A Multi-Paradigm
Concurrent
Programming Model

Janwillem Swalens

Promotors:
Prof. Dr. Wolfgang De Meuter
Prof. Dr. Joeri De Koster

September 2018

VRIJE
UNIVERSITEIT
BRUSSEL

A Multi-Paradigm Concurrent
Programming Model

Janwillem Swalens

A Multi-Paradigm Concurrent
Programming Model

Janwillem Swalens

A dissertation submitted in fulfillment of the requirements
for the award of the degree of Doctor of Science

September 2018

Jury:

Prof. Dr. Viviane Jonckers (chair)
Prof. Dr. Beat Signer (secretary)
Prof. Dr. Mira Mezini
Prof. Dr. Hridesh Rajan
Prof. Dr. Jan Lemeire
Prof. Dr. Wolfgang De Meuter (promotor)
Prof. Dr. Joeri De Koster (promotor)

Vrije Universiteit Brussel
Faculty of Science and Bio-engineering Sciences
Department of Computer Science
Software Languages Lab

Printed by Crazy Copy Center Productions
Pleinlaan 2, 1050 Brussel

Tel: +32 2 629 33 44

crazycopy@vub.ac.be

www.crazycopy.be

ISBN: 978-94-923-1296-9
NUR: 989

Alle rechten voorbehouden. Niets van deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotokopie, microfilm, electro-
nisch of op welke andere wijze ook, zonder voorafgaande schriftelijke toestemming
van de auteur.

All rights reserved. No part of this publication may be produced in any form by print,
photoprint, microfilm, electronic or any other means without permission from the
author.

Abstract

Since the introduction of multicore processors, programmers can no longer rely on in-
creasing clock frequencies to make their programs run faster “for free”. Instead, they
have to explicitly use concurrency. However, concurrent programming is notoriously
difficult. To this end, developers can use concurrency models: techniques that intro-
duce parallelism in a controlled manner and provide guarantees to prevent common
errors such as race conditions and deadlocks. In this dissertation, we look at three
concurrency models from three categories: futures (which guarantee determinacy),
transactions (which guarantee isolation and progress), and actors (which guarantee
the isolated turn principle and deadlock freedom).

An empirical study has shown that existing programs and programming languages
often combine multiple concurrency models. We study these combinations and show
that they can annihilate the guarantees of their constituent models. Hence, the assump-
tions of developers are invalidated and the errors that were prevented by the separate
concurrency models can resurface. For each combination, we examine which guar-
antees are broken when used in a naive, ad-hoc combination. Next, we study how
the guarantees of both models can be maintained without limiting performance. We
focus on two interesting cases in particular.

First, the combination of transactions and futures leads to transactional futures:
futures created in a transaction with access to the encompassing transactional context.
Using transactional futures, parallelism inside transactions can be exploited, benefit-
ting from determinacy within the transaction and isolation between transactions.

Second, the combination of transactions and actors leads to transactional actors.
These make it possible both to create transactions in actors, and vice versa, to send
messages to actors in transactions. Our semantics maintains the isolation and progress
guarantees of transactions, while guaranteeing low-level race freedom and deadlock
freedom for the actors.

Finally, we combine all three models into one unified framework, called Chocola
(COmposable COncurrency LAnguage), which we implemented as an extension of
Clojure. We specify the operational semantics of Chocola and demonstrate its prop-
erties. Starting from three benchmarks from the commonly used STAMP benchmark
suite, we demonstrate that by combining multiple concurrency models using Chocola,
additional parallelism can be introduced in these programs, while requiring only a
small effort from the developer.

To the best of our knowledge, this dissertation is the first to comprehensively study
the combination of three radically different concurrency models - futures, transac-
tions, and actors — and specify a semantics for their combinations that aims to intro-
duce additional parallelism while maintaining their guarantees wherever possible. Us-
ing Chocola, developers can freely pick and mix the appropriate concurrency models
for their use cases.

vi

Samenvatting

Sinds de opkomst van multicore processors rond het jaar 2005 moeten programmeurs
expliciet concurrency en parallellisme gebruiken om hun programma’ sneller te ma-
ken. Programmeren met concurrency is echter erg moeilijk. Programmeurs gebrui-
ken hiervoor “concurrencymodellen™ technieken die parallellisme toevoegen aan een
programma, maar op een gecontroleerde manier, zodat ze garanties bieden die vaak
gemaakte fouten voorkomen (zoals race conditions of deadlocks). Dit proefschrift
start van drie concurrencymodellen uit drie categorieén: futures (die determinisme
garanderen), transacties (die isolatie en progress garanderen), en actors (die het isola-
ted turn-principe en de afwezigheid van deadlocks garanderen).

Een empirische studie toonde aan dat bestaande programma’s en programmeerta-
len vaak verschillende concurrencymodellen combineren. Wij tonen aan dat het com-
bineren van modellen hun garanties kan teniet doen. Dit breekt de veronderstellingen
van programmeurs, waardoor opnieuw de fouten opduiken die door de aparte con-
currencymodellen werden voorkomen. Voor elke combinatie bestuderen we welke
garanties gebroken worden in een naieve, ad-hoc combinatie. Vervolgens onderzoe-
ken we hoe de garanties van beide modellen toch kunnen behouden worden, zonder
de performantie te beperken. We focussen op twee interessante gevallen.

Ten eerste leidt de combinatie van transacties en futures tot transactional futures.
Dit zijn futures die aangemaakt worden in een transactie én toegang hebben tot die
transactie. Met transactional futures kan het parallellisme binnenin transacties benut
worden, met de garantie op determinisme binnen de transactie en isolatie tussen de
transacties.

Ten tweede combineren we transacties en actors in transactional actors. Hiermee
kunnen zowel transacties in actors gemaakt worden als, vice versa, berichten gestuurd
worden naar actors in transacties. Onze semantiek behoudt de garanties op isolatie en
progress van transacties en garandeert de afwezigheid van low-level races en deadlocks

vii

van actors.

Ten slotte voegen we de drie modellen samen in één framework: Chocola (voor
COmposable COncurrency LAnguage). We implementeerden Chocola als een uit-
breiding van Clojure. We definiéren de operationele semantiek van Chocola en to-
nen aan welke garanties het biedt. Als evaluatie breiden we drie programma’ uit de
vaak gebruikte STAMP benchmark suite uit, door verschillende concurrencymodellen
te combineren. Hiermee demonstreren we dat met Chocola parallellisme kan toege-
voegd worden aan deze programmas, wat de performantie verhoogt, en dat dit slechts
weinig moeite vereist van de programmeur.

Voor zover wij weten is dit proefschrift het eerste dat systematisch de combinaties
van drie radicaal verschillende concurrencymodellen bestudeert - futures, transac-
ties en actors — en een semantiek definieert voor hun combinaties die parallellisme
toevoegt terwijl hun garanties waar mogelijk behouden blijven. Zo kunnen program-
meurs met Chocola een rijk palet aan concurrencymodellen gebruiken en mengen in
hun programmass.

viii

Acknowledgements

First of all, I would like to thank my promotors, Wolf and Joeri. Their guidance and
support has been essential throughout my PhD and their suggestions greatly con-
tributed to improving this text. Furthermore, I would like to thank Tom and Stefan for
their help in finding and defining an interesting thesis topic and for their contributions
to numerous grant applications.

I also thank the members of the jury — Mira Mezini, Hridesh Rajan, Jan Lemeire,
Beat Signer, and Viviane Jonckers - for their insightful remarks during the defense.

Moreover, I would like to thank all current and ex-SOFTies, both for their scien-
tific contributions during PPP meetings and research presentations, as well as for the
atmosphere they created during discussions at lunch, on Slack, and at Opinio. Every
SOFTie contributes in their own unique way to make SOFT what it is.

Enkele collega’s wil ik in het bijzonder bedanken. Mattias, just voor de muziekjes
van de dag. Nathalie, voor het plannen van de Canada-reis. Simon, voor de Benvolios-
broodjes. Laure, voor het klavertjevier dat nog steeds bloeit. Thierry, voor de droge
opmerkingen. Jesse, voor de directe opmerkingen. Jens, mijn beste klant. Quentin,
for proofreading this text. Daarnaast bedank ik ook de Zevergroep (Jean, Sjnico, Didi,
Carrein, Piet, Banny, Meire en Leiderkamp) voor de gesprekken en trips, en ten slotte
ook mama, papa en Maud om er altijd voor mij te zijn.

Veel leesplezier!

ix

Contents

Introduction

1.1 Problem Statement
1.2 Research Goaland Approach
1.3 Contributions.
1.4 Outline e
1.5 Publications e

Concurrency Models: Futures, Transactions, and Actors

2.1 Categories of Concurrency Models
2.2 From Three Categories to Three Concurrency Models
2.3 Futures e
2.4 Transactions
2.5 ACtOIS e e e
2.6 Summary

Combining Concurrency Models

3.1 Motivations for Combining Concurrency Models
3.2 Motivating Case Study: Clojure
3.3 Combining Futures, Transactions, and Actors
3.4 Conclusionand Roadmap

Transactional Futures: Parallelism in Transactions

4.1 Transactionsin Futures
4.2 Motivation for Futures Inside Transactions
4.3 Transactional Futures
4.4 Properties of Transactional Futures

xi

N AW~

11
16
17
22
36
42

4.5 RelatedWork 81

4.6 Summary e 90
Transactional Actors: Communication Between Transactions 93
5.1 Motivation and Problem Statement 93
5.2 Transactional Actors 99
5.3 Properties of Transactional Actors 104
5.4 Applicability to Other Actor Models 107
5.5 RelatedWork 110
5.6 Summary 114
Chocola: a Language That Unifies Futures, Transactions, and Actors 115
6.1 Combining Futures and Actors 115
6.2 Chocola: Composable Concurrency Language 121
6.3 Guaranteesof Chocola 127
6.4 Conclusion 129
PureChocola: an Operational Semantics 131
7.1 Syntax and Program State 131
7.2 ReductionRules 137
7.3 Guarantees e e e e 144
7.4 Mechanical Verification of Isolation and Intratransaction Determinacy 150
7.5 Differences Between PureChocola and Chocola 151
7.6 Conclusion e 153
An Implementation of Chocola 155
8.1 Futures e 155
8.2 Transactions e 156
8.3 ACIOIS e e e e 160
8.4 Transactional Actors 162
8.5 Transactional Futures 164
8.6 Compatibility with Clojure 171
87 Conclusion e 171
Evaluation 173
9.1 Methodology and Experimental Set-Up 173
9.2 Labyrinth (Transactional Futures) 178
9.3 Bayes (Transactional Futures) 181
9.4 Vacation2 (Transactional Actors) 184
9.5 DeveloperEffort 187

xii

9.6 Conclusions e 191

Conclusion 193
10.1 SUMMALY © .« v v v vt e e e e e e e e e e e e e 193
10.2 Contributions. e 195
10.3 Future Work 195
Notation 201
A Clojure Primer 203
Language and Library Support for Concurrency Models 207
Semantics of Futures and Transactions in Clojure and Haskell 209
Da Clojure e 209
D2 Haskell 210

xiii

Introduction

During the previous decade, a turning point was reached in the development of pro-
cessors: while from 1970 until 2000 processors got faster by increasing their clock fre-
quency, in accordance to Moore’s law [Moore 1998], this became impossible around
2005 due to exponential increases in power usage and heat generation [Geer 2005].
As a result, chip makers introduced multicore processors: processors that contain
multiple cores that execute instructions in parallel. The number of cores on multi-
core processors has increased since their introduction and this trend is predicted to
continue [Bright 2017a,b].

This “multicore revolution” also affects software developers: while previously they
could rely on increasing clock frequencies to make their programs run faster “for free”,
they now have to exploit the parallel hardware explicitly [Sutter 2005]. To this end,
programs use parallelism and concurrency: multiple computational activities are ac-
tive at the same time. Besides performance, a second reason to use concurrency is to
separate logically independent computations [Sutter 2005]: even on single-core pro-
cessors programmers may decide to use concurrency to structure programs, for fault
tolerance, or for security.

Moreover, powerful computers have become more accessible than ever since the
introduction of Infrastructure-as-a-Service in the cloud in 2005. The decreasing price
of cloud computing infrastructure has made big clusters of many-core machines avail-
able even to medium-sized businesses. This hardware is used to run intensive compu-
tations, e.g. in the field of machine learning or ‘Big Data, and services available to large
numbers of users, such as typical cloud applications. In those cases, parallelism and
concurrency are indispensable: computations must be distributed over the available
hardware to handle large amounts of data and user-facing services must scale as the
number of users increases.

Chapter 1: Introduction

Unfortunately, concurrent programming is notoriously difficult [Farchi et al. 2003,
Hovemeyer and Pugh 2004b,a, Lu et al. 2008]. In low-level programming languages,
developers exploit concurrency by manually creating threads and managing shared
resources using locks. However, threads can interact in unexpected and undesirable
ways. There are three common problems: race conditions, which cause an incorrect
result or a crash due to the order in which read and write instructions from multiple
threads are interleaved; deadlocks, which cause the program to hang when multiple
threads are waiting on each other because they acquire the same locks; and livelocks,
which cause the program to reexecute a part of the code over and over, e.g. when a
lock cannot be acquired.”

To prevent these problems, researchers have developed concurrency models. A
concurrency model provides constructs to introduce parallelism and to manage con-
current access to shared resources. However, at the same time it imposes restric-
tions, in order to provide guarantees to the programmer that prevent common errors.
For example, Communicating Sequential Processes (CSP) is a concurrency model in
which parallelism can be introduced by creating processes [Hoare 1978]. It restricts
the ability to share data by requiring the use of messages, and therefore, the program-
mer can reason about the program at the level of messages, as they are the only form
of communication between processes. Another example is Nested Data Parallelism
(NDP), a concurrency model to process lists and matrices in parallel [Chakravarty
and Keller 2001]. It restricts operations that are executed in parallel to have no side
effects, and can thus guarantee determinism.

Concurrency models can be implemented as a library or embedded into the pro-
gramming language. Concurrency models that are embedded into the programming
language can enforce stronger restrictions, enabling them to provide certain guaran-
tees that a library cannot provide. For instance, when CSP is embedded into the pro-
gramming language, the language can statically ensure that data can only be exchanged
between processes using messages. This helps to avoid race conditions, as no two pro-
cesses will ever write to the same memory location.

In this dissertation, we will study multiple concurrency models and their guaran-
tees when they are embedded in a programming language.

Categories of concurrency models

Over several decades, researchers and programming language designers have been de-
veloping a plethora of concurrency models. Each concurrency model provides differ-
ent programming language constructs, imposes different restrictions, and guarantees

*More formal definitions of these three bugs have been given by Tanenbaum and Bos [2014]. Dead-
locks occur when four conditions hold, first defined by Coffman et al. [1971] and summarized by Tanen-
baum and Bos [2014, page 440].

Non-deterministic
Category Deterministic Shared Memory Message Passing
Example | o Futures o Locks « CSP
models | « Fork/Join « Transactions « Actors
« NDP o Active objects
General | Parallelism for Multiple threads that Separable components
use case | performance modify a central data that occasionally
structure exchange data
Example | Matrix multiplication =~ Shared queue of work ~ Web service
use case

Table 1.1: An overview of the three categories of concurrency models and their use cases.

different properties. As a result, each concurrency model is suited to specific use cases.
Van Roy and Haridi [2004] systematize this variety of concurrency models by par-
titioning them into three categories. Concurrency models are first grouped into de-
terministic and non-deterministic models; the non-deterministic models are further
subdivided into those that have shared memory and those that rely on message passing.
(We will describe these categories in more detail in Section 2.1 of Chapter 2.)
The models in each category share general use cases:

« Deterministic models guarantee that a parallel program returns the same result
no matter in which order threads are interleaved. They are typically used to exploit
performance: their guarantee of determinism frees the developer from worrying
about correctness, to focus on performance instead. Some example use cases for
these models are parallel operations on lists or matrices, such as searching in a list
or multiplying matrices.

o Shared-memory models are used in programs that contain shared data structures,
to ensure safe access to the shared data. One specific example is a shared queue of
work, from which several threads process elements.

o Message-passing models are typically used to implement separable components
that occasionally exchange data. For instance, a web service can process incoming
requests in parallel using a message-passing model, as each request is independent
but may communicate with common resources such as a database.

Table 1.1 lists the three categories, some models in each category, and their use cases.

Chapter 1: Introduction

Model Futures Transactions Actors
Category | Deterministic Shared memory Message passing
Guarantees | o Determinacy o Isolation « Isolated turn
« Progress principle
o Deadlock freedom

Table 1.2: The three concurrency models we study in this dissertation and their guarantees.

Futures, transactions, and actors

In this dissertation, we will focus on three radically different concurrency models, one
from each category: futures, transactions, and actors. Each provides certain guaran-
tees to the developer (summarized in Table 1.2; expanded upon in Chapter 2):

o Futures are placeholder values that represent the result of a concurrent computa-
tion [Flanagan and Felleisen 1995]. They are a deterministic model, thus guaran-
teeing determinacy.

« Transactions are sections of the code in which memory, represented as transac-
tional variables, can be safely accessed and modified, to be shared with other trans-
actions [Shavit and Touitou 1997]. Each transaction is executed atomically: it ap-
pears to execute in a single step, thereby guaranteeing that transactions run in
isolation. Furthermore, when multiple transactions are running simultaneously,
they are guaranteed to make progress, so that one transaction cannot ‘hold back’
another forever.

« Actors are entities with private memory and an inbox. They run concurrently and
communicate by exchanging messages [Hewitt et al. 1973, Agha 1985]. Actors
process each message in a ‘turn. Once a turn starts, it is isolated from changes
outside the current actor: this is the isolated turn principle. Furthermore, actors
guarantee the absence of deadlocks, as they do not provide any blocking operation.

1.1 | Problem Statement

In practice, it is useful to combine different concurrency models. We base this asser-
tion on three observations (further elaborated in Chapter 3, Section 3.1):

1. Existing applications already combine concurrency models. An empirical study
of 15 Scala projects that use the actor model has shown that 80% of them combine
it with another concurrency model [Tasharofi et al. 2013].

1.2 Research Goal and Approach

2. Many programming languages (and libraries developed for them) support differ-
ent concurrency models. For instance, Clojure has built-in support for six mod-
els: atomic variables, Software Transactional Memory, futures, promises, asyn-
chronous agents and Communicating Sequential Processes. Likewise, Java pro-
vides threads, locks, atomic variables, futures, and Fork/Join. These languages
allow their concurrency models to be mixed freely by the developer, but unfortu-
nately doing so correctly is far from trivial.

3. As each concurrency model targets specific use cases, complex applications can
consist of different parts that each suit different concurrency models.

This dissertation studies the combinations of concurrency models. In Chapter 3, Sec-
tion 3.2, we start with a case study of Clojure. We show that when multiple concur-
rency models are combined, their guarantees are often invalidated. For instance,
sending a message inside a transaction can cause the message to be sent multiple times.
Hence, the assumptions of developers are broken and the errors that were prevented
by the separate concurrency models can resurface. This is not desirable.

In summary, this dissertation aims to tackle the following problem:

Programs often combine multiple concurrency models, but this can invalidate
the guarantees of the individual models, breaking the assumptions of the de-
veloper. How can these guarantees be maintained even when models are com-
bined?

1.2 | Research Goal and Approach

The goal of this dissertation is to provide a linguistic framework that unifies futures,
transactions, and actors. We have two requirements:

1. When used separately, the semantics of each model should remain unchanged, so
that existing programs work as before.

2. When models are combined, we seek a semantics for their combinations that main-
tains each model’s guarantees — except when it is impossible to do so. In those
cases, we replace the original guarantee with a less restrictive one.

This dissertation takes a programming language-based approach, allowing us to focus
on the essential elements of each model. First, we define the semantics and guaran-
tees of each concurrency model separately, working on top of a standard functional
language. Then, we build our unified framework in several steps:

« We study ‘naive, ad-hoc combinations of the three concurrency models. This con-
sists of examining each pairwise combination, and studying which guarantees are
broken in the naive combination.

Chapter 1: Introduction

« Next, we examine whether it is possible to specify a semantics of each pairwise
combination that maintains the guarantees. If this is not possible, we define a less
restrictive guarantee.

« Finally, we unify these semantics into one framework that combines the three con-
currency models. We formalize its operational semantics, to precisely define its
operations in any context and to establish its guarantees. Furthermore, we imple-
ment it and evaluate its performance using benchmark applications.

1.3 | Contributions

This dissertation makes the following contributions:

+ To the best of our knowledge, this dissertation is the first to comprehensively
and systematically study the combination of three concurrency models: futures,
transactions, and actors. We study these combinations and, for each combination,
we examine which guarantees are broken in a naive, ad-hoc combination.

« This dissertation introduces transactional futures: futures created in a transac-
tion with access to the encompassing transactional context. Using transactional
futures, parallelism in transactions can be exploited, benefitting from determinacy
within the transaction and isolation between transactions.

o The dissertation also introduces transactional actors. These make it possible both
to create transactions in actors, and vice versa to send messages to actors in trans-
actions. Our semantics maintains the isolation and progress guarantees of trans-
actions, while guaranteeing low-level race freedom and deadlock freedom for the
actors.

« Finally, we combine futures, transactions, and actors into one unified framework:
Chocola (COmposable COncurrency LAnguage). Chocola maintains the seman-
tics of each model when used separately. When the models are combined, Chocola
defines a semantics that maintains the guarantees of each model wherever possi-
ble. Hence, developers can mix multiple models in one program, in each part of
the program using whichever model fits best for the problem at hand. We make
three contributions:

- A specification of the operational semantics of Chocola, PureChocola, which
we use to demonstrate its guarantees.

- An implementation of Chocola on top of Clojure, a programming language
that already supports multiple concurrency models.

1.4 Outline

- An evaluation using three benchmark applications from the commonly used
STAMP benchmark suite. By extending a program that uses one concurrency
model with another, we demonstrate that additional parallelism can be ex-
ploited, leading to better performance, while requiring only a small effort from
the developer.

The implementation of Chocola, an executable implementation of the semantics of
PureChocola, and the benchmark applications used to evaluate Chocola are available
at http://soft.vub.ac.be/~jswalens/chocola/.

1.4 | Outline

This dissertation is organized as follows:

Chapter 2: Concurrency Models: Futures, Transactions, and Actors describes how
concurrency models can be classified into three categories — deterministic, shared-
memory, and message-passing models — and then picks one model from each cate-
gory to study in detail: futures, transactions, and actors. We describe each model’s
language constructs, use cases, guarantees, and operational semantics.

Chapter 3: Combining Concurrency Models looks into the naive combinations of
concurrency models and the problems this causes. First, we explain why develop-
ers combine concurrency models in practice. Next, we use Clojure as a case study
of a programming language in which such combinations lead to unexpected re-
sults. Finally, we expand on the goal of this dissertation and outline our approach
to tackling these problems.

Chapter 4: Transactional Futures: Parallelism in Transactions examines the combi-
nation of futures and transactions. We motivate the use of futures in a transaction
using an example and show the problems that occur when this is done using a
naive combination of both. Hence, we introduce transactional futures: futures
created in a transaction with a well-defined semantics and useful guarantees.

Chapter 5: Transactional Actors: Communication Between Transactions examines
the combination of actors and transactions. We explain the reasons for combining
both models and show which problems occur in a naive combination. Then, we
introduce transactional actors as a way to introduce communication using actors
in transactions with a well-defined semantics that maintains the expectations of
developers.

Chapter 6: Chocola: a Language That Unifies Futures, Transactions, and Actors
unifies the three concurrency models we examined into one framework, called
Chocola. We first consider the third combination not discussed before: futures
and actors. Then, we describe all concepts in Chocola and summarize its guaran-
tees.

http://soft.vub.ac.be/~jswalens/chocola/

Chapter 1: Introduction

Chapter 7: PureChocola: an Operational Semantics presents PureChocola, a for-
malization of the operational semantics of Chocola, and shows how its properties
can be inferred from the semantics.

Chapter 8: An Implementation of Chocola describes how Chocola modifies exist-
ing implementations of the three separate concurrency models to support trans-
actional futures and transactional actors.

Chapter 9: Evaluation evaluates the benefits of Chocola. In a quantitative evaluation,
we extend three benchmark applications that use transactions with futures and
actors and demonstrate that the additional parallelism can improve performance.
Using a qualitative evaluation, we determine that this requires only a small effort
from the developer.

Chapter 10: Conclusion presents our conclusions and some ideas for future research.

1.5 | Publications

Supporting publications
Parts of this dissertation appear in the following publications:

Transactional Tasks: Parallelism in Software Transactions
Janwillem Swalens, Joeri De Koster, Wolfgang De Meuter
Published in the Proceedings of the 30th European Conference on Object-Oriented
Programming (ECOOP 2016)
Received a Distinguished Paper Award at ECOOP 2016.
This paper combines transactions and futures to create transactional futures. It
describes one contribution of this dissertation and forms most of Chapter 4.
Transactional Actors: Communication in Transactions
Janwillem Swalens, Joeri De Koster, Wolfgang De Meuter
Proceedings of the 4th ACM SIGPLAN International Workshop on Software Engi-
neering for Parallel Systems (SEPS 2017)
This paper combines transactions and actors, introducing transactional actors. It
describes another contribution of this dissertation and forms most of Chapter 5.
Chocola: Integrating Futures, Actors, and Transactions
Janwillem Swalens, Joeri De Koster, Wolfgang De Meuter
Proceedings of the 8th International Workshop on Programming based on Actors,
Agents, and Decentralized Control (AGERE 2018)
This paper describes Chocola as an integration of futures, actors, and transactions.
It compiles the contributions of this dissertation, describing Chocola’s semantics
and evaluation, as in Chapters 6, 7 and 9.

1.5 Publications

Towards Composable Concurrency Abstractions
Janwillem Swalens, Stefan Marr, Joeri De Koster, Tom Van Cutsem
Proceedings of the Workshop on Programming Language Approaches to Concurrency
and communication-cEntric Software (PLACES 2014)
This paper systematically studies all pairwise combinations of the six concurrency
models supported by Clojure and reports in which cases their guarantees are main-
tained or broken. It is discussed in Section 3.2 and describes the problem that we
aim to solve in this dissertation.

Other publications

I contributed to the following other publications during the course of my research:

Cloud PARTE: Elastic Complex Event Processing based on Mobile Actors
Janwillem Swalens, Thierry Renaux, Lode Hoste, Stefan Marr, Wolfgang De Meuter
Proceedings of the 3rd International Workshop on Programming based on Actors,
Agents, and Decentralized Control (AGERE 2013)

This paper introduces Cloud PARTE: a distributed version of the Rete algorithm
that can be used to implement complex event detection systems. It is implemented
using mobile actors: these are actors that can move between machines.

Just-in-time inheritance: a dynamic and implicit multiple inheritance mechanism
Mattias De Wael, Janwillem Swalens, Wolfgang De Meuter
Proceedings of the 12th Symposium on Dynamic Languages (DLS 2016)

This paper introduces Just-in-Time Inheritance, a form of multiple inheritance in
which one parent is “favored” over the others. It is the first implicit and dynamic
multiple inheritance mechanism.

Concurrency Models:
Futures, Transactions, and
Actors

This chapter describes the three concurrency models at the basis of this dissertation. In
Section 2.1, we describe a taxonomy that partitions concurrency models into three cat-
egories: deterministic, shared-memory, and message-passing models. In Section 2.2,
we select one model from each category to study in the rest of this dissertation: fu-
tures, transactions, and actors. In sections 2.3, 2.4, and 2.5, we describe each in detail:
we define the relevant terminology, list their language constructs, demonstrate their
use cases, and list their properties. We also provide a formalization of an operational
semantics of each model, which we will use as building blocks in subsequent chapters.

Appendix A defines some common notation used in the operational semantics
throughout this dissertation.

2.1 | Categories of Concurrency Models

A concurrency model provides programming language constructs to introduce par-
allelism and to manage concurrent access to shared resources. However, at the same
time it imposes restrictions, in order to provide guarantees to the programmer that
prevent common errors and make the code easier to understand, maintain, and debug.
Over several decades, researchers and practitioners have developed a wide variety of
concurrency models. They each provide different constructs and different guarantees,

11

Chapter 2: Concurrency Models

and are thus each aimed at certain use cases.

In this dissertation, we use the taxonomy of Van Roy and Haridi [2004], who sys-
tematize the breadth of existing concurrency models into three categories: determinis-
tic, shared-memory, and message-passing models. The last two are non-deterministic,
as illustrated in Figure 2.1. In this section, we describe the three categories, list some
representative concurrency models for each, and describe some of the use cases and
properties common to the models of each category.

Deterministic

Shared-memory
Message-passing

Figure 2.1: Categories of concurrency models [Van Roy and Haridi 2004]

[Concurrency models

Non-deterministic

Deterministic models

Deterministic models guarantee that, given the same input, a program will always pro-
duce the same output. When using such a model, a programmer can verify a program’s
output for given inputs and be sure that it will always work for those inputs. The or-
der in which the threads will be interleaved during execution does not affect the end
result, so there cannot be any race conditions or deadlocks that only appear in some
executions. Hence, these models are suitable when parallelizing for performance: if
a program produces the correct result for a given input, it will always do so, and the
programmer can focus on tweaking the program to get the best performance.

Examples of deterministic models are futures [Baker and Hewitt 1977, Halstead
1985], promises [Liskov and Shrira 1988], Fork/Join [Blumofe et al. 1995, Lea 2000,
Cavéetal. 2011], Nested Data Parallelism [Chakravarty and Keller 2001], and dataflow
[Van Roy and Haridi 2004]. Some typical use cases are the parallelization of search,
matrix addition or multiplication, or operations on large lists. In these examples, de-
terminism is required: the output of these algorithms should only depend on the input,
no matter the number of threads or how they are interleaved.

Typically, these models do not allow operations with side effects to occur in paral-
lel. By requiring that all operations are purely functional, the order in which they are
interleaved does not matter and thus determinism is achieved. We give a few examples
of deterministic models and how they achieve determinism:

« Futures are semantically transparent: a functional program with futures evaluates
to the same result as that program with the futures elided [Flanagan and Felleisen
1995]. This is true no matter the order in which threads are scheduled, and there-
fore the result is deterministic. Futures can thus safely be added wherever the

12

2.1 Categories of Concurrency Models

programmer suspects their benefits will outweigh their costs, without affecting
the correctness of the program.

o Cilk is an implementation of Fork/Join. It defines the serial elision of a program as
that program with all Cilk-specific keywords removed. The serial elision of a Cilk
program has the same semantics as the parallel version [Randall 1998]. Again, this
is true no matter the order of interleaving, and therefore guarantees determinism.

o Data Parallel Haskell is an implementation of Nested Data Parallelism for Haskell
that provides several operations on lists, such as mapping, filtering, concatenation,
and transposition [Jones et al. 2008]. It guarantees determinism by using the type
system to require that the applied functions are purely functional, i.e. that they
have no side effects.

Shared-memory models

Shared-memory models coordinate access to shared memory from multiple threads.
These models are suited to programs where multiple tasks read and modify one or
more centralized data structures. An essential focus of these models is preserving the
consistency of the shared data structure: one thread should not be able to observe the
intermediate actions of another. For instance, when $100 is transferred between two
bank accounts, it should be impossible to observe the intermediate state where the
money was taken out of one account but not yet put into the other.

A common technique is to protect access to shared memory using locks or sem-
aphores [Dijkstra 1965]. By holding one or several locks during the execution of a
section of the code that accesses shared memory, called a critical section, the devel-
oper can ensure that one thread has exclusive access to that data. Thus, the critical
sections are serialized: multiple sections that access the same data cannot execute in
parallel, but will be executed serially.

Transactions are another technique to protect access to shared memory [Herlihy
and Moss 1993, Shavit and Touitou 1997]. In this model, the programmer encapsu-
lates code that accesses shared memory in a transaction. While the transaction is run-
ning, modifications made to shared memory are stored locally. Only at the end of the
transaction will it attempt to commit these changes, persisting them so they can be
observed by other threads. When two transactions modify the same data, a conflict
is detected during (or even before) the commit, and the transaction will roll back and
retry. This ensures all changes in a transaction are made visible in a single, atomic step,
and that a transaction always has a consistent view of the shared memory.

Transactional systems avoid some of the common pitfalls of locks. In lock-based
systems, the programmer must manually safeguard critical sections by acquiring locks.
Failing to do so can lead to race conditions; acquiring locks multiple times or in the

13

Chapter 2: Concurrency Models

wrong order can cause deadlocks. Transactional systems typically avoid these prob-
lems by automating conflict detection.

Both critical sections protected with locks as well as transactions guarantee atomic-
ity: the changes to shared memory they contain become visible in a single, indivisible
step. They ensure that no other thread can observe the intermediate states, therefore,
they should contain code that moves the shared memory from one consistent state to
another, while the inconsistent intermediate states within a critical section or transac-
tion are hidden from other threads.

Note that atomicity is a less strict guarantee than determinacy. Atomicity hides the
intermediate states of one critical section or transaction from another, but the order
in which these sections are interleaved is still undetermined. A program can therefore
still have several distinct outputs for the same input.

Message-passing models

Message-passing models consider the different computational activities of a program
as active entities, each of which has its own, isolated memory. These components
exchange data by sending each other messages. Message-passing models are thus well-
suited for programs that consist of easily separable components that only exchange
data sparingly.

Message-passing models are popular in distributed settings, in which they natu-
rally map onto the hardware. However, they are also used on shared-memory systems
such as multicore or multiprocessor machines (which we focus on here), when they
naturally map onto the problem. In the former case, the developer decides to use a
concurrency model that fits the hardware and maps the problem onto it, often lead-
ing to better performance but sometimes requiring an ‘unnatural’ design. In the latter
case, the developer decides to use a concurrency model that fits the use case and relies
on the system to map this onto the hardware, leading to a natural design but possibly
suboptimal performance.

A distinction is made between models that use synchronous versus asynchronous
message passing. When messages are passed synchronously, the sender and receiver
run at the same time, and they wait until both are ready to pass the message, at which
point they are said to rendez-vous. If a sender tries to send when no receiver is present,
it will block until there is a corresponding receiver. On the other hand, when messages
are sent asynchronously, the receiver has a buffer of messages, and messages can be
sent even when the receiver is busy or inactive by storing them in the buffer. In this
model, sending a message is immediate: the sender puts the message in the buffer and
can immediately continue.

We give some examples of message-passing models:

14

2.1 Categories of Concurrency Models

« Communicating Sequential Processes (CSP) [Hoare 1978] is a synchronous mes-
sage-passing model. Concurrent processes can be spawned and communicate by
sending messages to each other.

o Concurrent ML [Reppy 1991, Reppy et al. 2009] is a synchronous message-passing
model in which messages are sent over channels. Here, the sending and receiving
of messages over a channel are first-class values called events, which can be com-
posed using a set of operators.

 Theactor model [Hewittetal. 1973, Agha 1985] is an asynchronous message-pass-
ing model. Actors are entities with a private memory and an inbox. They commu-
nicate by placing messages in each other’s inbox. Each actor can send to any other
actor (of which it has the address), but can only read its own inbox.

« In Concurrent Object-Oriented Programming, an object can execute in a sepa-
rate process; it is then called an active object [Karaorman and Bruno 1993]. Ac-
tive objects have private memory, and communicate asynchronously using remote
method invocation.

o MPI (Message Passing Interface) [Message Passing Interface Forum 1994, 2015
is a message-passing model widely used in industry, amongst others to implement
scientific software. It has been implemented in libraries for languages such as Java,
C, C++, Fortran, MATLAB, Python and others. MPI was originally designed for
distributed memory architectures, but can also be used in shared-memory systems
and hybrids (e.g. a distributed system of multicore machines). It provides con-
structs to handle different patterns common in message-passing programs, such
as broadcasting, scattering, gathering, and reducing data. MPI allows both block-
ing (synchronous) and nonblocking (asynchronous) communication.

Why not always choose a deterministic model?

After studying these three categories, one might wonder why deterministic models are
not always preferable, as they guarantee that the parallel program is correct regardless
of the order in which threads are interleaved. Unfortunately, sometimes non-deter-
minism is unavoidable. For instance, imagine a program that sends several messages
to different servers, and would like to continue as soon as one is answered. Here, non-
determinism is necessary: which message will be answered first depends on external
factors. Van Roy and Haridi [2004], as well as Lee [2006] and Bocchino et al. [2009a],
recommend using a deterministic model wherever possible, and to only introduce
non-determinism in exactly those places where it is absolutely necessary. They rec-
ommend using the least expressive model - that is the most restrictive - whenever
possible, as this is the model that provides the most guarantees to the programmer.
They reason that the most restrictive model makes the code easier to understand and
to check for correctness.

15

Chapter 2: Concurrency Models

2.2 | From Three Categories to Three Concurrency
Models

Building on this taxonomy, we study one concurrency model from each category in
this dissertation:

« As a deterministic model, we study futures. They are introduced in Section 2.3.
Futures are one of the simplest deterministic concurrency models, as they only
introduce two new constructs: forking a task and joining it later.

 As a shared-memory model, we look at Software Transactional Memory (STM),
which is described in Section 2.4. While locks are traditionally used to protect
shared memory, transactions avoid many of the common pitfalls of locks: they
prevent the developer from forgetting to acquire a lock, they avoid deadlocks when
locks are taken in the wrong order, and transactions can be nested without causing
deadlocks [Harris et al. 2005].

+ As a message-passing model, we study the actor model. Actors are introduced in
Section 2.5. They are a popular concurrency model supported in languages such as
Erlang, Scala, Java, and C++." The actor model also has a long history in research
[De Koster et al. 2016b].

In the following three sections, we describe and formalize these three models in detail.
There exist many different variants and formalizations of each model in literature. We
pick and study a simple variant of each, to reduce the model to its essentials. We also
define a simple formal semantics of each model, which is loosely based on existing
formalizations but defined in a uniform manner for the three models. This will allow
us to focus on the combinations of these models in the following chapters.

All our implementations are modifications of Clojure, a Lisp-like language built
on top of the Java Virtual Machine. Clojure already supports futures and transactions,
and is therefore the perfect testbed for the problems tackled in this dissertation. We
briefly describe Clojure in Appendix B.

Our formalizations are built around a base language: a standard, functional cal-
culus. The syntax of this language is inspired by Clojure: it uses S-expressions and
supports conditionals (if), local variables (1et), and blocks (do). Also like Clojure,
it is a functional language that does not contain assignments; once our three models
are combined, any mutable memory must therefore be represented as transactional
memory. We do not further formalize the base language in this text.

The formalisms introduced in the next sections build upon each other. This is
visualized in Figure 2.2. Ly, is the base language. In Section 2.3, we extend it to support
futures, creating L¢. In Section 2.4, we define the language with transactions L;. STM

'Erlang has built-in support, other languages use libraries (listed in Appendix C).

16

2.3 Futures

[Lb: base language}

L,: actors

L futures

L;: transactions

Figure 2.2: The relations between the languages presented in the following sections.

merely defines how transactions are created but not how the tasks are created in which
transactions run: Ly must therefore rely on Ly. In Section 2.5, we again build upon the
base language to create a language with actors L,.

In all models we study, concurrency is explicit: the programmer must explicitly
use certain language constructs to introduce parallelism or manage access to shared
resources. We do not consider concurrency models which introduce concurrency
implicitly, by for example automatically parallelizing expensive computations. This
matches our language-based approach: we aim to study which (explicit) constructs of
one model can be embedded inside the constructs of another model.

2.3 | Futures

We start by describing futures: placeholder values that represent the result of a parallel
computation (Section 2.3.1). Futures are semantically transparent and guarantee de-
terminacy (Section 2.3.2). We show some examples (Section 2.3.3) and provide some
details about the implementation (Section 2.3.4). Finally, we specify a formalization
(Section 2.3.5).

2.3.1 Concepts

A parallel task is a fragment of the program that can be executed in parallel with the
rest of the program. A run-time system schedules these tasks over the available pro-
cessing units (detailed in Section 2.3.4).

A parallel task can be created using the expression fork e. This begins the evalu-
ation of the expression e in a new task, and immediately returns a future. A future is
a placeholder variable that represents the result of a concurrent computation [Baker
and Hewitt 1977, Halstead 1985]. Initially, the future is unresolved. Once the parallel
evaluation of e yields a value v, the future is said to be resolved to v. This result can be
retrieved by other tasks by calling join f. If the future is resolved, join returns its value
immediately; if the future is still unresolved, this call will block until it is resolved and
then return its value.

17

o v s W

- RV VR)

Chapter 2: Concurrency Models

(defn fib [n]
(if (< n 2)
n
(let [a (fib (- n 1))
b (fib (- n 2))]
(+ab))»

(a) Sequential recursive implementation of Fibonacci.

(defn fib [n] (defn fib [n]

(if (< n 2) 2 (if (< n 2)
n 3 n
(let [a (fork (fib (- n 1))) 4 (let [a (fork (fib (- n 1)))
b (fork (fib (- n 2)))] 5 b (fib (- n 2))]
(+ (join a) (join b))))) 6 (+ (join a) b))))
(b) Recursive implementation of Fibo- (c) In this implementation, only one recur-
nacci, parallelized using futures. sive call is executed in a new task.

Listing 2.3: A sequential and two parallel implementations of Fibonacci. The sequential imple-
mentation is equivalent to the parallel ones with fork and join elided, hence, it is their serial
elision.

Clojure implements futures as described here, except for some syntactical difter-
ences. Scala and Haskell also offer similar constructs.> We aim to approximate these
languages closely, to demonstrate how the problems we will describe later also apply
to them. A list of (minor) syntactical and semantical differences between our formal
model and the implementations of Clojure and Haskell is given in Appendix D.

2.3.2 Guarantee: Determinacy

The serial elision of a program with futures is the program with fork e replaced by e,
and join freplaced by f. In a functional programming language, where there are no
side effects, a program with futures is equivalent to its serial elision. This property is
called the semantic transparency of futures [Flanagan and Felleisen 1995]: futures are
‘transparent’ to the semantics of the program; when they are elided the semantics of
the program remains unchanged. As a result, futures are a deterministic concurrency
model: no matter in which order the tasks are scheduled, the program has the same
result, which is equivalent to the result of its serial elision. This is called determinacy
(or also observable determinism?3): any execution of the program with the same input
must lead to the same output.

*fork eis (future e) in Clojure, Future { e }in Scala, and forkIO e in Haskell.

*Some literature, such as Denning and Dennis [2010], distinguishes between determinism, which
requires that the tasks are interleaved in the same way for each execution, and determinacy, which only
requires the same output for a given input. We are concerned with determinacy, not determinism.

18

2.3 Futures

2.3.3 Examples and Use Cases

An example program using futures is shown in Listing 2.3b: an implementation of the
Fibonacci function in which the recursive calls occur in futures. Listing 2.3a shows the
program’s serial elision.# For this program, determinacy is desired, as the result of this
function should not depend on the order in which tasks are scheduled, and therefore
futures are a good fit.

In general, futures are commonly used to the parallelize homogenous operations
over lists, such as searching and sorting [Halstead 1985]. The operation is determinis-
tic and can be applied to each element in parallel. For this purpose, Clojure provides
a parallel map function: (pmap f xs) will apply f to each element of xs in parallel.
If f has no side effects, (pmap f xs) is equivalent to (map f xs). Futures are also
used to increase the responsiveness of an application by executing long-running oper-
ations concurrently. For example, in graphical applications expensive computations
or HTTP requests often return a future so as not to block the user interface.

Thanks to the semantic transparency of futures, developers can add futures to a
program, simply by wrapping an expression in fork, in any place where they believe
the parallel execution of the expression outweighs the cost of the creation of a task.
Listing 2.3¢ shows another implementation of the Fibonacci function, in which only
one of the recursive calls is parallelized. As only one task needs to be created, in many
implementations this will result in better performance. Some ‘smart’ compilers even
automatically insert or remove futures after analyzing the program, using heuristics to
determine where they probably provide a benefit [Flanagan and Felleisen 1995, Harris
and Singh 2007, Zhang et al. 2007, Surendran and Sarkar 2016].

2.3.4 Implementation Notes

Usually, a distinction is made between user threads and kernel threads [Herlihy and
Shavit 2011, Section 16.3]. When a program spawns a parallel task using fork, this task
will run in a user thread (sometimes also referred to as a green thread). The program-
ming language provides a virtual machine, which creates a number of kernel threads
and maps the user threads onto these kernel threads. Finally, the operating system’s
kernel schedules the kernel threads onto the hardware processors. This is illustrated
in Figure 2.4.

This separation is made to hide the cost of kernel threads. Creating a kernel thread
involves a kernel call and the reservation of a section of memory for the new thread,
while creating a user thread is (often) no more costly than a function call, and (often)
only allocates a small amount of memory. For instance, in Erlang, a newly spawned

*All our code examples use Clojure’s syntax. If this example looks unfamiliar, a brief description of
Clojure is given in Appendix B.

19

Chapter 2: Concurrency Models

Parallel tasks
(‘user threads’)

Virtual machine

Kernel threads
Operating system’s
scheduler

Figure 2.4: Kernel vs. user threads. The programmer creates parallel tasks, sometimes also
referred to as user threads. The virtual machine schedules these onto kernel threads. The
operating system’s kernel in turn schedules these onto the hardware.

process only uses 309 words of memory (about 2.5 kB on a 64-bit architecture), while
the Java HotSpot VM has a minimum stack size of 64 kB for a newly spawned kernel
thread.” Hence, creating millions of kernel threads exceeds current machines’ mem-
ory limits, while mapping millions of user threads upon a few kernel threads prevents
this. Furthermore, context switches between user threads are more efficient as they
do not require any interaction with the kernel [Tanenbaum and Bos 2014].

In this dissertation, parallel tasks are implemented as user threads. We will not
further focus on how these are mapped onto kernel threads and hardware processors;
these are ‘details’ of the implementation of the virtual machine and operating system.

2.3.5 Lg Formalization of Futures

Figure 2.5 defines Ly: the base language extended to support parallel tasks and
futures. This formalism is based on the work of Flanagan and Felleisen [1995] and
Welc et al. [2005]. We will describe the operational semantics piece by piece.

The syntax consists of our base language — supporting conditionals (if), local vari-
ables (let), and blocks (do) — augmented with references to futures (f) and the expres-
sions fork e and joine.

A program’s state, p, is a tuple containing only one element:S a collection of tasks.
A task is a tuple containing two elements: the future that represents its value and the
expression it is currently evaluating. The future fassociated with each task is unique,

>This varies depending on the specific virtual machine and version, operating system, and processor
architecture. Sources: http://erlang.org/doc/efficiency_guide/processes.html and http://www.oracle.com/
technetwork/java/hotspotfag-138619.html#threads_oom

®In the next sections, we will extend this tuple with more elements.

20

http://erlang.org/doc/efficiency_guide/processes.html
http://www.oracle.com/technetwork/java/hotspotfaq-138619.html#threads_oom
http://www.oracle.com/technetwork/java/hotspotfaq-138619.html#threads_oom

Syntax

¢ € Constant
x € Variable
f€ Future

v € Value

e € Expression ::

State

Program state
Tasks
Task

Evaluation contexts

P

TU(f €

2.3 Futures

= nil | true | false |0 |1] ---|""|"a"|...

= @
| x
| fn[x]e Anonymous function
| f Future

= v
| (ee) Function application
| ifeee
| let[xe]e
| doee
| forke Fork a future
| joine Join a future
p = (T
T C Task

task € Task == (f. e

Ex= 0| (@Ee)|ifee|let[xE]e|dov;ETe| joinE

Reduction rules

congruencelg
fork|s
joinl¢

TU (f. E[e]
T U (f, E[fork e]

—¢(TU (f. E[¢] ife —y €
—¢ (TU (f, E[fu]) U (f.. e)) with f; fresh

T (f, E[oin f]) U (fe, v)) = (TWU (f, EWV]) WU (f, v

Figure 2.5: Operational semantics of Ly, a language with futures.

21

Chapter 2: Concurrency Models

and thus can be considered an identifier for the task. To kickstart evaluation, a pro-
gram e is converted into the initial state ({(f,, e) }), i.e. it contains one “root” task that
executes e.

We use evaluation contexts to define the evaluation order within expressions. The
program evaluation context PP can choose an arbitrary task, and use the term evalua-
tion context £ to find the active site in the term. The fact that any task can be chosen
in which a reduction is possible, models that a parallel execution of the program can
interleave the execution of different tasks in any order. £ is an expression with a “hole
[0”. We write £[e] for the expression obtained by replacing the hole [J with ein £. Note
that there is no form for “fork £”: the expression in a fork is not evaluated in place,
it will be executed in a new task.

We define the operational semantics using transitions p —¢ p’. The subscript f
denotes all reduction rules that apply to futures.

The rule congruence|s defines that the base language can be used in each task. Tran-
sitions in the base language are written e —, ¢’. They define a standard A calculus,
supporting the constructs defined in the syntax, but they are not detailed here.

The rule fork|¢ specifies that the expression fork e creates a new task in which e
will be evaluated, and reduces to a freshly created future f.. After the expression e has
been fully reduced to a value v, join f. will also reduce to v. A task can be joined
multiple times; each join reduces to the same value. A join can only be resolved by
the rule join|¢ if the corresponding task has been fully reduced to a value; this detail
encodes the blocking nature of our futures.

The semantic transparency of futures can be proven from these reduction rules
[Flanagan and Felleisen 1995]. When a task is created, its expression is put in a new
task and a placeholder f; is returned. In the new task, the expression is reduced using
the rules of the base language. As the base language is purely functional, there is no
non-determinism: there is always only one rule that applies. Hence an expression
always evaluates to the same value, regardless of the task it is executed in. When the
task is joined, the future f, is used to look up the value of the expression after reduction.
This is equivalent to evaluating the future’s expression in place.

2.4 | Transactions

In this section, we describe Software Transactional Memory, a concurrency model
that coordinates access to shared memory using transactions. We start by describing
its constructs and defining related terminology (Section 2.4.1), illustrated using an
example (Section 2.4.2). We describe its two core guarantees: isolation and progress
(Section 2.4.3). One implementation technique, multiversion concurrency control, is
discussed in detail (Section 2.4.4). Finally, we specify a formal operational semantics

22

2.4 Transactions
of STM (Section 2.4.5).

2.4.1 Constructs and Terminology

Software Transactional Memory (STM) is a concurrency model that allows multiple
parallel tasks to access shared memory locations [Herlihy and Moss 1993, Shavit and
Touitou 1997]. It introduces transactions in the programming language, based on
the concept of database transactions. A difference is made between Hardware Trans-
actional Memory, which requires special support from the hardware, and Software
Transactional Memory, which is implemented fully in software.

To use STM, each memory location that is shared by multiple parallel tasks is en-
capsulated in a transactional variable. Accesses to shared memory can only occurina
transaction: a block of code in which transactional variables can be read and modified.
In a transaction, the developer has a consistent view of the shared memory: reading
a transactional variable multiple times in the same transaction always yields the same
result, even if another task modified it in the meantime. Furthermore, all changes
made to shared memory in a transaction are made visible to other tasks atomically: it
is not possible for other tasks to observe intermediate states.

In contrast to mechanisms based on locking, which are said to be ‘pessimistic;,
STM is optimistic [Herlihy and Shavit 2011]. In pessimistic mechanisms, a task has to
wait before entering a critical section to ensure it is the only task accessing the shared
variables. In optimistic mechanisms, the code of the critical section is immediately
executed, without taking locks. When leaving the critical section, the task needs to
verify whether it was the only one accessing the variable(s), and if this is not the case,
its changes are rolled back and the critical section is retried.

A transaction thus executes one or several attempts, which end in either a success-
ful commit or an abort. Aborts are caused by conflicts between different transactions
attempting to read and/or write to the same transactional variable(s). (Which types
of conflicts can lead to aborts depends on the algorithm used to implement STM.) An
aborted transaction is retried, which means that its changes are discarded or rolled
back, and its contents are reexecuted in a new attempt.

The advantage of an optimistic approach is that it eliminates the cost of locking,
and therefore often performs better when the chance of conflicts is low (hence the
name ‘optimistic’). A disadvantage of optimistic mechanisms is that transactions may
be executed multiple times, and therefore should not contain any irrevocable opera-
tions, such as input/output or other operations with side effects.

