
Chocola: Integrating Futures, Actors, and
Transactions

Janwillem Swalens
Software Languages Lab
Vrije Universiteit Brussel

Belgium
jswalens@vub.be

Joeri De Koster
Software Languages Lab
Vrije Universiteit Brussel

Belgium
jdekoste@vub.be

Wolfgang De Meuter
Software Languages Lab
Vrije Universiteit Brussel

Belgium
wdmeuter@vub.be

Abstract
Developers often combine different concurrency models in a
single program, in each part of the program using the model
that fits best. Many programming languages, such as Clojure,
Scala, and Haskell, cater to this need by supporting different
concurrency models. However, they are often combined in
an ad hoc way and the semantics of the combination is not
always well defined.

This paper studies the combination of three concurrency
models: futures, actors, and transactions. We show that a
naive combination of thesemodels invalidates the guarantees
they normally provide, thereby breaking the assumptions
of developers. Hence, we present Chocola: a unified frame-
work of futures, actors, and transactions that maintains the
guarantees of all models wherever possible, even when they
are combined. We present the semantics of this model and
its implementation in Clojure, and have evaluated its perfor-
mance and expressivity using three benchmark applications.
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1 Introduction
Since the introduction of multicore processors, concurrency
and parallelism have become crucial aspects of software de-
velopment. Over the past decade, many researchers have re-
visited old and invented new concurrency models. A concur-
rency model provides constructs to introduce parallelism
into a program. At the same time, it imposes restrictions
on the program, in order to provide guarantees to the pro-
grammer that prevent common errors. For example, the actor
model introduces actors that carry out computations in paral-
lel, but it requires that data is shared using messages, thereby
preventing low-leves data races.
Today, several of these concurrency models have found

their way into modern mainstream programming languages.
These languages and frameworks often support many dif-
ferent models. For instance, Clojure has constructs for no
less than six concurrency models: futures, promises, atomic
variables, transactional memory, channels, and agents; Java
supports futures, promises, Fork/Join, parallel collections,
threads, locks, and atomic variables; and Haskell supports
threads, locks, atomic variables, transactions, and channels.

Tasharofi et al. [21] have shown that developers effectively
combine multiple models in a single program: in a sample
of 15 GitHub projects in Scala that use the actor model, 12
combined it with another model (illustrated in Figure 1). 8
out of 15 programs used actors and futures and 10 out of
15 programs actors and threads, including 6 which used all
three models. Only 3 out of the 15 programs used only actors.
Unfortunately, concurrency models are often integrated

in an ad hoc way and the semantics of their combination is
not always well defined. We observe that when the language
constructs of different concurrency models are combined, their
original guarantees are often invalidated. In a case study of
Clojure, we found several such cases [20]: for instance, when

Actors
ThreadsFutures 6 42

3

Figure 1. Results of a study by Tasharofi et al. [21]: out of
15 Scala projects that use actors, 12 combine it with futures
and/or threads.
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a message is sent over a channel in a transaction, and the
transaction rolls back, the message is not retracted. Simi-
larly, when communication over channels is combined with
another model, deadlocks become possible.

We argue that the combination and integration of multiple
concurrency models must be carefully considered. Most con-
currency models fall into one of three categories: determin-
istic, message-passing, and shared-memory models [22]. In
this paper, we present Chocola (for composable concurrency
language), a programming language that integrates three
concurrency models, one from each category: futures, actors,
and transactions. The goal of Chocola is to combine these
three models and maintain the guarantees of each model
wherever possible.

In this paper, we first describe the three concurrency mod-
els we studied (Section 2). Next, we discuss the problems that
occur when these models are combined naively (Section 3).
Then, we look at each pairwise combination in detail and
define a semantics that satisfies our requirements, thereby
defining transactional actors (Section 4), transactional fu-
tures (Section 5), and futures for intra-actor parallelism (Sec-
tion 6). Afterwards, we describe how these pairwise combi-
nations are integrated into Chocola (Section 7). We describe
Chocola’s semantics and implementation (Section 8) and
evaluate its performance and expressivity using three bench-
mark applications (Section 9).
In previous work we studied two pairwise combinations

in detail – transactional futures [18] and transactional actors
[19]. The contribution of this paper is their integration into
a single framework that unites all three models in a coherent
manner. Sections 4 and 5 thus correspond to previous work,
while the subsequent sections describe new work.

2 Futures, Actors, and Transactions
In this section, we present the three models we studied: fu-
tures (Section 2.1), actors (Section 2.2), and transactions (Sec-
tion 2.3). For each model, we give a brief description and
list its constructs. We illustrate each model using the same
running example: a holiday reservation system that books
flights and hotels. We also describe the guarantees provided
by each model.

Chocola is built as a fork of Clojure, a Lisp-like language
that runs on top of the Java Virtual Machine.1 Hence, Cho-
cola’s syntax and its built-in functions are the same as Clo-
jure’s. Clojure supports futures and transactions, which Cho-
cola reuses and extends to support actors.

2.1 Futures
A parallel task (or thread) is a fragment of the program that
can be executed in parallel with the rest of the program. A
parallel task can be created using the expression (fork e).
This begins the evaluation of the expression e in a new task,

1https://clojure.org

and immediately returns a future. A future is a placeholder
variable that represents the result of a concurrent compu-
tation [2, 9]. Initially, the future is unresolved. Once the
parallel evaluation of e yields a value v, the future is said to
be resolved to v. This result can be retrieved by other tasks
by calling (join f). If the future is resolved, join returns its
value immediately; if the future is still unresolved, this call
will block until it is resolved and then return its value.

