrency Abstractions Swalens, Marr, De Koster, and Van Cutsem

Transactions Starting go blocks, as well as reading from and writing to channels, are irrevo-
cable actions and should not be used in a transaction as the transaction might be retried.

Futures Using <!! and >!! in a future is similar to using <! and >! in a go block. No
additional liveness issues arise except those inherent to the CSP model.

Go Blocks The programmer can make mistakes, e. g., reading from a channel but forgetting
to write something to it, leading to deadlocks.

14


	Introduction
	Concurrency Models
	Integration Problems of Concurrency Models
	Criteria for composability
	Integration Problems in Clojure

	Solutions and Open Questions
	Conclusion and Future Work
	Appendix
	Safety
	... Used in swap! (Atoms)
	... Used in Agent Actions
	... Used in Transactions (STM)
	... Used in Futures
	... Used in Go Blocks (CSP)

	Liveness
	Atoms Used in ...
	Agents Used in ...
	Refs Used in ...
	Futures/promises Used in ...
	Channels Used in ...