A transactional variable is created using ref v, containing the initial value v. A
transaction is a block atomic e that encapsulates an expression, which can contain
reads (deref r, abbreviated to @r) and writes (ref-set r v) on the shared memory
locations.

23

Chapter 2: Concurrency Models

Software Transactional Memory is implemented in Clojure and in Haskell's GHC
compiler [Harris et al. 2005]. Except for a few syntactic differences, the model de-
scribed here is very similar to what is offered by Clojure and Haskell.” A list of differ-
ences between our model and those of Clojure and Haskell is given in Appendix D.

2.4.2 Examples and Use Cases

Transactions are used to allow safe access to shared memory in programs with multiple
parallel tasks. These applications typically contain complex data structures of which
pieces are encapsulated in transactional variables. For example, Atomic Quake [Zyulk-
yarov et al. 2009 implements the server of a multiplayer game, using transactions to
concurrently process incoming requests from different players which each update a
subset of the shared objects in the game. Another example is a parallel Sudoku solver
[Perfumo et al. 2008], where each cell of the board is encapsulated in a transactional
variable and multiple concurrent transactions solve the board. More examples include
storing parts of rich text documents, HTML pages, and CAD models in transactional
variables to operate on them in parallel [Guerraoui et al. 2007]; and networks, mazes,
graphs, and lists which are manipulated by multiple tasks [Minh et al. 2008]. STM is
particularly suited if it is difficult to predict statically which objects will be accessed
in a critical section, for instance during graph traversals: (pessimistic) locks may re-
quire the developer to be overly conservative, locking any shared object that might be
accessed in the critical section, while (optimistic) STM allows the developer to access
objects freely and only synchronizes on those actually accessed [Harris et al. 2010].

Listing 2.6 demonstrates the use of STM in a code snippet that manages bank ac-
counts. There are two bank accounts: a checking and a savings account. They are
created on lines 1 and 2. By wrapping their value in a transactional variable (ref),
they can be accessed safely from multiple tasks using STM. Next, two tasks are forked
that will execute in parallel (lines 3 and 7). The first starts a transaction that transfers
€10 from the checking to the savings account. Hence, both variables are read (using
deref) and written to (using ref-set). In the second task, a transaction is started to
calculate the sum of the balances of both accounts.

STM guarantees serializability, meaning that the result of this program is equiv-
alent to either serially running the first transaction followed by the second, or the
second followed by the first. In both cases, the program prints "You own €600”. The
second transaction cannot observe the intermediate state of the first transaction (its
state between lines 5 and 6), so the program cannot print “You own €590”. Because it

7In Haskell transactional variables are called “TVars” and are created, read, and modified with
newTVar, readTVar, and writeTVar respectively. A transaction is encapsulated in the construct
atomically. In Clojure transactional variables are referred to as “refs” and manipulated using the same
constructs that we use. Clojure encapsulates transactions in a dosync block.

24

e N -

8

2.4 Transactions

&
(def checking (ref 100))
(def savings (ref 500)) start tx +
(fork @checking > 100 4
(atomic ;Transaction 1:transfer €10 Icheckinge 90+ | start tx
(ref-set checking (- (deref checking) 10)) 1 @checking - 100
(ref-set savings (+ (deref savings) 10)))) @savings—»>5004 | @savings — 500
(fork Leaui
.) !'savings « 510 + .
(atomic ;Transaction 2:sum accounts . 1 commit
(println "You own €” commit
(+ (deref checking) (deref savings))))) Y VY
(a) Code (b) Timeline of a parallel execution,

with read (@) and write (!) operations
on transactional memory.

Listing 2.6: A program that transfers money between bank accounts, implemented using STM.

disallows these interleavings, STM prevents race conditions.

2.4.3 Guarantees: Isolation and Progress

We now discuss the two crucial guarantees of STM - isolation and progress — in more
detail.

Isolation

Transactional systems provide a form of isolation between the transactions: one trans-
action can never see the changes of another until the latter has committed. Different
isolation ‘levels’ have been defined, reflecting a range of trade-offs between satisfying
the expectations of developers, integrating with existing programming languages, and
improving the performance for transactional programs with specific characteristics.
We discuss three isolation levels: serializability, opacity, and snapshot isolation.

The traditional guarantee of transactional systems (including databases) is serial-
izability: transactions appear to execute serially, i.e. the steps of one transaction never
appear to be interleaved with the steps of another [Herlihy and Moss 1993]. This only
appears so to the developer, who cannot observe intermediate states of one transaction
in another; in practice, the transactions actually are executed in parallel. Formally, se-
rializability requires that the result of a transactional program, which may execute
transactions concurrently, must always be equal to the result of a serial execution of
the program, i.e. one in which no transactions execute concurrently.

The definition of serializability, originating in the world of database transactions,
has been refined specifically for STM. Serializability only considers successful execu-
tions of a transaction. Opacity is a property that extends serializability to require that

25

Chapter 2: Concurrency Models

executions of a transaction that eventually abort also have a consistent view of the
shared memory [Guerraoui and Kapalka 2008]. This ensures that no exceptions or
other irrevocable side effects occur due to an inconsistent view in a transaction that
later aborts. (This requirement was not necessary for database systems, where such
actions cannot occur.) Opacity is stricter than serializability.

Some transactional systems provide a more relaxed form of isolation. Snapshot
isolation requires that (1) a transaction sees a consistent view of the memory (this is
its snapshot), and (2) a transaction can only commit if none of its updates conflict with
any concurrent updates made since the snapshot [Berenson et al. 1995]. In contrast
to opacity, snapshot isolation allows a transaction to commit even if it has seen an
outdated version of some transactional variables, as long as these were only read. As
snapshot isolation ignores these conflicts, it avoids retries in certain situations, increas-
ing performance. However, it can lead to unserializable results, as we will demonstrate
later in this chapter (Section 2.4.4).

Existing languages and libraries implement different isolation levels:

« Clojure’s STM provides snapshot isolation. In Clojure, variables are immutable
by default and the built-in collection types are implemented using persistent data
structures [Driscoll et al. 1989], which cannot be destructively updated. Hence,
creating a snapshot is cheap: it can simply keep references to the immutable values
that the transactional variables had before the transaction started. When stricter
isolation is desired, it is up to the developer to indicate which transactional vari-
ables must be checked for inconsistencies at commit time (using the explicit con-
struct (ensure r)).

o ScalaSTM’s reference implementation guarantees opacity [Bronson et al. 2010]. It
assumes the developer does not access non-transactional memory in the transac-
tion, but does not verify or enforce this. Animportant concern in the development
of ScalaSTM was to implement it fully as a library.

« Haskell's STM implements an isolation level that is stricter than snapshot isola-
tion, but weaker than opacity [Bieniusa and Thiemann 2011a]. This is due to
its orElse construct: which branch is executed depends on the scheduling of the
tasks. Haskell's STM without the use of orElse is opaque. Furthermore, Haskell
harnesses its type system to statically ensure that transactional memory is only
accessed in transactions and that no other side effects can occur in transactions.

Progress

In addition to isolation, transactional systems also guarantee progress. While tradi-
tional locking systems are prone to issues such as deadlocks, livelocks, and starvation,
transactional systems aim to free the programmer from worrying about these issues.
Similar to isolation levels, different STMs provide one of a range of different ‘progress

26

2.4 Transactions

guarantees, each with its specific advantages and disadvantages. STMs can be divided
into two categories in regard to progress: nonblocking and blocking (lock-based) al-
gorithms [Harris et al. 2010, Herlihy and Shavit 2011].

The earliest STM implementations used nonblocking algorithms. Nonblocking
algorithms require that, when one transaction is pre-empted, it should not prevent
other transactions from being able to make progress. This requirement rules out the
use of locks, because if the transaction holding the lock is pre-empted, no other trans-
action can acquire it. There are three common progress guarantees in this category:
wait freedom, lock freedom, and obstruction freedom. Wait freedom is the strictest,
requiring that a transaction should make progress on its own work as long as it is ex-
ecuting. Lock freedom is weaker, only requiring that when a transaction is executing,
some transaction should make progress. Obstruction freedom requires that a transac-
tion can make progress with its own work if other transactions do not run at the same
time.

A disadvantage of nonblocking algorithms is that they are often slow (especially
wait-free and lock-free algorithms). Ennals [2006] argues that nonblocking progress
guarantees are not necessary for STM, as STM does not run on distributed systems, in
contrast to the database systems for which these algorithms were originally designed.
Abandoning nonblocking guarantees can result in much faster implementations.

Hence, many blocking (i.e. lock-based) STM algorithms were developed. This cat-
egory of STM algorithms guarantees deadlock freedom: when two transactions con-
flict, progress is guaranteed by a contention manager, a mechanism that decides which
transaction(s) to delay so that another can always make progress. Clojure, Haskell, and
ScalaSTM all use blocking STM algorithms. This is also the strategy followed by our
implementation, presented in the next section.

2.4.4 Implementation: Multiversion Concurrency Control

There exist many different algorithms to implement STM. Clojure uses Multiversion
Concurrency Control (MVCC) [Herlihy and Shavit 2011], a technique originating
from databases [Bernstein and Goodman 1981]. In this section, we describe the im-
plementation of STM using MVCC as it appears in Clojure. This implementation is
similar to the one described by Herlihy and Shavit [2011] but adds a few optimizations.
We choose to describe MVCC as we will build on this implementation in the rest of
this dissertation.

Basic algorithm

The essence of Multiversion Concurrency Control is that it keeps multiple versions of
the transactional variables. Each transactional variable contains a history, consisting

27

Chapter 2: Concurrency Models

clock : Time (global atomic variable)

TVar Transaction
- lock : Lock - read point : Time
- history : [(Value, Time)] - read set : TVar — Val

- write set: TVar — Time

Value Time
“c” 7 most recent write point
Ila" 4
Ilbll 2
Ila" -I

Figure 2.7: The most important components of an STM implementation.

of its previous values and the time at which that value was set. Each transactional vari-
able also contains a lock. Additionally, MVCC uses a global clock: an atomic counter
shared by all transactions. These components are illustrated in Figure 2.7.

When a transaction starts, it records the current clock value: this is its read point.
To read a transactional variable, the system looks up the variable’s most recent value
before or at the read point. Thus, the transaction has a consistent view of the shared
memory, which is the state that existed at the moment the transaction started. The set
of all variables read in a transaction is called its read set, and may be cached to avoid
the cost of looking up through the history. When a transactional variable is written to,
its new value is not written to the variable yet. Instead, it is stored in the transaction’s
write set, a map containing all variables modified by the transaction along with their
new value.? Hence, changes remain invisible to other threads while the transaction is
still running.

When the transaction ends, it attempts to commit by taking the following steps:

1. All variables in the write set are locked.

2. To detect conflicts, for each variable in the write set, it is checked whether its most
recent write point is not larger (i.e. more recent) than the transaction’s read point.
If any check fails, a conflict was detected and the transaction is aborted.

3. The global clock is atomically incremented (e.g. using a compare-and-set instruc-
tion). Its old value is the transaction’s write point.

¥Even though it is typically referred to as a write set, it is actually a map.

28

2.4 Transactions

4. The new values and the write point are written to all variables in the write set.

5. Finally, all locks are released.

If a transaction aborts, it simply discards its read and write set and its read point, and
it restarts.

Properties: snapshot isolation and deadlock-freedom

MVCC guarantees snapshot isolation. Each transaction’s snapshot is captured by the
read point of the transaction: all read operations return the value that existed at that
point. Concurrent updates are detected at commit time and lead to an abort.

MVCC is a blocking algorithm as it takes locks. Deadlocks are prevented in step 1
of the commit protocol above, in one of two ways. One way is to define an order on all
transactional variables, and acquire locks in this order. Another way is to take locks in
no particular order, but to abort the transaction if a lock cannot be acquired in time.

Optimizations

Clojure modifies the algorithm in three ways.

First, the history of transactional variables is bounded: only a fixed number of
old versions are kept for each transactional variable. (10 by default, but this can be
changed per variable.) As a result, when reading a variable, it is possible no version
can be found before the read point of the transaction. In that case, the transaction
aborts and retries. Thus, this optimization limits memory usage but might increase
the number of attempts per transaction.

Second, barging is an optimization that detects conflicts between transactions
early. This means that a transaction that is doomed to abort will do so as soon as
possible, reducing time spent on transactions that will abort anyway. It works as fol-
lows. When a transaction writes to a transactional variable, it already acquires the
corresponding lock. If another transaction later attempts to write to the same variable,
it cannot acquire the lock, and thus a conflict between the two transactions is detected.
The oldest transaction is allowed to continue, while the newer one is aborted.® As a
result, steps 1 and 2 in the commit protocol are no longer necessary: (1) the locks
for all variables in the write set were already acquired during the transaction, and (2)
checking for concurrent updates is no longer necessary as the locks ensure exclusive
write access to the variables. This optimization maintains deadlock freedom as the
oldest transaction is allowed to continue.

°The age of a transaction is based on the read point of its first attempt. Whenever a transaction
acquires a read point, the global clock is incremented atomically, ensuring no two transactions have the
same age.

29

-

®© N v s w

10

11

12

13

14

15
16

Chapter 2: Concurrency Models

(def checking (ref 100))
(def savings (ref 100))

(def (ref 0))
(def water-co (ref 0)) bt
start tx 1
(defn transfer-without-debt [from to amount] @checking + T start tX'
(atgmlc esavings - | @checking
(if (> (+ @checking @savings) amount) + @savings
(do (ref-set from (- @from amount)))
(ref-set to (+ @to amount))) tchecking - | Isavings
(println "Insufficient funds”)))) f"l)ene"g)/-co T | ewater-co
lenergy-co 1+
. T !water-co
(fork (transfer-without-debt)
checking 150))) commit T
(fork (transfer-without-debt 1 commit
savings water-co 150))) Y VY
(a) Code (b) Timeline of a parallel execution

Listing 2.8: Example program that leads to a write skew anomaly, and read (@) and write (!)
operations on transactional memory.

Third, Clojure counts how often a transaction restarts, and throws an exception if
does so more than 10 0oo times. This prevents livelocks.

Advantages and disadvantages

MVCC is well suited for read-heavy scenarios. First, it does not require locks for read-
ing, making read operations much cheaper than write operations. This also means
that when multiple transactions read the same variable, they can still execute in paral-
lel, possibly reading different versions. Second, by keeping older versions, MVCC can
avoid read-write conflicts. When a transaction reads a variable that has been modi-
fied since the transaction started, it does not need to abort, instead it will find an older
version of the variable. In fact, if transactional variables have an unlimited history, a
read operation will never lead to an abort, eliminating read—write conflicts.

A disadvantage of MVCC is that it requires additional memory to maintain mul-
tiple versions of each transactional variable. Limiting the histories attempts to find a
balance between memory usage and the number of attempts per transaction.

Write skew anomalies

As MVCC implements snapshot isolation, it is vulnerable to write skew anomalies.
This may sometimes lead to unexpected results. We illustrate this problem using an
example.

30

2.4 Transactions

Listing 2.8 shows a program that implements transfers between bank accounts.
There are four bank accounts (lines 1-4): the user’s checking and savings account,
and two accounts belonging to the user’s energy and water supply companies. On
lines 13-16, the user pays two bills in parallel: one paying €150 from the checking
account to the energy company, the other paying €150 from the savings account to
the water company. The function transfer-without-debt transfers money from one
of the user’s account to a destination account. On line 8, it checks whether the user
has sufficient funds: the bank allows accounts to have a negative balance, as long as a
user’s total funds remain positive.

Listing 2.8 also shows the timeline of a parallel execution of this program using
MVCC. Task 2 starts its transaction immediately after task 1. Both transactions per-
form the check on line 8 at the same time, and confirm that the sum of both accounts
(€100 + €100) is larger than the amount to transfer (€150). Next, they perform the
transfer. Transaction 1 writes to the checking account and the energy company. Trans-
action 2 writes to the savings account and the water company. Transaction 1 reaches
its commit phase first: it locks checking and energy-co, and verifies whether there are
no conflicts on these variables. As there are none, their values can be updated. Next,
transaction 2 commits. It locks savings and water-co, confirms there are no conflicts
on these variables, and updates their values. Hence, both transactions have success-
fully committed, and the user’s checking and savings account now both contain -€50,
which was not allowed.

This inconsistency is a write skew anomaly. A write skew anomaly occurs when
two concurrent transactions read from overlapping data sets but write to disjoint data
sets, while there is a constraint over the data they read [Berenson etal. 1995]. Snapshot
isolation allows the transactions to commit, as neither sees the updates of the other. In
a serializable system, write skew anomalies are not possible: either t; or t, would have
to occur first, and its result would be visible to the other transaction.

The possibility of write skew anomalies is a disadvantage of systems with snapshot
isolation. Clojure requires the developer to use the construct (ensure r) to indicate
that a transactional variable r is only read in the transaction, but has a constraint. To
fix the example, the variables checking and savings must be ensured. By providing
snapshot isolation instead of serializability, Clojure makes a trade-off between better
performance but an arguably more intricate semantics for the developer.

2.4.5 L;: Formalization of Transactions

This section formally defines Ly, a language with transactions. As STM does not pro-
vide any constructs that create parallel tasks, L; will extend L¢, the language with fu-
tures from Section 2.3.5. The syntactical elements from L¢ are reused and extended,
and we define a new reduction relation —. Afterwards, we consider how the guaran-

31

Chapter 2: Concurrency Models

tees of STM can be inferred from the operational semantics.

The formal semantics describes an algorithm that is simpler than MVCC, but pro-
vides the same guarantees. It guarantees snapshot isolation in a trivial way, by taking
a complete snapshot of the transactional memory whenever a transaction is started.
It therefore accurately represents an STM that provides snapshot isolation, while ig-
noring implementation details such as the versioning of transactional variables and
taking locks.

ref-setee Write to a TVar

Syntax

re TVar

v € Value =
| r Transactional variable

e € Expression:= ...
| atomice Transaction
| atomicke Running in transaction (intermediate state)
| refe Create a T'Var
| derefe Read a TVar
|

We inherit all the syntactical elements from Lfand add references r to transactional
variables. The set of values is extended to include these.'® The set of expressions is
extended: ref, deref, and ref-set operate on transactional variables, and atomic en-
capsulates a transaction. Finally, we also add a construct atomicx e: this syntax cannot
be used by the programmer in the source program, but will be used in the reduction
rules to represent a transaction that is being executed.

State
Program state p = (T.7,0
Task task € Task = (fen
Transactions 7 : TransactionNumber — Transaction
Heap, snapshot, local store 7,7, : TVar — Value
Transaction tx € Transaction == (o0, T, €.
Transaction id n € TransactionNumber = N+
Transaction state o = |V X

The state of a program in execution was previously modeled as a set of tasks T. This
is now extended to contain the transactions and the transactional memory. The trans-
actions are stored in 7, which maps identifiers to a representation of the transaction.

1°The notation v ::= . . . | indicates we extend the definition of v from L.

32

2.4 Transactions

The heap o represents the transactional memory, mapping transactional variables to
their value. The heap can be accessed by all tasks. Both 7 and ¢ are initially empty.

Tasks are extended to contain an additional, optional element: n, the identifier
of the transaction that is active in that task. In the practice this is implemented as a
thread-local variable. If no transaction is running, this will be o.** There is at most one
transaction active per task. (We will consider nested transactions later.) Transactions
are bound to exactly one task: they cannot span over multiple tasks.

A transaction contains the following elements:

« o: the current state of the transaction, one of > (running), v/ (committed), or X
(aborted).

o 0: a snapshot of the heap created when the transaction started. This is a copy of
the heap as it existed when the transaction started, used to get a consistent view of
the transactional memory in the transaction.

o ¢ the original expression in the transaction. This is used when the transaction is
aborted, to restore and retry the original expression.

o 0: the local store of the transaction, mapping all transactional variables that the
transaction modified to their new values. This is the transaction’s write set.

Evaluation contexts

Pu= (TU(.En), 1,0
Eu= ... |atomicx & | ref £ | deref £ | ref-set e | ref-setr&

ref, deref, and ref-set reduce their arguments before proceeding. atomic does
not appear in the list of evaluation contexts, as its argument is not immediately re-
duced: a transaction is started first (rule atomic|; below). The expression encapsu-
lated by atomicx will be evaluated, until it is reduced to a single value, after which the
transaction can commit (see below).

Reduction rules
Finally, we can define the reduction relation — for L.

congruencely (TU (f,E[e],n’). 7,0) > (T'U{f, E[¢],n’). T, 0
if (TW {f, &le] —¢ (T' U (f, E[¢]

This first rule specifies that all rules from the language with futures can be used
in the language with transactions. This applies whether a transaction is active or not.
This includes all rules from the base language, as well as the rules to fork and join new

"'The question mark indicates an optional element, i.e. n’ = n | e. (Defined in Appendix A.)

33

Chapter 2: Concurrency Models

tasks (which may read or modify T). We will extensively discuss what happens when
a task is forked while a transaction is active in Chapter 4.

atomic|y (T U (f, E[atomice], o). 7,0
—¢ (TU (f. E[atomick e, n), 7[n — (>, 0. e, F)], o) with n fresh
atomicy|c (T U (f, E[atomice], n). 7, o
—¢ (TU(f, Ele],n), T, 0

When atomic e is encountered, a new transaction is started. A new identifier is
created and stored in the current task, which will point to a new transaction in the
map 7. This transaction is running, its snapshot is a copy of the current heap, it copies
the original expression, and its local store starts empty.

atomic e is replaced by atomicx e. In the following transitions e will be reduced,
as it is the active site of atomicx’s evaluation context. Eventually, it will be reduced
to a single value, after which one of the rules commit, |; or commitx|; below can be
applied.

The rule atomicyy|; specifies that, if an atomic block is encountered when a trans-
action is already running (n # e), the inner transaction will simply become part of the
outer transaction. This design decision corresponds to the “closed nesting” of trans-
actions, which we discuss in Section 3.3.3 on page 64. Note that the child and parent
transaction are running in the same task; the child transaction is merely a portion of
the parent encapsulated in another atomic block. The writes of the child transaction
are written to the local store of the parent and if the child aborts, the parent aborts too.

reflf (TU(f,E[refv],n), T[n— (>,7,¢ 0)]. 0
= (TU(f, E[r], n), T[n— (>, 7, & d[r—v])], o with r fresh
derefl (TU (f, E[derefr],n), T[n— (>, &5, ¢ 6)], 0
= (TU (. E[(T :: 0)(r)],n), TIn— (>,5.8.0)], 0
ref-setly (T U (f, E[ref-setrv|,n), 7[n— (>, 7.¢ 6)]. 0
= (TU({f, EWV],n), TIn— (>, 7,8 d[r—=])], o

ref, deref, and ref-set operate on transactional variables. These operations can
only be used in a transaction (n # e); there are no rules that apply when they are used
outside a transaction, in practice this will raise an error.

ref creates a new transactional variable, and updates the local store to contain its
initial value.

deref looks up the value of a transactional variable. This happens first in the local
store, which contains the value if the variable was written to in this transaction, and
next in the snapshot.*> Since the snapshot is a copy of the heap made when the trans-
action started, this ensures a consistent view of the transactional memory as it existed
at the read point of the transaction.

>The operator :: concatenates two maps and is right-preferential: (& :: §)(r) first looks up r in d, then
in 7 if it is not present in . (Its formal definition can be found in Appendix A.)

34

2.4 Transactions

ref-set updates a variable’s value in the local store.

commit, |y (T U (f, E[atomick v]. n). T[n = (>, 5. € 6)], o
= (TU(f,EV].), TIn—> (V/,5.8 68)],0::0
if Vr € dom(9) : o(r) = o (r)

commitx| (T W (f. E[atomick v|.n). T[n+— (>. 7. € 0)]. ¢
—¢ (TU (f, E[atomice], o). T[n — (X. T, &.0)]. 0

if Ir € dom(6) : o(r) # o (r)

A transaction can commit successfully if none of the transactional variables in its
write set have been modified by another transaction since the start of this transaction.
In other words, we need to validate whether, for all variables in the local store, the
latest value in the current heap is still equal to the value in the snapshot that was taken
of the heap when the transaction started.

If this validation succeeds, the transaction can commit: its changes are written
to the transactional memory by appending its local store to the heap. This occurs in
a single step, hence these changes cannot be interleaved with transitions from other
tasks, ensuring that they atomically become visible to the other tasks. Finally, the
transaction is marked as committed, and the transaction’s identifier is removed from
the task, indicating no transaction is active anymore.

If the validation fails, the transaction aborts, rolls back, and retries. The transac-
tion is marked as failed, and the task is restored to the state it had before the transaction
started: the original expression is restored and the transaction identifier is removed.
In the next transition, the rule atomic|; will be triggered and restart the transaction.
Note that different attempts of the same atomic block have different identifiers, so in
fact n identifies the transaction attempt and not the transaction.

Property: snapshot isolation

This semantics guarantees snapshot isolation, as it satisfies its two requirements (de-
fined in Section 2.4.3):

1. A transaction sees a consistent view of the memory: every read operation in a
transaction returns values from the snapshot, which is taken atomically when the
transaction starts.

2. A transaction can only commit if none of its updates conflict with any concur-
rent updates made since the creation of the snapshot: this is the condition on the
reduction rule for commits.

In this semantics, and throughout the rest of this dissertation, we choose to provide
snapshot isolation instead of opacity. This is because our implementations are built
upon Clojure, which provides snapshot isolation, and thus the semantics reflects the
implementation.

35

Chapter 2: Concurrency Models

address —>f G

behavior

code

state

Figure 2.9: An actor and its parts.

To provide opacity instead of snapshot isolation, it suffices to adapt the reduction
rules in two ways [Bieniusa and Thiemann 2011b]. First, transactions must keep track
of their read set: the transaction is extended with a read set R, and each deref r opera-
tion adds r to R. Second, the validation at commit time checks whether references in
both the read and write set have not been modified, i.e. Vr € RUdom(4) : o(r) = 7 (r).

2.5 | Actors

In this section, we discuss the actor model, a message-passing concurrency model. Af-
ter describing the model (Section 2.5.1), we use an example to introduce its constructs
(Section 2.5.2). The actor model provides two guarantees: the isolated turn principle
and deadlock freedom (Section 2.5.3). We again formalize its operational semantics
(Section 2.5.4).

2.5.1 Concepts

The actor model is a message-passing model that was originally introduced by Hewitt
etal. [1973] and later revised by Agha [1985]. Actors are entities that run concurrently
and can receive messages. In response to a message, an actor can send messages to
other actors, create new actors, and change its own state. In the actor model, messages
are sent asynchronously.

The actor model has a long history [De Koster et al. 2016b], and is widely used
in many programming languages (a.o. Erlang, Scala, SALSA, E, AmbientTalk) and
frameworks (a.o. Akka, Kilim, Pulsar, Quasar, Orleans).'3> De Koster et al. [2016b]

3 An extensive list of actor languages, libraries, and frameworks can be found at https://en.wikipedia.
org/w/index.php?title=Actor_model&oldid=819989553#Programming_with_Actors.

36

https://en.wikipedia.org/w/index.php?title=Actor_model&oldid=819989553#Programming_with_Actors
https://en.wikipedia.org/w/index.php?title=Actor_model&oldid=819989553#Programming_with_Actors

®© N v s w

2.5 Actors

(def chat-room
(behavior [history]
[user msg]
(let [line (format "[%s] %s: %s” (now) user msg)]
(become chat-room (cons line history)))))

(def general (spawn chat-room ["Welcome to this chat room!”]))
(send general "Janwillem” "Hello!™)

Listing 2.10: A chat application implemented using actors.

divide actor models into four categories: classic actors, active objects, processes, and
communicating event loops. In this dissertation, we use a classic actor model, based
on the model of Agha et al. [1997]. We will mention how our results apply to other
actor models where applicable.

An actor consists of three elements: an address, an inbox, and a behavior (visual-
ized in Figure 2.9). Each actor has a unique and immutable address, used to send it
messages. Its inbox is a queue of messages. In our model, a message is simply a tuple
of values. Finally, a behavior specifies how an actor responds to a message. It is pa-
rameterized by two types of parameters: the internal state of the actor and the values
of the received message.

2.5.2 Example and Use Cases

The example in Listing 2.10 implements a chat application, in which each chat room
is represented by an actor. Users, represented by actors as well, can send messages to
the chat room actors to communicate. chat-roomis a behavior. In its body (lines 4-5),
two types of parameters can be used. The first type represent the internal state of the
actor — here history, a list of all messages ever sent to the chat room. The second set
of parameters correspond to the values contained in the received message — here user
and msg.

On line 7, a new actor is created using spawn, with chat-room as initial behavior
and a list containing a welcome message as the initial internal state. spawn returns
the address of the new actor, and the new actor runs concurrently with the spawning
actor.

On line 8, the construct send sends a message to this actor: it puts a message
containing the values "Janwillem” and "Hello!"” in the inbox of the actor with address
general. When the receiving actor processes the message, it will execute the code in
the behavior (lines 4-5), with history bound to the list of messages given when the
actor was spawned, and user and msg bound to the message’s values.

An actor can change its behavior and internal state using become. On line 5 in the
example, become updates the general actor, keeping its behavior the same but updating

37

Chapter 2: Concurrency Models

its internal state to add the received message to its history.4

In general, the actor model is suitable in applications that consist of independent
components that each work on their own data and communicate occasionally. This in-
cludes chat and communication applications, web services, HT TP servers, databases,
event-driven systems (e.g. processing financial transactions), and simulations (e.g. of
traffic or physical systems) [Tasharofi et al. 2013].

Actors have several qualities that make them suitable for these applications [Arm-
strong 2007]. They are scalable: as actors are cheap to create, many small actors can
be created and distributed over the available cores, no matter the number of cores. Ac-
tors are also used for their fault tolerance: when one actor fails, the other actors do not
crash. The failed actor can simply be restarted.

Actors are popular in distributed settings, where they naturally map onto the hard-
ware. However, they are also used on shared-memory systems such as multicore pro-
cessors, when they naturally map onto the problem (e.g. consider the use of actors by
Phoenix, a framework for web applications on top of the Erlang VM*?). In the context
of this dissertation, we only consider programs that run on a single machine.

2.5.3 Guarantees: Isolated Turn Principle and Deadlock Freedom

An actor alternates between two states: it is either idle and ready to process a message,
or it is busy processing a message. A turn is the processing of a single message by an
actor, that is, the process of an actor taking a message from its inbox and processing
that message to completion [De Koster et al. 2016b].

The actor model enforces three constraints:

Isolation An actor’s state cannot be observed by other actors except through mes-
sages; there is no shared state.

Consecutive message processing An actor processes the messages in its inbox one by
one. The processing of one message cannot be interleaved with the processing of
another by the same actor. There is no parallelism inside an actor.

Continuous message processing The actor model does not contain nor allow any
blocking operations. This guarantees that once a turn starts, it always runs to com-
pletion.

A consequence of these restrictions is that the actor model provides two useful guaran-
tees. First, it guarantees that programs are free from races within turns: this is called

**In contrast to the actor model defined by Agha et al. [1997], in our system become does not immedi-
ately and concurrently process the next message with the new behavior, but instead switches the behavior
of the current actor at the end of its current turn, sequentially. (As explained in the formal semantics
later in this section.)

https://phoenixframework.org/

38

https://phoenixframework.org/

2.5 Actors

the isolated turn principle. Thanks to actors’ isolation and consecutive message pro-
cessing, an actor has a consistent view of the program during a turn. Hence, develop-
ers do not need to care how individual instructions within a turn are interleaved with
those from other actors. Instead, they can reason about their program at the level of
turns. High-level races can still occur due to an unexpected interleaving of messages,
in which case turns are interleaved in an unexpected way. Still, the isolated turn prin-
ciple makes the program easier to understand, reason about, and debug, as it hugely
reduces the number of interleavings developers have to consider.

Second, the actor model guarantees deadlock freedom: as there are no blocking
operations, an actor can never deadlock. However, it is still possible for an actor to
not make progress, e.g. when an actor is waiting for a message that never arrives.

2.5.4 L,: Formalization of Actors

This section defines the actor language L, with a corresponding reduction relation
—a. This language again extends the base language. Afterwards, we consider how the
isolated turn principle can be inferred from the operational semantics.

Syntax
a € Address
b € BehaviorDef::= behavior [Xpen] [Xmsg] € Behavior definition
v € Value = a0
| a Address
| b Behavior
e € Expression = ...
| spawnee Spawn an actor
| become ee Become a behavior
| sendee Send a message
| self Address of current actor

We introduce two new syntactical elements: addresses and definitions of behav-
iors. An address is a unique reference to an actor. A behavior definition is similar to
a function definition, but takes two lists of parameters. Addresses and behavior defi-
nitions can both be used as values. Further, we add four expressions: spawn, become,
and send as discussed earlier, as well as the keyword self, which will always be the
address of the current actor.

39

Chapter 2: Concurrency Models

State

Program state p = (A p
Actors A C Actor
Inboxes 1 : Address — Message

Actor act€ Actor = (a. €’ beh
Behavior beh € Behavior::= (b, v
Message msg € Message :i= (dfrom; Gto, V

The state of a program consists of a collection A of actors and a map p of inboxes.
p maps each actor (using its address) to its inbox: a queue that is processed in the
order in which messages are added to it.

An actor consists of three elements:

o Its unique address.

o The expression it is currently reducing; or @ between turns, when the actor is idle.

o Its current behavior. A behavior actually consists of two parts: the behavior defini-
tion that specifies the code to execute and the values for its first list of parameters
Xpeh. We call these values the internal state of the actor.

A message contains references to its sender and receiver and the list of values passed
in the message.

Evaluation contexts

Pu= (AU (a, & beh), u
Eux= .- |spawn&e|spawnbv & e | become & e |become bV E e
| sendEe|sendavEe

The program evaluation context P allows an arbitrary actor to be chosen whose ex-
pression will be reduced next. The three expressions spawn, become, and send evaluate
their arguments before their reduction.

Reduction rules
congruence|, (AU (a, Ele], beh), i —a (AU (a, E[¢], beh), p)ife —p €
selfl, (AU (a, E[self], beh), u) =, (AU (a, E[al, beh), i

congruence|, specifies that the base language can be used in any actor. Addition-
ally, we introduce the keyword self, which always resolves to the address of the actor
it is evaluated in.

spawn|, (AU (a, E[spawn b, V]. beh), 1
—a (AU (a. E[as], beh) U (a., . (be. V), plax — []]) with a. fresh

40

2.5 Actors

When a new actor is spawned, it is added to the collection of active actors. Its
initial expression is set to e, indicating that the actor is idle. Its behavior and internal
state are initialized as specified in the call. It obtains a new address, which is returned
as result of the call to spawn. Additionally, an empty inbox is created for the actor.

receive|, (AU (a. e, beh), p[a = (Afom, 4. Vmsg) - M5Q]
—a (AU (a, e, beh), u[a — msg]
with e. = apply-behavior(beh, Visg) (as defined in footnote 16)
turn-end|, (AU (a, v, beh). u
—a (AU (a. e beh), u

When an actor is idle and there is a message in its inbox, it can start a turn. The
expression encapsulated in its current behavior (e) will be evaluated, with the first
list of parameters X, bound to the values stored in the actor and the second list of
parameters Xpsg bound to the values passed in the message (this results in e.).*¢ The
message is removed from the inbox.

After the rule receive|, was triggered, the expression in the actor will be reduced.
Eventually, this will result in a single value. At that point, the rule turn-end|, is trig-
gered. This rule resets the actor to its idle state.'” If there are more messages in the
actor’s inbox, another turn can start.

become|, (AU (a, E[become b, V], beh),
—a (AU (a, E[nil], (b, V), p
send|, (AU (a, &[send ay, |, beh), u|ay, — msg]
—2 (AU (a, E[nil], beh), pla, — ™S - (a, at. V)]

Calls to become update the behavior and internal state of the current actor. send
adds a new message to the end of the inbox of the receiver.

Properties: isolated turn principle and deadlock freedom

As said, the isolated turn principle and deadlock freedom are a consequence of three
restrictions imposed by the actor model, which can be inferred from the semantics:

Isolation When an actor is evaluating a turn, the only parameters it receives are its in-
ternal state (Xpcn) and the values passed in the message (¥msg), in the rule receive|,.
These are substituted in the turn’s body using the function apply-behavior, and
thus never change throughout the reduction of the turn. The internal state is set
when the actor is spawned, and can only be modified afterwards by the actor itself,
using become. Hence, messages are the only way to transfer data between actors.

*Sapply-behavior((behavior [Xoeh] [¥msg] € Vbeh)s Vmsg) = Let [Xveh Vben] (L€t [Xmsg Vmsg] €)

'7'The rule turn-end|, is not strictly necessary: we could say any actor that has reduced its expression
to a single value is in an idle state, instead of bothering to replace this value with e. However, extracting
this step into a separate rule will prove handy in subsequent chapters.

41

Chapter 2: Concurrency Models

Consecutive message processing An actor processes the messages in its inbox one by
one. Turns of an actor are never interleaved: one turn needs to run to completion
before the next can start (see rules receive|, and turn-end|,).

Continuous message processing The semantics does not specify any blocking opera-
tions, hence, once a turn starts it always runs to completion without blocking.

2.6 | Summary

Using a concurrency model, developers can exploit parallelism while enjoying certain
guarantees or properties with respect to the program’s semantics, which make it easier
to understand, maintain, and debug. There are many concurrency models, and they
can be partitioned into three categories: deterministic, shared-memory, and message-
passing models. In this chapter, we described and formalized three concurrency mod-
els, one of each category: futures, transactions, and actors.

Table 2.11 summarizes the language constructs that are at the heart of these three
concurrency models along with their guarantees. In the next chapter, we will look at
combinations of these models. We make three observations that will prove relevant
then:

« Each model provides one construct that contains an expression: fork for futures,
atomic for transactions, and behavior for actors. We call these concurrent con-
structs: they contain an expression that will run concurrently with the rest of the
program, in a new task, actor, or transaction. In the next chapter, when concur-
rency models are combined, it will be important to look at what can be embedded
in these concurrent constructs.

o The operations on transactional variables (ref, deref, ref-set) are only allowed
in a transaction. When used out of a transaction they will raise an error.

« The construct behavior, defining an actor’s behavior, is a value; it cannot be further
reduced. In contrast to all other constructs, it has no side effect.

42

2.6 Summary

Futures Transactions Actors
Deterministic Shared memory Message passing

fork e atomic e behavior [x] [x] e
join f ref v spawn b v

deref r sendav

ref-setrv become b v
Determinacy Isolation Isolated turn principle

Progress Deadlock freedom

Table 2.11: Summary of the constructs and guarantees of each model.

43

Combining Concurrency
Models

In this chapter, we look at combinations of concurrency models and the problems
these cause. In Section 3.1, we explain the need to combine concurrency models and
we confirm that this actually occurs in practice. Next, in Section 3.2, we use Clojure as
a case study of a language in which combining concurrency models can lead to unex-
pected results. Finally, Section 3.3 defines the goal of this dissertation and describes
how we will tackle these problems in the following chapters.

3.1 | Motivations for Combining Concurrency Models

We motivate why it is desirable to combine concurrency models, based on three ob-
servations.

Observation 1: Existing applications combine concurrency models.

An empirical study [Tasharofi et al. 2013] has shown that in a collection of 15 large,
mature, and actively maintained Scala projects that use the actor model, 80% combine
it with another concurrency model (illustrated in Figure 3.1).

8 of the 15 applications (53%) combine actors and futures. Here, a future is used to
represent the ‘return value’ of an asynchronous message sent to an actor. This pattern is
a common combination of actors and futures, supported by Scala [Nash and Waldron
2016, Chapter 4] but dating as far back as ABCL [Yonezawa et al. 1986].

45

Chapter 3: Combining Concurrency Models

Threads

Futures
BlueEyes .
GeoTrells Diffa BigBlueButton
Kevoree CIMTool
SignalCollect Scalatron ENSIME
Spark

Socko

Spray

Evactor Gatling
ThingML

Figure 3.1: Out of 15 Scala projects that use the actor model, 80% combine it with futures
and/or threads.

10 of the 15 applications (67%) combine actors with Scala’s Runnable. A Runnable
is an object containing a single run method, which is executed on a separate thread.
The authors of the study contacted the developers of these programs, who gave several
reasons for combining actors and Runnable. In five cases, developers found actors to
have too much overhead - either when dealing with I/O (four cases) or when using
low-end devices (one case) — and therefore they combined actors with a lower-level
model: threads. In one case, developers found asynchronous message passing unsuit-
able to handle their use case, in which close coordination between concurrent tasks
was required, and therefore they combined it with a shared-memory model: locks.
Finally, in four cases the developers were inexperienced with actors, had legacy code
that used Runnable, or preferred the ‘traditional’ method, and therefore ended up with
a combination of concurrency models.

Further, we note that 6 out of the 15 applications (40%) use actors, futures, and
threads, thus combining three concurrency models. This again confirms that develop-
ers choose to use different concurrency models throughout their application.

These results are corroborated by a survey on the use of concurrency among Mi-
crosoft employees [Godefroid and Nagappan 2008]. In this survey, around 45% of
respondees indicated that they combine shared-memory and message-passing con-
currency in their product.

Observation 2: Programming languages support multiple concurrency models
and allow them to be combined.

Many programming languages and frameworks already support more than one model.
A selection is shown in Table 3.2. An annotated version of this table can be found in

46

3.1 Motivations for Combining Concurrency Models

Clojure Scala Java Haskell C++

Deterministic models

Futures .
Promises .
Fork/Join * * .
Parallel collections * . .
Dataflow

Shared-memory models

Threads * *

Locks * *

Atomic variables *
Transactional memory . . .

Message-passing models

Actors . o o . .
Channels . o
Agents

Table 3.2: Concurrency models supported by selected programming languages and their li-
braries. v indicates that support for the concurrency model is built into the language or its
standard library; « indicates that an external library exists. Because Clojure and Scala are built
on top of the Java Virtual Machine, they provide access to Java’s concurrency models, this is
indicated with v"* An annotated version of this table can be found in Appendix C.

Appendix C.

Clojure is the best example of a programming language with support for many con-
currency models. It has constructs for no less than six concurrency models: futures,
promises, atomic variables, transactional memory, channels, and agents. Moreover,
as it is built on top of the JVM, it provides access to four more models: Fork/Join,
parallel collections, threads, and locks. Scala similarly supports eight different con-
currency models: four through its own constructs and four built on top of Java. The
designers of these languages evidently consider it necessary to support a smorgasbord
of concurrency models. Other programming languages also support multiple mod-
els: Java supports futures, promises, Fork/Join, parallel collections, threads, locks, and
atomic variables; Haskell supports threads, locks, atomic variables, transactions, and
channels; and C++ gained support for different concurrency models in C++11.

Moreover, we see that when languages support fewer models, for instance Haskell
or C++, libraries have been developed to support many others. In that case, program-
mers decide they need to develop libraries to extend the language they use with sup-
port for additional models.

47

Chapter 3: Combining Concurrency Models

In all of these examples, the languages impose no restrictions on combinations of
concurrency models and developers can freely mix multiple models in a single pro-
gram. However, as we will see in the next section, these naive combinations can break
the guarantees of the separate models, leading to bugs.

Observation 3: Complex applications consist of different parts that suit different
concurrency models.

Even if many developers combine multiple models and programming languages sup-
port this, one might still wonder whether this is a good idea. We argue it is.

Originally, concurrency models were devised to each address a specific concur-
rency issue that occurs in a specific scenario. However, a typical application consists
of many different parts, which may each benefit from concurrency. As each concur-
rency model is aimed at specific types of problems, different parts may need different
concurrency models, and thus it is desirable to combine concurrency models.

For instance, the developers of an Integrated Development Environment (IDE)
could choose to use Fork/Join to implement its search functionality, that is, a deter-
ministic model to increase performance while obtaining the same result. They may
implement its plug-in system using actors, as each plug-in runs simultaneously and in-
dependently, only needing occasional coordination. Finally, the code model, a shared
and central data structure that must remain consistent, may be exposed using STM.
Similarly, in a web browser each tab (an independent task) might be exposed as an
actor, the Document Object Model (a shared data structure) stored in transactional
memory, and its parser (a deterministic job that benefits from parallelism for perfor-
mance) parallelized using futures.

Summary

Based on these three observations, we conclude that combining concurrency models is
desirable. First, developers today actually combine multiple concurrency models. Sec-
ond, many modern programming languages and libraries support many concurrency
models and allow these to be combined (naively), demonstrating that the designers
and users of these languages and libraries consider this useful. Third, combining con-
currency models is reasonable, as large and complex applications often consist of dif-
ferent parts that are best expressed using different concurrency models.

3.2 | Motivating Case Study: Clojure

In Chapters 1 and 2 (Section 2.1), we explained that each concurrency model offers a
number of guarantees that make it easier for developers to reason about their program

48

3.2 Motivating Case Study: Clojure

and prevent bugs. In the previous section, we showed that several programming lan-
guages already support many different concurrency models and that these are often
combined by developers. Now, we demonstrate that when concurrency models are
naively combined, their individual guarantees sometimes no longer hold, defying the
expectations of the developer.

We demonstrate this using Clojure as a case study. As shown in Table 3.2, Clo-
jure is a language that supports many different concurrency models and developers
are therefore especially likely to combine models in it. We limit our case study to
the six concurrency models ‘natively’ supported by Clojure. While Clojure also pro-
vides access to four more models it inherits from Java, we do not consider these in
our study, because Clojure either does not provide built-in constructs to access them
(for Fork/Join and parallel collections) or its constructs are merely thin wrappers (for
threads and locks).

We start this section by briefly describing these six concurrency models and their
constructs (Section 3.2.1). Next, we define three specific bugs that can arise when
they are combined: race conditions, deadlocks, and livelocks (Section 3.2.2). Finally,
we examine which combinations of Clojure’s concurrency models can give rise to these
bugs and for which combinations they are prevented (Section 3.2.3).

These results were first described by Swalens et al. [2014].

3.2.1 Clojure’s Concurrency Models and Their Constructs

We briefly describe the six concurrency models built into Clojure. Table 3.3 lists their
constructs. Note that the implementation of these concurrency models in Clojure
sometimes differs from their original specification or how they were described in
Chapter 2. Here, we specifically describe Clojure’s implementation.

Atomic variables

Atomic variables, or atoms, are variables that support concurrent access to shared
memory, using a number of low-level atomic operations such as compare-and-swap.
Compare-and-swap compares the value of an atomic variable with a given value and,
only if they are the same, replaces it with a new value. Compare-and-swap is an
atomic operation implemented by the hardware, so it can be used to safely modify
a shared variable. Operations affecting multiple atomic variables are not coordinated,
consequently when modifying two atomic variables race conditions can occur. Hence,
atoms are typically used to share independent pieces of data that do not require coor-
dinated updates.

In Clojure, atomic variables are created using (atom v), where v is the atom’s initial
value. The value of the atom a can be read using (deref a). (reset! a v) writes the

49

Chapter 3: Combining Concurrency Models

value v to the atom. An atom is usually modified using swap!, e.g. (swap! counter
inc). swap! is a higher-order function that evaluates the given function (here inc to
increment the counter') with the current value of the atom, and attempts to write the
return value to the atom. This write is protected using an atomic compare-and-swap
instruction: in case another thread wrote to the atom in the mean time, the current
thread will retry the swap! operation, by reevaluating the function inc with the newest
value. As such, the code in the function passed to swap! can be executed multiple
times and any side effects it contains may occur multiple times.

Agents

Clojure’s agents implement a message-passing concurrency model. An agent consists
of a user thread, a memory location owned by the agent (its internal state), and an
inbox. (agent v) creates an agent with initial value v. (send counter inc) asyn-
chronously puts a message inc in the inbox of agent counter. When the agent pro-
cesses the message, on its own thread, it calls the function in the message (here inc)
with the current state of its memory location, and the return value of this call is stored
as the new state.

The state of an agent can be read using (deref a), which immediately returns
the current state. If the agent is processing a message at the time, the state is still
unmodified; when the message is processed, the state is replaced in a single atomic
step. Further, Clojure provides (await a) to block until all messages sent to the agent
so far have been processed.

Agents are similar to actors, as both use asynchronous message passing. The dif-
ference is that an agent does not contain any behavior, only state. Instead, the message
is the behavior, taking the current state as an argument and updating it.

Transactions (Software Transactional Memory - STM)

As explained in Section 2.4 (page 22), transactions allow concurrent tasks to safely
access shared memory. Clojure’s Software Transactional Memory is identical to the
formal description we gave in Section 2.4 except that transactions are encapsulated in
dosync instead of atomic. As explained before, transactions may retry multiple times.

Futures

Futures in Clojure have the same semantics as the model described in Section 2.3
(page 17). Only their syntax differs: in Clojure, a future is created using (future e)
and read using (deref f), which blocks until its result is available.

'inc is a built-in function that increments its argument, i.e. (defn inc [i] (+ i 1)).

50

3.2 Motivating Case Study: Clojure

Atoms Agents STM Futures Promises Channels

Create atom agent ref future promise chan

Read deref deref deref deref® deref® <I®

Set reset! ref-set deliver > &

Update | swap! ¥ send alter

Block dosync ¥) go

Other await Q take!
put!

Table 3.3: Constructs supported by Clojure’s concurrency models. & indicates a (potentially)
blocking operation, YD an operation that might be retried automatically.

Promises

A promise is a placeholder for a value that will be filled in later. A promise is similar
to a future, but it is created independently from its task: its value is ‘delivered’ later
using an explicit construct. In Clojure, a promise is created using (promise), and
delivered using (deliver p v). (deref p) reads the promise, blocking until it has
been delivered.

Channels (variant of Communicating Sequential Processes — CSP)

Clojure’s core.async library implements a variant of the CSP model: a message-passing
concurrency model in which concurrent tasks exchange messages over channels. A
channel can have multiple readers and writers. Communication is synchronous: the
sender and receiver wait until both are ready to pass the message (rendez-vous).

A new ‘process’ is started using a go block, and channels are created using (chan).
Inside a go block, the message v can be sent over channel c using (>! ¢ v), and a mes-
sage can be received using (<! c). These operations block until their complementary
operation is executed on another thread. There are also nonblocking, asynchronous
versions of these operations: take! and put!.

Summary

Table 3.3 lists the constructs described above. There are some striking similarities
between all models:

« Each model encapsulates values in a ‘container’: an atom, agent, ref, future, promise,
or channel.

o The value in these containers can be read using deref, for each model except chan-
nels, which requires <!. Moreover, Clojure provides the special syntax @x that
expands to (deref x), and works on all models except channels.

51

Chapter 3: Combining Concurrency Models

o All models provide constructs to write to the container, except futures, which
are delivered implicitly. We distinguish constructs that directly set a value, e.g.
(reset! a 5),and those that update the current value using a function, e.g. (swap!
a inc). Unlike deref, these constructs have a different name for each model.

o Finally, transactions, channels, and futures provide a construct that contains a
block of code, wrapping a transaction (dosync), concurrent process (go), or future
(future). (future has a double function in both creating a future and wrapping
the code it executes.)

In the table we also highlight constructs with potentially dangerous properties:

« Blocking operations (indicated with () wait until a result is made available by
another thread. We will pay particular attention to these operations, as they po-
tentially cause deadlocks when combined with another concurrency model.

 Retrying operations (indicated with ¥D) can reexecute code automatically. There
are two such operations: swap! on atoms and dosync for transactions. We will
also pay attention to these operations, as they may cause unexpected behavior or
incorrect results when combined with certain operations of another concurrency
model.

3.2.2 Typical Bugs in Concurrent Programs

We look at the three bugs that typically arise in concurrent programming: race con-
ditions, which may cause incorrect results, and deadlocks and livelocks, which may
prevent a program from terminating.

Race conditions

In concurrent programs, an important source of bugs are race conditions [Lu et al.
2008]. A race condition occurs when an incorrect result is reached due to an unex-
pected ordering of the instructions of multiple threads. Many concurrency models are
designed to prevent (certain) race conditions. They can do this by managing shared
resources; for instance, STM only allows shared memory to be accessed inside transac-
tions, while the actor model only allows threads to share data through explicit message
passing.