In the following example, futures are used to filter the
list xs in parallel, so that only the elements for which (f x)

returns true are returned:
1 (defn parallel-filter [f xs]
2 (let [parts ; Divide xs into 8 parts
3 (partition 8 xs)
4 futures ; Fork a future for each part, in which the built-in
5 ; (sequential) filter is applied
6 (map (fn [part] (fork (filter f part))) parts)
7 results ; Join futures
8 (map (fn [fut] (join fut)) futures)]
9 (apply concat results))) ; Concatenate results of each part

Futures guarantee determinacy Det : for a given input,
a program always produces the same output. This means
that a program always has the same result, no matter in
which order its tasks are interleaved. Futures are commonly
used to parallelize homogenous operations over lists, e.g.
searching and sorting [9], as in the example above. In these
cases, determinacy is often desired as the end result should
not depend on how tasks are scheduled.

2.2 Actors
The actor model is a message-passing model that was orig-
inally introduced by Hewitt et al. [12] and later revised by
Agha [1]. Actors run concurrently and can receive messages.
In response to a message, an actor can send messages to
other actors, spawn new actors, and change its own state. In
the actor model, messages are sent asynchronously.
In Chocola, we use a “classic actors” model [6], in which

an actor consists of three elements: an address, an inbox, and
a behavior. Each actor has a unique and immutable address,
used to send it messages. Its inbox is a queue of messages.
In our model, a message is simply a tuple of values. Finally,
a behavior specifies how an actor responds to a message. It
is parameterized by two types of parameters: the internal
state of the actor and the values of the received message.

In Chocola, a behavior is defined as follows:
1 (def travel-agent-behavior
2 (behavior [flights hotels] [orig dest n]
3 (let [; Search outbound and return flights
4 outbound (search-flight flights orig dest)
5 return (search-flight flights dest orig)
6 ; Search for a hotel
7 hotel (search-hotel hotels dest)
8 ; Reserve n seats on these flights
9 flights1 (reserve-seats flights outbound n)
10 flights2 (reserve-seats flights1 return n)
11 ; Reserve a room for n people in the hotel
12 hotels1 (reserve-room hotels hotel n)]
13 (become travel-agent-behavior flights2 hotels1))))

https://clojure.org
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This behavior specifies an actor that represents a travel
agent. Messages can be sent to this actor to reserve a holiday,
consisting of an outbound and a return flight and a hotel
room. The behavior of an actor defines how it responds to
an incoming message. A behavior is parameterized by two
types of parameters: first, the internal state of the actor (here,
flights and hotels, maps containing the flights and hotels),
second, the values of the received message (here, the details
of a reservation: its origin orig, destination dest, and the
number n of seats/beds to reserve).
An actor can be spawned using spawn:

14 (def flights
15 {"BA212" {:from "BOS" :to "LHR" :price 499 :seats 243}
16 "BA213" {:from "LHR" :to "BOS" :price 499 ...}})
17 (def hotels {"Hilton" {:in "BOS" :price 100 :rooms 300}})
18 (def agent (spawn travel-agent-behavior flights hotels))

This creates a new actor with travel-agent-behavior as
initial behavior and the maps of flights and hotels as internal
state. spawn returns the address of the new actor.

(send agent "LHR" "BOS" 3) sends a message to this ac-
tor: it puts a message containing the values "LHR", "BOS",
and 3 in the inbox of the actor with address agent. When
the receiving actor processes the message, it executes the
code in the behavior defined above (lines 3–13), with flights

and hotels bound to the values given when the actor was
spawned and orig, dest, and n bound to the message’s values.

An actor can change its behavior and internal state using
become. On line 13 in the example, become updates the agent

actor, keeping its behavior identical but updating its internal
state to the new maps of flights and hotels, in which three
seats on a flight and a room with three beds in a hotel were
reserved.
An actor alternates between two states: ready to accept

a message, or busy processing a message. A turn is the
processing of a single message by an actor, that is, the process
of an actor taking a message from its inbox and processing
that message to completion [6].
The actor model provides two useful guarantees. First, it

guarantees that programs are free from races within turns:
this is called the isolated turn principle ITP . Hence, de-
velopers do not need to care how individual instructions
within a turn are interleaved with those from other actors;
instead, they can reason about their program at the level of
turns. Second, the actor model guarantees deadlock free-
dom DLF : as there are no blocking operations, an actor can
never deadlock. These two guarantees make the program
easier to understand, reason about, and debug.

2.3 Transactions
Software Transactional Memory (STM) is a concurrency
model that allows multiple parallel tasks to access shared
memory locations [11, 17]. To use STM, each shared mem-
ory location is encapsulated in a transactional variable.
Access to shared memory can only occur in a transaction:

a block of code in which transactional variables can be read
and modified. In a transaction, the developer has a consistent
view of the shared memory: reading a transactional variable
multiple times in the same transaction always yields the
same result, even if another task modified it concurrently.
Furthermore, all changes made to shared memory in a trans-
action are made visible to other tasks atomically: it is not
possible for other tasks to observe intermediate states.
In contrast to mechanisms based on locking, which are

said to be pessimistic, STM is optimistic [10]: the code in a
transaction is immediately executed, without taking locks.
When different transactions attempt to access the same trans-
actional variable(s), they conflict, which causes the transac-
tion to abort. An aborted transaction is retried, which means
that its changes are discarded or rolled back and its contents
are reexecuted. When no conflicts occur, a transaction can
commit successfully.