When two models are combined in a naive way, new races could be introduced
unexpectedly. For example, some implementations of STM have been proven lineariz-
able [Shavit and Touitou 1997] or opaque [Guerraoui and Kapatka 2008]. However,
this assumes that all shared memory is managed by the STM system. This is not true
if a thread communicates with other threads, e.g. when a transaction communicates
over a channel, opacity can be broken. This can cause unexpected interleavings that

52

3.2 Motivating Case Study: Clojure

eventually lead to race conditions. In the next section, we study which pairwise com-
binations of concurrency models can introduce race conditions.

Deadlocks

Another important source of bugs in concurrent programs are deadlocks [Lu et al.
2008]. A deadlock occurs when two or more threads are waiting for each other to take
action, and thus neither ever does. Deadlocks are introduced by operations that block.
Some concurrency models guarantee an absence of deadlocks, e.g. STM and actors
(see Chapter 2). Others try to confine the problem by limiting blocking to a small set
of operations. For example, futures only provide one blocking operation: reading a
future waits until it is resolved. As long as all futures eventually resolve, no deadlocks
will occur.

When concurrency models are combined without the necessary precautions, un-
expected deadlocks might arise. For instance, a transaction that uses the blocking
operations of another model, such as reading a channel, may suddenly become prone
to deadlocks. Or, a future that contains blocking operations from another model may
never be resolved, potentially leading to a deadlock. In the next section, we study
which pairwise combinations of concurrency models can introduce deadlocks by look-
ing at their blocking operations.

Livelocks

Livelocks appear when code is reexecuted under a certain condition, and another
thread causes this condition to be always true. Some concurrency models, such as
some STMs, guarantee the absence of livelocks [Harris et al. 2010, Herlihy and Shavit
2011].

Again, when concurrency models are naively combined, unexpected livelocks may
arise. The swap! construct on an atom restarts until its write operation no longer con-
flicts, but in combination with another concurrency model a conflict may always oc-
cur. We will study which pairwise combinations of concurrency models can introduce
livelocks by looking at their retrying operations.

3.2.3 Integration Bugs in Clojure

In this section, for each pairwise combination of models, we study whether race condi-
tions, deadlocks, or livelocks can arise from the interactions between the two models.

Note that a concurrency model can already be prone to these bugs when used
separately. For instance, it is possible to construct a program using promises that leads
to a deadlock, or a program in which two atomic variables are accessed in a way that
causes a race condition. We consider this behavior expected by the programmer: the

53

Chapter 3: Combining Concurrency Models

(a) Race conditions

—usedin! |Atoms Agents STM Futures Promises Channels
Atom’s swap! X X X X X X <~
Agent’s action
STM’s dosync X X X X <(2)
Future
CSP’s go
(b) Deadlocks
—usedin | Atoms Agents STM Futures Promises Channels
Atom’s swap! X
Agent’s action X4 X
STM’s dosync X
Future X ' 46) X
CSP’s go X X

(c) Livelocks

—>usedini | Atoms Agents STM Futures Promises Channels
Atom’s swap! | X

Agent’s action

STM’s dosync @

Future

CSP’s go

Table 3.4: These tables show when race conditions, deadlocks, or livelocks can arise by combin-
ing two models in Clojure. The model in the column is used in the model in the row. Combina-
tions that potentially give rise to bugs are indicated using X. For the combinations highlighted
in green, Clojure takes into account the combination and prevents a potential bug, for those
highlighted in jorange Clojure throws an exception to make the developer aware of the prob-
lem.

54

3.2 Motivating Case Study: Clojure

concurrency model works as specified. We look specifically for new bugs that arise due
to a combination of two concurrency models, as we consider this unexpected behavior:
a guarantee offered by the separate models no longer holds.

We examined the pairwise combinations of Clojure’s concurrency models, by lex-
ically embedding each of the concurrency models in each of the models - including
itself — and examining whether the bugs arise. The complete set of results is shown
in Tables 3.4a, 3.4b, and 3.4c¢, corresponding to the three types of bugs - race condi-
tions, deadlocks, and livelocks. For instance, the second column of Table 3.4a indi-
cates whether a race condition can occur (v') or not (X) when a send to an agent is
embedded in:

« an atom’s swap! block (as in the code example shown in Listing 3.5a on page 57),

« another agent action,

« an STM transaction (as in Listing 3.5b on page 57),

« a future, and

« a go block.
Below we discuss the cases where a bug can occur. These results are indicated with
circled numbers ((1)to (8)) in the tables. A detailed enumeration of all cases, including
those where no bugs occur, is given in the appendix of Swalens et al. [2014].

When a combination of two models can lead to one of these bugs, we say that
they are not composable. However, the absence of all three bugs does not guarantee
that they are composable. Concurrency models may provide other guarantees besides
the absence of race conditions, deadlocks, and livelocks. For example, it is possible
to construct a program that combines transactions with atoms, that does not lead to
a race condition, deadlock, or livelock, but still breaks the serializability expected of
STM.

Race conditions (Table 3.4a)

We first focus on the possibility of race conditions, which are caused by an incorrect
interleaving between two models.

When using any concurrency model in the function given to an atom’s swap! op-
eration, race conditions are possible, because the function may be reexecuted @ For
example, when this function sends a message to an agent, it could be sent twice (List-
ing 3.5a). Moreover, because operations on multiple atoms are not coordinated, even
combining two atoms is unsafe.

For transactions @, actions inside a dosync block are reexecuted if the transaction
is retried, and therefore the general rule is that “I/O and other activities with side ef-
fects should be avoided in transactions”?. However, there are two safe combinations.

*As suggested in Clojure’s documentation at https:/clojure.org/reference/refs.

55

https://clojure.org/reference/refs

Chapter 3: Combining Concurrency Models

First, when a message is sent to an agent inside a dosync block (Listing 3.5b), Clojure
does not send this message immediately. Instead, it delays the send until the trans-
action is successfully committed. Second, when one dosync block is used in another,
the inner transaction is merged into the outer one (this is called closed nesting [Moss
1981, Moss and Hosking 2006]), and as a result transactions are combined safely. In
both of these cases, Clojure anticipates the combination of these concurrency models
and ensures their semantics remain the same.

Based on these results we conclude that if the outer model provides a retrying opera-
tion, and the inner model can perform irrevocable actions, unexpected interleavings can
happen and therefore safety is not guaranteed. We call these spurious retries. Clojure
prevents this bug in two specific cases.

Deadlocks (Table 3.4b)

Next, we look at deadlocks, which are introduced by blocking operations.

Communication over channels is blocking by default, and therefore deadlocks are
possible when this is done in another model (3). This is particularly problematic when
embedded in swap! (atoms) or dosync (transactions): synchronous communication
is irrevocable and should not be reexecuted.

Reading a future or a promise is an operation that blocks until its value becomes
available. This can cause a deadlock when a promise is embedded in an agent (4). A
code example is shown in Listing 3.6a: when one thread sends an action to an agent
that reads a promise, and another sends an action that delivers this promise, the mes-
sages can be scheduled in an order that leads to a deadlock. Reading futures inside an-
other future can also cause a deadlock when mutually dependent futures are allowed,
as is the case in Clojure @ (Listing 3.6b).

Finally, agents support one blocking operation, await, which waits until the agent
has finished processing all its messages. In an atom’s swap! block, this does not pose a
problem: the await operation will always proceed eventually. However, in a go block
or a future @, this can cause a deadlock, when those models’ blocking operations (<!,
>1, or deref) are combined with await. In agent actions and transactions this situation
is prevented: Clojure raises an exception to indicate this behavior is unsafe.

We conclude that if the inner model provides blocking operations, a deadlock is pos-
sible. We refer to this as unexpected blocking. In two cases, Clojure makes the de-
veloper aware of the potential bug by throwing an exception, but does not attempt to
solve it.

56

-

- NV R V)

-

N

o wn s W

—

N

o wn s W

-

woa woN

3.2 Motivating Case Study: Clojure

Listing 3.5: Sending a message to an agent (in the context of a mail client), in a retrying oper-
ation (swap! and dosync):

(def unread-mails (atom 0))
(def notifications (agent '()))
(swap! unread-mails
(fn [n]
(send notifications (fn [msgs] (cons "New mail!” msgs)))
(inc n)))

(a) send to an agent in an atom’s swap!: send may happen more than once.

(def mail (ref {:subject "Hi” :archived false}))
(def notifications (agent '()))
(dosync
(ref-set mail (assoc @mail :archived true))
(send notifications
(fn [msgs] (cons (str "Archived mail " (:subject @mail)) msgs))))

(b) send to an agent in a transaction (dosync): send is delayed until the transaction commits.

Listing 3.6: Deadlocks when reading a promise or a future:

(def result (promise)) 1 (declare f2)
(def an-agent (agent 0)) > (def f1 (future .. (deref f2) ..))
; Thread 1: 3 (def f2 (future .. (deref f1) ..))
(send an-agent (fn [_] (deref result))) (b) Mutually dependent futures lead
; Thread 2: to deadlocks.

(send an-agent (fn [_] (deliver result 1)))
(a) Using a promise in an agent can lead to a dead-
lock, depending on the order in which messages are
sent.

Listing 3.7: Livelocks when modifying one atom in another:

(def counter (atom 0))
(swap! counter

(def counter1 (atom 0))
(def counter2 (atom 0))

-

(fn [n] ;Thread 1
(swap! counter inc) (swap! counter1
(inc n))) (fn [n] (swap! counter2 inc)

(a) Modifying an atom inside the same
atom always leads to a livelock: the outer
swap! retries forever because it conflicts
with the inner swap!.

(inc n))))
; Thread 2
(swap! counter2
(fn [n] (swap! counter1 inc)

10 (inc n))))
(b) When two threads modify two different

atoms, the swap! blocks may be retried, until
eventually they happen to not overlap and they
succeed. No livelock occurs.

O ® N A wm A W N

57

Chapter 3: Combining Concurrency Models

Livelocks (Table 3.4¢)

Finally, we look at livelocks, which appear when code is reexecuted. A transaction is
retried when it conflicts with another one, causing a livelock if the conflict would con-
sistently occur. However, Clojure’s STM prevents such a livelock (7): if a transaction
retries too often (fixed at 10,000 attempts), an exception will be thrown [Emerick et al.
2012]. When swap! is called on an atom inside a swap! on the same atom, a livelock
will occur (8) (Listing 3.7). This is not prevented by Clojure.

In general, a livelock can appear when a model that provides retrying operations is
combined with a model that causes this reexecution to continually happen. We call these
perpetual retries. In one case, this can cause a bug; in another, Clojure will detect this
and throw an exception.

Conclusion

From this case study of Clojure, we distinguish three typical problems that arise when
concurrency models are combined naively: spurious retries, unexpected blocking, and
perpetual retries. These problems manifest themselves as race conditions, deadlocks,
and livelocks, and - in the studied cases - occur when the concurrency models provide
constructs that retry or block.

Some of these potential bugs are anticipated by Clojure. They are handled in two
ways. In some cases, Clojure prevents the bug by maintaining the semantics of the
concurrency models as if they were used separately. In other cases, Clojure does not
prevent the bug, but instead notifies the developer of the problem through an excep-
tion (hence, it only surfaces at run time, and may not do so every time).

All anticipated bugs occur when agents and STM are combined with each other
or with themselves. Both agents and STM were present in Clojure since version 1.0
and their integration was well considered.> Futures, promises, and channels were in-
troduced later. Their integration with existing models and each other seems more
haphazard, leading to unhandled problems.

In general, we see that when several concurrency models are adopted by a lan-
guage in a naive way (either as language features or as a library), their combinations
can introduce several new bugs that break the guarantees of the individual models.
It therefore becomes necessary to study how they interact when their operations are
nested, to ensure the guarantees of the individual models are preserved. When more
than two models are introduced, this must be done for each combination. This is not
dissimilar to the problem of ‘feature interaction’ [Calder et al. 2003], where several

3As evidenced by talks by Hickey [2012] and the documentation at https://clojure.org/about/
concurrent_programming.

58

https://clojure.org/about/concurrent_programming
https://clojure.org/about/concurrent_programming

3.3 Combining Futures, Transactions, and Actors

features of a system that each function correctly separately might behave incorrectly
when they are combined.

3.3 | Combining Futures, Transactions, and Actors

In this section, we define the goals of this dissertation (Section 3.3.1) and describe the
problems we must tackle to achieve these (Section 3.3.2). We also look at nesting each
model in itself, which we refer to as the ‘trivial’ combinations (Section 3.3.3).

3.3.1 Goal and Requirements

In this dissertation, we will develop a unified model of futures, transactions, and ac-
tors — three concurrency models, each from a different category. The goal of this dis-
sertation is to find a suitable semantics for the unified model, even when concurrency
models are combined. We define two requirements:

1. First, the semantics of the separate models should remain unchanged. Existing
programs should work unchanged in our unified framework so that developers
can harness their existing expertise of the separate concurrency models. Therefore,
when a program uses only the constructs of a single model, its semantics should
be unchanged.

2. Second, to meet the assumptions of developers, the guarantees of the individual
models should be maintained even when they are combined. We will do this
wherever possible, however, in some cases it is impossible to combine the guar-
antees of all models because they inherently conflict. For instance, when a non-
deterministic model is used in a deterministic one, it is impossible to maintain
determinism. In this case, we will need to relinquish one of the original guaran-
tees and we will define a modified, less restrictive guarantee that is provided by
our combination.

3.3.2 Approach

In this section, we take a first, brief look at how combining our three models affects
their guarantees. In the following chapters, we consider each combination in more
detail.

Using the operational semantics of the models as defined in the previous chapter,
we examine the 9 (3 x 3) ways in which the three models can be nested. The resulting
combinations are tabulated in Table 3.8. Each model has one concurrent construct
that can contain nested expressions: fork for futures, atomic for transactions, and
behavior for actors. The three rows correspond to these three concurrent constructs.

59

Chapter 3: Combining Concurrency Models

Future Transaction Actor
(fork (fork (fork
(fork ..) (atomic ..)) (spawn ..)
L (join ..)) (send ..)
2 (become ..))
= .
Communication
Nested futures Parallel transactions in future
(atomic (atomic (atomic
g (fork ..) (atomic ..) (spawn ..)
8 (join ..)) (ref ..) (send ..)
§ (deref ..) (become ..))
E Parallelism (ref-set ..)) Communication
in transaction Nested transactions in transaction
(behavior [] [] (behavior [] [] (behavior [] []
(fork ..) (atomic ..)) (spawn ..)
5 (join ..)) (send ..)
0 (become ..))
<
Shared memory
Parallelism in actor in actor Actors

Table 3.8: Pairwise combinations of futures, transactions, and actors.

60

3.3 Combining Futures, Transactions, and Actors

Each cell in the table injects the constructs of the model of the column in the concur-
rent construct of the row.

We consider the dynamic extent of each construct: if one model is used in another
at execution time, we say they are (dynamically) nested. Note that this does not require
their constructs to be nested lexically. For instance, if a library function that uses
futures is called in a transaction, the construct fork will not appear in the atomic
block in the code (lexically), but at execution time a future will be created while a
transaction is running (dynamically), so we say that they are nested and we will study
this combination. In the rest of this text, whenever we say that two constructs are
nested, we refer to this type of dynamic nesting.

A few constructs have been omitted from Table 3.8:

« STM explicitly only allows operations on transactional variables (ref, deref, and
ref-set) in atomic blocks. Therefore, we do not nest these operations in futures
or actors directly; they will always appear first in an atomic block, which in turn
can be nested in another model (second column).

« The construct behavior, defining an actor’s behavior, is a value; it cannot be further
reduced. In contrast to all other constructs, it has no side effect, and therefore we
do not need to examine how it can be nested in other models.

Note that there is a sort of ‘anti-symmetry’ in the table (indicated through the colors).
The diagonal contains models nested in themselves. All other cells have an opposite
across the diagonal, e.g. the top-right cell shows actors in futures while the bottom-left
cell shows futures in actors.

For each pairwise combination, we check whether the guarantees of the two mod-
els are maintained in a naive combination. These results are shown in Table 3.9, and
will be discussed throughout this dissertation. Each cell lists the guarantees of both
models and indicates whether these are maintained in a naive combination. For in-
stance, when a future is forked in a transaction (second row, first column), the de-
terminacy of the futures is broken and the isolation of the transactions is no longer
guaranteed.

We discuss the cells on the diagonal, in which each model is nested in itself, in the
following section. These ‘trivial’ combinations all maintain the guarantees.

In the other cells, in which different models are combined, the guarantees are bro-
ken. These cases are discussed in the subsequent chapters: Chapter 4 discusses the
combination of futures and transactions, Chapter 5 the combination of transactions
and actors, and Section 6.1 of Chapter 6 the combination of futures and actors. Each
of these discussions will first describe the problems that arise when the models are
combined, and then offer a modified semantics that does maintain the guarantees of
both models if possible.

61

Chapter 3: Combining Concurrency Models

Sind Future Transaction Actor
Nested futures Parallel transactions Communication
© (Section 3.3.3) (Section 4.1) in future (Section 6.1)
=]
HIES =3 =
E D] Déf]

(10 (P

Parallelism in trans-

Nested transactions

Communication in

Guarantees

Futures: Determinacy

Transactions: Isolation

'g action (Sections 4.2-4.4) (Section 3.3.3) transaction (Chapter 5)

|4 o) | ()

£) () ot
Parallelism in actor Shared memory Actors

5 (Section 6.1) in actor (Chapter 5) (Section 3.3.3)

3| o= o)ee) | ([@)EE

Progress

Actors: Isolated Turn Principle Deadlock Freedom

Table 3.9: Maintained (in green) and broken (in [red) guarantees of combined models.

62

[» -

3.3 Combining Futures, Transactions, and Actors

3.3.3 Trivial Combinations

In the next three sections, we briefly discuss the combinations on the diagonal of Ta-
ble 3.9, in which each model is nested in itself. These combinations have been studied
in existing literature and maintain the model’s guarantees.

Nested futures

Forking one parallel task in another is common and expected in programs that use fu-
tures. The example of a Fibonacci function we used to introduce futures in Listing 2.3,
repeated in Figure 3.10 below, actually demonstrates this: the Fibonacci function uses
futures to execute its recursive calls, creating (up to) two new futures in each future.
Nesting futures does not break the determinacy of the program: no matter where fu-
tures are introduced, the program remains equivalent to its serial elision.

Executions of programs with futures can be represented using a spawn tree [Blu-
mofeetal. 1995, Lee and Palsberg 2010]. For instance, Figure 3.10 shows the Fibonacci
program and its spawn tree when used to calculate fib(4). Each node corresponds to
a task. The edges connect parent tasks to the tasks they forked. This graph will always
form a tree: there is one root task that encapsulates the whole program and can spawn
new tasks, and each task can in turn spawn more tasks.

(defn fib [n]
SHAS
n
(let [a (fork (fib (- n 1)))
XA R OR TR D
(+ (join a) (join b)))))

Figure 3.10: Spawn tree of the recursive Fibonacci implementation of a parallel Fibonacci
program (Listing 2.3, repeated on the left), for n = 4, at the end of the program.

Furthermore, nested futures can never lead to a deadlock. This is the result of the
tree structure of nested futures. It is illustrated in Listing 3.11. Each task is identified
by a future, which is a reference that can be passed around and supports one operation:
join. Each task can obtain the future of:

1. its direct children, as it created those;

2. any further descendants, if a child returns the future of a descendant (e.g. the root
task can access d if a returns d);

3. its earlier siblings (e.g. b can access a); and

63

A s W N -

Chapter 3: Combining Concurrency Models

4. any descendants of its earlier siblings, if a sibling returns the future of one of its
descendants (e.g. f can access d if a returns d).

Tasks cannot obtain their own future. Writing the spawn tree in post-order notation
defines a strict total order on the tasks, in which each task can access the futures of the
tasks that come before it. This is a consequence of the lexical scoping of the language.
This means that there cannot be cyclical dependencies between futures, and therefore
deadlocks are impossible.

(let [a (fork (let [d (fork ..) @
e (fork .)1 ..))

b (fork (let [f (fork ..)] ..))
c (fork (let [g (fork ..) e @ G
h (fork .)1 .01

9 0JOI0I010

Listing 3.11: A program with nested futures and its spawn tree. Writing the spawn tree in
post-order notation yields the sequence d-e-a-f-b-g-h-c-root. This shows that task b can join
tasks d, e, a, and f. It may be less obvious that task f can also join task d: task a may return d,
and f can access a.

Nested transactions

When a transaction is started while another transaction is already running, we say this
is a nested transaction. It occurs in many cases: when a program with transactions
calls into a library that also uses transactions, when a program consists of different
components that each use transactions and call each other, or even simply when code
is reused (e.g. when a set’s replace operation is implemented as a transaction that con-
tains a remove and add operation, each of which is also a transaction). The nesting of
transactions is a well-studied problem.

Moss and Hosking [2006] distinguish two types of nesting: open and closed nest-
ing. In both cases, a child transaction has access to the state of its parent. In closed
nesting, when the child commits, its changes are not made globally visible yet, instead
they become part of the parent. It is only when the parent commits that the changes
become permanent. When the child aborts, the parent aborts too. In essence, in sys-
tems with closed nesting transactions are ‘flattened’ to a single level, and at run time
there will only be a single transaction in execution.

On the other hand, in open nesting, when a child transaction commits, its changes
immediately become visible to other transactions, even if its parent is still running. As
a result, even when the parent aborts, the effects of the child transaction remain vis-
ible. Open nesting thus breaks isolation. To counter this, developers need to specify
a compensating action for each child transaction, which is executed when it aborts.

64

3.4 Conclusion and Roadmap

Moreover, in some cases developers need to manually lock data structures to avoid
breaking isolation. Open nesting is therefore aimed at expert developers [Ni et al.
2007], e.g. a possible scenario is that expert developers implement libraries of concur-
rent data structures that use nested transactions internally, and that these libraries can
then be composed by the users of the library using (the top-level) transactions.

The advantage of open nesting is that it increases the concurrency, as transactions
can be split into smaller parts, and therefore resources can be released earlier and the
chance of conflicts decreases. Conversely, closed nesting leads to long transactions,
making conflicts more likely and more costly.

In practice, closed nesting is the norm: Clojure, Haskell, and ScalaSTM all imple-
ment closed nesting. The complexity of open nesting does not seem to outweigh its
performance benefits. The semantics we specified in Section 2.4.5 also implements
closed nesting, in the rule atomic|i, which specifies that a nested transaction simply
becomes part of its parent.

In this discussion, we assume that no parallel tasks are created in a transaction,
as no fork can appear in the transaction, and therefore child transactions of the same
parent cannot run in parallel. Like Haines et al. [1994], we distinguish between nested
transactions, discussed here, and multithreaded transactions, discussed in Chapter 4
when futures and transactions are combined.

Nested actors

‘Nesting’ actors — creating one actor in another - is a standard part of the actor model.
In fact, an actor program consists of only actors running concurrently, and therefore all
actors except the initial one are nested actors. The guarantees of actors are maintained.

3.4 | Conclusion and Roadmap

In this chapter, we first motivated why combining concurrency models is desirable: it
happens in practice, it is allowed by programming languages, and it makes sense for
large applications. Next, by studying Clojure, we showed that in existing languages
naive combinations of concurrency models can lead to unexpected semantics and thus
break the expectations of developers, as they no longer maintain the guarantees pro-
vided by their constituent parts.

In this dissertation, we will develop a unified model of futures, transactions, and
actors — three concurrency models that belong to a different category. We explored
the combinations of these three models, and found that, while nesting each model in
itself works as expected, combining different models breaks their guarantees. In the
rest of this text, we aim to find a semantics for these combinations that maintains the

65

Chapter 3: Combining Concurrency Models

guarantees of the individual models wherever possible. When this is not possible, we
instead define a less restrictive guarantee. When a program only uses constructs of
one model, its semantics should remain unchanged.

66

The following chapters examine each combination of different models in detail:

We first look at each pairwise combination separately: Chapter 4 examines the
combination of transactions and futures; Chapter 5 focuses on transactions and
actors; and in Chapter 6 we consider futures and actors. These chapters describe
the semantics informally and using examples.

In Chapter 6, we then join the three pairwise combinations into one framework,
called Chocola (for “composable concurrency language”).

In Chapter 7, we formalize a precise semantics for the unified framework and show
which guarantees it provides.

In Chapter 8, we describe how we implement these combinations starting from
three separate implementations of futures, transactions, and actors.

In Chapter 9, we evaluate the performance of our unified framework by examin-
ing whether a combination of concurrency models allows parallelism to be more
efficiently exploited. We do this by extending existing programs that currently use
one model, combining it with another model.

Transactional Futures:
Parallelism in Transactions

This chapter examines the combination of futures and transactions. These combina-
tions are shown in Table 4.1. First, in Section 4.1, we examine the creation of trans-
actions in a parallel task, which is standard in languages with transactions. The rest
of the chapter looks at the opposite combination: creating futures in a transaction.
In Section 4.2, we motivate the use of futures in a transaction using an example and
show the problems that occur when this is done using a naive combination of both
models. Section 4.3 introduces transactional futures: futures created in a transaction
with a well-defined semantics. Afterwards, we discuss the guarantees and other prop-
erties of transactional futures in Section 4.4 and compare them with related work in
Section 4.5.
We first introduced transactional futures in Swalens et al. [2016].

4.1 | Transactions in Futures

We first focus on the use of transactions in parallel tasks. As shown in Table 4.1, this
corresponds to the use of the construct atomic inside the dynamic extent of a fork.
As the transactional model does not provide any construct to create parallelism,
this combination is a standard part of languages with transactions: any use of trans-
actions requires the use of another model to create the tasks in which they run. This
is the case in Clojure, where transactions run in futures, in Haskell, where they run
in threads created using forkIO, and in Scala, where they run in Threads. The seman-

67

Chapter 4: Transactional Futures

Sind Future Transaction
Nested futures Parallel transactions
© (Section 3.3.3) (Section 4.1)
b
=
5 | | Det D¢
E (Det]
- Parallelism in trans- | Nested transactions
-2 | action (Sections 4.2-4.4) (Section 3.3.3)
(&}
<
2| D)
= | (s8]

Guarantees
Futures: Determinacy

Transactions: Isolation Progress

Table 4.1: Combinations of futures and transactions.

tics of this combination was already specified accordingly in Section 2.4.5 (page 31),
where we define the language L, with transactions as an extension of the language L¢
with futures.

The question is whether this combination can preserve the guarantees of both of
its constituents: the determinacy guarantee of futures and the isolation and progress
guarantees of transactions. As shown in Section 2.4.5, this combination guarantees
isolation and progress. However, the determinacy of futures is broken: a program
with transactions is equivalent to a serialization of the transactions, but often there
are many possible serializations. Determinacy allows only one possible output for a
given input.

Breaking determinacy is unavoidable: as soon as a non-deterministic model such
as transactional memory is introduced, there is no way to maintain determinacy of
the whole program. As explained in Section 2.1 (specifically on page 15), it is gener-
ally recommended that developers use determinism wherever possible, and carefully
introduce non-determinism only where it is inescapable [Van Roy and Haridi 2004,
Lee 2006, Bocchino et al. 2009a]. We argue that the loss of determinacy thus does
not pose a problem: when developers decide to use a non-deterministic model, they

68

2d 2s
1s H
. 4d
B 1d
3d 4s

(a) Global grid: input
of four pairs of source
and destination cells

4.2 Motivation for Futures Inside Transactions

(b) Local grid of path
1: first expansion step

p | w
N
.E

a|ld|lw

(c) Local grid of path
1: trace back from des-
tination to source

2d| 2 [2s
1s[111 H
| |a4d 1
B E 1d
4lafala
3| 3 [ad 4s

2d 2s
1s|{ 1|11
4d 1
1d
3s 3d 4s

(d) Global grid up-
dated with path 1

(e) Concurrent up- f) Final global
dates of paths 1 and 4 grid with four non-
that conflict overlapping paths

Figure 4.2: Different steps of the Labyrinth algorithm, illustrated using 4 paths on a two-
dimensional 6 x 6 grid. The black squares are impenetrable ‘walls’

do so because they need its non-determinism, and therefore they are aware that de-
terminacy is no longer guaranteed. Moreover, transactions still limit the number of
possible outputs developers need to consider to the number of possible serializations
of the transactions in the program. Further, the non-determinism is confined to the
parts of the program that use transactions; code in which no transactions appear re-
mains determinate.

4.2 | Motivation for Futures Inside Transactions

This section discusses the use of parallelism in the dynamic extent of transactions, i.e.
using fork inside atomic. Using an example, the Labyrinth application, we illustrate
that it is desirable for certain applications to use parallelism inside their transactions.
We discuss how this is realized in contemporary programming languages and demon-
strate that those do not provide satisfying semantics.

69

Chapter 4: Transactional Futures

Labyrinth application

As an example, we look at the Labyrinth application of the STAMP benchmark suite
[Minh etal. 2008], a suite of applications that use transactional memory. The Labyrinth
application implements a transactional version of Lee’s algorithm [Lee 1961, Watson
et al. 2007/, an algorithm that is used in chip design to place electric components on
a grid, connecting them without introducing overlapping wires.

Listing 4.3 shows the main part of the Labyrinth application, translated to Clojure.
Its main data structure is , atwo-dimensional array of transactional variables. The
aim of the application is to find non-overlapping paths between given pairs of source
and destination cells. For example, Figure 4.2a depicts four source-destination pairs
onan 6 X 6 grid, and Figure 4.2f shows a possible solution of connections.

1 (def (initialize-grid w h)) ;w X harray of cells, each cell is a ref
> (def work-queue (ref (parse-input))) ;list of [source destination] pairs
3

4+ (loop [1 ;'

5 (let [work (pop work-queue)] ;atomically take element from work queue
6 (if (nil? work)

7 true ;done

8 (do

9 (atomic

10 (let [local-grid (copy)

11 [src dst] work ;destructure pair using pattern matching

12 reachable? (expand src dst local-grid)] ;ref-setson local-grid
13 (if reachable?

14 (let [path (traceback local-grid dst)]

15 (add-path path))))) ;ref-setson
16 (recur)))))

Listing 4.3: Transactional version of Lee’s algorithm in Clojure.

The transactional variable work-queue is initialized to the input list of source-
destination pairs. As long as the work queue is not empty, a source and destination
pair in the input will be processed in a new transaction (lines 9—15). This happens in
four steps:

1. First, copy create a local copy local-grid of the shared (line 10).

2. Next, a breadth-first search expands from the source cell (line 12), recording the
distance back to the source in each visited cell of the local-grid using ref-set
(Figure 4.2b), until the destination cell is reached.

3. Afterwards, the traceback function finds a path from the destination back to the
source (line 14; Figure 4.2¢).

4. Finally, the function add-path updates the shared to indicate that the cells on
the found path are now occupied (line 15; Figure 4.2d).

70

4.2 Motivation for Futures Inside Transactions

After the transaction has finished, this process is repeated until all work has been pro-
cessed.

To parallelize this algorithm, we have to make several “worker threads” that exe-
cute the loop simultaneously. Each thread repeatedly takes a source-destination pair
from the work queue and attempts to find a connecting path in a transaction. If two
threads result in overlapping paths, a conflict occurs when updating the global
(on line 15), as the two threads attempt to write to the same transactional variable
(that represents the cell where the paths collide; Figure 4.2e). As a result, one of the
two transactions is rolled back and will look for an alternative path.

Performance of Labyrinth

Minh et al. [2008] measure various metrics of the applications in the STAMP bench-
mark suite, shown in Table 4.4. We compare Labyrinth with the other applications.
First we observe that this application spends 100% of its execution time in transac-
tions. Hence, the amount of parallelism in this program is maximally the number of
transactions that are created, which is the number of input source-destination pairs.
On a machine with more cores, the hardware will not be fully utilized. To exploit
more fine-grained parallelism in this program, it is necessary to allow parallelism in-
side the transactions. Second, we infer that the transactions in this application take a
long time to execute: an average transaction of the Labyrinth application contains sev-
eral orders of magnitude more instructions than the other applications in the STAMP
benchmark suite. This means that conflicts will be costly: retrying a transaction incurs
a large penalty. Parallelizing the computation inside the transactions will reduce this
cost.

Profiling reveals that, for typical inputs, more than 90% of the execution time of
the program is spent in the expansion step (line 12 in Listing 4.3). This performs a
breadth-first search. Listings 4.5a and 4.5b show a simplified version of the relevant
code. The expand function starts with a queue containing the src cell (Listing 4.5a,
line 2). In expand-cell (Listing 4.5a, line 8), the first cell in the queue is expanded,
which updates the neighboring cells in local-grid for which a cheaper path has been
found, using ref-set (Listing 4.5b, line 11), and returns these neighbors. These are
then appended to the queue (Listing 4.5a, lines 7-8), and the loop is restarted. This
continues until either the queue is empty or the destination has been reached.

'Clojure’s loop construct (loop [x 0] (recur 1)) defines and calls an anonymous function, in
which recur executes a recursive call. It is equivalent to Scheme’s named let: (let 1 ([x 0]1) (1 1)).

71

Chapter 4: Transactional Futures

Application Transaction Average time in

length (mean # of transaction
instructions per tx)

Labyrinth
Bayes

Yada
Vacation-high
Genome
Intruder
Kmeans-high
SSCA2

Table 4.4: Characterization of the STAMP applications, abridged from Minh et al. [2008].
These numbers were gathered on a simulated 16-core system. The transaction length and
transactional execution time are color-coded , ,

Labyrinth with parallel search

In Listing 4.5¢, additional parallelism is introduced by replacing the breadth-first search
algorithm by a parallel version of this algorithm. It uses layer synchronization, a tech-
nique in which all nodes of one layer of the breadth-first search graph are expanded

— in parallel - before the next layer is started [Zhang and Hansen 2006]. The queue

now starts as a set containing only the src cell (line 2). In each iteration of the loop,
expand-layer will expand all cells in the queue in parallel (lines 11-13), using Clo-
jure’s parallel map operation pmap. pmap divides the list of cells into partitions (not

shown in the code) and processes each partition in a separate task. It gathers the re-
sults of all tasks in futures, here all neighbors of the current layer, joins their results,
and returns these. The union of all returned neighbors is then used as the queue for

the next iteration of the loop (line 10). As before, this continues until either the queue

is empty or the destination has been reached.

However, this code does not work as expected in Clojure! Each partition created
by pmap is processed in a new task, calling expand-cell, in which an atomic block
appears. As transactions are thread-local in Clojure, it detects no transaction is run-
ning in the current task, and starts a new transaction. When the atomic block ends,
this inner transaction is committed. However, the surrounding transaction may still
roll back, while the inner transaction cannot be rolled back anymore. Spurious nested
transactions are created which commit independently from their parent: this is the
‘spurious retries’ problem that was discussed in Section 3.2.3 (page 53), and can even-
tually lead to incorrect results.

72

® N o v AW

e » -

4.2 Motivation for Futures Inside Transactions

(defn expand [src dst local-grid] ;Calledin atransaction,in Listing 4.3
(loop [queue (list src)]
(if (empty? queue)
false ;no path found
(if (= (first queue) dst)
true ;destination reached
(recur (concat (rest queue)
(expand-cell (first queue) local-grid)))))))

(a) Sequential, breadth-first search of local grid.

(defn expand-cell [current local-grid]
(atomic
(let [neighbors (get-neighbors local-grid current) ;neighbors of current
cheaper -neighbors ;neighbors of current for which we found a cheaper path

(filter
(fn [1
(< (cost current) ;cost of path to neighbor, through current
(deref ») ; cost of previous path to neighbor
neighbors)]
(doseq [cheaper -neighbors] ; for each cheaper neighbor:
(ref-set (cost current))) ;setnew cost

cheaper-neighbors)))
(b) Expand a cell. (Code modified for clarity.)

(defn expand [src dst local-grid] ;Calledina transaction,in Listing 4.3
(loop [queue (set [srcl)l
(if (empty? queue)
false ;no path found
(if (contains? queue dst)
true ;destination reached
(recur (expand-layer queue local-grid))))))

(defn expand-layer [queue local-grid]
(reduce union (set []) ;convertlistoflist of neighborsinto a set (without duplicates)

(pmap ; parallel map, returning list of list of neighbors
(fn [p] (expand-cell p local-grid))
queue)))

(defn pmap [f xs] ;Simplified version of Clojure’s pmap
(let [futures (map (fn [x] (fork (f x))) xs)]
(map join futures)))
(c) Parallel breadth-first search of local grid. The expansion occurs in layers, the cells in each
layer are expanded in parallel in expand-1layer. pmap is a parallel map built into Clojure.

Listing 4.5: Expansion step through Labyrinth grid. (a) shows the original, sequential search
algorithm; (c) replaces this with a parallel version. The function expand-cell in (b) is used by
both to expand a single cell.

73

Chapter 4: Transactional Futures

Problem Analysis

In general, Clojure allows futures to be created in a transaction, but they are not part
of that transaction’s context. When an atomic block appears in a new task, a sepa-
rate transaction is created with its own, possibly inconsistent, snapshot of the shared
memory. This transaction will commit independently. Clojure does not consider the
creation of futures as part of the transaction, hence it is not undone when the encapsu-
lating transaction is rolled back. As such, the isolation of the transactions is broken.
This is not the desired behavior of the presented example. The same problems occur in
most library-based STM implementations, including ScalaSTM, Deuce STM for Java,
and GCC'’s support for transactional memory for C and C++.>

Haskell, on the other hand, does not allow the code above to be written. The type
system prohibits the creation of new futures in a transaction, as transactions are encap-
sulated in the STM monad while forkIO can only appear in the IO monad. As such, the
isolation of transactions is guaranteed, but in effect, the potential parallelism is lim-
ited: every time transactions are introduced to isolate some computation from other
tasks, the potential performance benefits of parallelism inside this computation are
forfeited. This is throwing out the baby with the bathwater. This problem becomes ap-
parent for programs containing long-running transactions. In the Labyrinth example,
the maximal amount of parallelism is equal to the number of input source-destination
pairs, even though additional parallelism could be exploited by the breadth-first search
algorithm.

Furthermore, these design choices hinder reusability [Haines et al. 1994]. Inside
a transaction, calling a library function or other part of the program that contains
fork is unsafe: it is either not allowed or can lead to incorrect results. For instance,
it is impossible to use a library that implements a parallel breadth-first search for the
Labyrinth application.

Finally, we note that transactions are used to ensure isolation, e.g. to prevent over-
lapping paths in the Labyrinth example, but they also form the unit of parallelism,
evidenced by the fact that the maximal amount of parallelism is equal to the number
of transactions. Moore and Grossman [2008] and Haines et al. [1994] argue that isola-
tion and parallelism are orthogonal issues, but the notions of isolation and parallelism
are conflated. Parallelizing the search algorithm should be orthogonal to the isolation
between transactions, but it is not.

The ideal solution is one where several tasks can be created in a transaction and
can execute in parallel, i.e. allowing fork inside atomic (unlike Haskell’s forkIO). Fur-
thermore, these tasks should be able to access and modify the transactional variables,
using the transactional context of the encapsulating transaction (unlike Clojure’s or

*https://nbronson.github.io/scala-stm/, https:/sites.google.com/site/deucestm/, and https://gcc.gnu.
org/wiki/TransactionalMemory.

74

https://nbronson.github.io/scala-stm/
https://sites.google.com/site/deucestm/
https://gcc.gnu.org/wiki/TransactionalMemory
https://gcc.gnu.org/wiki/TransactionalMemory

4.3 Transactional Futures

° 1 expand p0|nt=‘ 2 fork "3a expand p0|n=t 4 join

root task

transaction

Figure 4.6: The timeline of the transactional tasks that are forked and joined when expanding
the labyrinth grid. At each point in time, we show the grid as it exists in that task. The cells
that are stored in the snapshot of the task are white and black, the modifications stored in the
local store are blue. The orange arrows indicate how the local stores of two tasks are merged.

Scala’s futures in transactions). With our approach, we want to preserve isolation be-
tween all transactions in the program.

4.3 | Transactional Futures

In this section, we define transactional futures. A transactional future is the future
associated with a so-called transactional task: a task that is forked while a transaction
is running. We describe transactional futures and transactional tasks (Section 4.3.1)
and the semantics of the join operation (Section 4.3.2) informally. (A formalization
will be given in Chapter 7.)

4.3.1 Transactional Tasks

When a future is forked in a transaction, a new parallel task is spawned. We call this
task a transactional task, to indicate that it is associated with the transaction that was
active when it was spawned. As motivated in the previous section, a transactional task
operates within the context of its encapsulating transaction, so that it can access and
modify the state of the transaction.

Conceptually, each transactional task creates a copy of the transactional heap, and
will access and modify that private copy. This ensures that two tasks can run concur-
rently without interfering with each other. To this end, a transactional task contains

75

Chapter 4: Transactional Futures

two data structures: a (read-only) snapshot containing the values of the transactional
variables when the task was spawned, and a local store containing the values that the
task has written to transactional variables.

Each transaction starts with one root task that evaluates the transaction’s body. Its
snapshot is a copy of the transactional heaps; its local store starts empty. In Figure 4.6,
a timeline of the expand operation of the Labyrinth application is shown. At the start
of the transaction, the snapshot of the root task contains the source cell at distance o
(in white). After step 1, the local store is modified with the expanded cells at distance 1
(in blue).

As before, tasks are spawned using the fork e construct, in the root task or any sub-
sequently created task. Thus, fork can be used in the dynamic extent of a transaction.
When a task is spawned, its snapshot should reflect the current state of the transac-
tional variables, so it is the snapshot of its parent task modified with the current local
store of the parent. The local store of a newly spawned task is empty. In Figure 4.6,
step 2 spawns a task, the new task’s snapshot (in white) consists of its parent’s snapshot
combined with the parent’s local store.

While a task executes, it looks up transactional values in its snapshot, and modify
them by storing their updated values in the local store. It only uses its own snapshot
and local store, ensuring that each task runs in isolation. In steps 3a and 3b, the root
task and its child both expand a cell and update their local stores (in blue).

When a task finishes its execution, its future is resolved to its final value. When a
task is joined for the first time, its local store is merged into the task performing the
join, and the value of its future is returned. This way, changes propagate from child
tasks to their parent. In the figure, step 4 copies the modified cells of the child task
(blue cells) into the root task. Subsequent joins of the same task will not repeat this, as
their changes are already merged; they will only return the final value of the future.

At the end of the transaction, the modifications of all transactional tasks in the
transaction should have been merged into the root task, and these are committed atom-
ically. All changes from all tasks are committed in a single step, so the transaction re-
mains an indivisible step to the outside, maintaining its isolation. If a conflict occurs at
commit time, the whole transaction is aborted and retried. If a conflict occurs in one
of the tasks while the transaction is still running, all tasks are aborted and the whole
transaction is retried. In other words, the tasks within a transaction are coordinated
so that they either all succeed or all fail: they form one atomic group.

4.3.2 Conflicts and Conflict Resolution Functions

When a task is joined into its parent, conflicts are possible: it may be the case that the
child task has modified a transactional variable that the parent also modified since the
creation of the child. In that case, a write-write conflict occurs. An example of such

76

4.3 Transactional Futures

a conflict is marked on Figure 4.6 with an asterisk (*). Note that in this example both
values happened to be the same, but this is not necessarily the case in general.

For these situations, a conflict resolution function can be specified per transac-
tional variable.> The programmer can specify a resolve function when the transac-
tional variable is created, using (ref initial-value resolve). If a conflict occurs,
the new value of the variable in question is the result of resolve(voriginal, Vparent» Vchild)»
where Vparent and vepilg refer to its value in the parent and child respectively, and voyiginal
refers to its value when the child was created (stored in the child’s snapshot).

In the Labyrinth example, the new value of a conflicting cell should be the min-
imum of the joining tasks, so resolve(o,p,c) = min(p,c), as we want to find the
cheapest path. Generally, conflict resolution functions are useful when each task per-
forms a part of a calculation. For instance, when each task calculates a partial result of
a sum, the resolve function is resolve(o, p, ¢c) = p+c—o, as the total is the value in the
parent plus what was added in the child since its creation. Similarly, if several tasks gen-
erate sets they are combined using resolve(o, p, ¢) = pUc, or if several tasks generate
lists of results they can be combined with resolve(o, p, ¢) = concat(o,p —o0,c—o0). If
no conflict resolution function is specified, we default to picking the value in the child
over the one in the parent, resolve(o, p, c) = ¢, as we reason that when a programmer
explicitly joins a task he intends to merge all its changes. Conversely, the parent may
be preferred by specifying resolve(o, p,c) = p.

Read-write “conflicts” are not considered to be actual conflicts in our model. If
the parent reads a transactional variable while its child wrote to it, the parent still reads
the ‘old’ value from its snapshot. The value will only be updated after an explicit join
of the child. This avoids non-determinism, as the moment at which changes from one
task become visible in another does not depend on how tasks are scheduled but on
explicit join statements.

4.3.3 Summary

Using the concepts introduced in this section, the code in Listings 4.5¢ and 4.5b now
behaves as expected. Each newly spawned task is part of the encapsulating transac-
tion’s context and has access to its state. Transactional tasks can observe the changes
that occurred before they were created and they make their modifications in a private
local store. When they are joined, their changes become visible in their parent task.
The only required modification to the Labyrinth program is the definition of the con-
flict resolution function on the grid cells.

In Chapter 9, Section 9.2, we evaluate the performance of the Labyrinth applica-
tion. We observe that transactional futures improve performance in two ways. First,

3This is inspired by a similar idea from Concurrent Revisions [Burckhardt et al. 2010], where conflicts
on ‘versioned variables’ are resolved using such functions.

77

Chapter 4: Transactional Futures

introducing finer-grained parallelism inside the transaction lowers the execution time
of each transaction and thus of the whole program. Second, the lower execution time
of transactions also means that the cost of conflicts is decreased, as each attempt takes
less time.

4.4 | Properties of Transactional Futures

Transactional futures exhibit several useful properties. In this section, we first de-
scribe how transactional futures affect the guarantees of their constituent models (Sec-
tion 4.4.1). This is discussed more formally in Section 7.3 of Chapter 7. Next, we dis-
cuss some additional useful properties arising from the combination of futures and
transactions (Section 4.4.2).

4.4.1 Guarantees

As explained in Chapter 2, futures guarantee determinacy and transactions guarantee
isolation and progress (deadlock freedom in our implementation). We discuss the
effect of transactional futures on these guarantees.

Isolation of transactions

Transactional futures maintain isolation (whether this is serializability, opacity, or
snapshot isolation). This can be seen as follows. We require that all tasks created in a
transaction are joined before its end, otherwise an error is raised. All changes made to
the transactional variables by all tasks in the transaction have therefore been applied
to the local store of the root task before the transaction commits. Upon commit, they
are applied to the transactional heap in a single atomic step, just as if no futures were
created in the transaction. Consequently, transactions remain atomic and isolated:
the time of the commit determines the order of the transaction in the serialization.

Transactional futures realize this guarantee by making fork and join a part of the
transaction in which they run, instead of an independent side effect. This solves the
‘spurious retries’ problem that appeared in Clojure in Section 3.2.3 (page 53) for this
combination.

It may appear strange to talk about serializability for a transaction that contains in-
ternal parallelism. However, serializability only requires that parallel executions of the
program are equivalent to an execution in which the transactions run serially. It does
not impose any restrictions on interleavings outside transactions nor on interleavings
within a transaction. It is only the transactions as a whole that must be serializable.

78

4.4 Properties of Transactional Futures

Deadlock freedom

The guarantee of deadlock freedom of transactions is maintained as well. Transac-
tional futures allow join, a blocking construct, to be used in transactions. This could
potentially cause deadlocks when two tasks are waiting for each other to finish, as we
saw when we discussed the ‘unexpected blocking’ problem in Clojure. However, this
can never happen here: the tasks in a transaction form a spawn tree, just like they did
when used outside transactions (as described Section 3.3.3 on page 63), and therefore
can never contain a cycle.

Intratransaction determinacy

Transactions are a non-deterministic model because the order in which transactions
are committed is not deterministic. Hence, breaking determinacy is unavoidable when
futures and transactions are combined. However, we are still able to guarantee deter-
minism inside transactions, which we refer to as intratransaction determinacy.

The fact that transactional futures do not introduce non-determinism inside trans-
actions follows from two observations. First, it does not matter in which order the
instructions of two tasks are interleaved, as they both work on their own copies of
the data. Second, the join operation is deterministic as long as the conflict resolution
function is. The changes made in one task only become visible in another one after
an explicit and deterministic join statement has been executed. As a result, given the
state of the transactional memory when a transaction started, it can only have one
result. This property is “intratransaction determinacy”.

More formally, intratransaction determinacy states that, given the initial state of
the transactional memory, a transaction must always have the same result, assuming
that all conflict resolution functions are determinate.# A transaction has two kinds of
results: its final value, and its effects on transactional memory. We will discuss this
guarantee more formally in Section 7.3.1 (page 144).

Intratransaction determinacy makes the behavior in a transaction easier to pre-
dict. Developers can trace back the value of a variable by looking where tasks were
joined. Such a trace was shown in Figure 4.6, where two tasks modified the same data
concurrently yet there was only one end result.

4.4.2 Additional properties

The interaction of transactions and futures gives rise to some additional properties,
which we discuss here.

*Compare this with the definition of determinacy, which states that, given an input, a program must
always have the same output.

79

Chapter 4: Transactional Futures

Coordination of transactional tasks

While a transaction can contain many tasks, each task is fully contained in a single
transaction. The changes of all tasks created in one transaction are committed at the
same moment, when their encapsulating transaction ends. Hence, if the commit suc-
ceeds, the changes of all tasks are committed, and if the commit fails, the changes of
no task are committed. If a conflict occurs in one task during its execution, all other
tasks in the transaction are aborted as well, and the transaction, as a whole, restarts.
As such, developers can use transactional futures as a mechanism to coordinate tasks
by encapsulating several tasks in a transaction. Encapsulating tasks in a transaction
makes them an atomic (indivisible) unit.

We also observe that the notions of isolation and parallelism are now decoupled.
There is no longer a one-to-one mapping between tasks and transactions, instead more
fine-grained parallelism becomes possible. When introducing transactional tasks, the
parallelism is increased while the granularity of transactions remains the same.

No semantic transparency

Transactional futures are not semantically transparent (cf. Section 2.3.2 on page 18):
wrapping fork around an expression in a transaction changes the semantics of the
program. As explained in Section 4.1, this was already the case for non-transactional
futures that start their own transaction: they also do not necessarily evaluate to the
same result every time.

Violating semantic transparency is a necessary compromise to achieve our goal
of executing tasks in parallel. If a transactional task were semantically transparent,
its effects on the transactional state would need to be known at the point where it is
created, before the parent task can continue. Therefore the child task and its parent
would need to be executed sequentially. Instead, we opt to give up on full determinacy
as a necessary compromise to achieve efficient parallel execution of tasks, and instead
guarantee ‘only’ intratransaction determinacy.

Nonetheless, we argue that we maintain the “easy parallelism” of futures. First,
intratransaction determinacy ensures that the order in which the instructions of the
transactional tasks are interleaved does not affect the result. Second, transactional fu-
tures have a straightforward and consistent semantics of how the transactional effects
of tasks are composed. Each task can modify the transactional state, but its effects
become visible in a single step only when it is joined, and conflicts are resolved deter-
ministically.

80

4.5 Related Work

Transactional tasks are like nested transactions

A transactional task makes a read-only snapshot of the transactional state upon its
creation, and stores its modifications in a local store. This mirrors closely how a reg-
ular transaction (conceptually) creates a read-only copy of the transactional heap at
its creation and stores its modifications in a local store. We could say that, while it
is not syntactically shown, a transactional task starts a ‘nested transaction. This simi-
larity should provide a familiar semantics to developers. The differences with nested
transactions in the existing literature, particularly our different join semantics, are dis-
cussed in Section 4.5.

Non-transactional futures maintain their semantics

Futures that are created outside a transaction have the same semantics in our model as
before (in Ly): these non-transactional tasks cannot access or modify the transactional
state directly. They can of course still create a transaction themselves and modify the
transactional state indirectly, as discussed earlier in Section 4.1.

4.5 | Related Work

We describe four categories of related work: nested and parallel transactions, Java
Transactional Futures, deterministic concurrency models with shared memory, and
models that allow parallel tasks to safely access shared memory.

4.5.1 Nested, Parallel, and Nested Parallel Transactions

There is a wide range of work on nested, parallel (or “multithreaded”), and nested
parallel transactions. We provide an overview and delve deeper into nested parallel
transactions.