A transactional variable is created using ref v, containing
the initial value v. A transaction is a block (atomic e) that
encapsulates an expression, which can contain reads (deref
r), abbreviated to @r, and writes (ref-set r v) on the shared
memory locations.
The code below implements a flight reservation system

using transactions. Lines 1–3 define a map of all flights, in
which each flight is encapsulated in a transactional variable.
Lines 11–13 contain a transaction that reserves three seats
on two flights. This consists of reading the flight and up-
dating its number of available seats. By encapsulating both
reservations in the same transaction, we ensure they either
both succeed or both fail.

1 (def flights
2 {"BA212" (ref {:from "BOS" :to "LHR" ... :seats 243})
3 "BA213" (ref {:from "LHR" :to "BOS" ... :seats 243})})
4

5 (defn reserve-seats [flight n]
6 (let [new-seats (- (get @flight :seats) n)
7 ; In flight map, associate key :seats with new value
8 new-flight (assoc @flight :seats new-seats)]
9 (ref-set flight new-flight)))
10

11 (atomic
12 (reserve-seats (get flights "BA213") 3)
13 (reserve-seats (get flights "BA212") 3))

Transactional systems provide two useful guarantees.
First, isolation Iso ensures one transaction can never

see the changes of another until the latter has committed.
Different isolation ‘levels’ have been defined, here, we focus
on serializability. Serializability requires that the result of
a transactional program must always be equal to the result
of a serial execution of the program. In the example, this
entails that the values of the transactional variable on lines
6 and 7 must be equal, even if another thread modified them
concurrently. Thanks to isolation, the developer can reason
about the program at the level of transactions: when trans-
actions execute in parallel, it does not matter in which order
their instructions are interleaved, only in which order the
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transactions are committed. This makes the program easier
to understand and debug.

Second, transactional systems guarantee progress Pro .
While traditional locking systems are prone to issues such
as deadlocks, livelocks, and starvation, transactional sys-
tems aim to free the programmer from worrying about these
issues. Similar to isolation levels, different STMs provide
one of a range of different ‘progress guarantees’. Most sys-
tems guarantee deadlock freedom [10]: when two transactions
conflict, progress is guaranteed by a contention manager, a
mechanism that decides which transaction(s) to delay so that
another can make progress.

3 Combinations of Models
Chocola combines futures, actors, and transactions into a
unified model. The goal is to find a suitable semantics for the
unified model, even when concurrency models are combined.
We define two requirements:
1. First, the semantics of the separate models should

remain unchanged, so that programs that do not use
combinations work unchanged.

2. Second, the guarantees of allmodels should bemain-
tained even when they are combined when possible.
In some cases it is impossible to combine the guarantees of
all models because they inherently conflict. For instance,
when a non-deterministic model is used in a deterministic
one, it is impossible to maintain determinism. In this case,
we will need to relinquish one of the original guarantees
and define a modified, less restrictive guarantee that is
provided by our combination.
Figure 2 tabulates the 9 (3 × 3) pairwise combinations

of the three models, visualizing the discussion in the rest
of the paper. In each cell, we study how one model can be
nested in another: we list the guarantees of the two models
as described in the previous section, and using the colors we
indicate which guarantees are valid in a naive combination
and in Chocola:
• Guarantees in blue are valid, even in a naive combination.
No changes to the semantics are needed.

• Guarantees in green are broken in a naive combination,
but maintained in Chocola.

• Guarantees in red are inevitably broken, in a naive com-
bination as well as in Chocola. This happens in two cases
and is the result of embedding a non-deterministic model
in a deterministic one.

• Using Det ITD , we indicate that a guarantee (here de-
terminacy) is broken in a naive combination and cannot be
maintained by Chocola. Instead, we defined a less restric-
tive guarantee that can be upheld (here intratransaction
determinacy).
We consider the dynamic extent of each construct: if one

model is used in another at execution time, we say they are

(dynamically) nested. This does not necessarily require their
constructs to be nested lexically. For instance, if a library
function that uses futures is called in a transaction, the con-
struct fork will not appear in the atomic block in the code
(lexically), but at execution time a future will be created
while a transaction is running (dynamically). In the rest of
the paper, whenever we say that two constructs are nested,
we refer to this type of dynamic nesting.

Note that there is a sort of ‘anti-symmetry’ in the table.
The diagonal contains models nested in themselves. All other
cells have an opposite across the diagonal, e.g. the top-right
cell represents actors in futures while the bottom-left cell
represents futures in actors.

We discuss the cells on the diagonal, in which each model
is nested in itself, in the following section. These ‘trivial’
combinations all maintain the guarantees. In the other cells,
when different models are combined naively, the guarantees
are broken. These cases are discussed in the subsequent
sections. Each of these discussions will first describe the
problems that arise when the models are combined and then
offer a modified semantics that satisfies our requirements.