Nested transactions

Nested transactions are transactions created in the context of another transaction
[Moss 1981, Beeri et al. 1989, Moss and Hosking 2006, Moravan et al. 2006, Ni et al.
2007]. They were already discussed in Section 3.3.3 (page 64), where we explained the
difference between open and closed nesting. Nested transactions commit indepen-
dently from their parent, and therefore can fail separately. Thus, when a nested trans-
action encounters a conflict, only a portion of the work needs to be retried, potentially
improving the performance of large transactions. In contrast to transactional futures,
nested transactions do not execute in parallel: they correspond to nested atomic blocks

81

Chapter 4: Transactional Futures

and not the nesting of fork in atomic. They merely improve performance by limiting
the cost of a retry (which our approach does as well), not by introducing parallelism.

Internally parallel transactions (or multithreaded transactions)

Transactions in which multiple threads are spawned are multithreaded transactions
[Haines et al. 1994]. They occur when libraries that use threads are called in a trans-
action. They work like the ‘naive’ combination we described in Section 4.2: unlike
transactional futures, threads in a transaction do not run within their parent’s trans-
actional context. To access transactional memory, a new transaction must be created,
but this new transaction is independent from its parent and thus does not roll back
when the parent does, breaking serializability.

Moore and Grossman [2008] provide two variations of the spawn construct that
create two sorts of threads when used in a transaction: internally parallel and on-
commit threads. Internally parallel threads run within the transaction’s context, so
they can access its state, but there is no isolation between the threads. Therefore, race
conditions are possible between internally parallel threads of the same transaction.
On-commit threads are executed after the transaction commits. They do not break the
isolation of the transaction, but they are limited: as they run outside the transaction’s
context, they cannot access the transactional state. (A similar technique called atomic
deferral has been introduced by Zhou et al. [2017].)

Dabrowski et al. [2013] define the Atomic Fork Join language which mixes atomic
sections and fork/join parallelism. Dabrowski et al. [2015] formalize this notion of
serializability for transactions with internal parallelism: when threads are spawned
within a transaction, they are not seen as ‘interfering threads’ and are allowed to con-
flict. An atomic section is isolated towards the rest of the program, but inside an
atomic section several threads may run at the same time.

Nested parallel transactions

Transactional Featherweight Java combines nested and multithreaded transactions
[Vitek et al. 2004]. When a transaction spawns a thread, the new thread inherits the
transactional environment of its parent, like the internally parallel threads of Moore
and Grossman [2008]. This can lead to race conditions, which are avoided by starting
a new, nested transaction in the child thread. When a nested transaction commits, its
changes are written to its parent’s write set, similar to transactional futures. However,
conflicts between child and parent are explicitly forbidden: the value of a variable in
a child must be the same as its value in the parent.

Nested parallel transactions (NPTs) are nested transactions that run in parallel [Agrawal
etal. 2008, Barreto etal. 2010, Baek etal. 2010, Volos et al. 2009]. They are very similar

82

4.5 Related Work

to transactional futures, differing mostly in how conflicts within a transaction are han-
dled. We call these intratransactional conflicts and study them in more detail here.
To clarify the differences between both models, we use the examples from Agrawal
et al. [2008].

Listing 4.7a shows a program in which four threads update a shared variable x,
increasing it with 1, 10, 100, and 1000. There is no synchronization in this example,
so race conditions are possible: every thread executes a read followed by a write on
x, but x may have been updated by another thread in the mean time. This program
therefore has 11 different possible outputs, listed in the table shown in Listing 4.7.

NPTs resolve intratransactional conflicts using the traditional serializability of trans-
actions: when two nested transactions conflict, one of both will roll back and retry.
Listing 4.7b adds transactions to the previous program so that three threads use a
transaction while one does not. Using NPTs, this program has two possible outputs:
1111 when all write operations succeed or o111 when the thread without a transaction
overwrites its sibling.

The same code can run using transactional futures. It will always produce the
same output: 1010 when using the default conflict resolution function (which takes
the value from the child), or 1111 (arguably the only expected result) when using a
conflict resolution function designed for sums. Note that, when using transactional
futures, it does not matter whether threads start a new transaction (nested atomic) or
not; they are part of the encapsulating transaction in any case. A programmer can
thus never forget an atomic; everything is safe by default.

The advantage of NPTs is that they use the same, familiar semantics to resolve con-
flicts both inside and between transactions. However, they do not guarantee determi-
nacy, as it is unpredictable which transactions will roll back. In contrast, transactional
futures resolve conflicts differently depending on whether they occur inside a trans-
action or between transactions. Intratransactional conflicts (i.e. inside a transaction)
are resolved deterministically using conflict resolution functions, thus guaranteeing
intratransaction determinacy, and without causing a rollback. Intertransactional con-
flicts (i.e. between transactions) are resolved using the traditional rollback mechanism,
guaranteeing serializability but not determinacy.

Transactional futures thus expose two conflict resolution models. This is a result
of the fact that they are a combination of two concurrency models with different prop-
erties: futures guaranteeing determinacy and transactions guaranteeing serializability.
Using the transactional futures presented in this dissertation, developers can choose
which model is applicable for each part of their application, and they can combine and
nest both in each other.

NPTs and transactional futures have different performance characteristics. Both
models allow the same amount of parallelism. In an application without intratransac-

83

Chapter 4: Transactional Futures

1 (def x (ref 0))
> (let [a (fork (ref-set x (+ @ 1)))
b (fork (ref-set x (+ @x 10))

3

4 (let [c (fork (ref-set x (+ @x 100)))

5 d (fork (ref-set x (+ @x 1000)))]
6 (join c)

7 (join d)))]

s (join a)

s (join b))

(a) A program in which four threads modify a shared variable. There is no synchronization in
this example. (This is a translation of Figure 1 from Agrawal et al. [2008], with their construct
parallel { a } { b } changed to the corresponding fork and join constructs.)

1 (def x (ref 0))

> (atomic 1o

3 (let [a (fork (atomic (ref-set x (+ @x 1)))) Tt

4 b (fork (atomic it

5 (ref-set x (+ @x 10))

6 (let [c (fork (ref-set x (+ @x 100))) ; no transaction
7 d (fork (atomic (ref-set x (+ @x 1000))))] ;t3

8 (join c)

9 (join d))N1

10 (join a)

11 (jOin b))

(b) Four threads modify a shared variable, three use transactions and one does not. (This is
Figure 3 from Agrawal et al. [2008].)

‘0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111‘#

(a) no sync o |11
(b) NPT . e (2
(b) TF default o 1
(b) TF custom o |1

(c) Possible outputs of the program in (a) without synchronization, and the program in (b)
when using Nested Parallel Transactions (NPT), Transactional Futures (TF) with the default
conflict resolution function, and Transactional Futures using the custom conflict resolution
function (fn [p c o] (+ p (- c 0))). The last column sums the number of possible out-
puts.

Listing 4.7: How conflicts are resolved without transactions, using nested parallel transactions,
and using transactional futures.

84

4.5 Related Work

tional conflicts, both models operate equivalently. However, in our motivating exam-
ple (the Labyrinth application) such conflicts frequently occur: the parallel expansion
of the breadth-first search causes conflicts on overlapping cells. In this application,
NPTs would cause frequent rollbacks of the inner transactions, essentially sequential-
izing them, detrimental to performance. Transactional futures resolve these conflicts
without a rollback. In fact, NePaLTM is an implementation of NPTs that always uses
mutual exclusion locks on nested transactions, sequentializing them, exactly to im-
prove performance as these conflicts occur often [Volos et al. 2009].> Hence, in ap-
plications with many intratransactional conflicts, we expect transactional futures to
perform better. We look at the performance of transactional futures for the Labyrinth
application in Section 9.2.

A final difference is that transactional futures allow a more fine-tuned conflict res-
olution, for example in Labyrinth where the shortest path (minimum) is preferred.
However, they rely on the developer for an appropriate conflict resolution function.
The example shown in Listing 4.7 also demonstrated how the conflict resolution func-
tion affects the end result.

Coordinated nested transactions (or coordinated sibling transactions)

Last, coordinated sibling transactions extend nested parallel transactions with com-
bination operators. Ramadan and Witchel [2009] criticize NPTs for their conflict res-
olution model: NPTs will only run in parallel if they do not conflict, i.e. if they are
independent, but “the fact that the work was put into the same transaction to start
with makes complete independence unlikely”. Instead, they allow sibling transactions
to be composed with three operators: OR, AND, and XOR. Sibling transactions always
return either success or failure.

« The OR operator has the same semantics as normal nested transactions: siblings
are executed in parallel and can succeed or fail independently. Any sibling that
fails is retried.

o The AND operator is used when the siblings should either all succeed or all fail.
When one sibling fails, the others are aborted too.

« The XOR operator is used for speculative parallelism: the effects of the first sibling
that succeeds are committed. When one sibling succeeds, the others are aborted.
This is useful to parallelize search algorithms for instance, where as soon as a result
is found by one thread the others can be aborted.

5Volos et al. [2009] say “Previous work by Agrawal et al. [2008] has shown that such a design is
complex and its efficient implementation appears to be questionable” and “We initially considered an
alternative design where transactional concurrency control is used at all nesting levels. However, we
eventually abandoned it in favor of the one [in which all nested transactions are sequentialized.]”

85

Chapter 4: Transactional Futures

Coordinated sibling transactions make it possible to express different kinds of paral-
lelism inside a transaction, but arguably introduce quite complex constructs in doing
sO.

4.5.2 Java Transactional Futures

Independently from our work, Zeng et al. [2015, 2016] developed Java Transactional
Futures (JTFs). JTFs start from the same observation as we did: by combining futures
and transactions, intratransaction parallelism can be exploited. They also encounter
the same problems: how can a consistent view be ensured and how should conflicts be
resolved, when multiple futures that run in the same transaction access the same trans-
actional variables? However, their solution is different to ours: JTFs opt to maintain
the semantic transparency of futures.

We describe the fork and join semantics of JTFs, discuss its properties and per-
formance, and then highlight the differences with our transactional futures using an
example.

Fork The fork semantics of JTFs is essentially the same as that of our transactional
futures. When a future is forked, it is automatically wrapped in an atomic block and
evaluated as a child transaction. Both the child and parent run in new transactional
contexts, which are forked off the original context. The child runs in the future; the
parent is said to be running in its continuation; and the original context is referred to
as the snapshot.

Join On the other hand, the join semantics of JTFs is very different from ours.
JTFs maintain the semantic transparency of futures. Therefore, after the future and
continuation have finished their execution, the changes from the future are applied to
the snapshot first, and then followed by the changes of the continuation. If the future
and continuation conflict, the continuation must roll back and retry.

Properties JTFs provide intratransaction determinacy, just like our transactional
futures: given the state of the transactional memory at the start of the transaction, it
can only have one result. In contrast to our transactional futures, JTFs maintain the
semantic transparency of futures too though. The result of a transaction is therefore
the same as if it ran without futures.

Performance The choice to maintain semantic transparency has an effect on per-
formance. When a future and its continuation conflict, the continuation needs to roll
back and retry. In our motivating example, the Labyrinth application, these kinds
of conflicts are frequent: in every layer of the breadth-first search algorithm, many
cells are expanded in parallel, and but as these cells often are neighbors, many of the

86

4.5 Related Work

newly expanded neighbors are likely to overlap. Because our transactional futures re-
solve these conflicts instead of rolling back, we expect performance for the Labyrinth
application to be better using our transactional futures. (We evaluate the Labyrinth
application in Section 9.2 and observe that conflicts have a large impact on perfor-
mance.) Our transactional futures forsake semantic transparency to avoid rollbacks
in the transaction.

Example and comparison =~ We compare our transactional futures, JTFs, and NPTs
using the example in Listing 4.8. It contains two transactional variables, a and b, ini-
tialized to o and 1 respectively. A future is created in which a is set to 2 (line 4). At the
same time, in the original thread, b is set to the current value of a (line 5). Afterwards
the future is joined back into the original thread. Figure 4.9 depicts the execution trace
for this program using the three models. The three models differ in which value of a
is seen by the original thread on line 5, and how conflicts are resolved on line 6:

o Our transactional futures (Figure 4.9a) execute both threads in isolation, so the
original thread will never see the updated value of aand b is always set to o online 5.
On line 6, the new value of a is merged into the original thread, and no conflicts
occur as we do not consider read-write “conflicts” The end result is always a =
2 and b = o, guaranteeing determinacy and avoiding rollbacks in the transaction,
but breaking semantic transparency.

o JTFs (Figure 4.9b) also evaluate both threads in isolation, so the original thread
setsbto o online 5 in its first attempt. The results from the future are merged before
those of the continuation. When the continuation attempts to merge its changes
back into the main thread, a conflict occurs, and the continuation rolls back and
retries. In the second attempt, b is set to the new value of a: 2. The end result is
always a = 2 and b = 2, guaranteeing determinacy and semantic transparency, but
introducing rollbacks in a transaction, thus increasing execution time.

o NPTs (Figures 4.9b and 4.9¢) serialize the two nested transactions, leading to two
possible results. Either the future commits first, followed by the original thread: in
this case the original thread encounters a conflict and retries, eventually resulting
in a = 2 and b = 2. This execution is equivalent to JTFs. Otherwise, the original
thread commits first, followed by the future: this does not cause a conflict, and
results in a = 2 and b = 0. NPTs do not guarantee determinacy or semantic trans-
parency, but do uphold serializability between the nested transactions.

A summary of the properties of the three models is shown in Table 4.10.

4.5.3 Concurrent Revisions and Worlds: Deterministic Shared Memory

In this section, we describe two models that provide deterministic access to shared
memory. The semantics of fork and join in transactional futures is inspired by both.

87

Chapter 4: Transactional Futures

(def a (ref 0))
(def b (ref 1))
(atomic

(let [f (fork (atomic (ref-set a 2)))]

(ref-set b @a)
(join 1)))
(print @a @b)

Listing 4.8: Example that demonstrates the different join semantics of our TFs, JTFs, and NPTs.
(The underlined atomic may be elided when using JTFs and our TFs.)

a=20
b=1
(ref-set b @a) (ref-set a 2)
a=0" a=2"
b=0" b=1
a=2"
b=0"

(a) The only result using our
TFs.

a=0
b=1
(ref-set b @a) (ref-set a 2)
a=0" a=2"
b=0" b=1
0 — 9w
b=1
conflict
|
(ref-set b @a) |
a=2" :
b = 2117 ‘
| a = 2w
b=2"

a =
b=

(ref-set b @a)
a=0"
b=0"

(b) The only result using JTFs; (c) Second of two results using
also one of two results using NPTs.

NPTs.

Figure 4.9: Execution traces of Listing 4.8. Read effects are indicate with the subscript ", write
effects with *. Using our TFs the result is always a = 2, b = 0 (a), using JTFs the result is
always a = 2, b = 2 (b), and using NPTs the result is eithera =2, b =0(c)ora=2,b =2

(b).

TF JTFE NPT
Serializability of top-level transactions 4 4 v
Intratransaction determinacy v/ v X
Semantic transparency X 4 X
No rollback in transaction v/ X X

Table 4.10: Properties of our Transactional Futures (TF), Java Transactional Futures (JTF), and
Nested Parallel Transactions (NPT).

88

4.5 Related Work

Concurrent Revisions are a model for task parallelism with shared memory by Burck-
hardt et al. [2010]. The semantics of transactional futures was inspired by Concurrent
Revisions. They introduce concurrent tasks (called revisions) that can share memory
using versioned variables. When a task is forked, a conceptual copy is made of the
versioned variables; when a task is joined, the modified variables are merged into the
joining task. This is identical to how transactional variables behave inside a transac-
tion in our model. Furthermore, our conflict resolution mechanism is based on that of
Concurrent Revisions, which also relies on deterministic conflict resolution functions
for each variable.

The difference with our work that we ensure serializability between the transac-
tions and determinacy in the transactions, while Concurrent Revisions provide deter-
minacy for the complete program. Transactional futures thus allow two concurrency
models to be combined: deterministic futures and non-deterministic but serializable
transactions.

Burckhardt et al. [2010] note that, as Concurrent Revisions never require a roll-
back, they are suited for programs in which conflicts are likely. This is also why we
opt for this kind of conflict resolution in a transaction: we reason that conflicts be-
tween tasks that are put together in one transaction are likely. Top-level transactions
are usually unlikely to conflict.

A similar model is provided by Worlds [Warth et al. 2011}, in which the program
state is reified as a world. The world can be forked into a child world, a conceptual
copy of all program state. The state in a child world can be updated, and eventually
committed back (merged) into its parent world. As such, worlds also behave similarly
to the transactional variables in a transaction and to Concurrent Revisions. However,
the Worlds model does not provide parallelism: a child world does not run in parallel
with its parent. Instead, Worlds are used as a mechanism to ‘undo’ changes made to
the program state. Consequently, when a child world is merged into its parent there
will be no conflicts, as the parent has not changed in the mean time. In the case of
transactional futures and Concurrent Revisions, it is possible for the parent to have
changed as well, and a form of conflict resolution between parent and child is needed.

4.5.4 Parallel Tasks With Safe Access to Shared Memory

We list related work that provides safety guarantees on access to shared memory from
parallel tasks.

Kogan and Herlihy [2014] consider a system in which method calls on shared objects
run asynchronously, returning a future. Different threads can call methods on the
same object concurrently, and as these methods may have side effects, this can result

89

Chapter 4: Transactional Futures

in unexpected interleavings of their side effects. The authors define three correctness
criteria on the order of the interleavings: strong, medium, and weak futures serializ-
ability. Strong futures linearizability corresponds to semantic transparency: concur-
rent calls execute as if they were sequential. The authors note that, while this property
is easy to reason about, it rules out many interesting optimizations. Medium and weak
futures linearizability allow the effect of a future to occur at any moment between its
creation and its join. The intratransaction determinacy of transactional futures could
arguably be seen as a form of medium futures serializability.

Deterministic Parallel Java enforces safe access to shared memory by using an effect
system [Bocchino et al. 2009b], and can thus guarantee determinism. The heap is
partitioned into regions, and a list of effects is attached to each method to indicate
which regions it reads from and writes to. At compile time, these effects are checked
to prevent unsafe accesses. Heumann et al. [2013] extend Deterministic Parallel Java
to allow a more flexible tasks with effects model. The compiler checks whether the
effects correctly describe the memory accesses in each task, and at run time, an ‘effect-
aware’ scheduler ensures that no tasks with interfering effects run at the same time.

Aminium is a language in which every method is annotated with the permissions
it needs on shared memory it accesses: unique (exclusive), immutable, or shared ac-
cess [Stork et al. 2009, 2014]. By default, code is executed concurrently; the use of ef-
fects limits concurrency where necessary to guarantee the absence of race conditions.
ZAminium thus allows parallel tasks to access shared memory safely.

Otello allows parallel tasks to access shared memory, while still running the tasks in
isolation [Zhao et al. 2013]. To this end, it introduces assemblies, which consist of
a task and the set of shared objects it owns. When two assemblies conflict, one is
reexecuted after the other has finished. However, while Otello reexecutes code, it does
not provide transactions and as such does not guarantee serializability.

4.6 | Summary

In this chapter, we examined on the one hand the creation of transactions in futures,
yielding parallel transactions, and on the other hand the creation of futures in trans-
actions, which we call transactional futures.

Creating a transaction in a task is standard behavior in languages that support
transactions; it is a prerequisite to run transactions in parallel. It inevitably breaks
the determinacy of futures, but maintains the isolation and progress guarantees of
transactions.

90

4.6 Summary

Creating a future in a transaction is more complicated. In existing languages and
frameworks, this is either not allowed or it breaks the isolation of the transactions.
Hence, we introduced transactional futures, a safe combination of both models. Us-
ing transactional futures, each newly created task is part of the encapsulating trans-
action’s context, with access to its state. Transactional tasks can observe the changes
that occurred before they were created, while they make their modifications in a pri-
vate local store. When they are joined, their changes become visible in their parent
task.

In contrast to a naive combination, transactional futures maintain the isolation
and progress guarantees of transactions. The determinacy that futures normally pro-
vide for the whole program is broken, however, it is replaced by a (weaker) guaran-
tee on intratransaction determinacy. Developer can thus rely on determinacy in a
transaction and isolation between transactions when they combine futures and trans-
actions.

Transactional futures provide some additional useful properties. First, all tasks
of a transaction are coordinated so that the tasks in a transaction behave as a single
atomic block. Second, transactional futures provide a familiar semantics, as they be-
have like a form of nested transactions. Third, non-transactional futures maintain
their semantics.

In Chapter 7, we will formalize the semantics of transactional futures. In Chap-
ter 9, we will demonstrate the performance benefits of transactional futures. We demon-
strate that transactional futures can exploit more fine-grained parallelism within a trans-
action, leading to better performance. Furthermore, we see that by tweaking the num-
ber of transactions that run in parallel and the number of tasks created in each trans-
action, we can lower the chance of conflicts, providing a further boost to performance.
We conclude that the conflict resolution of transactional futures makes them especially
suitable for applications in which ‘intratransactional conflicts” are frequent.

91

Transactional Actors:
Communication Between
Transactions

This chapter examines the combination of transactions and actors. In Section 5.1, we
explain the reasons for combining both models: transactions can be used in actors
to protect synchronous access to shared mutable state, and actors can be used in a
transaction to distribute and coordinate work that can be executed in parallel. We
also establish the problems that occur: the isolated turn principle of actors and the
isolation guarantee of transactions can be broken in a naive combination (shown in
Table 5.1). In Section 5.2, we introduce transactional actors: a combination of transac-
tions and actors that provides the same constructs as its constituent models, but also
defines their semantics when they are combined. We systematically consider each con-
struct of both models and how they can be combined. We list the guarantees provided
by transactional actors in Section 5.3 and discuss to which actor models transactional
actors apply in Section 5.4. Finally, we compare transactional actors with related ap-
proaches in Section 5.5.
We first introduced transactional actors in Swalens et al. [2017].

5.1 | Motivation and Problem Statement

In this section, we motivate the combination of actors and transactional memory. On
the one hand, it can be useful to add transactional memory to an actor system, to

93

Chapter 5: Transactional Actors

Sind Transaction Actor

? Nested transactions Communication in
i (Section 3.3.3) transaction (Chapter 5)
Q
:

] Shared memory Actors
5 in actor (Chapter 5) (Section 3.3.3)
z

Guarantees

Transactions: Isolation Progress

Actors: Isolated Turn Principle Deadlock Freedom

Table 5.1: Combinations of transactions and actors.

share state between actors that is protected using transactions (Section 5.1.1). On the
other hand, it can be useful to send messages to actors from within a transaction, to
distribute work to actors that is coordinated using transactions (Section 5.1.2).

Further, we see that a naive combination of actors and transactional memory can
cause problems. As described in Chapter 2, actors guarantee the isolated turn prin-
ciple and deadlock freedom, while transactions provide guarantees on isolation and
progress. We will see that combining the two models naively breaks these guarantees
(Section 5.1.3).

5.1.1 Using Transactions in an Actor, to Safely Share Memory

In Section 3.1, we established that introducing shared memory in an actor system can
be useful and occurs in practice, based on the results of a study by Tasharofi et al.
[2013]. Here, we show that doing so naively has several disadvantages. De Koster
et al. [2016a] distinguish two types of actor systems: pure and impure systems; we
discuss both separately. Figure 5.2 summarizes the techniques and their disadvantages
discussed in this section.

94

5.1 Motivation and Problem Statement

Type of Technique to

Disadvantages
actor system share memory

- manual consistency protocol

Replication = - increased memory usage

- high cost of copying

- fragmented code
= - no parallel reads
- races and deadlocks possible

Mix with shared-) races and deadlocks possible
memory model

Figure 5.2: Existing techniques to share memory in actor systems and their disadvantages.

Actor systems

Pure actor systems are actor systems that enforce strict isolation between the actors:
the state of an actor is fully encapsulated and can only be accessed using asynchronous
communication with that actor. Erlang is an example of such a system; other exam-
ples are listed in Figure 5.3. These are often languages, which enforce these constraints
by construction. (A notable exception is Kilim, a library that enforces isolation using
static analysis [Srinivasan and Mycroft 2008].) Thanks to the strict isolation, the de-
veloper benefits from strong safety guarantees: low-level data races are prevented by
design.

Because pure actor systems enforce isolation, developers cannot directly use shared
memory in their program. De Koster et al. [2016a] describe two patterns that are used
to represent shared state in these systems instead:

o The first pattern consists of replicating the shared state across the different actors
that need it. Each actor can read the state directly; writes have to be propagated
to each replica. There are several disadvantages to this approach: a consistency
protocol is required, replication increases memory usage, and the cost of copying
may be too high. De Koster et al. [2016a] found that this is a rarely chosen option.

« The second pattern is to encapsulate the shared state in a separate, delegate actor.
Each actor can read and write to the state using asynchronous messages. This
approach also suffers from several disadvantages: code is fragmented and needs
to be written in continuation-passing style, no parallel reads are possible, and race
conditions and deadlocks can still occur due to the unexpected interleaving of read
and write (‘getter’ and ‘setter‘) messages.

We conclude that, because pure actor systems enforce strict isolation, they maintain
the guarantees of the actor model, but representing shared state in them is complex
and error prone. The difficulty of preventing race conditions and deadlocks is pushed
entirely to the developer.

95

Chapter 5: Transactional Actors

Pure actor languages

Erlang
http://www.erlang.org
[Armstrong 2007]
SALSA
http://wcl.cs.rpi.edu/salsa/
[Varela and Agha 2001]
E

http://erights.org

[Miller et al. 2005]
AmbientTalk
http://soft.vub.ac.be/amop/
[Dedecker et al. 2006]
Pony
https://www.ponylang.org
[Clebsch et al. 2015]

Pure actor libraries

Kilim (for Java)

Impure actor languages

D
https://dlang.org

Impure actor libraries

Scala Actors

[Haller and Odersky 2007]

AKka (for Java and Scala)
https://akka.io

Orleans (for C#/.NET)
https://dotnet.github.io/orleans/
Quasar (for Java)
https://github.com/puniverse/quasar
Jetlang (for Java)
https://github.com/jetlang
ActorFoundry (for Java)
http://osl.cs.illinois.edu/software/actor-foundry/
Pulsar (for Python)
https://github.com/quantmind/pulsar

http://www.malhar.net/sriram/kilim/
[Srinivasan and Mycroft 2008]

o haskell-actor (for Haskell)
https://hackage.haskell.org/package/actor
[Sulzmann et al. 2008]

Many more actor systems can be found at https://en.wikipedia.org/w/index.php?title=Actor_
model&oldid=824674140#Actor_libraries_and_frameworks

Figure 5.3: An overview of some pure and impure actor languages and libraries.

Impure actor systems do not enforce strict isolation. Most actor libraries for main-
stream languages are impure, as they extend a language that allows shared memory.
Scala’s actors, for instance, do not prevent developers from using the underlying shared-
memory model of Scala. (More examples are listed in Figure 5.3.) In these systems,
developers can combine actors with shared memory when that is the most natural or
efficient solution.

As we already mentioned in Section 3.1 (page 45), Tasharofi et al. [2013] per-
formed a study of 15 actor programs written in Scala and found that 80% mix the
actor model with another concurrency model. In 6 out of 15 cases (40%), developers
circumvent the actor model in the places where it is not a good fit to their problem.
In some cases, developers introduce shared memory, which they subsequently protect
using locks.

96

http://www.erlang.org
http://wcl.cs.rpi.edu/salsa/
http://erights.org
http://soft.vub.ac.be/amop/
https://www.ponylang.org
http://www.malhar.net/sriram/kilim/
https://hackage.haskell.org/package/actor
https://dlang.org
https://akka.io
https://dotnet.github.io/orleans/
https://github.com/puniverse/quasar
https://github.com/jetlang
http://osl.cs.illinois.edu/software/actor-foundry/
https://github.com/quantmind/pulsar
https://en.wikipedia.org/w/index.php?title=Actor_model&oldid=824674140#Actor_libraries_and_frameworks
https://en.wikipedia.org/w/index.php?title=Actor_model&oldid=824674140#Actor_libraries_and_frameworks

5.1 Motivation and Problem Statement

The disadvantage of this approach is that the guarantees of the actor model are lost:
the assumptions behind the isolated turn principle are broken, hence low-level data races
become possible.

As we will see in the rest of this chapter, this broken guarantee can be reintroduced
by carefully combining actors with transactions, as transactions guarantee isolation.
Thus, using transactional memory, memory can safely be shared between actors.

5.1.2 Using Actors in a Transaction, to Distribute and Coordinate Work

Not only are transactions useful to protect access to shared state between actors, con-
versely, actors are also useful to coordinate work between transactions. We demon-
strate how actors can be used to distribute and coordinate work from within a trans-
action using a travel reservation system. This example is inspired by the Vacation
benchmark from the STAMP suite [Minh et al. 2008].

The code of the example is shown in Listing 5.4. Its input consists of a number
of customers, who want to reserve two flights, a hotel room, and a car (lines 14-16).
These items are stored in transactional memory, so that multiple customers can reserve
them in parallel (lines 1-12). Each reservation consists of three steps: the customer
looks for available flights, cars, and hotel rooms; reserves them; and updates his record
(lines 39-44).

In the original Vacation benchmark, there are a configurable number of worker
actors, over which the customers are evenly distributed. However, we believe better
performance may be achieved by processing the items that form a reservation in sep-
arate actors. (We confirm this performance claim in Chapter 9.) Hence, we create
a variation of Vacation, in which the workers send the reservations of the individual
items to one of a configurable number of ‘secondary” worker actors.

The code then looks as shown in Listing 5.5. However, using traditional actors
and STM, this code does not work as expected! In the transaction, four messages
are sent, and afterwards the transactional variable c is updated (lines 5-10). If another
transaction updates the same variable, this causes a conflict, and the transaction will be
aborted. When the transaction retries, the messages are sent again. This is the spurious
retries problem of Section 3.2.3 (page 53). The problem is that when a transaction
aborts, the messages it sent are not rolled back. As a result, in our example multiple
items can be reserved for the same customer.

We observe that communicating with actors in a transaction breaks its isolation
guarantee: the result of a parallel execution is no longer equal to the result of a serial
execution.

97

[= Y R N

~

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Chapter 5: Transactional Actors

(def flights [(ref {:id "AC855" :price 499

rorig “London” :dest "Vancouver”
:available ["1A" "1B” ..] :occupied []})

1)
(def rooms [(ref {:id 101 :price 100
:location "Vancouver” :beds 5
ravailable [”2017-10-01" ..1 :occupied []})
1)

(def cars [(ref {:id "ABC123" :price 42

:location "Vancouver” :seats 5
:available [”2017-10-01" ..] :occupied []})
1)

(def customers [(ref {:id 0 :orig "London” :dest "Vancouver” :n 3

:start "2017-10-22" :end "2017-10-27" :password nil})
-1)

(defn get-cheapest [items]

; Returns the cheapest item from items.
(first (sort-by (fn [item] (:price @item)) items)))

(defn reserve-flight [orig dest date n-seats]

; Finds the cheapest flight from origto dest on date, and reserve n-seats.
(let [;Filter flights matching the given criteria, with sufficient available seats
filtered (filter (fn [f] (and (= (:orig @f) orig)
(= (:dest @f) dest)
(= (:date @f) date)
(>= (count (:available @f)) n-seats)))
flights)
cheapest (get-cheapest filtered)]
; Move seats from :available to :occupied
(ref-set cheapest (occupy cheapest n-seats))))

; Functions reserve-roomand reserve-car are similar to reserve-flight

(defn process-customer [c]

98

; Process a customer: find and reserve two flights (outbound and return), a car, and a room,
;and generate a password.
(atomic
(reserve-flight (:orig @c) (:dest @c) (:start @c) (:n @c))
(reserve-flight (:dest @c) (:orig @c) (:end @c) (:n @c))
(reserve-room (:dest @c) (:n @c) (:start @c) (:end @c))
(reserve-car (:dest @c) (:n @c) (:start @c) (:end @c))
(ref-set c (assoc @c :password (generate-password)))))

Listing 5.4: The Vacation benchmark. (Code has been modified for clarity.)

1

2

®© N v s w

11
12
13
14
15
16

17

5.2 Transactional Actors

(def customer-behavior
(behavior [id] [c]

; Process a customer: find and reserve two flights (outbound and return), a car, and a room

; (all in worker actors), and generate a password

(atomic
(send (rand-nth secondary-workers) :flight (:orig @c) ..
(send (rand-nth secondary-workers) :flight (:dest @c) ..
(send (rand-nth secondary-workers) :room (:dest @c) ..
(send (rand-nth secondary-workers) :car (:dest @) ..
(ref-set (assoc @c :password (generate-password))))))

[T 1

(def reserve-behavior
(behavior [id] [type & args]
(case type
:flight (atomic (apply reserve-flight args))
:room (atomic (apply reserve-room args))
.car (atomic (apply reserve-car args)))))

Listing 5.5: An adapted version of the Vacation benchmark, with secondary worker actors.

5.1.3 Problem Statement

We establish that combining actors and transactions can be useful, but leads to broken
guarantees (shown in Table 5.1):

« When two or more actors can synchronously access shared, mutable state, the iso-
lated turn principle is broken. Consequently, race conditions that were prevented
by the actor model can reappear.

« When sending messages in a transaction, the transaction’s isolation guarantee is
broken. Sending messages is a side effect that is not rolled back when the transac-
tion is.

These issues complicate combining both concurrency models in a single application,
as the guarantees that developers expect are no longer true. These problems hinder
composability: when one model is most suitable for one component of the application,
and another model fits another component, the developer cannot safely use both. They
also hinder reusability: including a library that uses one model in an application that
uses another may lead to incorrect results.

5.2 | Transactional Actors

The problems described in the previous section, breaking the isolated turn principle
of actors and the isolation of transactions, occur because the semantics of the combi-
nation of two concurrency models is not well defined. In this section, we solve this
by defining transactional actors. Transactional actors provide the same constructs as

99

Chapter 5: Transactional Actors

the original actor model and the STM model, described in Chapter 2, but also define
a meaningful semantics when their constructs are combined.

We systematically consider how the constructs of each model can be nested in
the other. The two models each provide a concurrent construct that contains nested
code: behavior for actors and atomic for transactions. Hence, we study the following
combinations: (These correspond to the two cells combining transactions and actors
from Table 5.1.)

Transaction in Actor Actor in Transaction
behavior containing: atomic containing:
o atomic(1) « behavior

. ref@ . spawn@
o deref(2) o send(4)
. ref-set(2) + become (4)

We distinguish four categories:

(1) Embedding atomic in behavior may execute a transaction in the actors that are
spawned with that behavior. This transaction is bound to the current actor.

@ Manipulating transactional state using ref, deref, or ref-set follows the canon-

ical semantics of transactions: these actions are only allowed when a transaction
is running, and operate within its context. No special semantics is needed when
this occurs in an actor.
A behavior can be defined in a transaction. The behavior is separate from the
transaction in which it is defined: when an actor is spawned with the behavior, at
a later time, it no longer has access to the transaction in which the behavior was
defined. Hence, a behavior can be defined in a transaction as it can anywhere else,
and no special semantics is needed.

@ spawn, send, and become enclose a side effect. Therefore, when they occur in a
transaction, their effect should become part of the transaction.

We now discuss these four cases in more detail.

5.2.1 Using Transactional Memory in an Actor

A transaction can run in an actor, inside atomic (1). Similar to a thread-based trans-
actional system, where each thread can have one active transaction, here too, each
actor can have one transaction active at a time. Manipulating transactional state (2)
works within the context of the transaction that is active in the current actor. There-
fore, transactions run in actors as they do in thread-based systems. This occurs in
Listing 5.4, when the function process-customer is called in an actor and executes a
transaction.

100

5.2 Transactional Actors

5.2.2 Manipulating Actors in a Transaction

While defining a behavior in a transaction (3) might seem strange, it does not pose any
particular difficulties, as it is an idempotent operation. Defining a behavior is similar
to defining a function: the code it contains is not executed when it is defined, but at
a later time, in a new actor. A behavior can refer to variables in its lexical scope; it is
essentially a closure. It does not have access to its encapsulating transaction: while it
can refer to transactional variables in its lexical scope, any operations on them must
be protected with a new transaction.

Spawning an actor, sending a message, or becoming a new behavior (4) are actions
with a side effect. Using these in a transaction requires special semantics, so that they
can roll back. Transactional actors make these operations part of the transaction in
which they occur.

Regular transactional systems use two techniques to incorporate side effects into
a transaction. The first technique is to pessimistically delay the side effect until it is
certain the transaction will commit successfully. For example, an update to a trans-
actional variable is only visible locally at first, the global update is delayed until the
transaction commits. In case the transaction aborts, the effect is discarded. The sec-
ond technique is to optimistically perform the side effect immediately, but roll back the
effect if the transaction aborts, using a compensating action. For example, in transac-
tional systems with open nesting [Ni et al. 2007], one transaction can be nested in
another, and commit separately. If the outer transaction aborts, the inner transaction
needs to roll back, which relies on the developer specifying a compensating action.

We handle the side effect of each actor construct with the appropriate technique:

spawn Spawning a new actor in a transaction is delayed until the transaction com-
mits. Spawning an actor is a costly operation: memory is allocated for the new actor
and its inbox, a thread is created, and the actor’s execution then starts on that thread.
Hence, taking these three steps and rolling them back if the transaction aborts is not a
good idea: each attempt of the transaction would incur this cost over and over again.
Delaying the operation until the transaction commits ensures that this cost is only
paid once.

become Become is delayed by construction, even in the original actor model: its
effect only takes place upon the start of a new turn. As a transaction cannot span
multiple turns, it will always be committed before the effect of become becomes visible.
Hence, it does not matter whether we delay or roll back become: both have the exact
same cost and result.

send When a message is sent in a transaction, we optimistically send the message
immediately to the receiving actor, possibly needing to roll back its effects if the trans-

101

Chapter 5: Transactional Actors

(behavior [] [msg]

(atomic
(send b :msg) -H (behavior [] [msg]
) l.)

wait here until t1 commits

(a) A message sent from a transaction depends on that transaction. The turn that processes
the message is tentative: at the end of the turn, we wait for the transaction to commit or abort,
upon which the turn’s effects are persisted or discarded.

(behavior [] [msg]

(atomic
(send b :msg) ? (behavior [] [msg]
2)) (send c msg)H (behavior [] [m]
2 M 1)
wait here until t1 commits wait here until t1 commits

(b) When a message is sent in a tentative turn, the dependency is forwarded: the second mes-
sage also depends on transaction 1. Both messages are processed tentatively.

(behavior [] [msg]

(atomic
(send b :msg) H (behavior [] [msg]
) e (
)
...) wait here until t1 commits
no need to wait
(c)Ifa is started in a tentative turn that depends on a first transaction, the

second transaction can only commit affer the first. If the first transaction fails, the second fails
upon its commit and the turn is aborted there. Note that it is no longer necessary to wait at
the end of the turn: if we reach this point, we know the first transaction succeeded.

(behavior [] [msg]

(atomic
(send b :msg) H (behavior [] [msg]
) M (
(send c :msg)/\)—)(behavior [1 [m]
) wait here until)
t1 commits

no need to wait wait here until 12 commits

(d) When a message is sent in a transaction in a tentative turn, the message depends on this
transaction, and not the encompassing turn. The third actor will only proceed when
commits, which can only happen when transaction 1 committed as well.

Figure 5.6: Different cases of messages sent in transactions, and their dependencies. Each
behavior runs in a different actor. The orange and green lines indicate ‘tentative’ sections of
code: either a transaction (in an atomic block), or a turn that depends on a transaction. A
message’s dependency is indicated through its color and number (1 or 2).

102

5.2 Transactional Actors

action aborts. Sending a message is not expensive: it only consists of putting a message
in the receiver’s inbox (although this requires taking a lock). Immediately sending the
message increases parallelism though: the receiver can already process the message
before the sender’s transaction has completed.

However, this implies that a message may now need to be retracted: when the
transaction it was sent in aborts, the message and its effects need to be ‘unsent. We
say that messages sent from within a transaction have a dependency on the transaction.
There are now two types of messages: those sent outside a transaction have no depen-
dency and are definitive, those sent within a transaction have a dependency and are
tentative.

This has an impact on the receiver of a tentative message, as illustrated in Fig-
ure 5.6a. When an actor takes a tentative message from its inbox, the turn that pro-
cesses it also becomes tentative: the message is processed, but the effects it causes
should not be persisted yet. Even though this turn is not a transaction, it executes in
the same ‘tentative’ manner, as its effects can roll back. When a tentative turn ends,
the actor waits until the transaction on which it depends has committed. After a suc-
cessful commit of its dependency, the actor can continue to its next turn, and we say
the turn was successful. If its dependency aborts, the tentative turn fails and its effects
are discarded. The actor then processes the next message in its inbox as if nothing
happened.

Now that turns can be tentative and may roll back just like transactions, we need to
look at which actions with a side effect can occur in this context, as they can roll back
too. First, let us look at the constructs of actors. When become and spawn are used in a
tentative turn, their effects are handled as above when they appeared in a transaction:
their effect is delayed until the turn is successful, or discarded if it fails. On the other
hand, send in a tentative turn immediately sends a message, but forwards the current
dependency with it, so that its receiver will also depend on the original transaction
(Figure 5.6b).

Second, a tentative turn may contain another transaction (as in Figures 5.6¢ and
5.6d). In other words, a first actor is executing a first transaction, in which it sends a
message to a second actor, and when the second actor processes this message, it starts
a second transaction. We say that the second transaction depends on the first. There
are two serializations of these two transactions: either the first transaction commits
before the second, or vice versa. However, because the second transaction is executed
as a result of the first, the only valid serialization is the one in which the second trans-
action is preceded by the first. Therefore, the second transaction needs to wait before
it commits, until the transaction it depends on has committed.

The different cases described in this section are summarized in Table 5.7. There are
three execution contexts: (1) in a transaction, (2) out a transaction but in a tentative

103

Chapter 5: Transactional Actors

Not in a transaction In a transaction
Definitive turn Tentative turn
behavior As before
become Delayed until end of turn
spawn Immediate Delayed (pessimistic) Delayed (pessimistic)
send Immediate Immediate (optimistic), | Immediate (optimistic),
dependency forwarded dependency on tx
atomic Immediate Immediate (optimistic), | Immediate (optimistic)
but wait before commit with closed nesting
ref, deref, | Not allowed Not allowed As before
ref-set

Table 5.7: How the constructs on actors and transactions are executed in the three different
contexts. Constructs in gray work as before, blue indicates the side effect is pessimistically
delayed until the end of the tentative section (turn or transaction), green indicates the side
effect is optimistically performed immediately but rolled back on conflict.

turn, and (3) out of a transaction in a definitive turn. We will use the term tentative
section to refer to both transactions and tentative turns: portions of the code in which
spawn and send are executed ‘tentatively’

5.3 | Properties of Transactional Actors

Transactional actors guarantee isolation of the transactions, low-level race freedom,
and deadlock freedom. We describe these here and discuss them more formally in
Section 7.3 of Chapter 7.

5.3.1 Isolation of the Transactions

Transactional actors maintain the isolation guarantee of their transactions. In a naive
combination of transactions and actors, the operations on actors inside a transac-
tion cause side effects, thereby breaking isolation (as in the Vacation example in Sec-
tion 5.1.2). Transactional actors incorporate these operations into the transaction, so
that they succeed or fail depending on whether the transaction commits or aborts, as
explained in Section 5.2.2. For other actors and transactions, all effects inside a trans-
action thus appear to take place at the moment the transaction commits, maintaining

104

5.3 Properties of Transactional Actors

the isolation guarantee of the transactional system (serializability, opacity, or snapshot
isolation).

As was illustrated in Figure 5.6¢, when a (first) transaction causes a second trans-
action to start in another actor, the effects of the second transaction will only occur
if and when the first transaction succeeded and the second transaction has no con-
flicts. These effects also occur in a single atomic step, and this always happens after
the dependency committed. Hence, serializability is maintained, but there is only one
valid serialization: the transaction with a dependency must be proceeded by its depen-
dency.

Effects of a tentative turn that does not contain a transaction (these are the actors
it spawned and its become construct) also only occur after the dependency succeeded.
Again, serializability is maintained, as the order in which effects appear to other actors
and transactions is equivalent to a serial execution.

5.3.2 Low-Level Race Freedom (Replacing the Isolated Turn Principle)

Transactional actors break the isolated turn principle: the ‘isolation’ assumption be-
hind the isolated turn principle, defined in Section 2.5.3 on page 38, was that there
is no shared state, which is obviously no longer true after transactional memory is in-
troduced. For instance, when a turn contains a transaction followed by other code,
the effects of the transaction already become visible before the turn has finished, and
therefore the turn is no longer ‘isolated. (The two other assumptions - consecutive
and continuous message processing — are upheld by transactional actors.)

However, transactional actors still prevent races, as all accesses to shared memory
are protected by transactions. While the actor model guaranteed freedom from low-
level races by prohibiting shared memory, transactional actors allow shared memory
but require it to be encapsulated in a transaction. This extends the actor model with
safe, shared memory.

Traditionally, actors guarantee a consistent view of the memory during a turn, as
the only memory that can be accessed synchronously is the private memory of the
current actor, which cannot be modified by another actor. Transactions guarantee a
consistent view of the memory during a transaction: even when other transactions
modify the memory, the transaction still sees the values that existed when it started.
Transactional actors combine both: during a turn, the actor has a consistent view of
its private memory, and during a transaction, it has a consistent view of the shared
memory.

It is this property we call freedom from low-level races: it is not possible to intro-
duce a race on the private memory of an actor within a turn, or on shared memory
within a transaction. Race conditions on the private memory of actors can only occur
because of a bad interleaving of turns, as they can in the original actor model; race

105

Chapter 5: Transactional Actors

conditions on shared memory can only occur because of a bad interleaving of trans-
actions, as they can in the original transactional model. At the ‘level’ of turns and
transactions, races are impossible.

In summary, using transactional memory, developers can reason about their code
at the level of transactions; using the actor model, they can reason at the level of turns,
and transactional actors enable developers to reason at the level of transactions and
turns. They do not need to care about how the individual instructions within turns
and transactions are interleaved, only about how turns and transactions as blocks are
interleaved.

5.3.3 Deadlock Freedom

Transactional actors maintain the deadlock freedom offered by transactions and actors.
This is not immediately obvious. To substantiate this, we need to look at the constructs
that can block, and show that they cannot lead to a deadlock. We introduced blocking
in two instances: at the end of a tentative turn, and at the end of a transaction in a
tentative turn. In both cases, the current actor is blocked until the transaction on
which it depends commits or aborts. Could this lead to a deadlock? In other words,
could it happen that a transaction tx, is waiting for another transaction tx;, to finish,
and vice versa — a cyclical dependency between transactions?
First, two observations:

1. When a message with a dependency on tx, is received, the turn that processes
that message becomes tentative, depending on tx,. A dependency is thus always
introduced when at the start of a turn.

2. Each transaction is fully encapsulated by a turn. When a turn starts, no code is
running so no transaction is active. If a transaction is started later in the turn, it
will always be committed before the end of the turn, because its atomic block is
tully encapsulated by the turn. Hence, no transaction is active when a turn starts
or ends, so transactions cannot span turns. As dependencies are only introduced
when a new turn starts, no dependency will ever be introduced while a transaction
is active.

We can now see why dependencies can never be cyclical: a transaction or tentative
turn can only depend on a transaction that started before it started. When a mes-
sage is received with a dependency on tx,, a dependency upon tx, is introduced at the
start of the turn that processes the message (observation 1). This message was sent
from within transaction tx,, which was therefore necessarily already running before
the message was received. An inverse dependency is impossible: tx, is already running
or finished, and cannot acquire a new dependency while it is running (observation 2).
This entails that dependencies always point to older transactions, and that time defines

106

5.4 Applicability to Other Actor Models

an order on dependencies. No cyclical dependencies can exist, so no deadlocks can
occur.

5.3.4 Conclusion

In conclusion, transactional actors maintain the isolation of transactions, and provide
freedom from low-level races in transactions and turns as a replacement for the iso-
lated turn principle. Further, they maintain the deadlock freedom offered by transac-
tions and actors. Using transactional memory, developers can reason about their code
at the level of transactions; using the actor model, they can reason at the level of turns.
Transactional actors enable developers to reason at the level of transactions and turns.

5.4 | Applicability to Other Actor Models

In this work, we build upon an actor model based on the work of Agha [1985]. One
might wonder whether our solution also applies to other actor models. De Koster
et al. [2016b] define four ‘families’ of actor models: Classic Actors, Active Objects,
Processes, and Communicating Event Loops. We use a Classic Actors model in this
dissertation. In this section, we explain that transactional actors can also be applied
to actor models within the Active Objects and Communicating Event Loop families,
but not to those within the Processes family.

Processes Actor models in the Processes family represent an actor as a process that
runs from start to completion. They provide an explicit receive statement, which the
programmer must manually call in a loop to process each message. This is in contrast
to the Classic Actors we use, in which each actor has a behavior that is automatically
executed for each message, and no explicit statement exists to fetch a message from
the inbox. Erlang is an example of a language in the Processes family.

As explained in the previous section, the deadlock freedom guaranteed by trans-
actional actors hinges on the fact that transactions cannot span turns. In our model,
when an actor receives a message, no transaction can be active in that actor. This en-
sures that transactions cannot acquire new dependencies while they are running and
therefore avoids cyclical dependencies. This is a result of the syntax: each turn is de-
fined as a behavior, and an atomic block can therefore not span across multiple turns.

This is not true for actor models within the Processes family: the explicit receive
statement can appear anywhere in the code, even in the dynamic extent of an a trans-
action. When a message is received while a transaction is running, it is no longer
possible to guarantee both isolation and deadlock freedom.

107

Chapter 5: Transactional Actors

1 Customer = ref {1, to_process, none}. % {customerid, reservation status, reserved car | none}

2 = ref {123, free}. % {carid, id of customer that reserved it | free}
3 Log = ref []. % list of log messages

4

s start_customer_actor() ->

6 register(customer_actor, self()), % register self under name customer_actor
7 atomic

8 {CustomerId, Status, _} = deref Customer,

9 car_actor ! {self(), reserve_car, CustomerId} ,

10 receive

11 {car_reserved, CarId} ->

12 refset Customer {CustomerId, processed, CarId},

13 refset Log ["Customer processed” | deref Log]

14 end

15 end.

17 start_car_actor() ->

18 register(car_actor, self()), % registerself under name car_actor
19 atomic

20 {Carld, _} = deref ,

21 receive

22 {Sender, reserve_car, CustomerId} ->

23 refset {CarId, CustomerId},

24 Sender | {car_reserved, CarId} ,

25 refset Log [“Car reserved” | deref Log]

26 end

27 end.

28
20 Spawn(start_customer_actor, []).
30 spawn(start_car_actor, []).

Listing 5.8: Example program containing receive in atomic, leading to a deadlock. This
program is written in a fictitious extension of Erlang with transactional actors. (In Erlang,
variables start with a capital (e.g. Customer), while symbols start with a small letter (e.g.
reserve_car).)

108

5.4 Applicability to Other Actor Models

customer_actor car_actor
atomic atomic
@Customer @Car
{<0.60.0>, reserve_car, 1}
ICar
{car_reserved, 123}

!Customer @Log
@Log !Log
'Log commit

commit

Figure 5.9: The effects of the program in Listing 5.8. There are two actors each containing
a transaction. The notations @X and !X refer to read and write operations on a transactional
variable X. The arrows indicate the messages that are exchanged between both actors.

We illustrate this using the example in Listing 5.8, which is written in a fictitious
extension of Erlang with transactional memory. This example implements a car reser-
vation system, in which a ‘customer actor’ sends a message to a ‘car actor’ to reserve
a car. It works as follows. The two actors are spawned and each start a transaction.
The actors exchange two messages, as illustrated in Figure 5.9. First, the customer ac-
tor sends a message to reserve a car (reserve_car) to the car actor. This introduces
a dependency from the car actor’s transaction on the customer actor’s transaction. A
reply to confirm the reservation (car_reserved) is sent back from the car actor to the
customer actor. This introduces a dependency from the customer actor’s transaction
on the car actor’s transaction. Thus, this leads to cyclical dependencies.