3.1 Trivial Combinations
We briefly discuss the combinations on the diagonal of Fig-
ure 2, in which each model is nested in itself. These combina-
tions have been studied in existing literature and maintain
the model’s guarantees.
Nested Futures Forking one parallel task in another is com-
mon and expected in programs that use futures. Nesting
futures does not break the determinacy of the program: no
matter where futures are introduced, the program remains
equivalent to the same program without futures.
Nested Actors ‘Nesting’ actors – creating one actor in an-
other – is a standard part of the actor model. In fact, any
actor program consists of only actors running concurrently,
and therefore all actors except the initial one are nested
actors. The guarantees of actors are maintained.
Nested Transactions When a transaction is started in a
task in which another transaction is already running, this
is a nested transaction. The nesting of transactions is a well-
studied problem [10]. Moss and Hosking [16] distinguish
two types of nesting: open and closed nesting. While open
nesting enables better performance, it is complex to use and
breaks the isolation of the outer transaction. Closed nesting
is simpler, and in practice it is the norm: Clojure, Haskell,
and ScalaSTM all implement closed nesting. Chocola there-
fore does so too.

4 Transactional Actors for Sharing
Memory Between Actors

In this section, we study the combination of transactions and
actors in Chocola. We first discuss the use of transactions
in actors and next the use of actors in transactions. This
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Figure 2. The pairwise combinations of the three models studied in this paper and their guarantees.

results in transactional actors, which were first introduced
by Swalens et al. [19].

4.1 Using Transactions in an Actor to Safely Share
Memory

In the travel agent example of Section 2.2, each agent has
its own separate set of flights and hotels, which it searches
and modifies to make a reservation. However, in a typical
reservation system we would like multiple travel agents to
access and modify the same flights and hotels. We would
thus like to introduce shared memory in an actor system.
We discuss how this is currently achieved in two types

of actor systems: pure and impure systems [5]. Pure actor
systems enforce strict isolation between actors. Developers
often introduce shared memory using several patterns [5].
While the guarantees of the actor model are maintained,
the difficulty of preventing race conditions and deadlocks is
pushed entirely to the developer. Impure actor systems do not
enforce strict isolation, so developers can use the underlying
shared-memory model of the language [21]. However, this
breaks the isolated turn principle.

In both cases, representing shared state in an actor system
is complex and error prone, and it is the responsibility of the
developer to ensure correct access to the shared memory.

We introduced transactional actors, whichmaintain the ex-
pected guarantees by sharing memory between actors using

transactions. STM guarantees the absence of low-level races
by encapsulating atomic sections in a transaction. Moreover,
in contrast to traditional locking, STM guarantees the ab-
sence of deadlocks. Thus, using STM, memory can safely be
shared between actors.

We apply this to the travel agent example by sharing the
flights and hotels between different actors using transac-
tional memory. Accesses to shared memory are protected
using a transaction:
1 (def flights
2 {"BA212" (ref {:from "BOS" :to "LHR" :seats 243})
3 "BA213" (ref {:from "LHR" :to "BOS" :seats 243})})
4 (def hotels ...)
5

6 (def travel-agent-behavior
7 (behavior [] [orig dest n]
8 (atomic
9 (let [outbound (search-flight flights orig dest)
10 return (search-flight flights dest orig)
11 hotel (search-hotel hotels dest)]
12 (reserve-seats outbound n)
13 (reserve-seats return n)
14 (reserve-room hotel n)))))

4.2 Using Actors in a Transaction to Distribute and
Coordinate Work

The performance of the example of the previous section can
be improved by processing the three reservations in parallel.
The code snippet below implements this: it creates separate
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actors to process flight and hotel reservations and the travel
agent now sends messages to these actors to process each
item in the reservation concurrently.
1 (def airline-behavior
2 (behavior [] [orig dest n]
3 (atomic
4 (let [flight (search-flight flights orig dest)]
5 (reserve-seats flight n)))))
6 (def airline (spawn airline-behavior))
7

8 (def travel-agent-behavior
9 (behavior [] [orig dest n]
10 (atomic
11 (send airline orig dest n)
12 (send airline dest orig n)
13 (send hotel dest n))))

In a naive combination of transactions and actors, this
program will not work correctly. The transaction in travel-

agent-behavior sends three messages, but if the transaction
aborts themessages are not rolled back. Messages can thus be
sent multiple times, breaking the isolation of the transaction.

Transactional actors solve this issue by making any effects
on actors that occur in a transaction part of the transaction.
Actors provide four constructs. For each, we consider how it
can safely be nested in a transaction:

behavior Defining a behavior in a transaction is no problem
as this operation has no side effects. A behavior can refer to
variables in its lexical scope – it is essentially a closure – but
will run at a later time and thus does not have access to the
encapsulating transaction.

spawn Spawning an actor is an effect that must be part of
the transaction. As it is costly, we delay it until the transac-
tion commits. This ensures that the transaction’s isolation is
maintained and the creation cost is only paid once.

become Become is a construct that is delayed by construc-
tion: its effect only takes place upon the start of a new turn.
As a transaction cannot span multiple turns, the transaction
will always be committed before the effect of become is made
visible, maintaining isolation.

send As illustrated above, sending a message in a transac-
tion has effects that must be rolled back when the transac-
tion aborts. This implies that a message may now need to
be retracted: when the transaction it was sent in aborts, the
message and its effects need to be ‘unsent’. We say that mes-
sages sent from within a transaction have a dependency
on the transaction. There are now two types of messages:
those sent when no transaction is active in the sender have
no dependency and are definitive, those sent from within a
transaction have a dependency and are tentative.

This has an impact on the receiver of a tentative message.
When an actor takes a tentative message from its inbox, the
turn that processes it also becomes tentative: the message is
processed, but the effects it causes should not be persisted yet.
Even though this turn is not a transaction, it executes in the

same ‘tentative’ manner, as its effects can roll back. When a
tentative turn ends, the actor waits until the transaction on
which it depends has committed. After a successful commit
of its dependency, the actor can continue to its next turn,
and we say the turn was successful. If its dependency aborts,
the tentative turn fails and its effects are discarded. The actor
then processes the next message in its inbox as if nothing
happened.

With these changes to the semantics of actors’ constructs,
the example above now works as expected. The messages
sent on lines 11–13 are tentative. When they are processed
by the airline actor, the turn on lines 3–5 is tentative. The
effects of this turn, i.e. the reservation of the seats on the
flights, are only persisted if the original transaction succeeds.
If the original transaction aborts, its effects as well as the
effects of its dependent transactions are discarded.

5 Transactional Futures for Parallelism in
Transactions

In this section, we study the combination of transactions
and futures in Chocola. Creating transactions in futures is
standard in languages with transactions: as the transactional
model does not provide any constructs to create threads, it
must rely on another model to do so. Hence, we focus on the
opposite combination: the creation of futures in a transac-
tion. Using an example, we show that the futures can be used
in a transaction to introduce more fine-grained parallelism.
This breaks the isolation of the transactions in a naive com-
bination. Hence, we introduce transactional futures: futures
created in a transaction with access to the encompassing
transaction’s context. Transactional futures maintain the iso-
lation and progress guarantees of transactions. They were
first introduced by Swalens et al. [18].

5.1 Motivation and Problems
To demonstrate the use of futures in a transaction, we re-
visit our running example. It contained a transaction that
searches for a flight and reserves seats on that flight. In the
code example below, the function search-flight is defined.
It searches for a suitable flight by filtering the list of all flights
based on their trajectory, and returning the first flight that
matches.
1 (defn search-flight [flights orig dest]
2 (first
3 (parallel-filter
4 (fn [flight] (and (= (get @flight :from) orig)
5 (= (get @flight :to) dest)))
6 (vals flights)))) ; vals returns all values of a map
7

8 (def airline-behavior ; Same as in previous code snippet
9 (behavior [] [orig dest n]
10 (atomic
11 (let [flight (search-flight flights orig dest)]
12 (reserve-seats flight n)))))

In this example, we improve the performance of the search
process by parallelizing the filter operation. parallel-filter,
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as defined in Section 2.3, divides the list of flights into parti-
tions that are filtered in parallel, in separate tasks.

However, using a naive combination of futures and trans-
actions this programwill not work as expected! In a language
like Clojure, a transaction is thread-local, i.e. it is bound to the
task it was created in. The tasks created in parallel-filter

do not have a transaction running when they execute the
function on lines 4–5, hence, they will see inconsistent val-
ues for the flight. The problem is that futures created in a
transaction are not part of that transaction.

5.2 Solution
We solve these issues by defining transactional futures. A
transactional future is the future associated with a so-called
transactional task: a task that is forked while a transaction
is running. A transactional task operates within the context
of its encapsulating transaction, so that it can access and
modify the state of the transaction.
Conceptually, each transactional task creates a copy of

the transactional memory, and will access and modify that
private copy. This ensures that two tasks can run concur-
rently without interfering with each other. To this end, a
transactional task contains two data structures: a (read-only)
snapshot containing a conceptual copy of the state of the
transactional memory when the task was spawned, and a lo-
cal store containing the changes made to the transactional
memory in the task.
Each transaction starts with one root task that evaluates

the transaction’s body. Its snapshot is a copy of the trans-
actional heap; its local store starts empty. When a new task
is spawned, its snapshot is the current state of the transac-
tional memory, i.e. the snapshot of its parent task modified
with the current local store of the parent. The local store of a
newly spawned task is empty. While a task executes, it looks
up values in its snapshot and modifies them by storing their
new values in the local store. It only uses its own snapshot
and local store, ensuring that each task runs in isolation.
When a task finishes its execution, its future is resolved

to its final value. When a task is joined for the first time,
its local store is merged into the task performing the join,2
and the value of its future is returned. This way, changes
propagate from child tasks to their parent. Subsequent joins
of the same task will not repeat this, as their changes are
already merged; they only return the final value of the future.

At the end of the transaction, the modifications of all trans-
actional tasks in the transaction should have been merged
into the root task, and these are committed atomically. All
changes from all tasks are committed in a single step, so the
transaction remains an indivisible step to the outside, main-
taining its isolation. If a conflict occurs at commit time, the

2When two tasks modify the same transactional variable, a conflict occurs.
To solve this, we allow the developer to specify a conflict resolution function,
which takes the conflicting values and returns the new value for the variable.

1 (def airline-behavior
2 (behavior [] [orig dest n]
3 (fork (book-flight orig dest n))
4 (fork (book-flight dest orig n))
5 (fork (book-hotel dest n))))

Figure 3. Illustration of the escaping task problem: the three
forked tasks may continue executing after the turn has fin-
ished, interleaved with the next turn.

whole transaction is aborted and retried. If a conflict occurs
in one of the tasks while the transaction is still running, all
tasks are aborted and the whole transaction is retried. In
other words, the tasks within a transaction are coordinated
to either all succeed or all fail: they form one atomic group.

6 Futures in Actors for Intra-actor
Parallelism

In this section, we study the combination of futures and
actors. Combining actors and futures can be useful. On the
one hand, futures can be introduced in an actor to process a
turn in parallel: this is intra-actor parallelism (the lower-
left cell of Figure 2). On the other hand, actors can be used in
a programwith futures to introduce communication between
parallel tasks (the upper-right cell of Figure 2). Furthermore,
when a program using one model includes a library that uses
the other, the models are combined implicitly.