It is not possible to find a semantics that guarantees both serializability and dead-
lock freedom in this program:

« If we require isolation to be guaranteed, a deadlock will occur, as follows. Re-
quiring serializability means this program must be equivalent to either (1) serially
executing the first transaction followed by the second, or (2) vice versa. In the first
case, the first transaction will wait forever for the reply of the second. In the sec-
ond case, it is the second transaction that will wait forever for the message from
the first.

o If we require deadlock freedom, both transactions must run simultaneously and
they must both commit. However, both transactions modify the same variable
Log, leading to a conflict. They cannot both commit without breaking the isolation
guarantee.

Hence, it is impossible to come up with a semantics that guarantees both serializability
and deadlock freedom. This is a result of allowing messages to be received while a
transaction is active.

109

Chapter 5: Transactional Actors

Active Objects and Communicating Event Loops ~ The two other actor families,
Active Objects and Communicating Event Loops, lack an explicit receive statement.
Actor models in these families execute a method of an object in response to a message.
If we extend these languages with transactional actors, the syntax will also not allow
these methods to be encapsulated in an atomic block, and thereby deadlock freedom
can be maintained.

Note that Active Objects and Communicating Event Loops typically allow muta-
ble state, unlike Classic Actors. In a Classic Actors model, the internal state of an actor
can only be changed using become, of which the effect is only visible on the next turn.
Even if become occurs during a transaction, the transaction will have finished before
the next turn starts, so it is possible to roll back its effect. In an Active Objects or
Communicating Event Loops model, the internal state of an actor is modified with
assignments on its object(s). To guarantee the isolation of the transaction, such as-
signments may not appear in a transaction. This could be enforced by the type system,
as in Haskell.

In conclusion, we observe that whether transactional actors can be applied to an actor
system depends on how the interface of an actor is defined. Classic Actors define an
actor’s interface by means of a behavior; Active Objects and Communicating Event
Loops define them as methods on an object. In both cases, we can guarantee that
no transaction is running when a turn is started, and the properties of transactional
actors can be guaranteed (possibly with help from a type system). On the other hand,
Processes introduce an explicit receive statement that may be used anywhere in the
code, even nested in a transaction. In that case, it is not possible to guarantee both
isolation and deadlock freedom.

5.5 | Related Work

There is extensive related work on communication between transactions and on shared
memory in actors. We provide an overview here.

Communication between transactions

Our work on transactional actors is not the first to advocate communication between
transactions. We discuss three existing techniques.

Using Transactions with Isolation and Cooperation [Smaragdakis et al. 2007], a
transaction can temporarily ‘suspend’ its atomicity and isolation, so that data can be
exchanged with another transaction. To this end, the construct Wait is introduced;
e.g. when Wait(x > 0) is called in a transaction, the transaction is suspended until

110

5.5 Related Work

x is positive. The variable x is read outside the context of the current transaction, so
without isolation. A type system keeps track of such operations and requires them to
be nested in an explicit construct, preventing unintentional mistakes. This construct
can be used to introduce communication between transactions, but it breaks their
isolation guarantee.

Similarly, Luchangco and Marathe [2011] extend transactional memory with Trans-
action Communicators, a special type of object through which transactions can com-
municate. Access to a communicator must be encapsulated in a txcommatomic block,
which must be nested in a regular transaction. Again, the isolation of the transaction is
broken, but doing this unintentionally is prevented by requiring an explicit construct.
This system also introduces dependencies between transactions: when a communi-
cator is read by transaction a after it was written to by transaction b, transaction a
depends on b to commit successfully. Cyclical dependencies are possible, and lead to
a deadlock if both transactions are guaranteed to always abort, e.g. when they both
write to the same transactional variable.

Finally, Lesani and Palsberg [2011] introduce Communicating Memory Transac-
tions: a combination of transactional memory with channel-based message passing.
In an atomic block, the constructs send and receive can be used to communicate
over a channel. This introduces a dependency from the receiving transaction on the
sending transaction, very similar to our transactional actors. In case of cyclical depen-
dencies, all transactions in the cluster will attempt to commit at the same time, while
maintaining serializability. If no valid serialization exists, the program is invalid.

Communicating Memory Transactions maintain serializability, but cannot han-
dle programs with cyclical dependencies. In Listing 5.10, we implement the example
from Listing 5.8 using Communicating Memory Transactions. The same problem we
described in the previous section occurs: while isolation is maintained, a deadlock oc-
curs due to a cyclical dependency. Communicating Memory Transactions allow such
a program to be written, even though it is invalid.

From these existing techniques, transactional actors adopt the idea of dependen-
cies between transactions, allowing serializability to be guaranteed. However, dead-
locks due to cyclical dependencies are avoided: there can never be a cycle in a depen-
dency chain, as messages can only be sent in a transaction, and not received (see Sec-
tion 5.4). Transactional actors thus build upon these techniques to provide a system
with all desirable properties. This is summarized in Table 5.11.

Shared memory in actors

Our work is also not the first to consider how to safely share mutable state between
actors.

111

11
12
13
14
15
16
17
18
19
20
21

22

Chapter 5: Transactional Actors

customer := {1, to_process, none};
;= {123, free};
log = [1;

ch := newChan; //create a channel

let start_customer_process()
atomic
{customerId, status, _} = customer;
ch send {self(), :reserve_car, customerId} ;

{:car_reserved, carld} := ch receive;
customer := {customerId, :processed, carld};
log := ["Customer processed” | log]

let start_car_process()
atomic
{Carld, _} = ;
{sender, :reserve_car, customerId} := ch receive;
:= {carld, customerId};
ch send {:car_reserved, carld} ;
log := ["Car reserved” | log]

{ start_customer_process() } || { start_car_process() } //runbothin parallel processes

Listing 5.10: The example from Listing 5.8 implemented using Communicating Memory
Transactions. The syntax ch send x sends the message x over the channel ch; in the other
process, y := ch receive receives it and assigns it to y. Messages are sent synchronously:
both processes must rendez-vous to pass the message.

112

5.5 Related Work

‘ Isolation Deadlock freedom

Transactions with Isolation and Cooperation X X
Transaction Communicators X X
Communicating Memory Transactions v X
Transactional Actors v v/

Table 5.11: Comparison between techniques for communicating transactions.

De Koster et al. [2016a] extend the actor model with domains, containers that can
be accessed from multiple actors. Access must be encapsulated in a when_shared or
when_exclusive block, the former gives shared read-only access while the latter gives
exclusive write access. The code in these blocks is executed asynchronously to prevent
deadlocks.

Sharing actors [Lesani and Lain 2013] also share state between a single writer
actor and multiple reader actors, by replicating the data. Sharing actors encode the
replication pattern discussed in Section 5.1.1. When the (single) writer updates the
shared data, a message is sent to the readers to update their copies.

Morandi et al. [2014] separate active processors (similar to actors) into their exe-
cuting thread and their data. They introduce passive processors, which consist of only
the data without the thread. Active processors can access this data by assuming the
identity of a passive processor, giving them exclusive access to that processor’s data.

Last, Pony [Clebsch et al. 2015] allows memory to be shared between actors, using
deny capabilities to statically guarantee there is only one writer to a shared memory
location and thereby preventing races. Similarly, Encore [Brandauer et al. 2015] uses
capabilities to allow memory to be shared between active objects. Encore plans to
support capabilities for both pessimistic and optimistic concurrency, although at the
time of writing the exact semantics have not been defined.

All of these approaches introduce shared state in actor systems, but they only allow
one writer per container at a time. To allow concurrent but safe access, it is important
to split data correctly over these containers. For the Vacation example described in
Section 5.1.2, this is not evident: how should the flights be split, so that multiple cus-
tomers can access all of them consistently at the same time? By using transactional
memory, our approach allows multiple actors to write to shared memory, without re-
quiring data to be split into containers: the transactional system ensures consistency.

Transactional communication

Transactors [Field and Varela 2005] encapsulate changes to actors’ local state and their
communication in transactions. Communicating transactions [de Vries et al. 2010]
also coordinate distributed processes using transactions. Both use transactions to en-

113

Chapter 5: Transactional Actors

sure that state that is distributed over multiple actors or processes can be updated
consistently, but do not share memory. Finally, using transactional events [Donnelly
and Fluet 2006] a set of send and receive operations can be encapsulated in a transac-
tion that ensures they are either all executed or none are. This is used to implement
communication patterns such as three-way rendez-vous. Again, there is no notion of
shared memory. In these three languages, the transactional operations are the sending
and receiving of messages, not reading and writing shared memory locations.

5.6 | Summary

In this chapter, we explored the combination of actors and transactions. We motivated
why combining them is useful. On the one hand, actors can use transactional mem-
ory to safely share memory. On the other hand, transactions can send and receive
messages to distribute and coordinate work that can be executed in parallel. How-
ever, through an example, we saw that a naive combination of actors and transactions
breaks the guarantees that those models provide when used separately, breaking the
assumptions of the developer.

We introduce transactional actors: a combination of transactions and actors that
provides the same constructs as its constituent models, but also defines their semantics
when they are combined. We systematically considered each construct to ensure it has
the expected semantics.

Transactional actors realize this by sending messages tentatively. When a message
is sent in a transaction, a dependency on that transaction is attached to the message.
The receiver of the message processes it tentatively: it optimistically processes the mes-
sage, but ensures that all effects of the message are undone if its dependency aborts.

As a result, transactional actors maintain the isolation of transactions and they
guarantee deadlock freedom. Moreover, they ensure freedom from low-level races:
developers can reason about their program at the level of transactions and turns, and
do not need to care how the individual instructions within turns and transactions are
interleaved.

In Chapter 7, we will formalize the semantics of transactional actors. In Chap-
ter 9, we will demonstrate the performance benefits of transactional actors using the
Vacation program. We will see that transactional actors can increase performance by
distributing transactions over multiple actors, introducing more fine-grained paral-
lelism and lowering the chance and cost of conflicts.

114

Chocola: a Language That
Unifies Futures, Transactions,
and Actors

This chapter unifies the three concurrency models we examined in this dissertation
into one framework, called Chocola. In Section 6.1, we first consider the third combi-
nation we have not discussed yet: futures and actors. Using an example, Section 6.2
shows how all three concurrency models can be unified into one framework: Chocola.
Next, in Section 6.3, we summarize the guarantees of Chocola and compare them to
the guarantees of naive combinations of the models.

6.1 | Combining Futures and Actors

In the previous two chapters, we extensively discussed the combination of transac-
tions with futures and actors respectively. The third combination - futures and actors
- poses fewer problems, as we will discuss in this section. Table 6.1 illustrates the
combinations of these two models.

Combining actors and futures can be useful. As we saw in Section 3.1 (page 45),
in a study of 15 Scala programs that use actors, 12 (80%) combine these with futures
and/or threads [Tasharofi et al. 2013]. On the one hand, futures can be introduced
in an actor to process a turn in parallel: this is intra-actor parallelism (the lower-left
cell of Table 6.1). On the other hand, actors can be used in a program with futures

115

Chapter 6: Chocola

Sind Future Actor
Nested futures Communication
w (Section 3.3.3) in future (Section 6.1)
=
k= Det D¢
E (D]
bed

Parallelism in actor Actors
(Section 6.1) (Section 3.3.3)

PP || DLF

Actor

Guarantees

Futures: Determinacy
Actors: Isolated Turn Principle Deadlock Freedom

Table 6.1: Combinations of futures and actors.

to introduce communication between parallel tasks (the upper-right cell of Table 6.1).
Furthermore, when a program using one model includes a library that uses the other,
the models are combined implicitly.

We examine the effect of the combinations on the properties of each model: de-
terminacy of futures (Section 6.1.1), deadlock freedom of actors (Section 6.1.2), and
the isolated turn principle of actors (Section 6.1.3).

6.1.1 Determinacy of Futures

When futures are created in an actor, but they do not contain any operations on actors,
the future remains equivalent to its serial elision and therefore determinacy is guaran-
teed (the lower-left cell of Table 6.1). However, when certain actor constructs (send
and become) are used in a future, determinacy can be broken (the upper-right cell of
Table 6.1). We discuss the four constructs provided by actors:

send Listing 6.2a demonstrates that using send in a parallel task can break deter-
minacy. In the example, two futures are forked that both send a message to a second

116

1

6.1 Combining Futures and Actors

1 (def forwarder

> (behavior [] [a msg]
3 (send a msg))) ;forward message
4

s (def forwarder1 (spawn forwarder))
¢ (def forwarder2 (spawn forwarder))

7

(def sender s (def sender
(behavior [] [] 9 (behavior [] []
(fork (send receiver "hello”)) 10 (send forwarder1 receiver "hello”)
(fork (senq/rggg;ver "world”)))) 1 (send forwarder2 receiver “world”)))
< future 1) forwarder 1
e Gender receve)
‘/\ future2) forwarder 2

(b) The same issue can occur when only us-
ing actors: when two messages follow differ-
ent routes from sender to receiver, there are
no guarantees on their arrival order.

(a) Nesting send in fork leads to non-de-
terministic results: which of the two mes-
sages "hello” or "world"” is sent first can
vary between executions.

Listing 6.2: Nesting send in fork leads to non-determinism (a), but non-determinism can also
occur when using the actor model individually (b).

actor. The messages can arrive in two orders ("hello” "world” or "world” "hello”),
non-deterministically.

Breaking determinacy for this combination is inevitable. When futures — a deter-
ministic model - are combined with any non-deterministic model, their determinacy
will always be broken. We argue that this is no problem as long as this only occurs in
those places where the programmer explicitly writes the constructs of the non-deter-
ministic model: it is clear to the programmer that determinism is no longer guaranteed
when a construct of a non-deterministic model, here send, is used. The behavior for
the example using futures is similar to the behavior that occurs when two actors are
spawned that each send a message, as shown in Listing 6.2b. This program uses only
actors and also has a non-deterministic result. As illustrated, both programs lead to a
similar structure at run time and have a non-deterministic result, whether futures are
used or not.

become Listing 6.3a demonstrates another problem, this time when using become in
a parallel task. Our semantics of actors defined that, when multiple become statements
occur in a turn, it is the one that is executed last that determines the next behavior
of the actor. In this example, this in not deterministic: which become statement is
executed last depends on how the two tasks are scheduled at run time.

In this case, we can retain determinism though: we will say that the become state-

117

A AW » -

Chapter 6: Chocola

(def counter
(behavior [i] []
(let [a (fork (become counter 1))
b (fork (become counter 2))]

(join a)

(join b))))
(a) Nesting become in fork leads to non-deter-
ministic results: what will the next behavior of
this actor be?

1 (def behavior-0

> (behavior [] []

3 (let [a (fork (spawn behavior-a))
4 b (fork (spawn behavior-b))]
5 (send (join a) :msg)

6 (send (join b) :msg))))

(b) Nesting spawn in fork does not break
(observable) determinacy.

Listing 6.3: Nesting become and spawn in fork.

ment of the future that is joined last is the one that takes effect (so in the example the
next value of i will be 2). Hence, the result of Listing 6.3a is the same as if the futures
were elided. Essentially, we consider become as an effect of a future, and when the
future is joined, the effect is merged into its parent. This is similar to our solution for
combining transactions and futures from Chapter 4. There, each transactional future
stores its effects on the transactional memory locally, and a future’s transactional ef-
fects are merged into its parent when the future is joined. Here, each future stores the
effect of its become locally, also merging the effect when it is joined.

spawn Nesting spawn in a future does not break determinacy: it spawns a new actor,
but it is impossible to observe the order in which actors were spawned. This is a result
of the fact that the only way to interact with another actor is through asynchronous
messages using send. In Listing 6.3b, the order in which both actors are spawned
at run time may vary, and the order in which they process their message may vary,
but this is a result of the asynchronous nature of messages in the actor model. It is
impossible to observe which of the two actors was spawned first.

behavior As behavior does not cause a side effect, using it in a future maintains
determinacy.

6.1.2 Deadlock Freedom of Actors

Combining actors and futures preserves deadlock freedom. There is only one block-
ing construct, join, which waits for a future to resolve. A deadlock cannot occur, as
this would require cyclical dependencies between futures. Even when combined with
actors, futures still form a spawn tree which does not contain any cycles (as in Sec-
tion 3.3.3, page 63): every turn starts with one ‘root’ task which can spawn tasks and
forms a spawn tree per turn.

118

6.1 Combining Futures and Actors

Actor 1 Actor 2

message

1 (def escape-example

> (behavior [i] []

3 (fork ; This task ‘escapes’its turn

4 (slow-computation) “message
5
6

T wmny

slow computation

(send actor-2 "msg"”)
(become escape-example 1))
7 (fast-computation)))

7 um

"msg” from turn 2

"msg” from turn 1

become

Listing 6.4: This actor creates a task in which a message is sent and the actor’s behavior is
changed. Meanwhile, the root task may finish its work and continue to the next turn. The task
therefore ‘escapes’ the turn: this is the escaping task problem. In which order are the messages
sent, and what happens when the become is reached? The isolated turn principle is violated.

6.1.3 Isolated Turn Principle of Actors

A naive combination of actors and futures breaks the isolated turn principle. As ex-
plained in Section 2.5.3 (page 38), the isolated turn principle is a consequence of three
restrictions of the actor model: isolation, consecutive message processing, and contin-
uous message processing. We discuss the effect of using futures in an actor on each:

Isolation prohibits shared memory; this remains the case when futures are introduced.

Continuous message processing prohibits the use of blocking operations to guarantee
that a turn always runs to completion uninterrupted. While futures introduce the
blocking construct join, this operation is always guaranteed to complete because the
futures in a turn form a spawn tree, as explained in the previous section.

Consecutive message processing requires that an actor must process its messages one
by one, without interleaving turns. This requirement can be broken by introducing
futures. We call this the escaping task problem.

Listing 6.4 illustrates the escaping task problem. An actor creates a task which is
never joined by the root task. Asa result, the root task finishes its work and proceeds to
the next turn while the child task is still running. The two turns overlap, interleaving
the processing of two messages, thus violating the isolated turn principle. Here, this
leads to two unexpected results: (1) the child task sends a message that can arrive after
messages sent in the next turn, and (2) the become in the escaped task can still change
the behavior of the actor after the next turn has already started, with the old behavior.

119

Chapter 6: Chocola

Fortunately, the isolated turn principle can be reintroduced using a simple require-
ment: any future created in an actor must be joined before the turn ends. This ensures
that only one task (the root task) is running when the turn ends, and that the side
effects of all futures created in the turn have occurred and all their effects have been
merged into the root task. All tasks end when the turn ends, so no more effects can
take place during the next turn. Thus, an actor can exploit internal parallelism using
futures while maintaining the isolated turn principle.

We believe this requirement is not overly restrictive: it only applies when a future
is forked in a turn but its result is never used in that turn. Furthermore, a similar
requirement existed for transactional futures: we required that all futures created in a
transaction were joined before the transaction ends. Here, we require that all futures
created in a turn are joined before the turn ends. Thus, both techniques provide a
consistent model to the developer.

6.1.4 Conclusion

The combination of actors and futures breaks determinacy when messages are sent
in futures, but as a non-deterministic construct is used explicitly, this is clear to the
developer. Other problems can be avoided after two adjustments to the semantics:

« Chocola allows futures to be forked in an actor, enabling intra-actor parallelism,
but requires that all futures are joined in the turn in which they were created. The
tasks thus form a spawn tree within each turn, and each task will be finished and
joined before the turn ends. This ensures that the isolated turn principle is main-
tained.

o A become in a parallel task is a side effect that is part of its future. When it is
joined, the effect is propagated up to the task performing the join. Eventually,
the effect reaches the ‘root task’ of the turn. Later becomes still overwrite earlier
ones. This ensures determinacy is maintained in this case (but not in general when
combining both models).

The combination of actors and futures thus provides a familiar semantics that main-
tains the guarantees of the separate models wherever possible, after only minimal
changes.

6.1.5 Related Work

Imam and Sarkar [2012] combine actors with the async-finish model (AFM), which
is similar to futures. We compare their combination to ours. The AFM provides two
constructs: (1) async starts a new asynchronous task, possibly delivering its end result
to a future (it is similar to our future construct), and (2) finish encapsulates several

120

6.2 Chocola: Composable Concurrency Language

async constructs and waits until they have all finished before proceeding. Their moti-
vations for combining these two models are similar to ours: by using the AFM in an
actor, messages can be processed in parallel, while by using operations on actors in
the AFM, these operations can be coordinated.

When tasks that are spawned in an actor are encapsulated by a finish block, this
model is similar to ours: all tasks run fully within their encapsulating turn. However,
Imam and Sarkar [2012] also allow a task to escape the actor in which it is spawned.
In that case, race conditions are avoided by prohibiting these tasks from modifying
the internal state of the actor.

When actors are spawned in tasks that are encapsulated by a finish block, these
actors must start, execute, and terminate before the encapsulating finish block pro-
ceeds. Thus, this mechanism can be used to coordinate actors: spawning multiple
actors in a finish block ensures they must all terminate before the program proceeds.
This is not possible in our system, as we do not have a similar finish construct and
our actors do not terminate (when they no longer receive messages, they remain idle
forever). In our system, a similar coordination mechanism can be implemented by
passing messages between the actors.

6.2 | Chocola: Composable Concurrency Language

In this section, we present Chocola, the composable concurrency language: a uni-
fied framework of futures, transactions, and actors that maintains the semantics and
guarantees of its constituent models whenever possible. We discuss how the various
concepts from the previous chapters are unified in Chocola (Section 6.2.1). Next, we
demonstrate how the three models are combined in an example (Section 6.2.2).

6.2.1 Chocola’s Linguistic Concepts

In Chocola, a program starts as a single (main) actor containing a single (root) task
that evaluates the code. The program can then spawn actors, fork futures, and create
transactions. We summarize the main concepts and constructs:

Actors

« An actor is an entity that runs concurrently with other actors. It has an address,
an inbox, and a current behavior. The inbox is a queue of messages. Actors are
created using spawn, which is given an initial behavior.

« A behavior defines how an actor acts when receiving a message. It contains code,
created using the construct behavior, and a list of parameters. The current actor’s
behavior can be changed using become.

121

Chapter 6: Chocola

« A message is a list of values that can be sent to an actor using send, which appends
it to the actor’s inbox. When a message is sent from within a transaction or a
tentative turn, it is tentative and has a dependency on a transaction; otherwise it
is definitive.

 An actor consecutively processes each message sitting in its inbox, by evaluating
its current behavior with that message. This process is called a turn. A turn that
is the result of a tentative message is a tentative turn.

« Inatransaction and in a tentative turn, spawn and become are delayed; we call these
effects on actors that are gathered to be executed later.

Transactions

« A transaction is a section of the code that can access shared memory. It is encap-
sulated in an atomic block.

« The shared memory is represented using transactional variables. These can only
be manipulated in transactions, using ref, deref, and ref-set to create, read, and
write them. (Outside a transaction, these constructs raise an error.)

« A transactional context is a structure that contains data related to the current
transaction: (1) its snapshot: a (conceptual) copy of the transactional memory be-
fore the transaction started, (2) its local store: the modifications the transaction
made to the transactional memory, and (3) the effects on actors that occurred
during the transaction and will be executed if and when the transaction commits.
Note that it is not the transaction itself but its tasks that each contain a transac-
tional context.

Futures

o A task is a section of the program that runs concurrently with the rest of the pro-
gram. It can be created using fork, which returns a future. A future is the place-
holder for the result of its corresponding task. This value can be retrieved using
join, which blocks until the task has finished and then returns its result.

o When a task is forked in a transaction, we say it is a transactional task, which has
an associated transactional future. Each transactional task has a transactional
context, which it adopted from its parent when it was forked and which is merged
into its parent when it is joined. Tasks outside transactions are non-transactional.

Chocola does not introduce new syntactical constructs, nor does it change the se-
mantics of its constituent models when used separately. The novelty of Chocola
is that it defines the semantics of the constructs of these concurrency models
when they are combined with one another.

122

6.2 Chocola: Composable Concurrency Language

When to use futures or actors for parallelism inside a transaction

Both futures and actors introduce parallelism. When parallelizing a program with
transactions, one might wonder whether to use transactional futures or transactional
actors. At first glance, both might seem like similar mechanisms: they can both be
used to parallelize the internals of a transaction. However, both mechanisms function
quite differently and have different use cases:

o A transactional future runs completely within the context of the transaction it was
created in. It has its own copy of the heap on which it acts in isolation, but its
changes will always be joined back into its parent later. Hence, the modifications
to transactional memory that occur in different transactional tasks of the same
transaction will be committed at the same time.

« In contrast, transactional actors make it possible to ‘escape’ a transaction. When a
message is sent in a transaction, it carries a dependency on that transaction. How-
ever, the turn that is executed as a result of the message, while dependent on the
transaction, does not run within the original transaction’s context. A second trans-
action can be started in this turn, and this second transaction will depend on the
first, but both run in isolation and have their own copy of the heap, and both com-
mit separately.

These differing semantics are a result of the different use cases of the two models. Fu-
tures are used to speed up a deterministic calculation. Thus, when they appear in
a transaction, they remain part of the transaction while locally enabling parallelism.
On the other hand, actors represent separate components in the application that oc-
casionally communicate using messages. When a message is sent in a transaction, the
sender signals to another actor that it must act, but the receiver runs separated from
the sender. Which technique to use therefore depends on the intention: to locally
parallelize a calculation, use futures; to communicate with a separate component, use
actors.

6.2.2 Example

In Chapter 5, we introduced a flight reservation system that combined actors and trans-
actions, based on the Vacation benchmark from the STAMP benchmark suite. In List-
ing 6.5, this example is extended with futures to increase its parallelism.

This program contains two types of actors. First, a set of customer actors receive
messages from each customer and process their reservations, using customer-behav-
ior. A reservation consists of a transaction in which two flights, a hotel room, and a
car are reserved, and the customer’s password is generated (lines 31-36). For each of
the four items, a message is sent to a set of reservation actors, with the behavior re-
serve-behavior (lines 20-25). The reservation actors reserve an item, for instance a

123

11
12
13
14

15

20

21

23
24
25
26
27
28
29
30

32
33
34
35
36

Chapter 6: Chocola

(def flights ..)

(def rooms ..)

(def cars)

(def customers ..)

(defn [f xs]

; split xs into partitions

; a task for each partition

;in each task, filter the partition

; the tasks and merge their results

)

(defn reserve-flight [orig dest date n-seats]
; Finds the cheapest flight from origto dest on date, and reserve n-seats.
(atomic
(let [filtered ((fn [f] ..) flights)
cheapest (get-cheapest filtered)]
(ref-set cheapest (occupy cheapest n-seats)))))

(def reserve-behavior
(behavior [id] [type & args]
(case type
:flight (apply reserve-flight args)
:room (apply reserve-room args)
.car (apply reserve-car args))))

(def customer-behavior
(behavior [id] [c]

; Process a customer: find and reserve two flights (outbound and return), a car, and a room

; (@llin worker actors), and generate a password.

(atomic
(send (rand-nth secondary-workers) :flight (:orig @c) ..)
(send (rand-nth secondary-workers) :flight (:dest @c) ..)
(send (rand-nth secondary-workers) :room (:dest @c) ..)
(send (rand-nth secondary-workers) :car (:dest @c) ..)
(ref-set c (assoc @c :password (generate-password))))))

Listing 6.5: Code snippet of a flight reservation program that combines futures, transactions,
and actors.

124

6.2 Chocola: Composable Concurrency Language

flight (lines 13-18), by filtering the items using the customer’s criteria (e.g. a flight’s
origin and destination), finding the cheapest item, and reserving that item. This is
protected using a transaction to ensure that an item cannot be reserved multiple times.
The difference between this example and the one in the previous chapter is that items
are filtered in parallel: the list of items is partitioned and each partition is filtered
concurrently, each partition returning a future (lines 6-11).

Thus, this application combines the three models:

o Itusesactors to concurrently process requests from different customers and for dif-
ferent items. A message-passing model naturally matches this use case: customers
that want to initiate a reservation send a message to an actor, in an event-driven
way.

» Two sections of the code access shared memory and must therefore be protected
using transactions. First, when processing a customer we must ensure either all
items are reserved or none. Second, we must prevent items from being reserved
multiple times. Transactions ensure safe access to shared memory.

o Futures are used to exploit parallelism in deterministic operations, here filtering a
list. Futures guarantee that the parallel version is equivalent to its serial elision.

Figure 6.6 visualizes this program. We show two actors: one customer actor and one
reservation actor. (There might be more of each type, to process requests concur-
rently.) In the customer actor, a transaction is started in which four messages are sent
and a transactional variable is modified (corresponding to lines 32-36 in Listing 6.5).
The reservation actor starts a transactions to reserve the requested item, and in this
transaction the function parallel-filter creates a number of subtasks that return
futures.

The example demonstrates how the concepts introduced throughout this disserta-
tion work together. The messages sent in the first transaction are tentative, so that they
only succeed if the encapsulating transaction commits successfully, using the transac-
tional actors from Chapter 5. In the second transaction, several futures are forked:
these are transactional futures with access to the encompassing transactional context,
as in Chapter 4. Finally, each turn of each actor consists of a root task that may fork
and join subtasks, as in Section 6.1.

This application also illustrates how Chocola can be used to implement cloud ap-
plications that process large amounts of data from many users. When web clients con-
nect to the application we create a customer actor for each, and the client’s requests are
converted to messages that are sent to the customer’s actor. Each actor thus processes
incoming requests independently. When access to shared data is required, this can be
implemented safely using transactions. Finally, ‘Big Data’ is processed in parallel us-
ing futures. This maps onto the web’s typical three-tier design, in which the front-end

125

Chapter 6: Chocola

Customer Actor 1 Reservation Actor 1
————————— - >
{:id 7 .}
tx
L Bl et R e >
flight "BRU” "ATL" 2018-06-01 2
[]
- -—————1-F------- >
flight
8 tx
g o - >
=1 room
Qparallel-filter: fork
@ -———--1-r------- >
car -+
=1
=
=
@ ref-set

@ join

Figure 6.6: Diagram illustrating the actors, futures, and transactions created for the program
in Listing 6.5.

126

6.3 Guarantees of Chocola

that communicates with users uses actors, the application logic is parallelized using
futures, and the data back-end is stored in transactional memory.

6.3 | Guarantees of Chocola

Table 6.7 summarizes the guarantees of Chocola and compares them to the guarantees
of naive combinations of its constituent models (as discussed in Section 3.3 and first
shown in Table 3.9 on page 62). We revisit each guarantee.

Determinacy and Intratransaction Determinacy =~ When used separately, futures
guarantee determinacy. Chocola sometimes breaks this guarantee. We distinguish two
cases: when futures are the outer model (i.e. transactions or actors are used in a future,
the first row in the table) or the inner model (i.e. futures are used in a transaction or
actor, the first column).

« When futures are the outer model, determinacy is no longer guaranteed (first row
in the table). This is inevitable: non-deterministic models introduce non-deter-
minism, even when used in a deterministic model. However, as we argued in
Sections 4.1 and 6.1, this is not unexpected because the developer must explicitly
use a construct from a non-deterministic model to break determinacy, and it is
only in those places that determinacy is broken.

« In contrast, when using futures as the inner model, determinacy is expected (first
column in the table). For instance, when a library that uses futures is embedded
in a program that uses another model, the developer of the library still assumed
determinacy. Using futures in another future (Section 3.3.3) or in an actor (Sec-
tion 6.1) maintains determinacy. In a naive combination of futures and transac-
tions determinacy is broken, which is why we introduced intratransaction determi-
nacy: an alternative property that guarantees determinacy within each transaction
(Section 4.4).

Isolation Transactions guarantee a form of isolation, such as serializability, opacity,
or snapshot isolation. When they are used in a future or actor, this guarantee is main-
tained (second column in the table). On the other hand, when a future is forked or a
message is sent within a transaction, a naive combination may break isolation (second
row in the table). Chocola ensures isolation remains guaranteed even for these prob-
lematic combinations by incorporating any side effects into the transaction (discussed
in Chapter 4 and 5). Chocola implements snapshot isolation, which requires that:

« Throughout a transaction, read operations get a consistent view of the memory,
referred to as its snapshot. In Chocola, all tasks spawned in a transaction share
this snapshot.

127

Chapter 6: Chocola

Sinl Future Transaction Actor
Nested futures Parallel transactions Communication
v (Section 3.3.3) (Section 4.1) in future (Section 6.1)
=
5 | (et (o] (o]
o | Parallelism in trans- | Nested transactions | Communication in
-2 | action (Sections 4.2-4.4) (Section 3.3.3) transaction (Chapter 5)
Q
<
;| pe)-im)
b
: (T8 - L) B
Parallelism in actor Shared memory Actors
< (Section 6.1) in actor (Chapter 5) (Section 3.3.3)
S
3| (oa olre) | EE
(126)-LLR B
Guarantees
Futures: Determinacy
Transactions: Isolation Progress
Actors: Isolated Turn Principle Deadlock Freedom
Tx futures: Intratransaction Determinacy
Tx actors: Low-level Race Freedom

Legend
Det | Maintained guarantee, even in a naive combination

%

Broken guarantee, inevitable even in Chocola
Broken in a naive combination but maintained in Chocola

m Broken guarantee has been replaced with guarantee in Chocola

Table 6.7: Guarantees of the combined models.

128

6.4 Conclusion

« A transaction only succeeds if none of its writes conflict with any writes by other
transactions that committed since the snapshot. In Chocola, all writes by all tasks
that were spawned in the transaction are committed at the same time, making it
possible to satisfy this requirement. Furthermore, if the transaction aborts, any
messages sent during the transaction and their effects are rolled back.

Thus, Chocola guarantees safe access to shared memory in all circumstances.

Isolated Turn Principle and Low Level Race Freedom The isolated turn princi-
ple guarantees that, once a turn started, it will always run to completion, in isolation.
This allows developers to reason at the level of turns: it does not matter in which or-
der the individual instructions of different turns are interleaved, only how the turns as
blocks are interleaved. The isolated turn principle assumed no shared memory and no
internal parallelism, which is obviously no longer true in Chocola; it is therefore im-
possible to maintain. Instead, Chocola provides Low Level Race Freedom: a guarantee
that there can be no races within a turn or a transaction (introduced in Section 5.3).
This property provides a similar guarantee to developers, allowing them to reason at
the ‘level’ of turns and transactions. Again, it does not matter in which order the indi-
vidual instructions within a turn or a transaction are interleaved, only how turns and
transactions are interleaved as larger blocks.

Progress and Deadlock Freedom Transactions guarantee progress and actors guar-
antee deadlock freedom. Even when these models are combined with others, these
guarantees are maintained. This is a result of the fact that Chocola only contains one
blocking operation, join, which always completes because futures form a spawn tree
without cycles (discussed in Sections 4.4.1, 5.3.3, and 6.1.2).

6.4 | Conclusion

Chocola is a language that combines futures, transactions, and actors while maintain-
ing their semantics and guarantees whenever possible. In the previous chapters, we
presented the various concepts at its base; in this chapter we combined them into one
framework. The following chapters focus on Chocola’s formal semantics (Chapter 7),
its implementation (Chapter 8), and its performance benefits (Chapter 9).

129

PureChocola: an Operational
Semantics

This chapter presents PureChocola: a formal operational semantics of Chocola. We
start, in Section 7.1, by describing its syntax and how to model its program state. In
Section 7.2 we list all reduction rules, specifying the constructs of futures, transactions,
and actors. In Section 7.3, we show how Chocola’s guarantees can be inferred from
the formal semantics. We created an executable implementation of PureChocola us-
ing PLT Redex, and in Section 7.4 we explain how we used it to verify isolation and
intratransaction determinacy. Finally, in Section 7.5 we list the differences between
the formal semantics of PureChocola and the actual implementation of Chocola.

7.1 | Syntax and Program State

This section defines the syntax of PureChocola (Section 7.1.1), how its program state is
modelled (Section 7.1.2), and the evaluation contexts (Section 7.1.3). Next, it defines
some helper functions to extract elements from the program state (Section 7.1.4) and
two special operators | and += that merge effects on transactional memory and actors
(Section 7.1.5).

7.1.1 Syntax

Throughout this dissertation, we did not introduce any new syntactical constructs; we
merely defined their semantics in certain (new) contexts. Thus, the syntax of the com-
bination of the three models simply consists of their separate syntaxes (as described

131

Chapter 7: PureChocola: an Operational Semantics

¢ € Constant
x € Variable
f€ Future
re TVar

a € Address

b € BehaviorDef :

y € Value

e € Expression

132

nil | true | false [0 |1]:--

behavior [Xpen] [Xmsg] €

[x] e

< o 9 ﬁ\;xﬁ

—

ee)
ifeee
let [xe]e
doe;e
fork e
joine
atomic e
atomicxk e
ref e
deref e
ref-setee
spawn e e
become e e
sendee
self

mn won

a

Behavior definition

Anonymous function
Future

Transactional variable
Address of actor
Behavior

Function application

Fork a future

Join a future
Transaction

In transaction (intermediate state)
Create a T'Var

Read a T'Var

Write to a T'Var

Spawn an actor

Become a behavior
Send a message

Address of current actor

Figure 7.1: The syntax of PureChocola.

7.1 Syntax and Program State

throughout Chapter 2) combined. The complete syntax of PureChocola is listed in
Figure 7.1.

7.1.2 State

The program state of PureChocola fuses the program states of the separate models.
Table 7.2 recaps how the program state was represented in the semantics of the separate
models in Chapter 2. Figure 7.3 defines the program state and its elements for Pure-
Chocola. The program state consists of all actors and tasks that have been spawned up
to this point and three shared data structures. We discuss each.

Program state Main elements
Futures | (T task == (f. e
(tasks)
Transactions | (T, 7, 0 task = (f. e, n’
(tasks, transactions, heap) tx == (0. 7. €. ¢
Actors | (A, u act ::= (a. e, beh
(actors, inboxes)

Table 7.2: Reminder of the most important parts of the semantics of the three separate models
described in Chapter 2.

Actors An actor consists of:

o a: the unique address of the actor.

o 12 Previously, an actor contained the expression it was evaluating. Now, how-
ever, an actor can contain multiple concurrent tasks, each of which stores the ex-
pression it is evaluating. Therefore, now when an actor processes a message, it
creates one root task and stores the associated future instead. This task may fork
more tasks, which are associated with this actor but not explicitly stored in it. Be-
tween turns, when the actor is idle, this is e.

o beh: the next behavior of the actor. Like before, this consists of the code that
defines the behavior (b) and the values for its internal state (V).

+ n),: when an actor is processing a message with a dependency, this will contain
the identifier of the transaction on which the message depends. In that case, the
actor is in a tentative turn; in a definitive turn (and between turns) this value is e.

Tasks Tasks are extended to contain information about the effects they have on other
futures, actors, and transactions. This information is needed to verify correctness and
to execute delayed effects. A task contains:

o f: the future associated with the task.

133

Chapter 7: PureChocola: an Operational Semantics

Program state p = (AT purto
Actors A C Actor
Tasks T C Task

Inboxes 1 : Address — Message
Transactions 7 : TransactionNumber — Transaction
Transactional heap o : TVar — Value
Actor act € Actor = (4. froor beh. nf,
Task task € Task i= (f.a e Fg Fj eff cx’
Transaction tx € Transaction := (o, e
Spawned and joined futures Fs, F; C Future
Effects on actors eff = (A& beR’
Transactional context ctx = (n, 7,0, effy
Message msg € Message = (dfrom. G0, V néep
As before:
Behavior beh € Behavior = (b, v
Snapshot, local store &, 4 : TVar — Value
Transaction id n € TransactionNumber
Transaction state o = | VX

Figure 7.3: The representation of the program state and its elements in the semantics of Pure-
Chocola.

a: the actor in which the task is running. A task always runs within one actor.*

e: like before, the expression that is currently being evaluated by the task. When
this has been reduced to a single value v, the task has finished.

Fq: the futures forked by this task. This contains the direct children of the task,
which we require to be joined before the task finishes.

Fj: the futures joined in this task. This contains both the futures that were directly
joined in this task, as well as those joined by another task that was joined into this
one. Hence, we can say that the effects of these tasks have been incorporated into
the current task.

eff: this contains this task’s delayed effects on actors. These effects are gathered and
will only be executed at the end of the turn, when it is sure they do not need to be
rolled back. There are two kind of effects: spawned actors, which are gathered in
A, and the result of become, whose effect is stored in beh’ (optional, only present
if a become occurred).

ctx’: when a transaction is active, this structure contains the effects of this task that
occurred within the transaction. Thus, this structure represents the transactional

! Although its future can be passed to other actors.

134

7.1 Syntax and Program State

context in which the task runs. When this is present, the task is transactional; for
non-transactional tasks it is . It consists of:

n: the identifier of the transaction in which this task is running.

0: the snapshot at the start of this task. For the root task of a transaction, this

is a copy of the heap. For tasks forked during the transaction, this is the snap-

shot that represents the transactional state at that point (as in Section 4.3.1,

page 75).

- 0: the local store of changes made to the transactional variables in this trans-
actional task only.

- effi: the effects on actors that occurred in this task during the transaction,

containing spawned actors and the effect of become. These eftects will only be

triggered when the transaction commits.

Effects on actors can be stored in two locations: in the task (eff) and in its transactional
context (eff). When such effects occur inside a transaction, they need to be stored
in the transactional context so that they can be rolled back if the transaction aborts.
When these effects occur outside a transaction but in a tentative turn, they need to be
stored in the task, and may need to be rolled back when the turn ends. Keeping these
effects in two places is a result of the fact that there are two kinds of ‘tentative’ sections
that may need to roll back: transactions and tentative turns.

Shared data structures Three data structures can be accessed from multiple tasks:

« The inboxes of the actors 1, containing a list of messages for each actor. Messages
are dequeued from the front by the receiving actor and enqueued at the back by
any actor that sends a message.

Messages can now contain a dependency (nZlep) that refers to the transaction in
which they were sent. Tentative messages have such a dependency; definitive mes-
sages contain e.

« A mapping 7 of transaction identifiers to transactions. When a transaction starts,

an entry is added. When it commits, the entry is modified to keep track of the
success or failure of the transaction, by the root task of the transaction. Other
actors access this structure when they process a tentative message to verify the
state of its dependency.
A transaction now only contains two elements: its state o and the expression é,
contained within its atomic block, that is restored when the transaction must retry.
Previously it also contained a snapshot and local store, but these data structures
moved to the task(s) that run in the transaction.

« The transactional heap o, which contains the last committed value of the transac-
tional variables. This can be read and modified by any task, but only in a transac-
tion, as before.

135

Chapter 7: PureChocola: an Operational Semantics

7.1.3 Evaluation Contexts

The program evaluation context P is defined below. It can choose an arbitrary task,
and use the term evaluation context £ to find the active site in the term. The definition
of £ is simply the combination of the three definitions for the separate models from
Chapter 2, which we will not repeat here.

Pi= (A TU(f a & F. F eff ctX) p. 7.0

7.1.4 Helper Functions on the Program State

Figure 7.4 defines three helper functions that extract elements out of the program state:

o actor-tasks(T, a) returns all tasks in the actor with address a.

o actor-txs(T, a) returns the identifiers of all transactions that are active (in a task)
within actor a. (Tasks in which no transaction is active do not match the pattern
and are thus ignored.)

o tx-futs(T, n) returns the futures of all tasks spawned within the transaction with
identifier n.

actor-tasks(T, a) = {task | task = (f. a, e. Fs. Fj. eff, ctx’) € T} (tasks in actor a)
actor-txs(T,a) = {n | (f. a. e. F,. Fj. eff, (n. 7. 0. effy)) € T} (id’s of tx’s in actor a)
tx-futs(T,n) = {f| {f a. e. F;. Fj. eff. (n. 7. J. effy)) € T} (futures of tasks in tx n)

Figure 7.4: Helper functions to extract elements out of the program state’s set of tasks T.

7.1.5 Operations to Merge Effects

Figure 7.5 defines three operations that will prove useful when tasks are joined and
their effects need to be merged.

« beh’ | beh’ (read “behavior 1 otherwise behavior 2”) combines two optional be-
haviors: it returns the first if it exists, otherwise the second.

o eff, += eff, merges effects on actors from two tasks: the sets of spawned actors
are joined and the behaviors are combined (preferring the second over the first if
both exist). This operation will occur when a task is joined into another.

o Ctx; += ctx, merges the transactional context of a second (‘child’) task into a first
(‘parent’) task, which occurs when a transactional task is joined into another. We
define that:

- The transaction identifiers need to be the same: a transactional task can only
be merged by another task in the same transaction.

136

7.2 Reduction Rules

— The first task is performing the join, so it keeps its snapshot.

- Thelocal store of the second is added to the first, solving conflicts by preferring
the version in the second task. In PureChocola, we will not consider custom
conflict resolution functions (as in Section 4.3.2). Instead, we always use the
default conflict resolution function, which prefers the value from the child task
over that of the parent.

— The effects on actors of the second are added to the first. In case of conflicting
becomes, the one from the second task is preferred.

beR! ifbeRl #£
%ﬁﬁ

5 otherwise

l%ﬁ’ill%ﬁ’i—{

.. BeRl) += (R, beRl) = (&, UR,, beF, | bek

2

n, o,. 0, eff,) +=(n. &,. 8,, eff,) = (n, 7, , :: 6,, eff, += eff,

Figure 7.5: The operator | (“otherwise”) combines optional behaviors; += merges effects on
actors or transactional contexts.

7.2 | Reduction Rules

We can now describe the reduction relation — of PureChocola. We start with the base
language (Section 7.2.1), and then define the operations on futures (Section 7.2.2),
transactions (Section 7.2.3), and actors (Section 7.2.4). These rules are modifications
- sometimes small, sometimes large — of those from Chapter 2.

7.2.1 Base Language

congruence.

A TU(f a Ele],F. F eff, ax’), p. 7. 0

— (A, TU(f, a, E[¢], F, Fj, eff,), p, 7, 0
ife —, €

As before, a congruence rule allows the base language (the functional calculus
from Chapter 2) to be used in any context, whether in or out a transaction and whether
in a definitive or a tentative turn.

7.2.2 Futures

We define how to fork and join a future.

137

Chapter 7: PureChocola: an Operational Semantics

(A, TU(f, a, E[fork], Fs, Fj, eff, ctx’), p, 7, 0)
— (A, TU (f, a, Ef.]. Fs U fi, Fj, eff, ctx’) U tasky, p. 7, 0)
with f, fresh
2 ° ifctx’! = o (outside transaction)
ax, = { n,5:0,2 (@, e)) ifcx’ =(n, 7,7, (A beR’)) (in transaction)

task, = (fy. a.e. & Fj. (&, o) ctxl)

fork As before, forking a future creates a new task to evaluate the given expression.
In contrast to regular futures, the task can now be transactional if it was forked in a
transaction. In that case, it will have a transactional context, containing:

« areference to the transaction using its id n;

« a snapshot corresponding to the transactional state at the current point, which is
T 0;

« an empty local store; and

« no effects on actors.

A new task’s set of spawned tasks (F;) is empty, as it has not spawned any tasks. On
the other hand, its joined tasks F; are copied from its parent: when these are joined
again, their effects should not be applied again.

join There are two rules to join futures: when joining a future for the first time within
the same actor, and when joining a future subsequently or within another actor.

join, |

(A, TU(f, a, E[join f.]. Fs, Fj, eff, ctx’) W tasky, p1, 7, 0)

— (A, TU(f,a, E[V], F,, FUF Uf., effy, et) Utaske, 1, 7, 0)

where task, = (f;. a. v. F;. FJ* eff,, ctx}) (same actor)
iff. ¢ F; (first join)
F; C FJ* (must have joined its children)

with eff, = eff += eff,
o ifct¥ =eandct, = o (both non-transactional)
X =1 ctx’ ifctx’ #eandctxl = o (non-tx’al into transactional)
ct’ +=ctx} if ctx’ # e and ctxl # o (both transactional)

join, |

(A, TU (f, a, E[join f,], Fs. Fj, eff, ctx’) U tasky, pu, 7. 0)
— (A, TU(f, a, E[v], F;. F;, eff, ctx’) Utasks, p, 7, 0)
where task, = (f.. a.. v. F;. E eff, ctx)
iff. € F (subsequent join)
ora # a (different actor)
When a future from the same actor (all occurrences of a are equal) is joined for
the first time (f. ¢ Fj), its effects should be merged into the task performing the join.

138

7.2 Reduction Rules

Concretely, this means its effects on actors (eff) and the transactional state (ctx) are
merged. We do this using the operator += defined in the previous section.

Merging a transactional task into a non-transactional task is not allowed: the trans-
actional task has effects on transactional state that the non-transactional task cannot
handle. The opposite, merging a non-transactional task into a transactional task, is no
problem: the non-transactional task does not have any side effects, so it can simply be
resolved to its value.

Further, we require that the task f, has joined all of its children (F; C F/). Asa
result, the effects of its children have been merged into f, and are now present in its
eff and ctx, allowing us to simply merge these effects. If the task fi has not joined all
its children, no rule is applicable; in the actual implementation of Chocola an error is
raised.

The rule join, | simply resolves to the future’s value without merging effects. This
occurs in two cases:

« In the case of subsequent joins: the effects are already present and do not need to
be merged again.

« In the case of joining a future from a different actor. This can occur when an actor
sends a future to another actor in a message. Merging the effects of the task f,
from actor a. into the task f of actor a is not desirable: effects on actors should not
be ‘transferred’ between actors as this could cause them to be duplicated. Instead,
these effects will be merged into the parent of f., which exists in the same actor
ax, as a result of the rule that requires parent tasks to join all of their children (a
condition on the rules join, | and turn-end|.).

7.2.3 Transactions

The rules handling transactions are shown in Figure 7.6. We describe their changes
compared to Section 2.4.5 from Chapter 2 (page 31). The most significant changes are
to the commit rules, to take into account that in a tentative turn the current transaction
depends on another transaction.

atomic, ref, deref, ref-set Rule atomic|. has been modified to store the transac-
tional state in ctx instead of directly in the task. The rules atomic|c, ref|c, deref]., and
ref-set|. work in almost exactly the same way as before.

commit The rules handling a commit have been modified to take into account
whether the current turn is definitive or tentative. Figure 7.7 summarizes which com-
mit rule applies in which situation. Before a transaction can successfully commit, in
rule commit, |, the current turn must either have no dependency or its dependency
must have succeeded (nzlep = eor T(n(?iep) = (v, €)). This ensures that changes that

139

Chapter 7: PureChocola: an Operational Semantics

atomic|.
(A, TU (f. a, E[atomic e], F,, Fj, eff, @), p. 7. 0)
— (A, TU (f. a, E[atomick e, F, Fj, eff, ctx), p, 7[n = (>, ¢)]. 0)
with n fresh
cx=(n, 0,9, (D, o))

atomicy|c
(A, TU (f, a, E[atomic e], F,, Fj. eff, ctx), p, 7, 0)
— (A, TU (f, a, Ele]. Fs, Fj, eff, ctx), pu, 7, 0)

ref|

(A, TU (f, a, E[ref v], F, F;, eff, (n,

— (A, TU (f, a, &[r], Fs, F;, eff, (n,
with r fresh

deref].
(A, TU (f, a, E[derefr] F
= (A, TU(f, a,E[(T ::)

ref-set|.

(A, TU(f, a, E[ref-set rv|. F, Fj, eff, (n, 7.4, eff)). 1, 7, 0)
— (A, TU (f, a, E[V], F;, Fj, eff, (T, 0[r— v, effw)), p, 7, 0)

commit, .
(AUact, TU (f. a, E[atomicx V], F, Fj, eff, (n, 7. 0. effx)). . T[n = (>, €)], 0)
— (AUact, TU (f, a, E[v], Fs, Fj, effy @) pu, T[n — (/, €)]. 0 :: §)

where act = (a, froot, beh. nZiep>

0, eff)), o, 7, 0)

ol
T, 0[r— v, eff)), u, 7, 0)

s, Fj, eff, (n,
(r)]. Es, Fj, e

EXY

—

.0, efftx>> T, 0)
)

n,o,d, eftX > T, 0)

if Vr € dom(9) : o(r) = 5(r) (no conflicts)
Vf. € tx-futs(T,n) : f, € F; (all futures spawned in the tx must have been joined)
nziep =eor T(nzlep) =/ ¢ (in a definitive or a successful tentative turn)

with eff, = eff += effix

commity|.
(A, TU (f, a, E[atomick v], Fy, Fj, eff, (n. 7. 6, effy)), p, 7[n — (>, €)]. 0)
— (A, TU (f, a, E[atomic €], F,, Fj, eff, o), p1, 7[n — < .€)]. o)
if Ir € dom(9) : o(r) # o (r) (a conflict occurred)
Vf. € tx-futs(T,n) : f, € F; (all futures spawned in the tx must have been joined)

commit, |
(AUact, TU (f, a, E[atomicx V], F,, Fj, eff, ctx), p, 7. 0)
— (AUact, T/, p, 7', o)

where act = (a. froor. beh, ngep)

if 7(ngep) = (X. &) (in a failed tentative turn)
with act/ = (a, e beh, o) (reset actor to idle state)
T = T\ actor-tasks(T, a) (abort and remove all tasks in this turn)
, (X, nil) ifn € actor-txs(a) (abort all transactions in this

7'(n) = : . .
7(n) otherwise turn, including current)

Figure 7.6: Rules concerning transactions.
140

7.2 Reduction Rules

—{ Any conflict? Yes commity|.

No
Y
Dependency? No commit,|c
Yes > running

v succeeded |

’ State of dependency? commit,|.
X ab()rted

Figure 7.7: This diagram illustrates which commit rules applies in which scenario.

are the result of a tentative message are only written to the transactional heap until it
is sure the dependency has succeeded. In commitx|c, no such condition is necessary:
when a conflict is detected the transaction will not write any changes to the trans-
actional heap anyway. We also added the rule commit, |, which matches when the
current transaction runs in a tentative turn whose dependency failed (ngep 7# and
7(ngep) = (X. €)). Then, the following happens:

o The current turn is abandoned and the actor returns to an idle state. Any changes
that occurred in the current turn are thus discarded, as they are the result of an
invalid message.

« All tasks that were active in this turn are aborted and removed.

« This transaction and any other transactions that are active in this turn are marked
as aborted in the map 7. This is necessary because these transactions may have
sent tentative messages, which are now invalid. Note that these transactions will
not have committed yet, as they must also wait for the dependency; they are either
still active (>) or they have aborted (X). (We can safely set their expression to nil,
as they will never retry anymore.)

No rule applies when the dependency is still running, i.e. ngep 7# ® and 7(ngep) =
>,). As a result, the reduction of the current task will be stuck until its dependency
either commits or aborts, at which point either commit,|. or commit, |. applies and
the current task can proceed.
Additionally, the rules commit, |. and commitx|. have two other modifications:

o All tasks that were forked in a transaction must have been joined before the com-
mit. This ensures that all effects have been merged into the root task of this trans-
action, and can therefore be applied atomically. Programs that do not adhere to
this are invalid; in the actual implementation an error is raised then.

141

Chapter 7: PureChocola: an Operational Semantics

o Upon a successful commit, the effects on actors (eff) that occurred in the transac-
tion are merged into the task (rule commit,|.). If the transaction aborts, they are
discarded (rule commitx].).

7.2.4 Actors

The operations involving actors, shown in Figure 7.8, need to take into account whether
a transaction or tentative turn is active, or neither. Table 5.7 from Chapter 5 (page 104)
described how each operation works in each of three contexts: in a transaction, out-
side a transaction in a tentative turn, and outside a transaction in a definitive turn. The
reduction rules likewise differentiate between these cases.

self The rule self|. is unmodified, simply returning the address of the current actor.

spawn spawn creates a new actor, but this actor is not immediately active (it is not
added to the set A in the program state). Instead:

« If no transaction is active, the new actor is stored in the effects eff of the current
task. This occurs both in definitive and tentative turns. The actor will become
active if and when the current turn ends successfully (rule turn-end|). Note that
this is different from the implementation in Chapter 8, where the actor becomes
active immediately in definitive turns.

o If a transaction is active, the new actor will be stored in the effects effi, of the
transaction. If the transaction commits successfully, these effects will be merged
into the effects of the task upon commit. These will eventually be executed at the
end of the turn. If the transaction aborts, the effects are discarded.

The inbox is created immediately though, as it should be able to receive (possibly ten-
tative) messages immediately. (If eventually the actor is discarded, we do not remove
the inbox, although it is no longer used and could be cleaned up.)

become become similarly distinguishes these two cases. If no transaction is active,
the effect is stored in the task; otherwise, it is stored in the transaction. Again, the
effects in a transaction are merged into the task when the transaction commits; and
the effects become active if and when the current turn ends successfully.

send As explained in Chapter 5, send always immediately sends the message, but
possibly it is tentative. This is indicated through an additional parameter nznsg, which
refers to the current transaction in a transaction, to the current dependency in a tenta-
tive turn, or is e in a definitive turn. This corresponds to the three cases described in
Table 5.7 (page 104). Hence, messages without a dependency (e) are definitive, those
with a dependency are tentative.

142

7.2 Reduction Rules

self]c
(A, TU (f, a, E[self], F,, F;, eff, ctx’), pu, 7, 0)
(A, TU (f, a, Ela], Fs, Fj, eff, X)), pu, 7, 0)

spawn|

(A, TU(f, a, E[spawn b, ¥, F,, Fj, eff, ctx’), p, 7, 0)
— (A, TU(f, a, [a.], Fs, Fj, eff, ctx'), pla. — [|], 7, 0)
with a, fresh
acty = (a.. o, (by. V), @)
ifctx! = o: cax' = o (outside transaction)
eff = eff += (act., @)
ifctx = (n. 7.0, effx): X’ = (n. 7, 0. eff += (act,, ®)) (in transaction)
eff = eff

1

become|.

(A, TU (f, a, E[become b, V], F,. Fj, eff, ctX’). pu. 7. 0)

— (A, TU (f, a, E[nil], F,, Fj, eff, ctx’), pu, 7, 0)

ifctx’ = o: cax' = o (outside transaction)
eff = eff +=(@. (b, 7))

ifc = (n, &, 0, effy): X’ = (n T, 08, effe += (&, (bs, ¥))) (in transaction)
eff = eff

with

send|.

(AUact, TU (f. a, E[send ay V). Fs, F;, eff, ctX’), play, — msg|. 7. 0)
— (AUact, TU (f, a, E[nil], Fy, Fj, eff, ctX’), plag — Msg - msg], 7, o)
where act = (a, froot, beh. n;’iep>

with msg = (a, a,, 7, nZnsg>

N ifctx’ = (ng, 7, 9, effy) (in transaction)
nx?'nsg = n?dep if ctx’ = e and nziep F#e (in tentative turn)
° otherwise (definitive)

receive|.

(AU (a. o beh o) T, pla (agom. @ Vmsg, Nep) - MSQ]. 7. 0)
— (AU (a. fi, beh. nj), T Utask, p[a — Msg]. 7. 0)
with f+ fresh e, = apply-behavior(beh, V)
task = (fx, a. ex, &. &, eff. @) eff= (2. o)

turn-end|.

(AU (a, froot, beh, nziep) T U taskeoot, f4s T O)
— (AU (a, o, beh’. o)WURA" TUtaskoor, ity T; T)
where tasksoot = (froot. @. v, Fs, Fj. (K. beR’). @)

if F; C F; (all futures spawned in the turn must have been joined)

if nfiep =eor T(“Zﬂep) = (/.&: beh’ =behR’ |beh (definitive, or success-

. A =R ful tentative turn)

with if 7(nge,) = (X. €): beh’ = beh (failed tentative turn)
A =0

Figure 7.8: Rules concerning actors.

143

Chapter 7: PureChocola: an Operational Semantics

Receive (start of turn) The rule receive|. is triggered when an actor takes a message
from its inbox. As before, it binds the parameters of the expression in the behavior to
the respective values in the internal state and the message. A root task is created to
evaluate this expression and its future is stored in the actor. If the message is tentative,
its dependency is copied to the actor, causing the turn to be tentative as well. (n} ep €A1
be e too, in which case the turn is definitive.)

End of turn Finally, the rule turn-end|. is evaluated when the turn ends, i.e. when
its root task has been reduced to a single value. The actor moves to an idle state (its
root future is replaced with e) and loses its dependency. We require that the root task
has joined all its children. In turn, these children must have joined their children
(required by rule join, |c). (In contrast to the formal semantics, the implementation
raises an error if this is not the case.) Asaresult, the effects of all tasks that were created
in this turn have been merged and are present in the root task’s eff. The turn can now
succeed or fail:

o A turn succeeds when it is definitive (its dependency is @) or when it is tentative
and its dependency committed. In that case, its delayed effects can be executed:
its behavior is updated (if necessary) and newly spawned actors become active.

o A turn fails when it is tentative and its dependency has aborted. Then, its de-
layed effects do not become visible: its behavior remains the same and the actors
it spawned are discarded.

If the dependency is still executing (), this rule will not be applicable. Hence, the
reduction of this actor becomes stuck until the dependency finishes, at which point it
will either succeed or fail. In the implementation, an actor executing a tentative turn
will wait at the end of the turn until its dependency either commits or aborts.

7.3 | Guarantees

In this section, we show how the guarantees of Chocola can be inferred from the formal
semantics. We will not give formal proofs in this dissertation (these are considered
future work), but instead we argue slightly more informally how the guarantees are
embedded in the formal semantics.

7.3.1 Intratransaction Determinacy

Intratransaction determinacy states that, given the initial state of the transactional
heap, a transaction will always have the same result, assuming that all conflict reso-
lution functions are determinate. In this section, we show that the semantics of Pure-
Chocola complies with this property.

144

7.3 Guarantees

Reduction of a transaction A transaction starts when the expression atomic e
is encountered (and no transaction is running yet), at which point the rule atomic|c
triggers. This rule replaces the expression with atomicx e. Next, e will be reduced,
possibly forking new tasks. The transaction commits or aborts when this expression
has been fully reduced to a value, when either of the rules commit,|. or commitx|.
applies. (We can safely ignore transactions that are aborted when their turn failed due
to commit, |, as these transactions do not have any result.)

The reduction of the transaction’s expression e to its final value v can occur along
different paths: when the transaction contains multiple tasks, their instructions can
be interleaved in different orders, non-deterministically. In PureChocola, this non-
determinism is introduced in the definition of the program evaluation context P, in
Section 7.1.3: when reducing a program state, any task that can be reduced may be
chosen to be reduced next.

To prove intratransaction determinacy, we need to show that any valid ordering of
the instructions of the transaction’s tasks always leads to the same effects. A transac-
tion has three kinds of effects: (1) its final value after it is fully evaluated, (2) its effects
on transactional memory and (3) its effects on actors. We consider each separately.

Its final value The final value of a transaction is not influenced by the order in
which the instructions of its tasks are scheduled. This is a result of the fact that each
task runs in isolation and only reads and writes to its own snapshot and local store.
An instruction from one task can thus never influence the result of an instruction of a
different task, and hence each task always has the same result. Different interleavings
of the same instructions therefore still lead to the same result.

Its effects on transactional memory The effects of a transaction on transactional
memory are also always deterministic. Each task runs in isolation and gathers its ef-
fects in its local store. When it is joined, its effects are joined into its parent, using
conflict resolution functions that we assume to be determinate.

Furthermore, the order of the joins is fixed. We require the programmer to explic-
itly join each task into its parent, hence, this order is explicitly prescribed in the code.
(If the programmer forgets to join a task, an error is raised. This also does not depend
on the order in which tasks are scheduled and is therefore deterministic too.)

In the end, the root task will contain all effects of all tasks, merged determinis-
tically. These are then applied in a single step during the commit. Thus, the effects
of a transaction on transactional memory do not depend on the order in which its
instructions are interleaved, and are therefore determinate.

Burckhardt and Leijen [2011] prove determinacy for Concurrent Revisions, a re-
lated technique that introduces concurrent tasks that can access versioned variables,

145

Chapter 7: PureChocola: an Operational Semantics

providing a model similar to our transactional futures (described in Section 4.5.3, on
page 87). A similar technique can be applied here.

Its effects on actors A transaction can have effects on actors using spawn, become,
and send. These effects are determinate:

o The order in which actors are spawned is not observable, and therefore cannot
cause observable non-determinism.

« When become is encountered in a transaction, its effects are stored in the current
task (rule become|.). When the task is joined, these effects are merged into its
parent and conflicts are resolved deterministically by preferring the value of the
child (rule join, | and the definition of eff, += eff,). Eventually, these effects will
wind up in the root task and be committed, similar to the changes to transactional
memory in the local store.

« Given its initial state, a transaction will always send the same messages, as the
send statements do not depend on the order in which the transaction’s tasks are
scheduled. Note that the order in which these messages are sent is actually non-
deterministic: for instance, when two transactional tasks each send a message to
the same actor, the two messages can arrive in any order. Only the messages and
their values are determinate, not the order in which they are sent.

Conclusion PureChocola guarantees intratransaction determinacy: the effects of
a transaction - its final value and its effects on transactional memory and actors -
only depend on the state of the transactional heap at the start of the transaction. This
makes it easy to reason about transactions: developers do not need to take into account
how the instructions of tasks inside a transaction are interleaved, as each task runs in
isolation.

7.3.2 Low-Level Race Freedom

Low-level race freedom states that race conditions can only occur due to bad interleav-
ings of turns or transactions, not due to bad interleavings of the individual instructions
within turns or transactions. We show how these low-level races are prevented in Pure-
Chocola.

Races occur when different threads access shared memory in an incorrect way. In
PureChocola, there are two places in which data is stored: an actor’s private memory
and the shared transactional memory. Both are protected from races:

Actors’ private memory is stored in their behavior. Access to this memory is safe,
because it is only read and modified by the actor itself. It is read once when a turn
starts (the apply-behavior function in the rule receive|.), ensuring that all tasks in
the turn have a consistent view throughout the whole turn. The private memory

146

7.3 Guarantees

can be modified using become, but those changes will only be visible in the next
turn. Even when multiple tasks update the memory, the values of the task that
is joined last are stored, independent of how their instructions are interleaved (as
can been seen when the effects are merged in rule join, |¢).

The transactional memory is shared, but accesses to this memory are protected using
transactions. In the reduction rules, a consistent view is ensured by making a copy
of the transactional memory at the start of the transaction (7). Atomic updates
are ensured by storing updates during the transaction in a local store §, and only
applying them upon a successful commit (rule commit,|c). (Remember that the
actual implementation does not create copies, but instead ensures this property
using the MVCC algorithm.)

7.3.3 Deadlock Freedom of Actors

Blocking operations are encoded in the semantics as rules with conditions that may
not be satisfied immediately. Thus, one task’s reduction path is blocked until another
task has reached a certain state. There are three such cases: when joining a future
(rule join,|c), at the end of a turn (rule turn-end|c), when committing a transaction
(rule commit, |. and commit,|c), and when receiving a message (in rule receive|.). The
actor model guarantees deadlock freedom, meaning that once a turn starts, it always
runs to completion; hence, we should check whether the first three cases do not break
this property. The fourth case may be blocked forever; this is even expected when an
actor has processed all its messages.

When joining a future The rule join, | requires the task that is joined to have been
reduced to a single value. It can therefore only trigger after this task has completed.
This could potentially cause deadlocks when two tasks are waiting for each other to
finish. However, this can never happen: the tasks in an actor form a spawn tree, just
like they did when used outside actors (as described Section 3.3.3 on page 63), and
therefore they never contain a cycle. This condition will thus always be satisfied even-
tually. The spawn tree within a turn can be derived from the semantics, as the actor
stores a reference to its root task and each task stores a reference to its children (in its
set of spawned futures Fy).

At the end of a turn An actor can block at the end of a tentative turn, waiting
for its dependency to be resolved. This is encoded in the rule turn-end|. by checking
whether the dependency has succeeded or failed (7(n,,) = (V. &) or (X. ¢)). While
the transaction is still running (7(n}, ep) = (>, €)), none of both conditions is satisfied,
so this rule is not applicable, nor is any other rule. It is only when the dependency
commits that this rule applies and the actor proceeds.

147

Chapter 7: PureChocola: an Operational Semantics

In Section 5.3.3, on page 106, we discussed why transactional actors cannot cause
a deadlock due to cyclical dependencies. We repeat the observations made there and
relate them to the formal semantics:

1. Dependencies are always introduced at the start of a turn: the only rule in which
an actor’s dependency goes from e to nqep, is in receive|., when a message with a
dependency is received.

2. No transaction is running when a turn starts: no task is active in the begin state
of the rule receive|.. Hence, dependencies are never introduced while a transaction
is active.

Here we see again why cyclical dependencies are impossible. When an actor blocks
at the end of a tentative turn (rule turn-end|.), its dependency nqe, was introduced
at the start of that turn (rule receive|., observation 1). This dependency came from
a message, which was sent in the transaction with identifier ngep, (rule send|c). That
transaction was therefore already running before the turn that depends on it. An in-
verse dependency is impossible: the transaction ngep is already running or finished,
and cannot acquire a dependency on later transactions (observation 2). Hence, cycli-
cal dependencies are impossible, so deadlocks cannot occur.

When committing a transaction In a tentative turn, a transaction will wait to
commit until its dependency is resolved. This is encoded in the rules commit,/|. and
commit, |.: if there are no conflicts and the dependency is still running (T(nzlep) =

>, €)), no rule is applicable so the reduction is stuck until the dependency commits.
No deadlocks occur because the dependency will always commit eventually. The
same reasoning given above applies here: cyclical dependencies are impossible be-
cause the waiting transaction is always more recent than the transaction on which it
is waiting and dependencies are never introduced in a running transaction. The de-
pendency will therefore commit eventually, at which point the current transaction can
commit.

7.3.4 Isolation of Transactions: Snapshot Isolation

Transactional systems guarantee a form of isolation; in Section 2.4.3, we chose to pro-
vide snapshot isolation for Chocola. This property is still present in the semantics of
PureChocola, in a quite direct way.> When a transaction is started, a copy of the heap
is stored in its root task as a ‘snapshot’ . All changes to the transactional memory
in a transaction are stored in a separate ‘local store’ §. When the transaction attempts

*Remember that here, PureChocola does not match the actual implementation of Chocola. The algo-
rithm we actually use to implement these semantics, Multiversion Concurrency Control, was described
in Section 2.4.4 (page 27) and provides the same guarantees.

148

7.3 Guarantees

to commit, it verifies correctness by comparing the snapshot with the current heap,
and then applies all changes at once to the transactional heap. This follows exactly the
definition of snapshot isolation (see Section 2.4.3, page 25), which required that (1)
a transaction sees a consistent view of the memory (the snapshot), and (2) a transac-
tion can only commit if none of its updates conflict with any concurrent updates made
since the snapshot.

Even when multiple tasks are forked in a transaction, isolation is maintained. Each
task has its own local store, and when it is joined into its parent, its local store is merged
with that of the parent (rule join,|c). By requiring that all tasks that are created in a
transaction have been joined into its root task before the transaction ends, we ensure
that all changes of all tasks have been merged into the root task’s local store (condition
f« € Fjin rule commit,|.). These are then applied to the heap in an atomic step
(update to o in commit,|¢).

The same is true for the effects on actors. spawn and become are delayed and stored
as a task’s effects (eff, structure in a task’s transactional context ctx, modified in the
rules spawn|. and become|.). When a task is joined, its effects are merged into its par-
ent (rule join, |.). Again, this will cause all effects of all tasks to have been merged into
the root task’s effects. These effects are then applied atomically when the transaction
commits, or discarded when it aborts.

Messages in a transaction are not delayed, but sent immediately. A dependency
is attached to the message (rule send|.), causing the turn that processes this message
to become tentative (rule receive|.). When a tentative turn ends, its effects are only
applied if its dependency committed successfully; while on failure, the effects are dis-
carded (rule turn-end|.). This ensures that the effects of messages sent in a transaction
only become visible if the transaction succeeds, thus maintaining isolation.

7.3.5 Progress of Transactions: Deadlock Freedom

Algorithms that implement transactional systems can guarantee a form of progress.
We chose to implement the Multiversion Concurrency Control (MVCC) algorithm, as
explained in Section 2.4.4 (page 27), which guarantees deadlock freedom. Deadlock
freedom of transactions ensures that, when two transactions conflict, one is delayed
so that another can make progress. This guarantee is a property of the implementa-
tion algorithms; it is not visible in the semantics. Chocola still uses MVCC and thus
maintains the property.

While this property guarantees progress when two transactions conflict, deadlocks
might also occur within a single transaction: using join in a transaction could poten-
tially cause deadlocks when two tasks are waiting for each other to finish. However, the
tasks in a transaction form a spawn tree, just like they did when used outside trans-
actions, and no cycles occur. The spawn tree can be derived from each task’s set of

149

Chapter 7: PureChocola: an Operational Semantics

spawned futures F.

7.4 | Mechanical Verification of Isolation and
Intratransaction Determinacy

We have created an executable implementation of parts of PureChocola using PLT
Redex.3 PLT Redex is a language and framework in which formal semantics can be
written down and executed [Felleisen et al. 2009]. As argued by Klein et al. [2012],
creating an executable version of a semantics often helps to find mistakes and to verify
its properties. We have used PLT Redex to explore and visualize reductions of test
programs and we have specified several test programs and their expected reductions,
which are verified automatically.

We have not implemented the full formal semantics of PureChocola in PLT Redex.
Instead, we focused on some crucial parts: we implemented each of the three separate
models and transactional futures.

For transactions, we created two implementations: one in which each transaction
is executed in a single atomic step (corresponding to the serialized version of the pro-
gram) and one in which steps from different transactions are interleaved (and commits
can therefore succeed or abort and transactions can roll back). We can verify isolation
by reducing programs with both implementations and checking that they lead to the
same end results. We tested this by systematically generating programs conforming
to different patterns (e.g. two transactions executed in sequence, two parallel transac-
tions that do not conflict, two parallel transactions that conflict).

We implemented transactional futures in PLT Redex to verify the guarantees of in-
tratransaction determinacy and isolation when transactions and futures are combined.
Again, we systematically test certain patterns (e.g. no conflicts, conflicts between the
tasks within a transaction, conflicts between transactions, and both).

We demonstrate a reduction using the example in Listing 7.9. This example is
slightly convoluted, to demonstrate that the guarantees hold even in a complex sce-
nario. The program creates two transactions that modify a shared transactional vari-
able r. The two transactions each create two tasks internally, which concurrently mod-
ify the variable. In the first transaction, the first task adds 1 to r and the second task
adds 2. Intratransaction determinacy requires that, because the second task is joined
last, the result of this transaction must always add 2 to r, never 1. Likewise, the second
transaction must always add 4 to r.

There are two serializations of this program:

3 Available online at https://soft.vub.ac.be/~jswalens/chocola.

150

https://soft.vub.ac.be/~jswalens/chocola

7.5 Differences Between PureChocola and Chocola

o Iftransaction 1 precedes transaction 2, transaction 1 returns 2 (= o + 2) and trans-
action 2 returns 6 (= 2 + 4). The end result of the program is 8 (= 2 + 6).

o Iftransaction 2 precedes transaction 1, transaction 2 returns 4 (= o + 4) and trans-
action 1 returns 6 (= 4 + 2). The end result of the program is 10 (= 6 + 4).

Figure 7.10 contains a trace of this program generated using PLT Redex. It shows
how different interleavings lead to different intermediate states, but in the end they
collapse into two terminal states, corresponding to the two possible serializations of
this program. This is only possible because (1) thanks to isolation there are only two
serializations, and (2) thanks to intratransaction determinacy each transaction only
has one result given an initial state. Using PLT Redex, we can verify isolation and in-
tratransaction determinacy for any program, by checking that the number of terminal
states for a program corresponds to the number of possible serializations.

7.5 | Differences Between PureChocola and Chocola

We list the differences between our formal semantics PureChocola and the actual im-
plementation Chocola:

 PureChocola is built around a base language, which is not specified here. Chocola
is built on top of Clojure. The base language of PureChocola is limited to the
functional subset of Clojure: functions with side effects are not considered.

o In PureChocola, the conflict resolution function of transactional variables is al-
ways assumed to be the default one, which prefers the value in the joined task over
the value in the task performing the join. While it is possible to add support for
custom conflict resolution functions to PureChocola, we omitted this functional-
ity to simplify the formalization.

 PureChocola implements snapshot isolation in a direct way: a snapshot is taken at
the start of each transaction’s attempt and verified during commit. Chocola instead
relies on MVCC to guarantee snapshot isolation. One notable consequence is that
in Chocola, a transaction can abort early when a conflict is detected while the
transaction is still running, while in PureChocola, conflicts are only ever detected
at the end of the transaction.

o The rule commit,|. specifies how a turn is aborted when, at the end of a trans-
action in a tentative turn, it appears the dependency aborted. In PureChocola,
all tasks in the current turn are immediately stopped and removed and any trans-
action in the current turn immediately aborts. In Chocola, this is implemented
using an exception: the current transaction throws an exception, which bubbles
up through the spawn tree of the current turn, until it eventually reaches the root
task. (This exception cannot be caught by the programmer.) The root task then

151

1

2

a v s w

~

10
11
12
13
14

15

Chapter 7: PureChocola: an Operational Semantics

(let [(r (ref 0))
(f (fork
(atomic
(let [(x (fork (ref-set r (+ @r 1))))
(y (fork (ref-set r (+ @r 2)))1]
(join x) ;= r=original+1
(join y) ;= r=original +2
@r)))) ; = returns original + 2
(g (fork
(atomic
(let [(x (fork (ref-set r (+ @r 3))))
(y (fork (ref-set r (+ @r 4)))]
(join x) ;=-r=original+3
(join y) ;= r=original +4
@r))))] ; = returns original + 4
(+ (join f) (join g)))

Listing 7.9: Example program in which two transactions both create two transactional tasks.
Each of the four tasks modifies the shared transactional variable r. Despite a multitude of
possible interleavings of the instructions of the four tasks, this program only has two possible
outputs (8 or 10), corresponding to the two serializations of the transactions.

v'f]l

Figure 7.10: Trace of the evaluation of the program in Listing 7.9, generated using PLT Redex
with an executable version of the semantics. (Transactions are evaluated in a single step, cor-
responding to their atomicity.) The details of each intermediate state are not important, the
important thing to note is that during the execution of the program many different interleav-
ings are possible, but that in the end there are only two possible terminal states, corresponding
to the two serializations of the two transactions.

152

7.6 Conclusion

aborts. Hence, in PureChocola all tasks seem to abort at exactly the same moment,
while in Chocola they abort at different moments.

o In PureChocola, even in a definitive turn spawn is delayed until the end of the turn.
In Chocola it happens immediately in a definitive turn.

 PureChocola expects programs to satisfy some conditions: a future, a transaction’s
root task, and a turn’s root task must all join all their children. When these condi-
tions are not satisfied in Chocola, an exception is raised. In PureChocola, we did
not make these errors explicit.

7.6 | Conclusion

In this chapter, we presented PureChocola, a formalization of the semantics of Chocola.
We described how Chocola’s guarantees can be inferred from this formalization. Ad-
ditionally, we created an executable implementation of parts of this formalization, to
mechanically verify the isolation and intratransaction determinacy guarantees.

153

An Implementation of
Chocola

We have implemented Chocola as a fork of Clojure." In this chapter, we first describe
‘standard’ implementations of the separate models: futures and transactions as found
in Clojure in Sections 8.1 and 8.2 respectively, and our simple implementation of actors
in Section 8.3. Next, we describe how Chocola modifies these to support transactional
actors in Section 8.4 and transactional futures in Section 8.5. Further, Section 8.6 lists
the parts of Clojure that Chocola is compatible with.

Clojure is partially implemented in Clojure itself, and partially in Java. A brief de-
scription of Clojure is given in Appendix B. Clojure uses Java’s concurrency primitives
extensively, including futures, thread pools, and atomic integers; we do not discuss
their internal implementation here.

Throughout this chapter, we use the syntax and semantics of Chocola. In some
cases our syntax and semantics differ slightly from those of standard Clojure; Ap-
pendix D enumerates these differences. Note also that the code in all listings in this
chapter has been abridged, modified, and documented for clarity.

8.1 | Futures

Clojure’s futures use Java’s thread pools and futures internally. fork and join are im-
plemented as follows:

'It is available online at http://soft.vub.ac.be/~jswalens/chocola/. Chocola is open source, under the
Eclipse Public License.

155

http://soft.vub.ac.be/~jswalens/chocola/

Chapter 8: An Implementation of Chocola

fork forkisa Clojure macro that translates (fork body) into (future-call (fn []
body)).> future-call submits this function to a thread pool, returning a Java Future3.

Every task corresponds to a thread on a cached thread pool*. In a cached thread
pool, threads are reused: when a task is finished, its thread remains active and will be
reused for new tasks. This decreases the time needed to create new threads, at the cost
of higher memory usage.

join When a task finishes, its future is resolved to the final value. (join f) calls
the Future’s get method, which waits for the future to be resolved and then returns its
result.

8.2 | Transactions

Clojure implements transactions using the MVCC algorithm, which we already dis-
cussed in Section 2.4.4 on page 27. In this section, we sketch how Clojure implements
this algorithm. We aim only to describe the gist of the algorithms and their implemen-
tation, therefore many details have been elided.

Clojure implements transactional variables as Refs. An overview of the class Ref
is given in Listing 8.1. Transactions are represented by the class Transaction, shown
in Listings 8.2 and 8.3.

There is a global, shared clock, implemented using the atomic integer lastPoint,
a static field of Transaction. The current transaction is stored in the thread-local
variable Transaction.CURRENT.

A transaction’s data structures A transaction contains several data structures to
store its modifications: sets, commutes, and ensured contain the refs modified using
ref-set, commute, and ensure (the last two are Clojure-specific and not discussed in
this dissertation), while vals contains the accompanying values. Together these cor-
respond to the local store § of our operational semantics.

Transactional variables and operations Each ref contains a limited history of pre-
vious values and the time at which they were set. These values are called Tvals. Thus,
transactions can read an older version of a ref even after it has been overwritten, pre-
venting conflicts. Further, refs contain a read—write lock that allows multiple transac-
tions to read the ref but only one to write to it.

*Everywhere we write fork, Clojure uses future.

3https://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Future.html

“https://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Executors.html#
newCachedThreadPool()

156

https://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Future.html
https://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Executors.html#newCachedThreadPool()
https://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Executors.html#newCachedThreadPool()

8.2 Transactions

1 public class Ref extends ARef implements IFn, Comparable<Ref>, IRef {
// ATVal is one entry in the history of this ref
static class TVal {
Object val; //Value
long point; //Write point: time at which this value was valid
TVal prior; //TValsform a circular doubly linked list: pointers to the prior...
TVal next; //..and nextvalues
// Methods elided

© BN AV oA W oN

}

e
= o

// The history of the ref: this points to the last one TVal, they form a linked list.

Tval tvals;

// A read-write lock: transactions that read this ref take a read-lock, those that write take a write-lock.
// Hence, only one transaction can write at a time.

ReentrantReadwWriteLock lock;

// Transaction that owns the write-lock.

Transaction tx;

G
IR VI N VA)

// Some methods elided

SIS
o ©

// Write to a ref.

Object set(Object val) {
Transaction t = Transaction.CURRENT.get(); //Getthe active tx (elided: otherwise throw an exception)
return t.doSet(this, val);

[SO S
N V)

i

// Functions deref, alter, commute, and ensure are similar.

S L
NS w
-

Listing 8.1: The class Ref, which implements transactional variables.

All operations on refs implement a similar pattern. The operation, e.g. (ref-set r
v), is first translated to a method call on the ref, e.g. r.set(v) (line 22). This method
checks whether a transaction is running and forwards the operation to the current
transaction, e.g. tx.doSet(r, v). If no transaction is running, an exception is raised.

When reading a ref, doGet(r) searches its value first in the transaction’s vals,
which contains its in-transaction value in case it was written to during the transaction.
Otherwise, it searches the ref’s history for the most recent value before the transaction’s
read point. If no recent enough value exists, the transaction must retry.

Modifying a ref, in doSet(r, v), adds the ref to sets and its value to vals, if a
write lock can be acquired on the ref. If this lock is held by another transaction, the
most recent of both aborts (based on their start point), and will retry when the older
transaction has finished. This is an early abort: an unavoidable conflict is detected
before the transaction has finished, increasing performance by avoiding computations
that are doomed to fail. This raises a RetryException.

Transaction A transaction (atomic e) is translated into Transaction.runInTx(fn),
where fn corresponds to a function executing e. If a transaction is running already, the
contents of the nested transaction are simply executed within the context of the outer
transaction, implementing closed nesting (see Section 3.3.3, page 64). Otherwise, a
new transaction is created and its run method is called.

157

Chapter 8: An Implementation of Chocola

1 public class Transaction {

R - . I NN

WOW W W W W W W W W RN N NN NN RN E R R e R e e e
O N Ow A PR ROV ®N OV AW N ROV ®N OV AWLN = O

40

// Global, shared, atomic integer containing time. Incremented each time a transaction starts, retries, or commits.
static AtomicLong lastPoint;

// The current transaction is stored in a thread-local variable. (If no transaction is active, this is null.)
static ThreadLocal<Transaction> CURRENT;

AtomicInteger status; //RUNNING, COMMITTING, RETRY, KILLED, or COMMITTED.
long readPoint; //The read point: only read refs older than this time.
long startPoint; //Read point of first attempt. Used when two tx’s conflict, to stop the newer one.

HashMap<Ref, Object> vals; // In-transaction values of set and commuted refs
HashSet<Ref> sets; // Modified refs

TreeMap<Ref, List<CFn>> commutes; //Commuted and ensured refs (not further considered here)
HashSet<Ref> ensures;

static class RetryEx extends Error {} //Exceptionthrown when a transaction should retry

// Acquire write lock on ref. If the lock cannot be acquired within 100 ms, this causes the transaction to retry.
void tryWritelLock(Ref ref) { .. }

// Acquire write lock on ref. If a conflict with another transaction occurs, this aborts the most recent of both.
Object lock(Ref ref) { .. }

Object doGet(Ref ref) {
if (vals.containsKey(ref)) //Thisref was modified in this tx: return that value.
return vals.get(ref);
try {
ref.lock.readLock().lock();
Ref.TVal ver = ref.tvals;
do { //Find the latest version of the ref before this tx’s read point.
if (ver.point <= readPoint) return ver.val;
} while ((ver = ver.prior) != ref.tvals);
} finally {
ref.lock.readLock().unlock();
}
throw new RetryEx(); //If we reach this point, no old enough version of the ref exists: the tx must retry.

i

Object doSet(Ref ref, Object val) {
if (!sets.contains(ref)) { //If we haven't set the ref before, add it to sets and lock it.
sets.add(ref);
lock(ref);
}
vals.put(ref, val); //Storethe new value.
return val;
}

// doCommute and doEnsure elided

// Run the given function in a transaction.
static Object runInTransaction(Callable fn) throws Exception {
if (CURRENT.get() != null) //Ifatxisrunningalready, thisis a nested tx.
// Don't create a new tx, but simply call the function (closed nesting).
return fn.call();
Transaction t = new Transaction();
CURRENT.set(t);
try { //Run the function in the new transaction.
return t.run(fn);
} finally {
CURRENT. remove();
}

Listing 8.2: The original class Transaction (part 1 of 2).

158

8.2 Transactions

1 Object run(Callable fn) throws Exception {

2 boolean committed = false;

3 Object result = null; //Returnvalue

4 // Retry the transaction until it succeeds, or the maximum number of attempts is reached.
5 for (int 1 = 0; !committed && i < RETRY_LIMIT; i++) {

6 // Get read point and set status

7 readPoint = lastPoint.incrementAndGet();

8 if (i == 0) startPoint = readPoint;

9 status.set (RUNNING);

10 try {

11 result = fn.call(); //Execute the transaction’s body, store the return value.
12 if (status.compareAndSet(RUNNING, COMMITTING)) {

13 commit();

14 committed = true; //End thisloop

15

16 } catch (RetryEx retry) { //Swallow the retry exception: a new attempt will start in the next iteration.
17 } finally {

18 // Clear data

19 }

20

21 if (!committed) throw Util.runtimeException(”Transaction failed after reaching retry limit");
22 return result;

23}

24

25 void commit() {

26 List<Ref> locked = new ArrayList<Ref>(); //Locked refs

27 try {

28 for (Ref ref : sets) { //Lockallsetrefs

29 tryWriteLock(ref);

30 locked.add(ref);

31 } //If this did not throw an exception, we can commit.

32

33 long commitPoint = lastPoint.incrementAndGet(); //Log currenttime

34 for (Map.Entry<Ref, Object> e : vals.entrySet()) { //Commitvalues of set refs
35 Ref ref = e.getKey();

36 Object val = e.getValue();

37 if (ref.tvals == null) {

38 // Ref doesn’t have a history yet: add a TVal with the new value.

39 ref.tvals = new Ref.Tval(val, commitPoint);

40 } else if (ref.histCount() < ref.maxHistory) {

41 // Ref has a history, but it’s not full yet: add a TVal to the linked list.

42 ref.tvals = new Ref.TVal(val, commitPoint, ref.tvals);

43 } else {

44 // History is full: recycle oldest TVal for new value and put it at the front of the circular linked list.
45 ref.tvals = ref.tvals.next;

46 ref.tvals.val = val;

47 ref.tvals.point = commitPoint;

48 +

49 +

50 status.set(COMMITTED); //Update status

51 } finally {

52 // Unlock locked refs

53 }

54

55

56 // Other methods elided
57 }

Listing 8.3: The original class Transaction (part 2 of 2).

159

Chapter 8: An Implementation of Chocola

Running a transaction consists of repeating a loop of attempts until it either suc-
ceeds or the maximal number of attempts is reached (10 ooo in Clojure). An attempt
consists of three steps. First, a new time point is generated: this is the read point of
the attempt. Next, the body of the transaction is executed, which reads and writes
to the transaction’s data structures. Finally, the transaction attempts to commit. The
commit protocol consists of the following steps:

1. Each modified Ref is locked if it was not already. (Refs modified using commute
have not been locked, those with ref-set have.)

2. The global clock is increased; the current time is recorded as the commit point.

3. The new values are committed. If a ref’s history is full, its oldest entry is deleted.

4. Alllocks are released.

If a RetryException is raised at any point during the transaction or its commit, all
of the transaction’s data structures are cleared and its locks are released, and a next at-
tempt starts. When this happens due to a write-write conflict on a ref whose write lock
is held by another transaction, the next attempt will only start after that transaction
has released the lock.

8.3 | Actors

Clojure does not support actors. In this section, we briefly sketch how Chocola ex-
tends Clojure with support for (non-transactional) actors. It is a rather simple im-
plementation, meant to demonstrate the semantics of the model but without further
optimizations.

Actors Actors are instances of the Actor class, shown in Listing 8.4. An actor
contains two components: its current behavior and its inbox.

Behaviors An actor’s behavior is parameterized over two types of parameters:
the internal state of the actor and the values constituting a message (as described
in Section 2.5.1). Both lists of parameters are passed to the construct behavior, e.g.
(behavior [flights] [orig dest n] e). behavior is a macro that translates this
into nested functions, in the example: (fn [flights] (fn [orig dest n] e)). To
store its behavior, an actor keeps an instance of the class Behavior that combines this
nested function and the actor’s internal state in its body and args fields.

Inbox and messages The inbox is a queue of messages, protected using a lock
(implemented using Javas LinkedBlockingDeque). Each message has a receiver (the

actor to which it was sent) and a list of arguments.

160

8.3 Actors

1 public class Actor implements Runnable {

2 static class Behavior {

3 IFn body; //Function of function, containing turn’s body

4 ISeq args; //Internal state

5 // Methods elided

6 }

7 static class Inbox {

8 LinkedBlockingDeque<Message> q;

9 void enqueue(Message message) { q.put(message); }

10 Message take() { return qg.take(); }

11 }

12 static class Message {

13 Actor receiver;

14 ISeq args;

15 // Methods elided

16 }

17

18 static ThreadlLocal<Actor> CURRENT;

19

20 Behavior behavior;

21 Inbox inbox = new Inbox();

22

23 Actor (IFn behBody, ISeq behArgs) { behavior = new Behavior(behBody, behArgs); }
24

25 static void doBecome(IFn behaviorBody, ISeq behaviorArgs) {
26 Actor .CURRENT.get().become(new Behavior(behaviorBody, behaviorArgs));
27}

28 void become(Behavior newBehavior) { behavior = newBehavior; }
29

30 static void doSend(Actor receiver, ISeq args) {

31 receiver.enqueue(new Message(receiver, args));

32}

33 void enqueue(Message message) { inbox.enqueue(message); }
34

35 static Actor doSpawn(IFn behaviorBody, ISeq behaviorArgs) {
36 Actor actor = new Actor(behaviorBody, behaviorArgs);

37 actor.start();

38 return actor;

39}

40 void start() { Agent.soloExecutor.submit(this); }

41

42 //Once a new thread has been created for the actor, it runs this method.
43 void run() {

44 CURRENT.set(this);

45 while (true) { //Continually take message from inbox and apply behavior.
46 Message message = inbox.take();

47 IFn behaviorInstance = (IFn) behavior.apply();

48 behaviorInstance.applyTo(message.args);

49 +

50}

51}

Listing 8.4: The original class Actor.

161

Chapter 8: An Implementation of Chocola

Operations Each actor operation is translated into a static method call on Actor,
e.g. (become b v..) is translated to Actor.doBecome(b, [v..]). All operations are split
into two parts: a static method (prefixed with do) that is called where the operation
appears and a method on the affected actor that executes the effect (become, enqueue,
and start). Extracting the effect into a separate method will make it easier later on to
delay the effect in a transaction or tentative turn.

The three operations on actors are straightforward:

« become updates the behavior of the current actor.

« send enqueues a message in the inbox of the receiver.

« spawn creates a new actor with the given initial behavior and spawns a new thread
that runs the actor.

Running an actor =~ When an actor is spawned, a thread is created that executes its
run method. This consists of an infinite loop that takes a message from the inbox and
calls the behavior’s body with the actor’s internal state and the message’s values.

Future work Garbage collection of actors has not yet been implemented in our
current prototype. When there are no more references to an actor, it cannot receive
messages anymore. Once its inbox is fully processed, it will keep existing in memory,
but it will be idle permanently.

8.4 | Transactional Actors

This section lists the changes that need to be made to the standard implementations
of transactions and actors to support transactional actors. Listing 8.5 shows the mod-
ifications made to the class Actor to supports transactional actors. (The changes to
Transaction are discussed in the next section.)

Each operation is implemented as defined in Chapter 5:

become In a transaction, become stores its effect in the current transactional future’s
nextBehavior field. This will only become active if the transaction succeeds.

send Messages have a dependency whose value depends on the context: in a transac-
tion, that transaction is the dependency; in a tentative turn but outside a transac-
tion, the dependency of the turn is used; and in a definitive turn it is null.

spawn In a transaction, spawned actors are stored in the transactional future’s set of
spawned actors. These actors are only actually started at commit time, if the trans-
action succeeds. In a tentative turn, spawned actors are stored in the actor, to be
started if the turn ends successfully. In definitive turns actors are started immedi-
ately.

162

8.4 Transactional Actors

1 public class Actor implements Runnable {

2 //Inner classes Behavior and Inbox are unchanged

3 static class Message {

4 Actor receiver;

5 ISeq args;

6 Transaction dependency; //New, can be null

7 // Methods elided

8 }

9 static class AbortEx extends Error {} //Thrown if the dependency aborted

10

11 //Fields CURRENT, behavior, and inbox are unchanged. New:

12 Transaction dependency; //The current dependency (can be null)

13 List<Actor> spawned; // Actors spawned during this turn, if it is tentative

14

15 // Constructor Actor unchanged

16

17 static void doBecome(IFn behaviorBody, ISeq behaviorArgs) {

18 Behavior b = new Behavior(behaviorBody, behaviorArgs);

19 if (TransactionalFuture.CURRENT.get()) { TransactionalFuture.CURRENT.get().nextBehavior
20 { Actor.CURRENT.get().become(b); }
21

22 // Method become unchanged

23 static void doSend(Actor receiver, ISeq args) {

24 Transaction dep;

25 if (TransactionalFuture.CURRENT.get()) = TransactionalFuture.CURRENT.get().tx; }
26 else if (Actor.CURRENT.get().dependency) { dep = Actor.CURRENT.get().dependency; }
27

28 receiver.enqueue(new Message(receiver, args, dep));

29

30 // Method enqueue unchanged

31 static Actor doSpawn(IFn behaviorBody, ISeq behaviorArgs) {

32 new Actor(behaviorBody, behaviorArgs);

33 if (TransactionalFuture.CURRENT.get()) { TransactionalFuture.CURRENT.get().spawned.add(a); }
34 else if (Actor.CURRENT.get().dependency) { Actor.CURRENT.get().spawned.add(a); }
35 { a.start(); }

36

37

38 // Method start unchanged

39

40

41 CURRENT.set(this);

42 while (true) {

43 Message message

44 dependency = message.dependency; //Can be null.Ifit not, this is a tentative turn.
45 Behavior oldBehavior = behavior; //Make copy to use in case of roll back

46

47 IFn behaviorInstance (IFn) behavior.apply();

48 behaviorInstance.applyTo(message.args);

49 if (dependency != null) { //Thiswas atentative turn

50 dependency.waitUntilFinished();

51 if (dependency.status.get() != Transaction.COMMITTED)

52 throw new Actor.AbortEx();

53 for (Actor actor : spawned) //Persisteffects

54 actor.start();

55

56 } catch (AbortEx e) { //Roll back onabort

57

58

59 // Reset dependency and spawned

60

61

62

63 }

Listing 8.5: The class Actor with support for transactional actors.

Chapter 8: An Implementation of Chocola

Processing a turn (in run()) has also changed slightly:

o At the start of a turn, the current behavior is copied.

« At the end of a tentative turn, the actor waits for the dependency to complete.
If the dependency succeeds, the delayed spawned actors are started. If it aborts,
the current turn is aborted, which means spawned actors are not started and any
changes to the behavior are rolled back.

Our implementation is a prototype, designed to be sufficient to demonstrate the ben-
efits of our approach in the next chapter, but without further optimizations. We can
think of several potential optimizations. For example, when a message with a depen-
dency is taken from the inbox, we could check whether its dependency has finished
already. If it finished and succeeded, the turn does not need to be tentative, and if it
aborted, the message can be discarded immediately.

8.5 | Transactional Futures

In this section, we describe which changes need to be made to the implementations
of futures and transactions in order to support transactional futures and transactional
actors. A new class TransactionalFuture implements such futures, and many of the
data structures and operations on transactions moved from Transaction (shown in
Listing 8.6) to TransactionalFuture (Listings 8.7 and 8.8).

Transaction and TransactionalFuture

Transaction The class Transaction now only contains one data structure: futures,
the set of futures forked in the transaction. Additionally, it implements two important
methods:

« run evaluates the transaction. This works as before except for two changes. First,
instead of evaluating its body directly, a root future is created to encapsulate this.
All transactional operations thus manipulate the data structures in that future or
one of its children. Second, in a tentative turn a transaction will wait for the de-
pendency and only commit if the dependency succeeded.

« commit: the transaction attempts to commit after the root future has finished. Be-
cause a transactional future only finishes after it has merged all of its children,
all changes from all futures will have been merged into the root future before it
commits. The commit protocol is almost unchanged, except that it uses the data
structures of the root future and takes into account operations on actors.

164

8.5 Transactional Futures

1 public class Transaction {

2 //These fields are unchanged:

3 static AtomiclLong lastPoint; //Global clock

4 AtomicInteger status; // RUNNING, COMMITTING, RETRY, KILLED, or COMMITTED

s long readPoint; // The read point

6 long startPoint; // Read point of first attempt

7

8 //Transaction’s data structures (vals, sets...) moved to TransactionalFuture.

o //Instead, we only store the futures created in the transaction:

10 Set<TransactionalFuture> futures = Collections.synchronizedSet(

11 new HashSet<TransactionalFuture>());

12

13 static class RetryEx extends Error {} //Exceptionthrown when a transaction should retry
14

15 // Run the given function in a transaction.

16 static Object runInTransaction(Callable fn) throws Exception {

17 if (TransactionalFuture.CURRENT.get() != null) //Alreadyina transactional future: nested transaction
18 return fn.call();

19 Transaction tx = new Transaction();
20 return tx.run(fn);
21 }
22
23 Object run(Callable fn) throws Exception { //Unchanged, except for the green lines
24 boolean committed = false;
25 Object result = null; //Returnvalue
26 // Retry the transaction until it succeeds, or the maximum number of attempts is reached.
27 for (int 1 = 0; !committed && i < RETRY_LIMIT; i++) {
28 // Get read point and set status
29 readPoint = lastPoint.incrementAndGet();
30 if (i == 0) startPoint = readPoint;
31 status.set(RUNNING);

32 try {

33 // Instead of result = fn.call(); we now do this in a new future:

34 TransactionalFuture f_root = new TransactionalFuture(this, null, fn);
35 result = f_root.call(); //Wait for the future to complete

36 Actor .abortIfDependencyAborted(); //In a tentative turn, wait for dependency and possibly abort
37 if (status.compareAndSet(RUNNING, COMMITTING)) {

38 commit(f_root);

39 committed = true; //End thisloop

40 +
41 } catch (RetryEx retry) { //Swallow the retry exception: a new attempt will start in the next iteration.
42 } finally {
43 // Clear data

44 +
45 +

46 if (!committed) throw Util.runtimeException(”Transaction failed after reaching retry limit”);
47 return result;

48}
49

so void commit(TransactionalFuture f_root) {

51 /...

52 // Commit protocol unchanged, but using the data structures of the root future and extended with:
53 if (f_root.nextBehavior != null)

54 Actor .CURRENT.get () .become(f_root.nextBehavior);

55 for (Actor actor : f_root.spawned)

56 actor.start();

57}

58

s9 // Other methods elided

60 }

Listing 8.6: The class Transaction with support for transactional futures and actors.

165

1

© ® N Vv oA wN

LT N N N N N R T T R T U T S S R T OO S I R O SR S O e
B =m0V @l n bk BV ROV N AN AE DN ROV N VAL D ROWL®N OOV A ®N = O

Chapter 8: An Implementation of Chocola

public class TransactionalFuture implements Callable, Future {
// The current future, stored in a thread-local variable. (If no transaction is active, this is null.)
static ThreadlLocal<TransactionalFuture> CURRENT;

Transaction tx; //Transaction for this future

Future future; //Java Future that will resolve to this future’s value. (null for root future)
Callable fn; // Function executed in this future

Object result; //Resultof future (return value of fn)

static class Vals<K, V> { .. } //Linked list of hash maps

Vals<Ref, Object> snapshot; // vals when this future was created (set in ancestors, read-only)
Vals<Ref, Object> vals; // In-transaction values of refs modified in this future
HashSet<Ref> sets; // Modified refs

TreeMap<Ref, List<CFn>> commutes; //Commuted and ensured refs (not further considered here)
HashSet<Ref> ensures;

List<Actor> spawned; // Spawned actors

Actor.Behavior nextBehavior; // Last become (null if no become occurred)
HashSet<TransactionalFuture> merged; //Futures merged into this one

// Create a new transactional future. This function runs in the parent; the future that is being created is not yet running.
TransactionalFuture(Transaction tx, TransactionalFuture parent, Callable fn) {
this.tx = tx;
this.fn = fn;
if (parent == null) { //Root future:snapshotis empty and vals start empty
snapshot = null;
vals = new Vals<Ref, Object>();
} else { //Child future: snapshot = current parent vals, our and the parent’s vals ‘fork’ this
if (!parent.vals.isEmpty()) {
snapshot = parent.vals;
vals = new Vals<Ref, Object>(parent.vals);
parent.vals = new Vals<Ref, Object>(parent.vals);
} else { //Optimization: if parent has not set anything, this can point straight to the parent’s ancestor,
// and parent can ‘re-use’ its vals. This avoids creating empty vals.
snapshot = parent.vals.prev;
vals = new Vals<Ref, Object>(parent.vals.prev);
}
}
synchronized (tx.futures) { tx.futures.add(this); }
}

// Spawn future, called for forks: outside transaction regular future, in transaction a transactional future.
static Future spawnFuture(Callable fn) {
TransactionalFuture current = TransactionalFuture.CURRENT.get();
if (current == null) { //Outside transaction
return Agent.soloExecutor.submit(fn);
} else { //Intransaction
TransactionalFuture f = new TransactionalFuture(current.tx, current, fn);
f.future = Agent.soloExecutor.submit(f);
return f;

Listing 8.7: The class TransactionalFuture (part 1 of 2).