In a naive combination, two minor problems occur: deter-
minacy and the isolated turn principle can be broken.

Determinacy (Futures) When the actor constructs send

and become are used in futures, determinacy can be broken
(the upper-right cell of Figure 2) as they may execute in
any order. Breaking determinacy for this combination is
inevitable. We argue that this is no problem because this
only occurs where the programmer explicitly uses send and
become, constructs of the non-deterministic model. As pro-
gram using only actors can also have a non-deterministic re-
sult, the developer should expect non-determinism, whether
futures are used or not.

Isolated Turn Principle (Actors) A naive combination of
actors and futures breaks the isolated turn principle, because
turns can be interleaved. We call this the escaping task
problem.
Figure 3 illustrates the problem. An actor creates three

tasks which are never joined, ‘escaping’ the task they were
created in. As a result, the root task finishes its work and
proceeds to the next turn while the child tasks may still be
running. The two turns overlap, interleaving the processing
of two messages, thus violating the isolated turn principle.
This can lead to two unexpected results: (1) if the child task
sends a message, it can arrive after messages sent in the next
turn, and (2) a become in an escaped task can still change the
behavior of the actor after the next turn has already started,
with the old behavior.
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Fortunately, the isolated turn principle can be reintro-
duced using a simple requirement: any future created in an
actor must be joined before the turn ends. This ensures that
only one task (the root task) is running when the turn ends,
and that the side effects of all futures created in the turn
have occurred and all their effects have been merged into
the root task. All tasks end when the turn ends, so no more
effects can take place during the next turn. Thus, the isolated
turn principle is maintained.
We believe this requirement is not overly restrictive: it

only applies when a future is forked in a turn but its result is
never used in that turn. Furthermore, a similar requirement
existed for transactional futures: we required that all futures
created in a transaction were joined before the transaction
ends. Thus, both techniques provide a consistent model.

7 Chocola: an Integration of Futures,
Actors, and Transactions

As said by Hoare [13], the task of the language designer
is “consolidation, not innovation” of features. Accordingly,
Chocola does not introduce new syntactical constructs, nor
does it change the semantics of its constituent models when
used separately. The novelty of Chocola is that it defines a
semantics of the constructs of these models when they are
combined with one another, that aims to maintain the guar-
antees expected by developers. The guarantees of Chocola
were already shown in Figure 2. We discuss them in detail.

7.1 Determinacy and Intratransaction Determinacy
(Futures)

When used separately, futures guarantee determinacy. Cho-
cola sometimes breaks this guarantee. We distinguish two
cases: when futures are the outer or inner model.

Futures as outermodel When futures are the outermodel,
determinacy is no longer guaranteed (first row in the ta-
ble). This is inevitable: non-deterministic models introduce
non-determinism, even when used in a deterministic model.
However, we argue that this is not unexpected because the
developer must explicitly use a construct from a non-deter-
ministic model to break determinacy, and it is only in those
places that it no longer holds.

Futures as inner model In contrast, when using futures
as the inner model (first column in the table), determinacy is
expected. For instance, when a library that uses futures is em-
bedded in a program that uses another model, the developer
of the library still assumed determinacy.
Using futures in another future or in an actor maintains

determinacy. However, in a naive combination of futures and
transactions determinacy is broken: transactions are neces-
sarily non-deterministic because the order in which transac-
tions are committed is not deterministic. Instead, Chocola

provides a weaker guarantee: determinism inside transac-
tions, which we refer to as intratransaction determinacy.

Intratransaction determinacy states that, given the initial
state of the transactional memory, a transaction must always
have the same result, assuming that all conflict resolution
functions are determinate.3 A transaction has two kinds of
results: its final value and its effects on transactional memory,
both are determinate.
The fact that transactional futures do not introduce non-

determinism inside transactions follows from two observa-
tions. First, it does not matter in which order the instructions
of two tasks are interleaved, as they both work on their own
copies of the data. Second, changes made in one task only
become visible in another one after an explicit and determin-
istic join statement has been executed, and the join operation
is deterministic as long as the conflict resolution function
is. As a result, given the state of the transactional memory
when a transaction started, it can only have one result.

Intratransaction determinacy makes the behavior in a
transaction easier to predict, as developers can trace back
the value of a variable by looking where tasks were joined.

7.2 Isolation (Transactions)
Transactions guarantee a form of isolation, such as serializ-
ability. When they are used in a future or actor, this guaran-
tee is maintained (second column in the table). On the other
hand, when a future is forked or a message is sent within a
transaction, a naive combination may break isolation (sec-
ond row in the table). Chocola maintains isolation even for
these problematic combinations by incorporating any side
effects into the transaction.
Transactional futures realize this guarantee by making

fork and join a part of the transaction in which they run,
instead of an independent side effect. Transactional tasks
run within the context of the encapsulating transaction. We
require that all tasks created in a transaction are joined before
its end, thus all changes made by all tasks in the transaction
have been applied to the local store of the root task before
the transaction commits. Upon commit, they are applied to
the transactional heap in a single atomic step, just as if no
futures were created in the transaction.
Transactional actors maintain isolation by only making

the effects of tentative messages visible if the transaction in
which they were sent succeeds. Hence, upon a successful
commit, all effects of a transaction are made visible. If a
transaction aborts, all its effects are discarded, including the
messages it sent and their effects.