166

© ® N OV A W N e

R R R R e T e O -
= 0V ®N Vv A W R R O WV ®N OV A W N = O

32

8.5 Transactional Futures

// Execute future in this thread, and wait for all sub-futures to finish. Called directly for the root future,
// orin new thread for the others.
Object call() throws Exception {
try {
CURRENT.set(this);
result = fn.call();
// Elided: wait for all futures in tx. futures to finish, by calling their get method.
} finally {
CURRENT.set(null);
}
return result;
}

// Join the future. Waits if necessary for the computation to complete, and then retrieves its result.
Object get() throws ExecutionException, InterruptedException {
// For a call to child.get(): this = child and CURRENT = its parent.
future.get(); //Setsfield result
TransactionalFuture.CURRENT.get().merge(this); //Merge child (this)into parent (CURRENT)
return result;

i

Object doGet(Ref ref) {
Object val = vals.get(ref); //Firstlookin vals (both current local store and ancestors),
if (val == null) return requireBeforeTransaction(ref); //otherwise inref’s history.
return val;

// Methods doSet, doCommute, and doEnsure are unchanged

// Merge child into this.
void merge(TransactionalFuture child) {
if (merged.contains(child)) return; //Already merged

// vals: add in-transaction-value of refs set in child to parent
for (Ref r : child.sets) {
Object v_child = child.vals.get(r); //Currentvaluein child
Object v_parent = vals.get(r); //Currentvaluein parent:in itsvals, else in the ref's history
if (v_parent == null) v_parent = requireBeforeTransaction(r);
Object v_original = child.snapshot.get(r); //Original value:in snapshot, else in ref’s history
if (v_original == null) v_original = requireBeforeTransaction(r);

if (v_parent == v_original) { //No conflict, just take over value
vals.put(r, v_child);
} else { //Conflict
if (r.getResolve() != null) //Call custom conflict resolution function if it was defined
vals.put(r, r.getResolve().invoke(v_original, v_parent, v_child));
else // Default conflict resolution = prefer child
vals.put(r, v_child);
}

}

sets.addAll(child.sets); //sets:add sets of child to parent

spawned.addAll(spawned); // spawned:add actors spawned in child to parent

if (child.nextBehavior != null) nextBehavior = child.nextBehavior; //Child did become: take it over
merged.addAll(child.merged); //merged: add futures merged into child to futures merged into parent
merged.add(child); //Child has been merged now

// commutes and ensures elided

Listing 8.8: The class TransactionalFuture (part 2 of 2).

167

Chapter 8: An Implementation of Chocola

Transactional future The class TransactionalFuture contains the data structures
needed in a transactional future and implements both operations on transactional vari-
ables (doGet, doSet, doCommute, and doEnsure) and on transactional futures (spawn-
Future for fork and get for join). It contains the following data:

o A thread-local variable CURRENT per future. A traditional implementation of trans-
actions uses a thread-local variable per transaction, as every transaction only con-
tains one thread. Here, we need a separate thread-local variable per future.

o A reference to its encapsulating transaction tx.

» Every TransactionalFuture has an associated Java Future future, which will con-
tain its final value.

o When the future is forked, its body is wrapped in a function fn, which is then
evaluated in a new thread.

o The variable result will allow other threads to read the value of this future.

o A transactional future contains the same data structures that were previously stored
per transaction (vals, sets, commutes, and ensures), as well as its snapshot. The
implementation of snapshot and vals, using the class Vals, is discussed in detail
below.

« Delayed operations on actors are stored: the set of spawned actors and possibly the
nextBehavior passed to become.

« Finally, a transactional future keeps track of the futures it merged.

Reading a transactional variable (doGet) now consists of looking up the ref in vals,
which looks both in the local store and snapshot, up the tree of futures. If it cannot be
found there, the ref’s history is searched. The other transactional operations (doSet,
doCommute, and doEnsure) are implemented as before.

Creating and joining a transactional future

Creating a transactional future = TransactionalFuture’s constructor is called once
for the root future, and next when a parent future creates a child. The root future’s
snapshot is null and its vals starts empty. For other futures:

o The child’s snapshot is the parent’s current local store.

o The child’s local store is an empty wrapper around the parent’s local store.

o The parent’s local store is modified to be a wrapper around its current local store.
This ensures that further modifications in the parent are not visible by the child.

The construct (fork body) is a macro (written in Clojure) that wraps body in a func-
tion and calls spawnFuture with this function. Outside a transaction, this executes the
body in a new thread as before. In a transaction, this creates a transactional future to
execute on a new thread.

168

8.5 Transactional Futures

Joining a future When (join f) appears in a transaction, it is translated to f.get().
This method waits until the child has finished (that is, until its Java Future future has
resolved), and then merges the child into the parent. This consists of merging their
data structures:

o The child’s local store (vals) is merged into the parent. To do so, we look up the
current values in child and parent, and the value in the snapshot. In case the parent
has not modified its ref, the child’s value can simply be taken over. Otherwise,
there is a conflict, so the ref’s conflict resolution function is called. In case the
developer did not specify a custom conflict resolution function, we default to the
one that picks the child’s value.

o The child’s set of modified refs (sets) is joined with the parent’s.
o The child’s spawned actors is joined with the parent’s.

o If the child did a become, its effect is taken over by the parent. (Even if the parent
also did a become, the child’s value is preferred.)

o The child’s set of merged futures is also joined into the parent.

Finally, the child future is added to the set of merged futures of the parent. This will
prevent subsequent joins from merging the child’s data structures again.

Implementation of snapshot and local store that avoids duplication

snapshot and vals are the most frequently used data structures in a transactional fu-
ture, as they are accessed for each read and write. Conceptually, the snapshot and local
store of a task are copied from its parent when it is created. Here we describe how our
actual implementation avoids creating duplicates.

Figure 8.9a lists a program that creates three tasks that each modify some refs.
Figures 8.9b and 8.9c illustrate how this is stored in memory after lines 4 and 9 respec-
tively. We write s; and v; for the snapshots and values of task i. Each data structure
consists of a linked list of hash maps. We exploit the fact that snapshots are immutable
to share some of these hash maps between the data structures.

The transaction starts with a root task with an empty snapshot s, and local store v, .
Line 2 sets the ref gray to A, which is reflected in v,. Next, a second task is forked, with
its snapshot s, a duplicate of v, and an empty local store v,. On line 4, the second task
sets blue to B. Consequently, after this step, s, is empty, v, and s, both contain A, and
v, consists of A and B. Figure 8.9b illustrates the data structures of the two tasks at this
point. The snapshots are shared between the two tasks: these are immutable structures
only used for look-up. The values of both tasks, v, and v,, consist of a linked list that
first contains a hash map that stores their private changes and next contains the shared
snapshots. When ref B is updated in the second task, it is updated in the first hash map

169

1
2
3
4
5
6
7
8
9

10

Chapter 8: An Implementation of Chocola

(atomic D<~@ D<—~@

(ref-set gray A)
(fork

(ref-set blue B)
(fork @ @
(ref-set) o o
(ref-set orange D) ie\<> () N ‘ (>
)

(ref-set purple E)

i

(a) Code example of a transac-
tion with three nested tasks. (b) Data after line 4. (¢) Data after line 9.

Figure 8.9: In the code example three tasks are created. Each task contains a snapshot, which
is immutable throughout the tasK’s lifetime, and values, to which updated values for refs are
written. (b) and (c) illustrate how the data structures are stored in memory at different points
in time using linked lists of hash maps (each rectangle is a hash map, the arrows link them).

pointed to by v,. When a ref is read in the second task, we iterate over the linked list
pointed to by v,, up the tree, until the ref is found.

Creating a new task, as on line 5, is now a matter of modifying some pointers.
When task 3 is forked by task 2, the node that represented v, becomes the snapshot
s; of the new task, with two empty children to contain the new values of tasks 2 and
3. After line 9, in Figure 8.9c, tasks 2 and 3 have updated their values with D and

respectively. Hence, v, now consists of the , the snapshot of
task 3, the snapshot of task 2, and the snapshot of task 1. This is as in our operational
semantics: reading a ref looks it up first in the current task’s local store, and next in
the snapshot made when each ancestor was forked.

By representing the snapshot and vals data structures of a transactional task as a
linked list of hash maps, the memory overhead of duplicated entries is eliminated. In
exchange, the look-up time slightly increases as we need to iterate over the list of maps.
The time to update a value is unchanged: a write happens directly in the first hash map.
Forking is a matter of creating two new maps and adjusting an existing pointer. Joining
still means copying values and potentially resolving conflicts, as explained earlier.

Additionally, we performed another optimization for a common use case. In many
programs it is common to create several tasks immediately after another, for example
in a parallel map as in the Labyrinth program of Section 4.2. This leads to a sequence
of empty nodes in the tree. Instead of pointing a new child to an empty node, we
directly point to the previous non-empty node. This optimization avoids the need to
traverse empty nodes on look-ups. It is a safe optimization as non-leaf nodes in the
tree are always snapshots and thus immutable.

170

8.6 Compatibility with Clojure

8.6 | Compatibility with Clojure

As Chocola is implemented on top of Clojure, developers can use every feature of
Clojure in Chocola. However, this is not always safe: the guarantees of Chocola can be
broken. We list which features of Clojure can be used safely inside a future, transaction,
or actor.

v’ The functional subset of Clojure, i.e. any built-in function which has no side effect,
can safely be used in Chocola. As these functions are deterministic, nonblocking,
and do not access shared state, they can be embedded in concurrent futures, trans-
actions, and actors without breaking Chocola’s guarantees.

v Clojure provides futures and transactions. When used separately, Chocola pro-
vides the same semantics as Clojure. When they are combined, Chocola and Clo-
jure have a different semantics: in Clojure the problems described in Chapter 4
occur while these are solved in Chocola.

X Any other concurrency model provided by Clojure is incompatible with Chocola,
including atoms, agents, promises, channels, and thread-local variables. Using
these concurrency models within the three models provided by Chocola can break
their guarantees, as was shown extensively in Chapter 3.

X In general, any other functions with side effects cannot safely be used in Chocola.
These include input/output and Clojure’s interoperability with Java. Some exam-
ples are: the use of non-deterministic input breaks determinacy; mutating a Java
LinkedList breaks determinacy, isolation, and low-level race freedom; and wait-
ing for the response to an HTTP request can break deadlock freedom.

8.7 | Conclusion

In this chapter we presented a prototypical implementation of Chocola, built on top
of Clojure. We described how standard implementations of the three separate models
need to be modified to implement transactional futures and transactional actors. In
the next chapter, we will use this implementation to benchmark several applications
that use transactional futures and actors.

171

Evaluation

In this chapter, we quantitatively measure the performance benefits of using Chocola
and qualitatively assess the effort required to use it. We show that programs can ex-
ploit parallelism more efficiently using Chocola, as multiple concurrency models can
be combined. In Section 9.1, we describe our methodology and experimental set-up.
Next, we look at three applications — Labyrinth (Section 9.2), Bayes (Section 9.3), and
Vacation2 (Section 9.4) - that use transactions and show that introducing transac-
tional futures or actors improves their performance by exploiting additional paral-
lelism. In Section 9.5, we assess the developer effort required to make these changes.

9.1 | Methodology and Experimental Set-Up

In this section, we describe the goal and criteria of our evaluation (Section 9.1.1), how
we selected specific benchmarks (Section 9.1.2), and how we transformed them to use
Chocola (Section 9.1.3). Furthermore, we specify the hardware and software used for
our experiments (Section 9.1.4).

9.1.1 Evaluation Goal and Criteria

The aim of this evaluation is to demonstrate that, in existing programs that use trans-
actions, additional parallelism can be exploited within transactions by introducing
transactional futures and actors, without fundamentally changing the design of the
program. Hence, we pick a number of existing applications that use transactions, and
compare the original application with a transformation of the program that introduces
transactional futures or actors.

173

Chapter 9: Evaluation

Our evaluation focuses specifically on programs with transactions. This is because
the combination of actors and futures, discussed in Chapter 3, did not pose significant
issues and did not require major changes to the semantics of the separate models. The
evaluation therefore focuses on applying transactional futures and transactional actors,
by introducing futures and actors in programs that already use transactions.

We compare the original and transformed programs using two criteria:

Performance The end goal of introducing additional parallelism in transactions is to
increase performance. To gauge the improvement in performance, we compare
the total execution time of the transformed program with that of the original. We
perform several measurements in which we vary the number of threads, to simu-
late environments in which a varying number of cores are available. From these
results, we calculate the speed-up: this is the execution time of a reference result
(usually the original program with a single thread) divided by the execution time
of the result with » threads. The speed-up indicates how much faster the program
becomes when using more cores and when applying our techniques. The advan-
tage of plotting speed-up instead of execution time is that it makes it easier to
compare results on higher thread counts.

Developer effort Afterwards, in Section 9.5, we qualitatively assess the effort that is
required from the developer to use our techniques. We do this by describing which
changes were made to introduce futures and actors in these programs. The goal
of this qualitative evaluation is to compare the effort of introducing transactional
futures and transactional actors in a program with transactions with the effort of
introducing (regular) futures and actors in a program without transactions.

9.1.2 Selection of Benchmarks

As said in the previous section, our evaluation starts from existing benchmarks that
use transactions. We use the STAMP benchmark suite as a basis: STAMP (Stanford
Transactional Applications for Multi-Processing) is a benchmark suite consisting of
eight applications that use transactional memory [Minh et al. 2008], commonly used
to compare the performance of transactional systems. These applications are based on
real-world scenarios in which transactions are used and cover a breadth of application
domains. Moreover, they cover a range of characteristics of transactional programs,
such as frequent or rare use of transactions throughout the program, long or short
transactions, and high or low contention.

Table 9.1 lists three characteristics of the eight applications in the benchmark suite:
the average length of the transactions, the average proportion of the program’s execu-
tion time that is spent in transactions, and the average number of retries per transac-
tion (a measure of contention). These numbers were gathered by Minh et al. [2008]
on a simulated 16-core system.

174

9.1 Methodology and Experimental Set-Up

Application Txlength Average Contention Domain

(mean # of in- time in tx (retries/tx for

structions/tx) lazy STM)
Labyrinth Engineering
Bayes Machine learning
Yada Scientific
Vacation-high Transaction processing
Genome Bioinformatics
Intruder Security
Kmeans-high Data mining
SSCA2 Scientific

Table 9.1: Characterization of the STAMP applications, abridged from Minh et al. [2008].
These numbers were gathered on a simulated 16-core system, and are color-coded ,
, low. (This is an extended version of Table 4.4 on page 72.)

To evaluate transactional futures, we are interested in two characteristics in par-
ticular. First, the execution time spent in transactions: when most of the program’s
execution occurs in transactions, we can assume that those transactions execute per-
formance-critical parts of the application. To further parallelize these applications, it
will be necessary to introduce parallelism within the transactions. Second, we look at
the transaction length: long-running transactions may benefit from more fine-grained
parallelism, as in these cases the benefits of introducing parallelism may outweigh its
costs.

As shown in Table 9.1, five out of the eight applications in the STAMP suite spend
a large proportion of time in transactions, three of which have long-running transac-
tions: Labyrinth, Bayes, and Yada. In Sections 9.2 and 9.3, we study Labyrinth (which
already featured as the running example of Chapter 4) and Bayes.

We also examined the Yada application. While its transactions have a relatively
long execution time, they contain sequential dependencies that make it difficult to
parallelize. We could therefore not transform the program to introduce transactional
futures without significantly changing the design of the program. (Our transforma-
tions are discussed below.)

To evaluate transactional actors, we look at a slightly reduced version of the Vaca-
tion benchmark, called Vacationz, in Section 9.4. This application already served as a
running example in Chapter 5. It is suited to the use of transactional actors: the actor
model naturally encodes the event-driven way in which a travel reservation system
processes requests from customers. It is also an application which spends much of its
total execution time in transactions, thus it may benefit from offloading parts of these
transactions to different actors.

175

Chapter 9: Evaluation

9.1.3 Transformation of Benchmarks to Use Chocola

For these case studies, we first port the STAMP applications from C to Clojure. This
translation retains the design and algorithms of the C program. Afterwards, we intro-
duce transactional futures and transactional actors where applicable, by performing
the following steps:

1. First, we search for the transaction in which the largest proportion of the program’s

execution time is spent. In our cases, this is always the transaction that performs
the ‘main’ task of the program.

Using profiling tools, we search for the part of the transaction in which most time
is spent. In our cases, this is always a loop.

3. We try to parallelize this loop. To determine how to do this, we examine whether

there are dependencies between the iterations of the loop, which occur when an
iteration uses the result of a previous iteration. There are three cases (illustrated
in Figure 9.2):

o When the iterations are independent, we parallelize the loop. This is easy to

do: each iteration can be processed in parallel. If the loop contains many short
iterations, we first divide the iterations into a smaller number of partitions and
then process each partition in parallel. This occurs in the Bayes and Vacation2
benchmarks.

When there are dependencies between the iterations, but the program follows
a standard algorithm for which a parallel version exists in literature, we re-
place the sequential algorithm with its parallel equivalent. This occurs in the
Labyrinth benchmark, in which a sequential breadth-first search is changed
into a parallel search algorithm.

When there are dependencies between the iterations and the program uses a
custom algorithm, we reach a negative result and do not introduce futures or
actors. This is the case for the Yada benchmark. We will therefore not look at
this application in more detail in the rest of this chapter. Note that this does

Bayes
arallel loo Y
No A

Dependencies be-

replace with standard

Labyrinth

tween iterations? }y
| Standard

parallel algorithm

Yes

algorithm?

Figure 9.2: This diagram illustrates the steps taken to transform the STAMP benchmarks into
a version that uses transactional futures or transactional actors.

176

9.1 Methodology and Experimental Set-Up

not necessarily mean that the loop cannot be parallelized, it might also mean
that specific domain expertise is required to parallelize the custom algorithm.

The code of all benchmarks is available online, both the original as well as the trans-
formed version.*

In all experiments, the transformed benchmarks are compared with the original
benchmark in Clojure. We do not compare to the implementations in C, as the per-
formance characteristics of Clojure and C are so wildly different that they render a
comparison meaningless.*

Each benchmark in the STAMP suite further has several parameters that can be
varied. We always pick fixed, representative values for the parameters, based on the
defaults set by Minh et al. [2008]. They are noted for each experiment as we go along.

9.1.4 Hardware and Software Set-Up

We describe the hardware and software used to run our experiments. Due to the tim-
ing of the development of these ideas, we implemented transactional futures and trans-
actional actors separately for these experiments. The implementation of transactional
futures extends Clojure 1.6 while transactional actors extend Clojure 1.8.

Transactional Futures (Labyrinth and Bayes) The Labyrinth and Bayes experiments
were originally reported in Swalens et al. [2016]. They ran on a machine with two Intel
Xeon E5520 processors, each containing four cores with a clock frequency of 2.27 GHz
and a last-level cache of 8 MB. HyperThreading was enabled, leading to a total of 16
logical threads. The machine has 8 GB of memory. Our transactional futures are built
as a fork of Clojure 1.6.0, running on the Java HotSpot 64-Bit Server VM (build 25.66-
b17) for Java 1.8.0. On this machine, we used the JVM’s G1 garbage collector, which
is optimized for multiprocessor machines with a large memory.3

Transactional Actors (Vacation2) The Vacation2 benchmark, originally reported in
Swalens et al. [2017], ran on a machine with four AMD Opteron 6376 processors, each
containing 16 cores with a clock frequency of 2.3 GHz and a last-level cache of 16 MB,
resulting in a total of 64 cores. The machine has 128 GB of memory. We implemented
transactional actors as a fork of Clojure 1.8.0, running on the OpenJDK 64-Bit Server
VM (build 25.131-b11) for Java 1.8.0. This experiment used the JVM’s default garbage
collector.

! https://github.com/jswalens/labyrinth e https://github.com/jswalens/bayes
https://github.com/jswalens/yada e https://github.com/jswalens/vacation2

*Just to name a few: a statically typed programming language with manual memory management vs.
a dynamically typed language with garbage collection, a program written in an imperative style vs. one
written in a functional style, and STM implementations based on different algorithms.

3http://www.oracle.com/technetwork/java/javase/tech/g1-intro-jsp-135488.html

177

https://github.com/jswalens/labyrinth
https://github.com/jswalens/bayes
https://github.com/jswalens/yada
https://github.com/jswalens/vacation2
http://www.oracle.com/technetwork/java/javase/tech/g1-intro-jsp-135488.html

Chapter 9: Evaluation

Performing statistically rigorous performance experiments on virtual machines with
just-in-time compilation, such as the Java Virtual Machine in our case, is notoriously
difficult [Georges et al. 2007, Barrett et al. 2017]. As we are interested in the execution
time of ephemeral benchmark programs that process some input to produce some
output, and not the steady-state performance of continually running applications, our
experiments all measure the execution time for all or part of the program from start to
finish. Each measurement corresponds to a new execution of the program, for which
a new instance of the JVM is started.

9.2 | Labyrinth (Transactional Futures)

The Labyrinth benchmark was already introduced in Section 4.2 of Chapter 4. The
goal of the application is to connect given pairs of points in a grid using non-overlap-
ping paths. For each pair, a breadth-first search is executed in a new transaction. In
Section 4.3, we discussed how each iteration of the breadth-first search can process
cells in the grid in parallel, leading to a transformation of the program that performs a
parallel search using transactional futures. We further optimized this solution to first
distribute the cells into partitions and then process these partitions in parallel.

We ran the experiments on a three-dimensional grid of 64 x 64 x 3 with 32 input
pairs. We varied two parameters:

o t: the number of worker threads that process input pairs in parallel, and
o p: the maximal number of partitions created on each iteration of the parallel search
(only for the version with parallel search).

All other parameters are the defaults of the STAMP version.

In the original version, only the parameter f influences the amount of parallelism. The
maximal ideal speed-up is therefore : in an ideal case where no transactions fail and
the overhead is zero, we can expect a speed-up of maximally ¢. In the version with
parallel search, the parameter p affects the parallelism as well. Each of the t worker
threads can create at most p partitions, therefore the maximal number of threads and
thus the maximal ideal speed-up in the version with parallel search is t x p.

In Figure 9.3 we measure the speed-up when running the program with several
values of ¢ and p. The speed-up is calculated relative to the version with sequential
search and only one worker thread (t = 1), which takes 27.1s. For the version that
uses sequential search, the number of worker threads is increased (blue line). For the
version with parallel search, both the number of partitions (different lines) and the

*To minimize the overhead of forking futures, we ensure that each partition contains at least 20 ele-
ments.

178

9.2 Labyrinth (Transactional Futures)

Measured speed-up on an 8-core machine

25 optimum forp=8,t=2
time=11.7s —
speed-up = 2.32
2.0
Q .
B sequential search
O 4 with t=1:
(0] . .
o) time=271s
o
@
k]
Q
=1
g 1.0
[0}
=

T~

parallel search with p =1, t = 1:
time=318s
speed-up = 0.85

Sequential search

Parallel search, 1 partition
Parallel search, 2 partitions
Parallel search, 4 partitions
Parallel search, 8 partitions
Parallel search, 16 partitions

0.5

FH

0.0
1 2 4 8 16 32 64

Maximal number of threads (t X p)

Figure 9.3: Measured speed-up of the Labyrinth application for the version with sequential
search (blue line) and parallel search (other lines), as the total number of threads (¢t x p) in-
creases (logarithmic scale). Each point on the graph is the median of 30 executions, the error
bar depicts the interquartile range.

number of worker threads (different points on the same line) are varied. The x axis
denotes the maximal number of threads, which is ¢ for the sequential search and ¢ x p
for the parallel search. In an ideal case, the measured speed-up would be equal to the
maximal number of threads.

The blue line depicts the results of the original version of the Labyrinth application.
Increasing the number of threads causes only a modest speed-up, because they find
overlapping paths and consequently need to be rolled back and reexecuted. This is
shown in Figure 9.4, which lists the average number of attempts per transaction. If
there is only one thread, each transaction executes only once, but as the number of
threads increases each transaction reexecutes several times on average. For 16 threads,
the average transaction executes 2.10 times, which means it rolls back more than once.
This curtails any potential speed-up.

In the version with parallel search, as the parameter p increases, the speed-up
improves, for small values of p. Each transaction now spawns p tasks, and conse-
quently each transaction can finish its execution faster. On the tested hardware, an
optimal speed-up of 2.32 is reached for t = 2 and p = 8 (11.7 s absolute time), when

179

Chapter 9: Evaluation

2.5
s 2.10
E: 2 -2 optimal speed-up ®
3 o
E P 111 °
E 1.5
%n : [
1
Version: sequential ——— parallel
1l 2 4 8 16 1 2 4 8 16
p: 1 2 4 8 16 1 2 4 8 1 2 4 1 2 1

Figure 9.4: Average number of attempts per transaction for different values of ¢ (transactions
executing simultaneously) and p (partitions per transaction) for the Labyrinth application.

two worker threads process elements and create up to eight partitions. For this case,
the number of conflicts is low: each transaction executes 1.11 times on average (Fig-
ure 9.4).

Further increases in p lead to worse results: the additional parallelism does not oft-
set the overhead of forking and joining tasks. Joining transactional futures is expensive
for this benchmark, as conflicts between the tasks are likely,” and each conflict calls a
conflict resolution function (the minimum, as explained in Section 4.3.2).

The parallel search with p = 1 (which does not actually search in parallel as only
one partition is created) is slower than the sequential search. The version with parallel
search with 1 partition and 1 worker thread has an execution time of 31.8 seconds,
compared to only 27.1 s for the corresponding version with sequential search. This is
due to the difference in used algorithms: the parallel algorithm creates several sets on
each iteration to keep track of the work queue, while the sequential algorithm uses one
list throughout. The difference between the blue and the light yellow line corresponds
to this cost.

These results demonstrate two ways in which transactional futures can increase
performance. First, the execution time of each transaction decreases by exploiting
parallelism in the transaction. Second, the lower execution time of a transaction also
means that the cost of conflicting transactions is decreased, as each attempt takes less
time. By varying the two parameters ¢ and p, we can find an optimum between run-
ning several transactions simultaneously but risking conflicts (t) and speeding up the
transactions internally but with more costly fine-grained parallelism (p).

°In the parallel breadth-first search algorithm, a conflict occurs each time two cells expand into a
shared neighbor.

180

9.3 Bayes (Transactional Futures)

sprinkler on

raining

Figure 9.5: Simple example of a Bayesian network consisting of three random variables. The
edges represent conditional dependencies: the grass is more likely to be wet if the sprinkler is
on and/or if it rains, the sprinkler is more likely to be off if it rains.

9.3 ‘ Bayes (Transactional Futures)

The Bayes application is another benchmark from the STAMP suite, which imple-
ments an algorithm that learns the structure of a Bayesian network given observed
data [Chickering et al. 1997, Minh et al. 2008]. We describe this application and our
transformation, before discussing the performance results.®

Original program Figure 9.5 illustrates a Bayesian network: a graph in which
the nodes represent random variables (variables that have some probability of being
true, e.g. the probability that it rains) and the edges correspond to their conditional
dependencies (e.g. if it rains, the probability of the grass being wet is higher). The Bayes
application ‘learns’ such a network given some input data: it starts from a network
of variables without dependencies and adds dependencies to maximize its ability to
predict the input data.

In the program, each variable of the network is represented as a transactional vari-
able that contains references to its parents and children in the network. Initially, there
are no dependencies between the variables. A shared work queue contains the depen-
dencies to insert next, and is initialized to one dependency per variable.

t worker threads process the work queue in parallel: they insert the dependency
into the network, and then calculate which dependencies (if any) could be inserted
next, appending the best candidate to the work queue. The best candidate dependency
is the one that maximizes a score function that calculates the capability of the network
to estimate the input data. This is encapsulated in a transaction to prevent two depen-
dencies from being added to the same variable simultaneously.

®We ran the Bayes application with the default parameters from the original STAMP version, except:
(1) the number of variables was increased from 32 to 48 to increase the number of cores that can be
used, (2) the number of records was decreased from 4096 to 512 to decrease the running time of the
experiment, and (3) the maximum number of parents per node was increased from 4 to 5 to increase the
chance of conflicts.

181

AW N R

Chapter 9: Evaluation

Execution time (s)
0 2 4 6 8 10 12 14

1.655(11.8%) 13.60 s (88.1%) 0.025 (0.1%)
Generate input Learn network Validation

During learning phase:
~6.8% time out transaction
93.2% time in transaction

Figure 9.6: Proportion of time spent in different parts of the Bayes application (with v = 48).

Dependencies are inserted until the work queue is empty. As more dependencies
are discovered, connected subgraphs of dependent variables form in the network.

Our transformation Figure 9.6 illustrates a typical execution of the program. Be-
fore the algorithm starts, the application generates the input data, taking 11.8% of the
total time. Then, the t worker threads process the work queue in parallel to learn the
dependencies, taking 88.1% of the execution time. Finally, the solution is validated,
taking just 0.1% of the time. As learning the network takes the most time, we focus on
this part only. In that part, 93.2% of the execution time is spent in the transactions that
determine the best next dependency. To optimize the program, we therefore focus on
this transaction.

Looking at the code, we see that the transaction in question contains a loop that
calculates the score for each candidate and then selects the maximum. Each of the
iterations of this loop is independent, and can therefore run in parallel in a transac-
tional future. We modified the application to do this (illustrated in Listing 9.7), and
will compare this version with a parallel loop to the original version of the benchmark.

(atomic)
B 1 (atomic
(for [from-id (range (:n-var adtree))] 2 .
(compute-local-log-likelihood ..))) 3 (parallel-for [from-id (range (:n-var adtree))]

4 (compute-local-log-likelihood ..)))
(a) Fragment of the original Bayes bench-

(b) Bayes with transactional futures.
mark.

Listing 9.7: The Bayes application before and after the introduction of transactional futures.

182

9.3 Bayes (Transactional Futures)

Measured speed-up on an 8-core machine, v =48

maximum for t = 5:
speed-up = 3.45
4 time = 3767 ms

J

maximum for t = 16:
speed-up = 2.75
time = 4723 ms

Measured speed-up

original version for t = 1:
time = 13000 ms

—}— Original version

Parallel loop (48 tasks
per worker thread)

1 2 4 8 16 32 64 128
Number of worker threads (t)

Figure 9.8: Measured speed-up of the learning phase for the Bayes application, as the number
of threads increases. The blue line shows the original version. The red line shows the version
with a parallel for loop, where each of the (at most) 48 iterations is executed in parallel.

Performance In Figure 9.8, we measure the speed-up of the learning phase as the
number of worker threads () increases, for a network of 48 variables. The blue line
is the original version: t threads process dependencies in parallel. The red line shows
the version in which the loop is executed in parallel. Here, in each transaction, up
to v transactional tasks run in parallel, where v is the number of Bayesian variables
in the network (48 in our experiment). Therefore, the maximal ideal speed-up in the
original version is ¢, while in the version with the parallel loop it is t x v.

The speed-up of the original version (blue line) increases as number of threads
increases, up to a speed-up of 2.75 for 16 threads (decreasing the execution time from
13 s for one thread to 4.7 s for 16 threads). After this point, the speed-up plateaus. By
examining the execution of the program, we find that even though a larger number
of worker threads are created, only a limited number of them actually perform any
work. The others are idle as not enough work is available after a certain point in the
execution of the program.

In the version with parallel tasks, we see that even when there is only one worker
thread processing one transaction at a time (f = 1), the parallelization of its internal
loop produces a speed-up of 2.88. By increasing the number of worker threads, a max-
imal speed-up of 3.45 is achieved for 5 worker threads (corresponding to an execution
time of 3.8 5). Again, the speed-up reaches a plateau as not enough work is available for

183

Chapter 9: Evaluation

all worker threads. However, the reached speed-up is higher than the original version
as more fine-grained parallelism is available in each unit of work.

This result demonstrates another benefit of transactional tasks. In the original ver-
sion, the amount of parallelism corresponded to the number of transactions, which is
equal to number of work items. Hence, if at a certain point there are fewer work items
than cores in the machine, not all potential parallelism is exploited. By introducing
parallelism inside the transactions, we make better use of the available hardware. Even
if there is limited work and therefore a limited number of transactions, transactional
tasks allow us to make use of more fine-grained parallelism within the transactions.

9.4 | Vacation2 (Transactional Actors)

Our Vacation2 application is inspired by the Vacation benchmark from the STAMP
benchmark suite. We add the suffix “2” to clearly indicate that, in contrast to the other
benchmarks, we omitted some functionality: in the original STAMP benchmark, cus-
tomers can be deleted and items can be changed, while Vacation2 does not support
this.

The benchmark’s input consists of ¢ customers that want to book a holiday. At the
start of the program, r flights, r hotel rooms, and r cars are generated — we call these
items — with a random price and random number of seats/beds (between 100 and 500).
Each customer will reserve between one and five seats on two flights, a hotel room, and
a car. For each of these four items, the customer will select a subset of g random items,
pick the cheapest with sufficient available seats, and book it. Additionally, for each
customer a password is generated using a cryptographically secure hash. We ran the
experiments with ¢ = 1000, r = 50, and g = 10.7

Each item and each customer is stored in a transactional variable. Customers are
written to five times: four times to update their bill (for the four items), and once to
store their password. Each reservation also writes to four items: two flights, a room,
and a car.

In the original benchmark, there are p worker actors. The ¢ customers are evenly
distributed so that each worker actor processes ¢/p customers. Each customer reserves
four items and generates a password. This is encapsulated in a transaction, hence,
there are ¢ transactions each writing to one distinct customer and four items. This was
illustrated in Listing 5.4 on page 98.% There will never be a conflict on the customer,
as it is distinct for each reservation, but there can be conflicts on the items.

7r = ¢ X 5/100 ensures that there are at least as many available seats as requested. g = 10 is as in the
original STAMP benchmark.

$Note that the code in Listing 5.4 has been modified for this text. The full code of the benchmark can
be found at https://github.com/jswalens/vacation2.

184

https://github.com/jswalens/vacation2

9.4 Vacationz (Transactional Actors)

For p = 42:
speed-up = 2.6
time = 2102 ms

time = 5480 ms

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Number of worker actors (p)

Figure 9.9: Speed-up of original Vacation2 for an increasing number of worker actors (p) on
a 64-core machine. Each result is the median of 15 measurements; the error bars depict in-
terquartile ranges.

We transform the original benchmark to parallelize this transaction using trans-
actional actors: the four items will be reserved in separate actors. In the transformed
version, next to p primary worker actors, there are s secondary worker actors. As
before, the ¢ customers are distributed evenly over the p primary worker actors. How-
ever, now each customer’s reservation sends four messages to randomly selected sec-
ondary worker actors, and then generates the customer’s password (as in Listing 5.5
on page 99). The secondary worker actors will look for and reserve an item of the
requested type, in a transaction. Hence, in this application, there are ¢ transactions
that write to one distinct customer each and send four messages, and 4c transactions
that write to one customer and one item. In this version, there can be conflicts on the
customers as well as the items.

Performance We benchmark both versions, varying p and s, and measure the total
execution time. Each variation is repeated 15 times, of which we calculate the median
and interquartile ranges. Next, we calculate the speed-up compared to the result for
p = land s = 1, for each experiment separately.

The results of the original version are shown in Figure 9.9. Using a single worker
actor, the program runs in 5480 ms. As the number of worker actors increases, the
execution time decreases, reaching a minimum of 2102 ms for 42 worker actors. This
corresponds to a speed-up of 2.6. On a machine with 64 cores, this speed-up is very
limited. Thisis a result of STM’s optimistic concurrency: as the number of transactions
that execute in parallel increases, the chance of conflicts and thus the number of retries
increases.

Figure 9.10 shows a subset of the results for the version that uses transactional
actors. (The full results are shown in Table 9.11.) In this benchmark, both the number
of primary and secondary worker actors are varied. The version using one primary and

185

Chapter 9: Evaluation

35 Forp =42, 5s=8:
—_t s=1 speed-up = 33.2
30 == s=2 time = 413 ms
—+= s=38
25 —— s=64
o
T 20
2
;Y =4
J% 15 T
For p =46, s = 1:
10 speed-up = 18.4
time = 743 ms
5
0 For p =1, s = 1: time = 13701 ms

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Number of primary worker actors (p)

Figure 9.10: Speed-up of version of Vacation2 that uses transactional actors, for increasing
numbers of primary (p) and secondary (s) worker actors, again on a 64-core machine. Full
results are in listed in Table 9.11.

one secondary worker actor is slower than the original version, at 13 701 ms. However,
better performance is achieved when increasing the number of actors.

The black line in Figure 9.10 shows the results using only one secondary worker
actor, so customers are processed in parallel but the reservation of individual items is
not. Here, a minimal execution time of 743 ms is reached for 46 primary worker actors,
a better result than the original version. This is because there are far fewer conflicts:
there is only one secondary actor reserving items, so there can never be any conflicts
on the items.

By increasing the number of secondary worker actors (the other lines in Figure 9.10),
a higher speed-up can be achieved. We see that a maximum speed-up of 33.2 is
reached for 42 primary and 8 secondary worker actors, on this machine. At this point,
the balance between increased parallelism and a low chance of conflicts is optimal. Us-
ing more than 8 secondary worker actors will again lower the performance, due to a
higher chance of conflicts. The optimal result for this version corresponds to an execu-
tion time of 413 ms, compared to a minimum of 2102 ms for the original version. This
indicates that this application benefits from being parallelized in two places, instead
of only parallelizing the processing of customers (as in the original version) or only
parallelizing the reservation of items (the results of p = 1in Table 9.11), the optimum
is found by combining both.

This experiment capitalizes on another benefit of transactional actors as well: they
allow a transaction to be split up into multiple transactions with dependencies. Ev-
ery transaction in the original version was split into one primary and four dependent
transactions. If the primary transaction fails, the four dependent transactions fail too.

186

9.5 Developer Effort

Number of primary worker actors (p)

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
1 1.0 22 45 69 9.8 127 153 153 155 14.1 15.0 13.5 14.7 14.2 14.3 15.2 15.6 15.4 16.9 17.9 16.8 17.6 18.1 18.4 16.9 17.5 17.0 16.8 16,9 17.7 17.7 17.0 17.0
2 09 19 40 56 7.3 99 120 149 17.3 18.8 17.9 189 18.7 18.1 18.5 18.5 17.9 20.1 20.1 20.0 19.5 19.6 19.3 19.5 19.2 18.9 18.5 18.7 18.6 18.8 18.8 18.3 18.8
4 08 16 34 50 69 84 102 12.0 14.0 15.8 18.3 20.1 21.3 22.7 23.7 239
6 08 15 32 48 6.6 7.9 93 114 13.0 144 16.1 18.1 20.1 22.3
8 07 15 30 47 6.1 7.6 9.4 108 12.2 140 16.2 17.8 19.5 22.0
10 08 1.5 3.0 46 60 7.6 9.3 105 12.1 135 15.3 17.3 18.8 23.0
12 08 14 29 45 61 75 88 103 11.8 13.7 15.4 16.6 19.2 21.1
14 08 14 29 44 59 74 88 104 11.7 13.1 147 16.8 18.6 22.0
16 08 14 29 44 58 7.2 89 10.2 11.8 13.2 15.2 16.9 19.4 21.0
18 09 14 29 43 58 7.3 87 103 11.7 135 149 17.0 18.7 21.0
20 09 14 28 43 57 7.2 86 103 119 133 15.2 16.8 18.9 21.0
22 09 15 29 43 57 7.1 84 104 118 129 15.0 17.1 194 21.6
24 09 15 29 43 57 7.0 89 10.2 11.8 13,5 15.0 17.5 20.4 23.3
26 09 15 28 42 57 7.3 88 103 11.8 134 152 17.3 19.8 22.8
28 09 15 28 43 58 7.3 87 103 11.8 13.3 15.3 16.9 20.0 21.9
30 09 15 28 43 59 7.3 87 10.2 11.9 13.3 15.3 17.5 20.0 22.5
32 09 15 29 43 58 7.3 88 10.3 11.7 13.6 15.4 17.9 20.0 23.0
34 09 15 29 43 58 7.2 88 10.3 11.7 135 15.5 17.8 19.9 23.4
36 09 15 29 43 58 7.3 87 103 11.8 14.0 16.1 17.8 21.5 24.0
38 09 15 29 43 58 72 87 10.3 119 13.5 15.7 18.0 21.9 23.6
40 09 15 29 43 57 7.2 87 10.1 120 139 15.8 18.6 22.0 23.3
42 09 15 29 43 57 7.2 87 10.1 119 13.7 16.4 185 20.4 233
44 09 15 28 43 57 72 87 10.2 11.9 13.6 16.3 18.1 20.4 22.0 22.8 23.6
46 09 15 29 43 58 72 87 10.1 11.8 13.3 15.7 17.7 19.6 21.9 22.9 234 23.5
48 08 1.6 29 43 57 72 86 10.1 11.5 13.6 15.6 18.0 20.8 21.6 23.0 23.3
50 09 1.6 29 43 58 72 86 10.2 11.6 13.7 15.7 18.3 19.8 21.8 22.7 235 23.9
52 09 15 29 43 57 7.1 86 10.1 11.7 13.6 15.9 18.1 20.2 21.9 22.6 23.3 24.0 24.1
54 09 16 29 43 57 7.1 86 10.1 11.7 13.9 15.8 18.1 20.4 21.3 22.5 229 24.1
56 09 15 29 43 57 7.1 86 10.2 11.8 13.7 16.3 18.2 20.6 21.7 22.4 23.0 23.3
58 09 16 28 43 57 7.3 87 10.1 12.0 13.6 15.9 17.9 19.7 21.6 22.5 229 23.0 24.1
60 09 15 29 43 57 7.1 87 10.3 120 13.6 16.1 18.4 19.9 21.3 22.2 23.2 23.9
62 09 16 29 43 57 72 86 10.1 11.8 13.8 16.4 18.2 19.9 21.2 22.2 238 24.0
64 09 15 29 43 57 7.1 86 10.1 11.9 14.0 16.1 18.7 20.4 21.3 22.4 23.6 24.2

Number of secondary worker actors (s)

Table 9.11: Full results for speed-up of the version of Vacation2 that uses transactional actors
for increasing numbers of primary (p) and secondary (s) worker actors. Higher (better) speed-
ups are colored more green.

However, if a dependent transaction fails, this does not abort any other transaction.
Using transactional actors, transactions can be split up, lowering the cost of a conflict
in a dependent transaction, as only this part needs to retry.

Finally, we note the high overhead of transactional actors: while the original ver-
sion took 5480 ms when using a single worker actor, the version with transactional
actors takes 13 701 ms when p = land s = 1, hence it is more than twice as slow when
using one core. We suspect this is due to our relatively simplistic implementation of
actors and we believe further optimizations could improve the performance (some
were suggested in Section 8.4 of the previous chapter).

In conclusion, this experiment shows that transactional actors can increase the per-
formance of an application that uses transactions by distributing the transactions over
multiple actors, introducing more fine-grained parallelism and lowering the chance
and cost of conflicts. (Even with our relatively simple implementation of actors; fur-
ther optimizations could improve these results.)

9.5 | Developer Effort

In this section, we assess the effort required from developers to use Chocola. We fo-
cus on the qualitative aspect: we are interested in which changes were necessary to

187

Chapter 9: Evaluation

Benchmark Added Removed Lines of code in

original version

Labyrinth 78 (11%) 30 (4%) 682
Bayes 1 (<1%) 1 (<1%) 1248
Vacation2 25 (8%) 17 (5%) 320

Table 9.12: The number of lines of code added and removed to introduce transactional futures
or actors in each benchmark.

introduce transactional futures and transactional actors in a program with transac-
tions, and how they compare to the changes necessary to introduce regular futures
and actors in a program without transactions. We use the same three applications of
the previous three sections and describe the transformations we applied. Table 9.12
summarizes the quantitative aspect of this evaluation: the number of lines of code that
were changed for each application.

Furthermore, we note that the Labyrinth and Bayes programs from the STAMP
benchmark suite end with a verification phase that checks whether the generated out-
put is correct. All our implementations of these benchmarks also include this verifi-
cation, to ensure no errors were introduced either when porting from C to Clojure
or when introducing futures or actors. (The Vacation2 benchmark is different from
STAMP’s original Vacation benchmark, so in that case there is no reference implemen-
tation to compare against.)

Labyrinth

The original Labyrinth application uses a sequential search algorithm, in a transac-
tion, and consists of 682 lines of code in total. After introducing transactional futures,
30 lines (4%) were removed and 78 lines (11%) were added. (This was illustrated in
Listing 4.5 of Chapter 4, on page 73.) Almost all of these changes are a result of swap-
ping the sequential search algorithm with a parallel search algorithm, which is more
complex and requires structural changes. Besides that, the developer needs to pick
and define a suitable conflict resolution function when initializing the transactional
variables that represent the grid.

Thus, we observe that, while several changes are necessary to introduce transac-
tional futures in this application, this effort is similar to the effort required to paral-
lelize any sequential code. These changes would be necessary even outside a transac-
tion, and are not due to specific requirements of our techniques. There is one notable
exception: the definition of the conflict resolution function.

188

9.5 Developer Effort

Bayes

To transform the original version of the Bayes application into the one that uses trans-
actional futures, actually only one line (out of 1248) had to be changed: the keyword
for was replaced by parallel-for, a macro that uses transactional tasks internally to
execute its iterations in parallel. This was shown in Listing 9.7 on page 182. This is
possible as each iteration of the loop is independent, exhibiting a type of parallelism
sometimes described as ‘embarrassingly parallel’ [Herlihy and Shavit 2011].

This benchmark thus epitomizes the small developer effort required to introduce
transactional futures. While in a naive combination of transactions and futures, read
operations on transactional state inside parallel-for would not be possible or give
inconsistent result, here transactional futures deliver the expected result.

Vacation2

A snippet of the changes between the two versions of this benchmark is shown in
Listing 9.13a. (These do not correspond exactly to the actual code, as some comments
and logging were elided to include them in this document.) To introduce transactional
actors in the main transaction of the original version, the code needs to be changed
three places:

 During the initialization of the program, the original version spawns only pri-
mary worker actors, while the version with transactional actors spawns secondary
worker actors as well (3 lines added).

« The behavior reserve-behavior of the secondary worker actors has to be defined,
containing the part of the original transaction that reserves a single item (14 lines
added, corresponding to lines 10-15 in Listing 9.13b and some additional book-
keeping® and comments).

« The transaction in the primary worker actor, in customer-behavior, has to be
transformed to send messages to the secondary worker actors instead of reserv-
ing items directly (17 lines removed and 8 lines added instead, corresponding to
the changes in customer-behavior in Listings 9.13a and Listing 9.13b and some
extra logging).

In total, out of 320 lines of code in the original version, 25 lines (8%) were added and
17 lines (5%) were removed.

To exploit transactional actors in this application, some structural changes were
required: a new type of actor was introduced and part of the behavior of the original
actors moved to there. However, we observe that transactional actors do not require

9Workers communicate with a ‘master’ actor that tracks which customers has been processed and
ends the program when they all have.

189

Chapter 9: Evaluation

(def customer-behavior

> (behavior [id] [c]

3 (atomic

4 (reserve-flight (:orig @c) (:dest @c) (:start @c) (:n @c))
5 (reserve-flight (:dest @c) (:orig @c) (:end @c) (:n @c))

6 (reserve-room (:dest @) (:n @c) (:start @) (:end @c))
7 (reserve-car (:dest @c) (:n @c) (:start @c) (:end @c))
8 (ref-set c (assoc @c :password (generate-password)))))

(a) The behavior for primary worker actors in the original Vacation2 benchmark.

1 (def customer-behavior

> (behavior [id] [c]

(atomic
(send (rand-nth secondary-workers) :flight (:orig @c) ..
(send (rand-nth secondary-workers) :flight (:dest @c) ..
(send (rand-nth secondary-workers) :room (:dest @c) ..
(send (rand-nth secondary-workers) :car (:dest @c) ..
(ref-set c (assoc @c :password (generate-password))))))

~—

®© N v b w

10 (def reserve-behavior
1 (behavior [id] [type & args]

12 (case type

13 :flight (atomic (apply reserve-flight args))

14 :room (atomic (apply reserve-room args))

15 icar (atomic (apply reserve-car args)))))

(b) The behavior for primary and secondary worker actors in the adapted benchmark.

Listing 9.13: Code snippets from the original and adapted Vacation2 benchmark. These have
been shortened to make them easier to understand, and some bookkeeping, comments, and
logging were elided.

190

9.6 Conclusions

the developer to use new constructs, and therefore the same techniques that are used
to introduce actors in a sequential program without transactions can also be applied
to introduce them in a program with transactions. Hence, using transactional actors
developers can reuse their existing knowledge of the models even when they are com-
bined, because the guarantees of the separate models are maintained.

9.6 | Conclusions

Based on these experiments, we draw the following conclusions:

Out of the eight applications in the STAMP benchmark suite, which represent a
variety of use cases for transactions, we examined the four applications with the
longest average transactions. In three out of four — Labyrinth, Bayes, and Vaca-
tion — we found that we could use transactional futures or transactional actors to
increase performance, by parallelizing a loop in the longest-running transaction.
(For the fourth application, Yada, either no further parallelization is possible or
more domain expertise is required to do so.)

The Labyrinth application spends almost all of its time in transactions that execute
a search algorithm, which can be parallelized using transactional futures. This
leads to a speed-up thanks to faster (internally parallel) transactions and fewer
conflicts.

The Bayes application spends most of its time in a loop in a transaction that can be
trivially parallelized. As there is only limited work available, at a certain point the
number of transactions is lower than the number of cores in the machine. Trans-
actional futures allow us to introduce more fine-grained parallelism. This is a mat-
ter of changing for into parallel-for, and increases the maximal speed-up on an
eight-core machine from 2.75 for the original version to 3.45 for the version with
transactional tasks.

The Vacation2 application implements an event-based vacation reservation sys-
tem, to which actors can be applied naturally. We split the transaction of the orig-
inal application into one smaller primary transaction and four dependent trans-
actions that are distributed over different actors. This improves performance by
introducing more fine-grained parallelism and lowering the chance and cost of
conflicts.

As was shown in Table 9.12, in the Labyrinth and Vacation2 applications, about
10% of the code was changed, as the structure of a part of these program needed
to be transformed to parallelize the internals of their transactions. For the Bayes
application, only a single line was changed, as this application was trivial to paral-
lelize. In each case, the required effort is mostly due to the introduction of addi-
tional parallelism, which would be necessary even outside a transaction, and not

191

Chapter 9: Evaluation

due to specific requirements of our techniques. The only exception to this is the
definition of the conflict resolution function in the Labyrinth application.

These results demonstrate that Chocola allows developers to improve the performance
of their transactional applications with only limited effort. Because Chocola does not
introduce any new constructs, developers can now reuse their existing knowledge of
the separate models even when they are combined. Moreover, as our implementation
is a relatively simple prototype in Clojure, further optimizations could decrease any
overheads and improve its performance.

It should be possible to apply transactional futures and actors to other STM sys-
tems, such as Haskell or ScalaSTM. In those systems, the studied applications can ben-
efit from parallelism in the transaction as well and the development effort to introduce
them should be similar, but depending on the implementation the speed-up may be
different.

192

Conclusion

10.1 ‘ Summary

Since the introduction of multicore processors, concurrency has been a crucial but
difficult aspect of software development. Researchers have created a plethora of con-
currency models for programming languages, aimed at different program designs and
providing different guarantees. We observe that existing programs and programming
languages often combine these concurrency models. We studied three concurrency
models and showed that naive combinations can annihilate the guarantees of their
constituent models (Chapter 3). Thus, the assumptions of developers are broken and
the errors that were prevented by using each separate concurrency model can resur-
face.

In this dissertation, we studied three concurrency models from three categories in
particular:

« futures: a deterministic model, therefore guaranteeing determinacy;,

« transactions: a shared-memory model that guarantees isolation and progress, and

« actors: a message-passing model that guarantees the isolated turn principle and
deadlock freedom.

We unified these three models into Chocola: a programming language framework that
specifies a semantics for their combinations with the aim of introducing additional
parallelism while preserving each model’s guarantees whenever possible. At the same
time, the semantics of each model remains unchanged when used separately.

We started from the pairwise combinations of the three concurrency models:

« First, transactional futures are futures created in a transaction with access to the
encompassing transactional context (Chapter 4). Transactional futures make it

193

Chapter 10: Conclusion

possible to exploit parallelism inside transactions. They ensure isolation and progress
of transactions, and replace the determinacy of futures with intratransaction de-
terminacy.

« Second, transactional actors combine transactions and actors, making it possible
to create transactions in actors, and vice versa, to send messages to actors in trans-
actions (Chapter 5). Our semantics maintains the isolation and progress guar-
antees of transactions, while guaranteeing low-level race freedom and deadlock
freedom for the actors.

o Third, the combination of futures and actors only required a few small changes
in order to provide a familiar semantics (Section 6.1). We ensure that the isolated
turn principle and deadlock freedom of actors are maintained, and that determi-
nacy is maintained within each turn.

Next, we unified the three concurrency models into one programming language frame-
work, called Chocola (Chapter 6).

o We formalized Chocola’s operational semantics in PureChocola, which unifies
transactional futures and transactional actors (Chapter 7). We described its guar-
antees, which remain as close as possible to the guarantees of its constituent mod-
els. Additionally, we created an executable implementation of parts of PureChocola
using PLT Redex.

o We have implemented Chocola by extending Clojure (Chapter 8). Our imple-
mentation starts from standard implementations of its three constituent models,
which are modified where the models interact. It demonstrates that an efficient
implementation is possible, which we used to evaluate the performance benefits
of Chocola.

o Using three benchmarks from the commonly used STAMP benchmark suite, we
evaluated Chocola (Chapter 9). These applications all use transactions and were
extended using transactional futures and actors. By introducing futures or actors
additional parallelism can be exploited, leading to better performance without sig-
nificantly altering the structure of the program. We saw that this requires only a
small effort from the developer: the changes required to introduce new concur-
rency models are similar to the effort required to parallelize any program, as there
were only limited changes required due to the interactions between concurrency
models.

Hence, Chocola is a unified framework of futures, transactions, and actors, in which
each model can not only be used separately but also in combination with the oth-
ers, while maintaining the guarantees of each model wherever possible. Thus, using
Chocola developers can optimally exploit parallelism for little effort, i.e. without dras-
tically changing the architecture of their application.

194

10.2 Contributions

This dissertation also aims to open the discussion on combining concurrency mod-
els. It is the first to study combinations of three models, doing so using three specific
models. We hope it will be a stepping stone to future research on combinations of
other concurrency models.

10.2 | Contributions
Our scientific contributions are the following:

 To the best of our knowledge, this dissertation is the first to comprehensively
and systematically study the combination of three concurrency models: futures,
transactions, and actors. For each combination, we determined which guarantees
are broken in a naive, ad-hoc combination.

« This dissertation introduces transactional futures: futures created in a transaction
with access to the encompassing transactional context. They guarantee intratrans-
action determinacy and the isolation and progress guarantees of transactions.

o This dissertation introduces transactional actors. These make it possible both to
create transactions in actors, and vice versa to send messages to actors in trans-
actions. Our semantics maintains the isolation and progress guarantees of trans-
actions, while guaranteeing low-level race freedom and deadlock freedom for the
actors.

« We combine all three models into one unified linguistic framework: Chocola,
consisting of:
- aspecification of the operational semantics of Chocola, PureChocola, which
we use to demonstrate its guarantees,
- an implementation of Chocola on top of Clojure, and

- an evaluation using three benchmark applications.

The implementation of Chocola, an executable implementation of the semantics of
PureChocola, and the three benchmark applications are available at http://soft.vub.ac.
be/~jswalens/chocola/.

10.3 | Future Work

In this section, we list possible avenues for future research.

195

http://soft.vub.ac.be/~jswalens/chocola/
http://soft.vub.ac.be/~jswalens/chocola/

Chapter 10: Conclusion

Formal proofs of the guarantees of PureChocola In future work, we would like to
formally prove the guarantees provided by the operational semantics of PureChocola
(described informally in Section 7.3). Ideally, the operational semantics would be im-
plemented using a formal proof system, such as Coq, so that the guarantees can be
verified mechanically. Alternatively, we could extend our current implementation of
the operational semantics in PLT Redex to support all of Chocola’s constructs and
verify the guarantees using PLT Redex’s randomized testing.

Exploration of different concurrency models Chocola picks one concurrency
model from each category in the taxonomy of Van Roy and Haridi [2004]. It would
be interesting to explore the possibility of choosing different models within each cate-
gory. We can think of several existing concurrency models that would pose interesting
challenges. For instance:

« Using Concurrent Revisions [Burckhardt et al. 2010] instead of transactions as the
shared-memory model. Transactional futures currently have a different approach
for conflict resolution within a transaction (using conflict resolution functions,
like Concurrent Revisions) and between transactions (using abort and retry). By
replacing transactions with Concurrent Revisions, the same approach to conflict
resolution would apply throughout the program, which may provide a simpler
model to the programmer. Concurrent Revisions are deterministic, which at the
same time provides a stronger guarantee to the programmer but may limit the
programs that can be expressed. It would therefore be interesting to study the
effects of their use instead of transactions in Chocola. Moreover, unlike trans-
actions, Concurrent Revisions avoid reexecuting parts of the program, which is
the main cause for incompatibilities between the different concurrency models in
this dissertation. It may thus be easier to combine other concurrency models with
Concurrent Revisions than with transactional memory.

o Communicating Sequential Processes (CSP) [Hoare 1978] provide concurrent pro-
cesses that pass messages over channels. While in the actor model there is a one-to-
one mapping between inboxes that receive messages and the actors that process
these messages, in CSP there is no such ‘restriction: any process can read from
any channel it has access to. This gives the programmer more flexibility, but may
make the program harder to reason about, as it is no longer possible to reason in
‘turns’ like in the actor model. Moreover, CSP is a synchronous model, which may
pose additional challenges. It would be interesting to study the effects of replacing
actors with CSP in Chocola.

This dissertation hence examines only one point in the landscape of combinations of
concurrency models. It is a stepping stone that opens the discussion on combinations
of concurrency models; future work can further uncover the landscape by examining
other combinations.

196

10.3 Future Work

Decomposition of concurrency models into elementary ‘building blocks’ The ap-
proach taken in this dissertation, in which every pairwise combination of concurrency
models is examined one by one, does not scale well to combinations of an increasing
number of models. To make studying combinations of a larger number of concurrency
models feasible, a possible approach is to decompose each concurrency model into a
set of elementary ‘building blocks. Studying combinations of concurrency models
then corresponds to studying the combinations of their building blocks.

Additionally, we noticed some properties of certain concurrency models make
combinations especially problematic, for instance the presence of constructs that retry
or block (as concluded in the case study of Clojure in Section 3.2) or nondeterminism
(as we saw when using transactions and actors in futures). On the other hand, other
properties facilitate combinations, such as determinism or the absence of side effects.
Further exploration of different concurrency models can lead to a list of such problem-
atic and helpful properties. This can then lead to a table of properties that do or do not
combine well, for instance, using a model with side effects in a model with retrying
operations is a problematic combination.

‘Multidimensional’ nesting of concurrency models This dissertation examines
combinations in which concurrency models are nested pair by pair. One may wonder
how these results generalize to situations in which more than two models are nested,
e.g. when a future is created in a transaction that runs in an actor. In other words,
does the table in Figure 6.7 suffice, or do we need to examine a cube in which all three
models are nested in 3 x 3 x 3 possible combinations? Moreover, by nesting the same
model multiple times, in theory further complications could arise: is creating a future
in a transaction in a future in a transaction (four levels deep), the same as creating a
future in a transaction (two levels deep)?

In the combinations of the three models studied in this dissertation, we found that
it was sufficient to study nested combinations of only two levels. We then generalized
these results to a language with three models, for which the formalization in Chap-
ter 7 specifies a well-defined semantics that works for any level of nesting. In contrast,
combinations of other concurrency models may not necessarily generalize in the same
way. It would be interesting to explore which properties of concurrency models make
‘deeply nested” combinations problematic or not.

Applicability of transactional futures and transactional actors We evaluated
Chocola by extending three applications that currently use transactions with futures
or actors. In future work, we would like to study their applicability more comprehen-
sively. Using a larger set of programs, we aim to find out where futures, transactions,
and actors can be applied, and in which parts of the program they are combined and
interact.

197

Chapter 10: Conclusion

Moreover, by applying Chocola to a wider range of programs, we might be able to
determine certain patterns that often appear in the code. These could consequently
be encoded into library functions or even language constructs. The implementation
could also be optimized for these typical use cases.

Comparison of implementation techniques and optimizations The current im-
plementation of Chocola serves only as a starting point. While we aimed for our im-
plementation to be sufficiently mature to use it in our performance evaluation, we
still observe many opportunities for optimizations. In our implementation of trans-
actional futures, we presented a technique that makes a trade-oft between speed and
memory usage (Section 8.5, page 169). Based on real-world usage, we could further
refine this trade-off. Our implementation of transactional actors uses a rudimentary
implementation of actors. Based on the vast amount of existing actor platforms, many
existing optimizations could be applied to our implementation. To assess which op-
timizations are opportune in real-world applications, we would need to gauge them
against a suite of benchmark applications that use Chocola.

Applicability to other programming paradigms Chocola is built around a ‘base’
language that is purely functional. In future work, we can examine how a different base
language affects the guarantees provided by Chocola. For instance, using a language
in which side effects (such as input/output) can appear anywhere in the code can break
the isolation of transactions. Or, reactive languages inherently have concurrency built
in and using them as a base will pose unique problems.

One interesting shortcoming of our base language is the lack of exceptions. The
interactions between concurrency models and exceptions have been the topic of previ-
ous research (e.g. for futures [Navabi and Jagannathan 2009] and transactions [Harris
etal. 2005, 2010]) and can pose challenges due to their non-local control flow, in some
cases allowing an exception to ‘escape’ a future or transaction.

Distribution and fault tolerance =~ Chocola was developed in the context of a single
machine executing a parallel program on a multicore processor. An open question is
whether the techniques and ideas presented in this dissertation could also be applied in
adistributed context, when multiple machines cooperate to execute a program. The ac-
tor model is frequently used in distributed contexts, and some related work discussed
in Section 5.5 of Chapter 5 focuses on the use of shared memory or transactions in
such systems. A possible idea is to explore whether transactional actors can also be
applied in a distributed setting.

Two issues are immediately apparent. First, reconciling the use of a shared-memory
model such as Software Transactional Memory with a distributed architecture brings
challenges in keeping the shared state consistent and available on all machines. Second,

198

10.3 Future Work

distributed architectures are inherently prone to network faults, making fault tolerance
indispensable. An open question is how to ensure fault tolerance in a distributed ver-
sion of Chocola, for example in a scenario where a tentative turn or transaction with a
dependency runs on one machine but depends on a transaction on another machine.

199

Notation

We use the following notations for sets, sequences, and mappings.

Sets

%] Empty set
AUB=C<= A=C\B Disjoint union
AUa <= AU{a} Short-hand for union on singletons

Sequences

(Empty sequence
a (Possibly empty) sequence of a
f-7=5 (De)construction of sequence 5 from/into its first element fand the rest 7

Partial Functions (Mappings)

a:A—B Declaration of partial function (mapping)
%] Empty mapping
b if x =
ala— bl(x)= o ? Extension of mapping
a(x) otherwise

ifx € d
(a:: B)(x) = Bla) ifxe .Om(ﬁ) Concatenation of two mappings
a(x) otherwise

201

Appendix A: Notation

Meta-Syntax
Some syntax is pervasive throughout this dissertation:
?

x'i=x | o Optional element

We use the notation x? to indicate an optional element, i.e. an element that can
have the ‘empty’ value e.

202

A Clojure Primer

In this appendix, we briefly describe Clojure. Clojure is a general-purpose, dynami-
cally typed programming language. It is founded on four principles:*

To be a ‘modern’ Lisp. It has a syntax built on S-expressions, but with convenient
shortcuts for common data types (see next section). It also supports macros.
Based on a functional core. Its built-in data types are immutable (see next section)
and functions are first-class. However, in contrast to many existing functional
programming languages, it is dynamically typed. It also does not enforce purely

functional programming everywhere.

Compatibility with an existing platform. Clojure compiles to Java Virtual Machine
bytecode. It interoperates with code written in Java: code written in Java can be
called from Clojure and vice versa. Hence, the existing Java ecosystem of libraries
can be reused.

Designed for concurrency. Clojure supports many different concurrency models, built
around a philosophy of immutable values that are encapsulated in ‘containers’
whose value can change over time.

Below, we describe some common constructs from Clojure.

Syntax and data structures

Table B.1 lists Clojure’s syntax for built-in data types. Clojure’s collection types (strings,
lists, vectors, maps, and sets) are immutable: a modification does not mutate the orig-
inal value, but instead returns the new value. For example, (pop '(1 2 3)) returns

https://clojure.org/about/rationale

203

https://clojure.org/about/rationale

Appendix B: A Clojure Primer

Integer 1 Vector [1 2 "a"]
String "a” Map {:a 1, :b 2, :c 3}

Keyword :a Set #{1 2 "a"}
(Linked) list "(1 2 "a") | Comment ; This is a comment

Table B.1: Clojure’s syntax for common built-in data types.

the new list " (2 3), leaving the original unmodified. Clojure’s collections are imple-
mented using persistent data structures [Driscoll et al. 1989/, which implement such
immutable data structures efficiently, avoiding duplication.

Variable bindings

New variable bindings can be introduced using let or def. let defines local variables
in the lexical scope. These are always immutable. (def x v) defines a global vari-
able x with value v. Global values are also immutable, except in some cases that are
not relevant in the context of this dissertation. The construct (defn f [parameter1
parameter2] body) defines a function f, taking a vector of parameters. This is illus-
trated in Listing B.2.

1 (let [a 1 1 (def a "hello”) 1 (defn factorial [n]
2 b 2] (b) Defines the > (Af (=n0)
2 (rab) global variable a. } !

(* n (factorial (- n 1)))))

(c) Defines the function factorial,
taking one parameter n.

(a) Evaluates to 3. 4

Listing B.2: let, def, and defn in Clojure.

Other common constructs

« fndefines an anonymous function, e.g. the following two lines are identical:

1 (defn inc [n] (+ n 1))
2 (def inc (fn [n] (+ n 1)))

« do encapsulates a sequence of statements. It is equivalent to putting ; between
statements in C-like languages.

1 (dO
> (println "Print one thing”)
3 (println "and another”))

« for loops are syntactic sugar for map:

204

1 (for [x [1 2 3]]

2 (¥ x 2))

3 (map (fn [x] (* x 2)) [1 2 3])
4+ ;both return the vector [2 4 6]

o loop and recur are used to implement loops:

1 (loop [n 5] ;onthefirstiteration, nis5
(if (=n 0)

3 (print " Done!™)

4 (do

5 (print n)

6 (recur (- n 1))))) ;startthe nextiteration, with ndecremented by 1
7 s prints 54321 Done!

Only tail recursion using explicit loop and recur constructs is optimized. Tail
recursive functions are not optimized, as this is not supported by the JVM.

Some syntactical differences with Scheme

For seasoned Scheme users, we list three syntactical differences between Clojure and
Scheme:

« Some of Clojure constructs have a different name from Scheme: Scheme’s begin
is do in Clojure, define is def for variables and defn for functions (shown above).

« Clojure’s let takes a single vector of variable-value bindings, instead of a nested
list of pairs (as in Listing B.2a).

« Clojure’s loop and recur are equivalent to a named Scheme’s let. The loop exam-
ple above translated to Scheme is:

(let loop ([n 51)

2 (if (= n 0)

3 (print " Done!")

4 (begin

5 (print n)

6 (loop (- n 1)))))

More information

The following websites provide more information on Clojure:

« Clojure’s website is at https:/clojure.org/ and its documentation at https://clojure.
org/reference/documentation.

o A reference sheet of Clojure’s built-in functions can be found at http://clojuredocs.
org/quickref.

205

https://clojure.org/
https://clojure.org/reference/documentation
https://clojure.org/reference/documentation
http://clojuredocs.org/quickref
http://clojuredocs.org/quickref

Language and Library
Support for Concurrency
Models

Many programming languages have built-in support for multiple concurrency models.
Moreover, when a concurrency model is not built into the language, developers often
build libraries instead. These claims are supported by the table below.

Clojure Scala Java Haskell® C++
Deterministic models
Futures
Promises
Fork/Join (@) (a)
Parallel collections @
Dataflow 9)
Shared-memory models
Threads @ @)
Locks @ (@) (©)
Atomic variables @)
Transactional memory (12)@
Message-passing models
Actors
Channels (6)
Agents

207

Appendix C: Language and Library Support for Concurrency Models

Legend

Built into the language or its standard library
Available as a library, linked to below

Libraries

We list at least one library, often several more exist:

Pulsar: http://docs.paralleluniverse.co/pulsar, supports actors and dataflow
Ozma: https://github.com/sjrd/ozma
ScalaSTM: https://nbronson.github.io/scala-stm
Akka: https://akka.io, supports actors (Akka Actors) and dataflow concurrency
(Akka Streams)
DeuceSTM: https://sites.google.com/site/deucestm
JCSP: https://www.cs.kent.ac.uk/projects/ofa/jcsp
future package for Haskell: https://hackage.haskell.org/package/future
DPH: https://wiki.haskell.org/GHC/Data_Parallel_Haskell
Etage: https://hackage.haskell.org/package/Etage
thespian: https://hackage.haskell.org/package/thespian
hactors: https://hackage.haskell.org/package/hactors
Threading Building Blocks: https://www.threadingbuildingblocks.org
TinySTM: http://www.tmware.org/tinystm.html
C++ Actor Framework: http://actor-framework.org
Boost channels (in its Fiber library): https://www.boost.org

HEE

() (o) N (@) ()

Notes

(a) These models are part of Java and can be used in Clojure or Scala as these languages
are built on top of the Java Virtual Machine.

(b) Many of these features are not part of the Haskell language standard per se, but are
provided by the standard library of GHC.

(c) Available in the form of QSem semaphores, see https://hackage.haskell.org/package/
base-4.11.1.0/docs/Control-Concurrent-QSem.html.

(d) While transactional memory is currently available as a library for C++, it is also
being considered for inclusion in the C++20 language standard (to be released
in 2020). Several proposals have been made, the latest version at the time of
writing can be found at http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/
n4514.pdf (May 2015). There is also already experimental support for transac-
tional memory in GCC since version 4.7, released March 2012 (more details at
https://gcc.gnu.org/wiki/TransactionalMemory).

208

http://docs.paralleluniverse.co/pulsar
https://github.com/sjrd/ozma
https://nbronson.github.io/scala-stm
https://akka.io
https://sites.google.com/site/deucestm
https://www.cs.kent.ac.uk/projects/ofa/jcsp
https://hackage.haskell.org/package/future
https://wiki.haskell.org/GHC/Data_Parallel_Haskell
https://hackage.haskell.org/package/Etage
https://hackage.haskell.org/package/thespian
https://hackage.haskell.org/package/hactors
https://www.threadingbuildingblocks.org
http://www.tmware.org/tinystm.html
http://actor-framework.org
https://www.boost.org
https://hackage.haskell.org/package/base-4.11.1.0/docs/Control-Concurrent-QSem.html
https://hackage.haskell.org/package/base-4.11.1.0/docs/Control-Concurrent-QSem.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4514.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4514.pdf
https://gcc.gnu.org/wiki/TransactionalMemory

Semantics of Futures and

Transactions in Clojure and
Haskell

The syntax and operational semantics defined in Chapter 2 for futures (Section 2.3.5
on page 20) and transactions (Section 2.4.5 on page 31) are deliberately very similar
to those offered by Clojure and Haskell, as we aim to demonstrate how the problems
described in this dissertation also apply to these programming languages. This ap-
pendix details the (minor) syntactic and semantical differences between our formal
model and the implementations of Clojure and Haskell.

D.1 | Clojure

Clojure 1.9.0 (released December 8, 2017) differs from the presented syntax in the
following ways:

« Clojure encapsulates all forms in parentheses, as S-expressions. Furthermore, it
has a slightly different syntax for let.

« fork and join are named future and deref respectively. That is, deref is over-
loaded for both futures and transactional variables.

« Clojure’s (dosync e) is equivalent to our atomic (do &;).

209

Appendix D: Semantics of Futures and Transactions in Clojure and Haskell

The semantics differ only on these two points:

o Clojure allows ref and deref to be used outside a transaction: Clojure’s (ref e)
and (deref e) are equivalent to our atomic (ref e) and atomic (deref e), but with
an optimized implementation.

« Clojure supports alter, commute, and ensure, which are essentially variations of
ref-set with different performance characteristics.

Finally, Clojure allows futures to be created in a transaction, leading to unexpected
results as described in Chapter 4.

D.2 | Haskell

Syntactically, Haskell writes forkIO, atomically, newTVar, readTVar, and writeTVar
for fork, atomic, ref, deref, and ref-set. The semantics differ in the following ways:

« Haskell has a different syntax for anonymous functions and let.

« Haskell’s forkIOreturns a thread identifier, and not a future. Nevertheless, our for-
malization models the use of transactions in tasks, in Haskell one uses atomically
in a task created using forkIO.

« Moreover, Haskell does not support the join operation on thread identifiers. In-
stead, waiting for a thread and retrieving its result is usually implemented man-
ually using an Mvar?, while our language uses futures for this purpose. Hence,
porting our solution to Haskell requires adding a join operation to Haskell.

« Transactions are encapsulated in the STM monad, and the main program is encap-
sulated in the I0 monad. This leads to a different semantics of the do block, which
in Haskell is syntactic sugar for monad sequencing. Haskell’s do notation allows
monadic binding (<-) and let binding, and may require return.

« Haskell does not allow multiple atomically blocks to be nested: the type signature
of atomically is STM a -> IO a, and a result of type I0 a cannot be used in an
STM block.

« Haskell supports retry to abort a transaction and orElse to compose two alterna-
tive STM actions.

Haskell does not allow forkIOin a transaction: this is prevented by the type system as
forkIO operates in the I0 monad and transactions run in the STM monad. One could
see transactional futures as the addition of forkSTM to Haskell, a fork construct that
works within the STM monad.

' As indicated in the documentation of the Control. Concurrent package at https://hackage.haskell.org/
package/base-4.8.1.0/docs/Control-Concurrent.html#g:12.

210

https://hackage.haskell.org/package/base-4.8.1.0/docs/Control-Concurrent.html#g:12
https://hackage.haskell.org/package/base-4.8.1.0/docs/Control-Concurrent.html#g:12

Bibliography

Agha, G. A. (1985). Actors: a model of concurrent computation in distributed systems.
PhD thesis, Massachusetts Institute of Technology.

Agha, G. A., Mason, I. A, Smith, S. E, and Talcott, C. L. (1997). A foundation for actor
computation. Journal of Functional Programming, 7(1):1-72.

Agrawal, K., Fineman, J. T., and Sukha, J. (2008). Nested Parallelism in Transactional
Memory. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP *08, pages 163-174.

Armstrong, J. (2007). Programming Erlang: Software for a Concurrent World. Prag-
matic Bookshelf.

Baek, W,, Bronson, N., Kozyrakis, C., and Olukotun, K. (2010). Implementing and
Evaluating Nested Parallel Transactions in Software Transactional Memory. In Pro-
ceedings of the Twenty-second Annual ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA ’10, pages 253-262.

Baker, H. C. and Hewitt, C. (1977). The incremental garbage collection of processes.
In Proceedings of the 1977 symposium on Artificial intelligence and programming lan-

guages, pages 55-59.

Barreto, J. a., Dragojevi¢, A., Ferreira, P., Guerraoui, R., and Kapalka, M. (2010). Lever-
aging Parallel Nesting in Transactional Memory. In Proceedings of the 15th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
10.

Barrett, E., Bolz-Tereick, C. E, Killick, R., Mount, S., and Tratt, L. (2017). Virtual

211

Bibliography

Machine Warmup Blows Hot and Cold. Proceedings of the ACM on Programming
Languages, 1(OOPSLA):52:1-52:27.

Beeri, C., Bernstein, P. A., and Goodman, N. (1989). A Model for Concurrency in
Nested Transactions Systems. Journal of the ACM, 36(2):230-269.

Berenson, H., Bernstein, P., Gray, J., Melton, J., O'Neil, E., and O'Neil, P. (1995). A
Critique of ANSI SQL Isolation Levels. In Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’95, pages 1-10.

Bernstein, P. A. and Goodman, N. (1981). Concurrency Control in Distributed
Database Systems. ACM Computing Surveys, 13(2):185-221.

Bieniusa, A. and Thiemann, P. (2011a). Proving Isolation Properties for Software
Transactional Memory. In Proceedings of the 20th European Symposium on Pro-
gramming, ESOP’11, pages 38-56.

Bieniusa, A. and Thiemann, P. (2011b). The Semantics of Twilight Transactions. Tech-
nical report, Institut fir Informatik, Universitét Freiburg.

Blumofe, R. D., Joerg, C. E, Kuszmaul, B. C,, Leiserson, C. E., Randall, K. H., and Zhou,
Y. (1995). Cilk: An Efficient Multithreaded Runtime System. In Proceedings of the
fifth ACM SIGPLAN symposium on Principles and practice of parallel programming,
PPOPP ’95, pages 207-216.

Bocchino, R. L., Adve, V. S., Adve, S. V., and Snir, M. (2009a). Parallel Programming
Must Be Deterministic by Default. In Proceedings of the First USENIX conference on
Hot topics in parallelism, HotPar’og.

Bocchino, Jr., R. L., Adve, V. S,, Dig, D., Adve, S. V., Heumann, S., Komuravelli, R.,
Overbey, J., Simmons, P, Sung, H., and Vakilian, M. (2009b). A Type and Effect
System for Deterministic Parallel Java. In Proceedings of the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and Applications,
OOPSLA °09, pages 97-116.

Brandauer, S., Castegren, E., Clarke, D., Fernandez-Reyes, K., Johnsen, E. B., Pun,
K. L, Tarifa, S. L. T., Wrigstad, T., and Yang, A. M. (2015). Parallel Objects for
Multicores: A Glimpse at the Parallel Language Encore. In Formal Methods for
Multicore Programming: 15th International School on Formal Methods for the Design
of Computer, Communication, and Software Systems, SFM 2015, pages 1-56.

Bright, P. (2017a). AMD’s moment of Zen: Finally, an architec-
ture that can compete. https://arstechnica.com/gadgets/2017/03/

212

https://arstechnica.com/gadgets/2017/03/amds-moment-of-zen-finally-an-architecture-that-can-compete/
https://arstechnica.com/gadgets/2017/03/amds-moment-of-zen-finally-an-architecture-that-can-compete/

amds-moment-of-zen-finally-an-architecture-that-can-compete/, (Online; pub-
lished March 2, 2017).

Bright, P. (2017b). Intel launches its new precious metal Xeon
platform. https://arstechnica.com/information-technology/2017/07/
intels-new-xeon-scalable-platform-is-its-most-complex-yet/, (Online; published
July 11, 2017).

Bronson, N. G., Chafi, H., and Olukotun, K. (2010). CCSTM: A library-based STM
for Scala. In The First Annual Scala Workshop at Scala Days.

Burckhardt, S., Baldassin, A., and Leijen, D. (2010). Concurrent Programming with
Revisions and Isolation Types. In Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applications, OOPSLA ’10,
pages 691-707.

Burckhardt, S. and Leijen, D. (2011). Semantics of Concurrent Revisions. In Proceed-
ings of European Symposium on Programming, ESOP ’11, pages 116-135.

Calder, M., Kolberg, M., Magill, E. H., and Reiff-Marganiec, S. (2003). Feature interac-
tion: a critical review and considered forecast. Computer Networks, 41(1):115-141.

Cavé, V., Zhao, J., Shirako, J., and Sarkar, V. (2011). Habanero-Java: The New Adven-
tures of Old X10. In Proceedings of the 9th International Conference on Principles
and Practice of Programming in Java, PPP] ’11, pages 51-61.

Chakravarty, M. and Keller, G. (2001). Nepal — Nested Data Parallelism in Haskell.
In Euro-Par 2001 Parallel Processing, pages 524-534.

Chickering, D. M., Heckerman, D., and Meek, C. (1997). A Bayesian Approach to
Learning Bayesian Networks with Local Structure. In Proceedings of the Thirteenth
Conference on Uncertainty in Artificial Intelligence, UAT' 97, pages 80-89.

Clebsch, S., Drossopoulou, S., Blessing, S., and McNeil, A. (2015). Deny Capabilities
for Safe, Fast Actors. In Proceedings of the sth International Workshop on Program-
ming Based on Actors, Agents, and Decentralized Control, AGERE! 2015, pages 1-12.

Coftman, E. G., Elphick, M., and Shoshani, A. (1971). System Deadlocks. ACM Com-
puting Surveys, 3(2):67-78.

Dabrowski, F.,, Loulergue, F., and Pinsard, T. (2013). Nested Atomic Sections with
Thread Escape: An Operational Semantics. In Proceedings of the 2013 International
Conference on Parallel and Distributed Computing, Applications and Technologies,
PDCAT ’13, pages 29-35.

213

https://arstechnica.com/gadgets/2017/03/amds-moment-of-zen-finally-an-architecture-that-can-compete/
https://arstechnica.com/information-technology/2017/07/intels-new-xeon-scalable-platform-is-its-most-complex-yet/
https://arstechnica.com/information-technology/2017/07/intels-new-xeon-scalable-platform-is-its-most-complex-yet/

Bibliography

Dabrowski, E, Loulergue, E, and Pinsard, T. (2015). A Formal Semantics of Nested
Atomic Sections with Thread Escape. Computer Languages, Systems & Structures,
42(C):2-21.

De Koster, J., Marr, S., Van Cutsem, T., and D’'Hondt, T. (2016a). Domains: Sharing
state in the communicating event-loop actor model. Computer Languages, Systems
& Structures, 45:132-160.

De Koster, J., Van Cutsem, T., and De Meuter, W. (2016b). 43 Years of Actors: A
Taxonomy of Actor Models and Their Key Properties. In Proceedings of the 6th
International Workshop on Programming Based on Actors, Agents, and Decentralized
Control, AGERE 2016, pages 31-4o0.

de Vries, E., Koutavas, V., and Hennessy, M. (2010). Communicating Transactions. In
Proceedings of the 21st international conference on Concurrency theory, CONCUR'10,

pages 569-583.

Dedecker, J., Van Cutsem, T., Mostinckx, S., D’Hondt, T., and De Meuter, W. (2006).
Ambient-Oriented Programming in Ambienttalk. In Proceedings of the 20th Euro-
pean Conference on Object-Oriented Programming, ECOOP 06, pages 230-254.

Denning, P. J. and Dennis, J. B. (2010). The Resurgence of Parallelism. Communica-
tions of the ACM, 53(6):30-32.

Dijkstra, E. W. (1965). Solution of a Problem in Concurrent Programming Control.
Communications of the ACM, 8(9):569.

Donnelly, K. and Fluet, M. (2006). Transactional Events. In Proceedings of the Eleventh
ACM SIGPLAN International Conference on Functional Programming, ICFP ’06,

pages 124-135.

Driscoll,]. R., Sarnak, N., Sleator, D. D., and Tarjan, R. E. (1989). Making data struc-
tures persistent. Journal of Computer and System Sciences, 38(1):86-124.

Emerick, C., Carper, B., and Grand, C. (2012). Clojure Programming. O’Reilly Media,
Inc.

Ennals, R. (2006). Software Transactional Memory Should Not Be Obstruction-Free.
Technical Report IRC-TR-06-052, Intel Research Cambridge.

Farchi, E., Nir, Y., and Uy, S. (2003). Concurrent bug patterns and how to test them. In
Proceedings of International Parallel and Distributed Processing Symposium, IPDPS

>

03.

214

Felleisen, M., Findler, R. B, and Flatt, M. (2009). Semantics Engineering with PLT
Redex. The MIT Press.

Field, J. and Varela, C. A. (2005). Transactors: A Programming Model for Maintaining
Globally Consistent Distributed State in Unreliable Environments. In Proceedings
of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL "o05, pages 195-208.

Flanagan, C. and Felleisen, M. (1995). The Semantics of Future and Its Use in Program
Optimization. In Proceedings of the 22Nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 95, pages 209-220. ACM.

Geer, D. (2005). Chip makers turn to multicore processors. Computer, 38(5):11-13.

Georges, A., Buytaert, D., and Eeckhout, L. (2007). Statistically Rigorous Java Perfor-
mance Evaluation. In Proceedings of the 22nd Annual ACM SIGPLAN Conference on
Object-Oriented Programming Systems and Applications, OOPSLA ’o7, pages 57-76.

Godefroid, P. and Nagappan, N. (2008). Concurrency at Microsoft - An Exploratory
Survey. Technical report. https://www.microsoft.com/en-us/research/publication/
concurrency-at-microsoft-an-exploratory-survey/.

Guerraoui, R. and Kapatka, M. (2008). On the Correctness of Transactional Memory.
In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’08, pages 175-184.

Guerraoui, R., Kapalka, M., and Vitek, J. (2007). STMBenchy: A Benchmark for Soft-
ware Transactional Memory. In Proceedings of the 2Nd ACM SIGOPS/EuroSys Eu-
ropean Conference on Computer Systems 2007, EuroSys ’07, pages 315-324.

Haines, N., Kindred, D., Morrisett, J. G., Nettles, S. M., and Wing,]. M. (1994). Com-
posing First-class Transactions. ACM Transactions on Programming Languages and
Systems, 16(6):1719-1736.

Haller, P. and Odersky, M. (2007). Actors That Unify Threads and Events. In Pro-
ceedings of the 9th International Conference on Coordination Models and Languages,
COORDINATION’07, pages 171-190.

Halstead, R. H. (1985). MULTILISP: a language for concurrent symbolic computation.
ACM Transactions on Programming Languages and Systems, 7(4):501-538.

Harris, T., Larus, J. R., and Rajwar, R. (2010). Transactional Memory. Synthesis Lec-
tures on Computer Architecture. Morgan & Claypool, 2nd edition.

215

https://www.microsoft.com/en-us/research/publication/concurrency-at-microsoft-an-exploratory-survey/
https://www.microsoft.com/en-us/research/publication/concurrency-at-microsoft-an-exploratory-survey/

Bibliography

Harris, T., Marlow, S., Peyton-Jones, S., and Herlihy, M. (2005). Composable Memory
Transactions. In Proceedings of the Tenth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP "o5, pages 48-60.

Harris, T. and Singh, S. (2007). Feedback Directed Implicit Parallelism. In Proceedings
of the 12th ACM SIGPLAN International Conference on Functional Programming,
ICFP o7, pages 251-264.

Herlihy, M. and Moss, J. E. B. (1993). Transactional Memory: Architectural Support
for Lock-free Data Structures. In Proceedings of the 20th Annual International Sym-
posium on Computer Architecture, ISCA "93, pages 289-300.

Herlihy, M. and Shavit, N. (2011). The art of multiprocessor programming. Morgan
Kaufmann.

Heumann, S. T., Adve, V. S., and Wang, S. (2013). The Tasks with Effects Model for Safe
Concurrency. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’13, pages 239-250.

Hewitt, C., Bishop, P., and Steiger, R. (1973). A Universal Modular ACTOR Formalism
for Artificial Intelligence. In Proceedings of the 3rd International Joint Conference on
Artificial Intelligence, [JCAI'73, pages 235-245.

Hickey, R. (2012). Clojure Concurrency. Talk given to the Western Mass. Developers
Group. Available online at https://www.youtube.com/watch?v=nDAfZK8m5_8.

Hoare, C. A. R. (1978). Communicating sequential processes. Communications of the
ACM, 21(8):666-677.

Hovemeyer, D. and Pugh, W. (2004a). Finding Bugs is Easy. In Companion to the
19th Annual ACM SIGPLAN Conference on Object-oriented Programming Systems,
Languages, and Applications, OOPSLA 04, pages 132-136.

Hovemeyer, D. and Pugh, W. (2004b). Finding Concurrency Bugs In Java. In Proceed-
ings of the PODC Workshop on Concurrency and Synchronization in Java Programs.

Imam, S. M. and Sarkar, V. (2012). Integrating Task Parallelism with Actors. In Pro-
ceedings of the ACM International Conference on Object Oriented Programming Sys-
tems Languages and Applications, OOPSLA ’12, pages 753-772.

Jones, S. P,, Leshchinskiy, R., Keller, G., and Chakravarty, M. M. T. (2008). Harnessing
the Multicores: Nested Data Parallelism in Haskell. In JARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, volume 2,

pages 383-414.

216

https://www.youtube.com/watch?v=nDAfZK8m5_8

Karaorman, M. and Bruno, J. (1993). Introducing Concurrency to a Sequential Lan-
guage. Communications of the ACM, 36(9):103-115.

Klein, C., Clements, J., Dimoulas, C., Eastlund, C., Felleisen, M., Flatt, M., McCarthy,
J. A., Rafkind, J., Tobin-Hochstadt, S., and Findler, R. B. (2012). Run Your Research:
On the Effectiveness of Lightweight Mechanization. In Proceedings of the 39th An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’12, pages 285-296.

Kogan, A. and Herlihy, M. (2014). The Future(s) of Shared Data Structures. In Proceed-
ings of the 2014 ACM Symposium on Principles of Distributed Computing, PODC 14,
pages 30-39.

Lea, D. (2000). A Java fork/join framework. In Proceedings of the ACM 2000 conference
on Java Grande, JAVA 00, pages 36-43.

Lee, C. Y. (1961). An Algorithm for Path Connections and Its Applications. IRE
Transactions on Electronic Computers, EC-10(3):346-365.

Lee, E. A. (2006). The Problem with Threads. Computer, 39(5):33-42.

Lee, J. K. and Palsberg, J. (2010). Featherweight X10: A Core Calculus for Async-finish
Parallelism. In Proceedings of the 15th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’10, pages 25-36.

Lesani, M. and Lain, A. (2013). Semantics-preserving Sharing Actors. In Proceedings
of the 2013 Workshop on Programming Based on Actors, Agents, and Decentralized
Control, AGERE! 2013, pages 69-80.

Lesani, M. and Palsberg, J. (2011). Communicating Memory Transactions. In Proceed-
ings of the 16th ACM Symposium on Principles and Practice of Parallel Programming,
PPoPP ’11, pages 157-168.

Liskov, B. and Shrira, L. (1988). Promises: linguistic support for efficient asyn-
chronous procedure calls in distributed systems. In Proceedings of the ACM SIG-
PLAN 1988 conference on Programming Language design and Implementation, PLDI
’88, pages 260-267.

Lu, S., Park, S, Seo, E., and Zhou, Y. (2008). Learning from mistakes — A compre-
hensive study on real world concurrency bug characteristics. In Proceedings of the
13th international conference on Architectural support for programming languages
and operating systems, ASPLOS XIII, pages 329-339.

217

Bibliography

Luchangco, V. and Marathe, V.]. (2011). Transaction Communicators: Enabling Co-
operation Among Concurrent Transactions. In Proceedings of the 16th ACM Sympo-
sium on Principles and Practice of Parallel Programming, PPoPP ’11, pages 169-178.

Message Passing Interface Forum (1994). MPI: A Message-Passing Interface Standard.
https://www.mpi-forum.org/docs/mpi-1.0/mpi-10.ps.

Message Passing Interface Forum (2015). MPI: A Message-Passing Interface Standard
- Version 3.1. https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf.

Miller, M. S., Tribble, E. D., and Shapiro,]. (2005). Concurrency Among Strangers. In
De Nicola, R. and Sangiorgi, D., editors, International Symposium on Trustworthy
Global Computing, pages 195-229.

Minh, C. C., Chung, J., Kozyrakis, C., and Olukotun, K. (2008). STAMP: Stanford
Transactional Applications for Multi-Processing. In 2008 IEEE International Sym-
posium on Workload Characterization, pages 35-46.

Moore, G. E. (1998). Cramming More Components Onto Integrated Circuits. Pro-
ceedings of the IEEE, 86(1):82-85.

Moore, K. E and Grossman, D. (2008). High-level Small-step Operational Seman-
tics for Transactions. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’08, pages 51-62.

Morandi, B., Nanz, S., and Meyer, B. (2014). Safe and Efficient Data Sharing for
Message-Passing Concurrency. In Proceedings of the 16th International Conference
on Coordination Models and Languages, COORDINATION 14, pages 99-114.

Moravan, M. J., Bobba, J., Moore, K. E., Yen, L., Hill, M. D,, Liblit, B., Swift, M. M.,
and Wood, D. A. (2006). Supporting Nested Transactional Memory in LogTM. In
Proceedings of the 12th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS XII, pages 359-370.

Moss, J. E. B. (1981). Nested Transactions: An Approach to Reliable Distributed Com-
puting. PhD thesis, Massachusetts Institute of Technology.

Moss, J. E. B. and Hosking, A. L. (2006). Nested transactional memory: Model and
architecture sketches. Science of Computer Programming, 63(2):186-201.

Nash, M. and Waldron, W. (2016). Applied Akka Patterns: A Hands-On Guide to
Designing Distributed Applications. O’'Reilly Media, Inc., 1st edition.

218

https://www.mpi-forum.org/docs/mpi-1.0/mpi-10.ps
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

Navabi, A. and Jagannathan, S. (2009). Exceptionally Safe Futures. In Proceedings of
the 11th International Conference on Coordination Models and Languages, COOR-
DINATION’09, pages 47-65.

Ni, Y., Menon, V. S., Adl-Tabatabai, A.-R., Hosking, A. L., Hudson, R. L., Moss, J.
E. B, Saha, B., and Shpeisman, T. (2007). Open Nesting in Software Transactional
Memory. In Proceedings of the 12th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’07, pages 68-78.

Perfumo, C., Sénmez, N., Stipic, S., Unsal, O., Cristal, A., Harris, T., and Valero, M.
(2008). The Limits of Software Transactional Memory (STM): Dissecting Haskell
STM Applications on a Many-core Environment. In Proceedings of the s5th Confer-
ence on Computing Frontiers, CF "08, pages 67-78.

Ramadan, H. E. and Witchel, E. (2009). The Xfork in the Road to Coordinated Sibling
Transactions. In Proceedings of the 4th ACM SIGPLAN Workshop on Transactional
Computing, TRANSACT ’o9.

Randall, K. H. (1998). Cilk: Efficient multithreaded computing. PhD thesis, Mas-
sachusetts Institute of Technology.

Reppy, J., Russo, C. V., and Xiao, Y. (2009). Parallel Concurrent ML. In Proceedings
of the 14th ACM SIGPLAN International Conference on Functional Programming,
ICFP 09, pages 257-268.

Reppy, J. H. (1991). CML: A Higher Concurrent Language. In Proceedings of the ACM
SIGPLAN 1991 Conference on Programming Language Design and Implementation,
PLDI 91, pages 293-305.

Shavit, N. and Touitou, D. (1997). Software transactional memory. Distributed Com-
puting, 10(2):99-116.

Smaragdakis, Y., Kay, A., Behrends, R., and Young, M. (2007). Transactions with Iso-
lation and Cooperation. In Proceedings of the 22nd Annual ACM SIGPLAN Confer-
ence on Object-oriented Programming Systems and Applications, OOPSLA o7, pages
191-210.

Srinivasan, S. and Mycroft, A. (2008). Kilim: Isolation-Typed Actors for Java. In
Vitek, J., editor, Proceedings of the 22nd European Conference on Object-Oriented
Programming, ECOOP’08, pages 104-128.

219

Bibliography

Stork, S., Marques, P., and Aldrich, J. (2009). Concurrency by Default: Using Permis-
sions to Express Dataflow in Stateful Programs. In Proceedings of the 24th ACM SIG-
PLAN Conference Companion on Object Oriented Programming Systems Languages
and Applications, OOPSLA 09, pages 933-940.

Stork, S., Naden, K., Sunshine, J., Mohr, M., Fonseca, A., Marques, P., and Aldrich,
J. (2014). Aminium: A Permission-Based Concurrent-by-Default Programming
Language Approach. ACM Transactions on Programming Languages and Systems,
36(1):2:1-2:42.

Sulzmann, M., Lam, E. S. L., and Van Weert, P. (2008). Actors with Multi-headed
Message Receive Patterns. In Proceedings of the 10th International Conference on
Coordination Models and Languages, COORDINATION 08, pages 315-330.

Surendran, R. and Sarkar, V. (2016). Automatic Parallelization of Pure Method Calls
via Conditional Future Synthesis. In Proceedings of the 2016 ACM SIGPLAN In-
ternational Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2016, pages 20-38.

Sutter, H. (2005). The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobb’s Journal, 30(3).

Swalens, J., De Koster, J., and De Meuter, W. (2016). Transactional Tasks: Parallelism
in Software Transactions. In Proceedings of the 30th European Conference on Object-
Oriented Programming, ECOOP ’16, pages 23:1-23:28.

Swalens, J., De Koster, J., and De Meuter, W. (2017). Transactional Actors: Commu-
nication in Transactions. In Proceedings of the 4th ACM SIGPLAN International
Workshop on Software Engineering for Parallel Systems, SEPS 2017, pages 31-41.

Swalens, J., Marr, S., De Koster, J., and Van Cutsem, T. (2014). Towards Com-
posable Concurrency Abstractions. In Proceedings of the Workshop on Program-
ming Language Approaches to Concurrency and communication-cEntric Software,
PLACES 14.

Tanenbaum, A. S. and Bos, H. (2014). Modern Operating Systems. Prentice Hall Press,
4th edition.

Tasharofi, S., Dinges, P,, and Johnson, R. E. (2013). Why Do Scala Developers Mix the
Actor Model with Other Concurrency Models? In Proceedings of the 27th European
conference on Object-Oriented Programming, ECOOP’13, pages 302-326.

Van Roy, P. and Haridi, S. (2004). Concepts, techniques, and models of computer pro-
gramming. The MIT Press.

220

Varela, C. and Agha, G. (2001). Programming Dynamically Reconfigurable Open
Systems with SALSA. ACM SIGPLAN Notices, 36(12):20-34.

Vitek, J., Jagannathan, S., Welc, A., and Hosking, A. L. (2004). A Semantic Frame-
work for Designer Transactions. In Proceedings of the 13th European Symposium on
Programming, ESOP 04, pages 249-263.

Volos, H., Welc, A., Adl-Tabatabai, A.-R., Shpeisman, T., Tian, X., and
Narayanaswamy, R. (2009). NePalTM: Design and Implementation of Nested Par-
allelism for Transactional Memory Systems. In Proceedings of the 14th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’og,
pages 291-292.

Warth, A., Ohshima, Y., Kaehler, T., and Kay, A. (2011). Worlds: Controlling the Scope
of Side Effects. In Proceedings of the 25th European Conference on Object-oriented
Programming, ECOOP’11, pages 179-203.

Watson, I., Kirkham, C., and Lujan, M. (2007). A Study of a Transactional Parallel
Routing Algorithm. In Proceedings of the 16th International Conference on Parallel
Architecture and Compilation Techniques, PACT o7, pages 388-398.

Welc, A., Jagannathan, S., and Hosking, A. (2005). Safe Futures for Java. In Proceed-
ings of the 20th Annual ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications, OOPSLA "o5, pages 439-453.

Yonezawa, A., Briot, J.-P., and Shibayama, E. (1986). Object-oriented Concurrent Pro-
gramming in ABCL/1. In Conference Proceedings on Object-oriented Programming
Systems, Languages and Applications, OOPSLA ’86, pages 258-268.

Zeng, J., Barreto, J., Haridi, S., Rodrigues, L., and Romano, P. (2016). The Future(s)
of Transactional Memory. In Proceedings of the 45th International Conference on
Parallel Processing, ICPP ’16, pages 442-451.

Zeng, J., Romano, P,, Rodrigues, L., Haridi, S., and Bareto, J. (2015). In Search of Se-
mantic Models for Reconciling Futures and Transactional Memory. In Proceedings
of the 7th Workshop on the Theory of Transactional Memory.

Zhang, L., Krintz, C., and Nagpurkar, P. (2007). Language and Virtual Machine Sup-
port for Efficient Fine-Grained Futures in Java. In Proceedings of the 16th Interna-
tional Conference on Parallel Architecture and Compilation Techniques, PACT ’o7,

pages 130-139.

221

Bibliography

Zhang, Y. and Hansen, E. A. (2006). Parallel breadth-first heuristic search on a shared-
memory architecture. In Workshop on Heuristic Search, Memory-Based Heuristics
and Their Applications, AAAI 06.

Zhao, J., Lublinerman, R., Budimli¢, Z., Chaudhuri, S., and Sarkar, V. (2013). Isola-
tion for Nested Task Parallelism. In Proceedings of the 2013 ACM SIGPLAN Inter-
national Conference on Object Oriented Programming Systems Languages & Appli-
cations, OOPSLA ’13, pages 571-588.

Zhou, T., Luchangco, V., and Spear, M. (2017). Brief Announcement: Extending
Transactional Memory with Atomic Deferral. In Proceedings of the 29th ACM Sym-
posium on Parallelism in Algorithms and Architectures, SPAA 17, pages 371-373.

Zyulkyarov, E, Gajinov, V., Unsal, O. S., Cristal, A., Ayguadé, E., Harris, T., and
Valero, M. (2009). Atomic Quake: Using Transactional Memory in an Interactive
Multiplayer Game Server. In Proceedings of the 14th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP o9, pages 25-34.

222

A Multi-Paradigm Concurrent Programming Model

Janwillem Swalens

Since the introduction of multi-core processors, programmers must explicitly use concurren-
cy to make their programs faster. This is notoriously difficult. Hence, programming languages
provide concurrency models: techniques that introduce parallelism in a controlled manner,
providing guarantees that prevent common errors such as race conditions and deadlocks.

We observe that existing programs often combine multiple concurrency models. We study
these combinations and show that they can annihilate the guarantees of the separate
models. Hence, the assumptions of developers are invalidated and errors can resurface.

In this dissertation, we start from three radically different concurrency models: futures, trans-
actions, and actors. We systematically study their combinations and the problems a naive /
combination causes. Next, we define a semantics for the combination that maintains the /
guarantees of all models wherever possible. This leads to the definition of transactional
futures and transactional actors.

Finally, we combine the three models into one unified language:
Chocola (for “Composable Concurrency Language”), implemen-
ted as an extension of Clojure, formalized in an operational
semantics, and evaluated using three applications. Using Choco-
la, programmers can thus freely and safely pick and mix several
concurrency models in a single application.

ISBN 978-94-923-1296-9

9231

97789492"312969" >

	Introduction
	Problem Statement
	Research Goal and Approach
	Contributions
	Outline
	Publications

	Concurrency Models: Futures, Transactions, and Actors
	Categories of Concurrency Models
	From Three Categories to Three Concurrency Models
	Futures
	Transactions
	Actors
	Summary

	Combining Concurrency Models
	Motivations for Combining Concurrency Models
	Motivating Case Study: Clojure
	Combining Futures, Transactions, and Actors
	Conclusion and Roadmap

	Transactional Futures: Parallelism in Transactions
	Transactions in Futures
	Motivation for Futures Inside Transactions
	Transactional Futures
	Properties of Transactional Futures
	Related Work
	Summary

	Transactional Actors: Communication Between Transactions
	Motivation and Problem Statement
	Transactional Actors
	Properties of Transactional Actors
	Applicability to Other Actor Models
	Related Work
	Summary

	Chocola: a Language That Unifies Futures, Transactions, and Actors
	Combining Futures and Actors
	Chocola: Composable Concurrency Language
	Guarantees of Chocola
	Conclusion

	PureChocola: an Operational Semantics
	Syntax and Program State
	Reduction Rules
	Guarantees
	Mechanical Verification of Isolation and Intratransaction Determinacy
	Differences Between PureChocola and Chocola
	Conclusion

	An Implementation of Chocola
	Futures
	Transactions
	Actors
	Transactional Actors
	Transactional Futures
	Compatibility with Clojure
	Conclusion

	Evaluation
	Methodology and Experimental Set-Up
	Labyrinth (Transactional Futures)
	Bayes (Transactional Futures)
	Vacation2 (Transactional Actors)
	Developer Effort
	Conclusions

	Conclusion
	Summary
	Contributions
	Future Work

	Notation
	A Clojure Primer
	Language and Library Support for Concurrency Models
	Semantics of Futures and Transactions in Clojure and Haskell
	Clojure
	Haskell