3Compare this with the definition of determinacy from Section 2.1, which
states that, given an input, a program must always have the same output.
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7.3 Isolated Turn Principle and Low-Level Race
Freedom (Actors)

The isolated turn principle guarantees that, once a turn
started, it will always run to completion, in isolation. This
allows developers to reason at the level of turns: it does not
matter in which order the individual instructions of differ-
ent turns are interleaved, only how the turns as blocks are
interleaved. The isolated turn principle assumed no shared
memory and no internal parallelism, which is obviously no
longer true in Chocola; it is therefore impossible to maintain.
However, Chocola still prevents races, as all accesses to

shared memory are protected by transactions. While the
actor model guaranteed freedom from low-level races by
prohibiting shared memory, Chocola allows shared mem-
ory but requires it to be encapsulated in a transaction. This
extends the actor model with safe, shared memory.
Traditionally, actors guarantee a consistent view of the

memory during a turn, as the only memory that can be ac-
cessed synchronously is the private memory of the current
actor. Transactions guarantee a consistent view of the mem-
ory during a transaction. Chocola combines both: during
a turn, the actor has a consistent view of its private mem-
ory, and during a transaction, it has a consistent view of
the shared memory. We call this guarantee Low-Level Race
Freedom: it is not possible to introduce a race on the pri-
vate memory of an actor within a turn, or on shared memory
within a transaction. At the ‘level’ of turns and transactions,
races are impossible.

7.4 Progress (Transactions) and Deadlock Freedom
(Actors)

Transactions guarantee progress and actors guarantee dead-
lock freedom. Even when these models are combined with
others, these guarantees are maintained. This is a result of
the fact that Chocola only contains one blocking operation,
join, which always completes because cyclical dependencies
between futures are impossible [18]. This is a result of the
lexical scoping of the base language (Clojure): a future can
only refer to futures that were created before it, resulting in
an ordering of futures that cannot contain cycles.

8 Semantics and Implementation
The semantics of Chocola has been defined in two ways: in
a formalization and in a reference implementation.4

Due to space constraints, we will not describe the formal
operational semantics here, but it can be found online. We
also created an executable version of its essential parts using
PLT Redex [7], to automatically verify its most significant
properties. We plan a formal verification of Chocola’s guar-
antees in future work.
Chocola’s implementation is a fork of Clojure. Clojure

has built-in support for futures and transactions. First, we
4Both are available at http://soft.vub.ac.be/~jswalens/chocola.

extended it to support actors, using a standard implemen-
tation of actors. Next, we modified these implementations
of the separate models to provide the semantics defined
above when models are combined, by making the following
changes:
• When a message is sent in a transaction, a dependency
pointing to the transaction is attached.

• At the start of a turn, it is marked tentative if the processed
message has a dependency.

• become and spawn in a tentative turn are stored instead of
being executed immediately.

• At the end of a tentative turn, the actor waits until the de-
pendency has finished. If it succeeded, its tentative become
and spawn operations are executed; otherwise they are
discarded.

• When a transaction is started, it contains one ‘root’ trans-
actional future. The transaction’s data structures (its snap-
shot, local store, etc.) moved to the transactional future.

• become and spawn in a transactional future are stored in
that future.

• fork in a transactional future creates a new transactional
future, with its data structures initialized as in Section 5.

• join in a transactional future merges its data structures
with that of its parent.

• When a transaction is committed:
– If the current turn is tentative, the transactionwaits until
the dependency finished. If the dependency succeeded,
we can proceed; if it failed the whole turn is discarded.

– The transaction commits the changes from the root fu-
ture as before. (All tasks in the transaction and their
changes have been merged into the root future already.)

– Any become and spawn operations that occurred in the
transaction are executed.

9 Evaluation: Performance and
Expressivity

We evaluated Chocola by transforming programs that use
one concurrency model to introduce another. Our evaluation
focuses specifically on programs with transactions, because
the combination of actors and futures, as discussed in Sec-
tion 6, did not pose major issues. The aim of this evaluation
is thus to demonstrate that in existing programs that use
transactions, additional parallelism can be exploited by in-
troducing futures and actors within transactions, without
fundamentally changing the design of the program.
We use the STAMP benchmark suite as a basis [15]: it

consists of eight applications that use transactions and is
commonly used to compare the performance of transactional
systems. These applications are based on real-world scenar-
ios and exhibit a range of characteristics.

We are interested in two characteristics in particular. First,
the proportion of the execution time spent in transactions:
whenmost of the program’s execution occurs in transactions,

http://soft.vub.ac.be/~jswalens/chocola
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Benchmark
Lines of code Speed-up

Architectureoriginal added removed original Chocola
Labyrinth 682 78 (11%) 30 (4%) 1.3 2.3 8-core (with HyperThreading)

Bayes 1248 1 (<1%) 1 (<1%) 2.8 3.5
Vacation2 320 25 (8%) 17 (5%) 2.6 33.2 64-core (no HyperThreading)

Yada No further parallelization possible without domain expertise

Figure 4. Expressivity and performance results of introducing Chocola in three benchmarks that contain transactions. We list
the number of lines of code that were changed to introduce additional parallelism using futures or actors, and compare the
maximal speed-up of the modified version that uses Chocola with the original version that only uses transactions.

to further parallelize these programs, it will be necessary to
introduce parallelism within the transactions. Second, we
look at the transaction length: long-running transactions
may benefit from more fine-grained parallelism, as in these
cases the benefits of introducing parallelism can outweigh
its costs. Four (out of eight) programs in the benchmark suite
match these criteria. They are listed in Figure 4.

We first ported the applications from C to Clojure, retain-
ing the design and algorithms of the original. Afterwards,
we introduce transactional futures and transactional actors
where applicable, by performing the following steps:5

1. Using profiling tools, we search for the part of the program
that takes the most execution time. In our cases, this is
always a loop in a transaction.

2. We try to parallelize this loop. We examine whether there
are dependencies between the iterations of the loop:
• When the iterations are independent, we parallelize the
loop by processing each iteration in parallel. This occurs
in the Bayes and Vacation benchmarks.

• When there are dependencies between the iterations,
but the program follows a standard algorithm for which
a parallel version exists in literature, we replace the
sequential algorithm with its parallel equivalent. This
occurs in Labyrinth.

• When there are dependencies between the iterations
and the program uses a custom algorithm, we reach a
negative result and do not introduce futures or actors.
This is the case for the Yada benchmark. Note that this
does not necessarily mean that the loop cannot be paral-
lelized, it may also mean that specific domain expertise
is required to parallelize the custom algorithm.

We compare the original and transformed programs using
two criteria:
Performance The end goal of introducing additional par-
allelism in transactions is to increase performance, hence,
we compare the maximal speed-up achieved by the original
version with that achieved by our transformed version.
Developer effort We assess the effort that is required from
the developer to use our techniques by measuring the num-
ber of lines of code that were changed in the transformation.

5The code of both versions of all benchmarks is available on our website.

The results are shown in Figure 4. The performance results
were already discussed in detail in Swalens et al. [18, 19],
including more details about the experimental set-up. We
summarize these results:
Labyrinth spends almost all of its time in transactions that
execute a search algorithm, which can be replaced with a
standard parallel equivalent that uses transactional futures.
This leads to a speed-up thanks to faster, internally parallel
transactions and fewer conflicts.
Bayes spends most of its time in a loop in a transaction
that can be trivially parallelized. As there is only limited
work available, at a certain point the number of transactions
is lower than the number of cores in the machine. Trans-
actional futures allow us to introduce more fine-grained
parallelism. This is a matter of changing one line, replacing
for by parallel-for, and increases the maximal speed-up.
Vacation implements an event-based vacation reservation
system similar to the running example of this paper, to
which actors can be applied naturally. We split the trans-
action of the original application into smaller transactions
that are distributed over different actors. This improves per-
formance by introducing more fine-grained parallelism and
by lowering the chance and cost of conflicts.
In future work, we would like to strengthen our evaluation

by collecting real-world examples of programs that combine
multiple concurrency models or might benefit from doing
so. By comparing their ad-hoc implementation with an im-
plementation in Chocola, we can demonstrate the benefits
of the consistent semantics of Chocola.

10 Related Work
In previous work, we described literature that focuses on the
combinations of transactions and futures [18] and transac-
tions and actors [19]. In this section, we describe more recent
work that has appeared since, and work that combines fu-
tures and actors.

Transactions and Actors Pony [4] allows memory to be
shared between actors, using deny capabilities to statically
guarantee there is only one writer to a shared memory loca-
tion and thereby preventing races. Similarly, Encore [3] uses
capabilities to allow memory to be shared between active
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objects. Encore plans to support capabilities for both pes-
simistic and optimistic concurrency, although at the time of
writing the exact semantics have not been defined.

Transactions and Futures Independently from our work,
Zeng et al. [23] developed Java Transactional Futures. They
provide intratransaction determinacy, but moreover also
maintain the semantic transparency of futures. As a con-
sequence, when a parent and child future conflict, the child
must roll back and retry. This affects performancewhen these
kinds of conflicts are frequent, e.g. in one of our benchmarks
(Labyrinth). Because our transactional futures resolve these
conflicts instead of rolling back, we expect performance for
Labyrinth to be better using our transactional futures. Our
transactional futures thus forsake semantic transparency to
avoid rollbacks within the transaction.

Futures and Actors ParT [8] extends Encore and Clojure
to combine actors and futures. It decomposes actors into
tasks to which asynchronous messages are sent whose result
is a future, thus not directly supporting actors. However, it
does support speculative parallelism, which wemay consider
as a future addition of Chocola.
Imam and Sarkar [14] combine actors with the async–

finish model (AFM), which is similar to futures. They more-
over allow a task to escape the actor in which it is spawned
(the escaping task problem of Section 6), preventing race
conditions by prohibiting these tasks from modifying the
actor’s internal state. Furthermore, the explicit finish con-
struct can be used to coordinate actors by encapsulating
them. This is not possible in our system, but a similar coordi-
nation mechanism can be implemented by passing messages
between the actors.

11 Conclusion
Many programming languages support a wide variety of con-
currency models and these are often combined by developers.
In this paper, we studied the combinations of futures, actors,
and transactions. We demonstrated that a naive combination
can invalidate the guarantees that these models normally
provide, thereby breaking the assumptions of developers.
We presented Chocola, a framework that integrates fu-

tures, actors, and transactions into a unified model. Chocola
defines a semantics for the combinations that maintains the
guarantees of its constituent models wherever possible. We
implemented Chocola as a fork of Clojure and formalized
its semantics. Moreover, we transformed three benchmark
applications to mix multiple models and demonstrate that
this improves their performance by introducing more fine-
grained parallelism. These transformations do not fundamen-
tally change the design of the program and thus require only
a relatively small effort from the developer. Hence, using
Chocola, developers can freely pick and mix concurrency
models in their program.
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