Skitter: A DSL for Distributed Reactive Workflows

Mathijs Saey
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
mathsaey@vub.ac.be

Abstract

Writing real-time applications that react to vast amounts of
incoming data is a hard problem, as the volume of incoming
data implies the need for distributed execution on a cluster
architecture. We envision such an application can be cre-
ated as a data processing pipeline which consists of a set of
generic, reactive components, which may be reused in other
applications. However, there is currently no programming
model or framework that enables the reactive, scalable exe-
cution of such a pipeline on a cluster architecture. Our work
introduces the notion of reactive workflows, a technique that
combines concepts from scientific workflows and reactive
programming. Reactive workflows enable the integration of
these generic components into a single workflow that can be
executed on a cluster architecture in a reactive, scalable way.
To deploy these reactive workflows, we introduce a domain
specific language, called Skitter. Skitter enables developers
to write reactive components and compose these into reac-
tive workflows, which can be distributed over a cluster by
Skitter’s runtime system.

CCS Concepts « Software and its engineering — Do-
main specific languages; Distributed programming lan-
guages; Data flow languages;

Keywords Scientific Workflows, Distributed Programming,
Reactive Programming

ACM Reference Format:

Mathijs Saey, Joeri De Koster, and Wolfgang De Meuter. 2018.
Skitter: A DSL for Distributed Reactive Workflows. In Proceed-
ings of the 5th ACM SIGPLAN International Workshop on Reactive
and Event-Based Languages and Systems (REBLS ’18), November
4, 2018, Boston, MA, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3281278.3281281

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

REBLS ’18, November 4, 2018, Boston, MA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6070-8/18/11...$15.00
https://doi.org/10.1145/3281278.3281281

Joeri De Koster
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium

jdekoste@vub.ac.be

Wolfgang De Meuter
Software Languages Lab
Vrije Universiteit Brussel
Brussels, Belgium
wdmeuter@vub.ac.be

1 Introduction

The ubiquity of smartphones and the advent of the “Internet
of things” made it possible for companies to gather enormous
amounts of real-time data. In order to create applications
that provide useful information in response to this data,
developers need to have the ability to react to these incoming
data streams in real-time. Building these server-side reactive
big data applications is far from trivial, as the scale of these
data streams typically implies that a single computer cannot
process the incoming data fast enough to react in a timely
manner. Instead, such an application needs to run on a cluster
to remain reactive.

Currently, two main approaches are used to create such
applications: deploying a set of loosely coupled software
components (i.e., microservices) over a set of machines, or
using a big data framework. Leveraging microservices makes
it easy to add new software components to a data processing
pipeline, but forces developers to manually distribute the
various components over the nodes in the cluster. Similarly,
developers need to provide an ad hoc solution to recover the
component in the case of partial failure — the failure of one
or multiple nodes of the cluster. Big data frameworks, on
the other hand, are explicitly designed to run on a cluster.
Therefore, these systems automatically distribute their com-
putations over a cluster while remaining resilient to partial
failure. However, these frameworks are often batch-based,
which prohibits reactivity. Stream processing systems [9],
are big data frameworks that enable the creation of reactive
big data applications. However, these frameworks limit ex-
pressivity to achieve scaling [2], and do not allow easy reuse
of existing data processing software. This leads to difficult
to reuse, tightly coupled, monolithic applications.

To facilitate the creation of reactive big data applications,
we aim to design a system which has three important proper-
ties: reactivity, scalability, and composability. We touch
on each of these properties in the following paragraphs.

Reactive The real-time nature of the applications we target
implies that the external world can continuously push data
into the system. In order to deal with this, our approach
should be reactive: data processing components should be
able to accept and process data as soon as it enters the system.

Horizontally Scalable In order to remain reactive when
an ever increasing amount of data enters the system, we
envision that this system should be horizontally scalable — it

https://doi.org/10.1145/3281278.3281281
https://doi.org/10.1145/3281278.3281281

REBLS ’18, November 4, 2018, Boston, MA, USA

should be able to scale when provided with additional com-
putational resources (i.e., nodes in a cluster). Distributing a
program over a cluster poses extra issues to be dealt with:
first of all, one of the nodes of the cluster may fail in isola-
tion, leading to a so-called partial failure. Thus, the system
should be fault tolerant: it should be able to recover from the
failure of one or multiple nodes in the system. Second, the
components in an application need to be distributed over
the cluster; this is often done by replicating these compo-
nents. However, replicating various components introduces
a new set of problems as any shared state between these
components needs to be synchronized over the network.

Composable In order to enable the reuse of data process-
ing components between various applications, applications
should be built in a composable, component-oriented way. To
reduce the engineering effort required to create reactive big
data applications, we explicitly target the reuse of existing
data processing software as components in this system.

To enable the creation of scalable, reactive big data appli-
cations from a set of (existing) components, we introduce an
approach inspired by by reactive programming [4], where
the workflow and its components are automatically activated
based on data from the outside world. We call such a work-
flow a reactive workflow. Such a workflow system, which is
reactive at its core, has not been explored yet by the state of
the art.

In this paper, we present Skitter!, a novel, domain spe-
cific language. Skitter is centered around reactive workflows,
which consist of a set of connected reactive components.
These components represent a single data processing step
that is automatically executed when data enters the reac-
tive workflow, or when a connected component produces
new data. Reactive workflows can be executed on a cluster
by Skitter’s runtime system, which automatically handles
distribution, replication and partial failure concerns.

To enable the reuse of existing data processing software,
Skitter defines a protocol to write wrappers around existing
applications, which may be written in a 3rd party language.
Existing software may generate side-effects (e.g., I/O) which
cannot be tracked by Skitter, but which may influence how
this software can be distributed over a cluster. To track these
concerns, Skitter introduces the notion of effects. These ef-
fects enable a component developer to provide additional
information about the side-effects a component may gener-
ate when it reacts to incoming data. In turn, Skitter’s runtime
system uses this data to handle the aforementioned partial
failure and replication concerns.

This work provides the following contributions: first, we
introduce the notion of reactive workflows. Second, we pro-
vide a domain specific language, called Skitter, which makes
it possible to express and execute such reactive workflows

ISkitter can be found online at https://github.com/mathsaey/skitter

Mathijs Saey, Joeri De Koster, and Wolfgang De Meuter

on a cluster. This is done in such a manner that this work-
flow is resilient to partial failure. Third, we introduce the
notion of component effects, which enable the reuse of ex-
isting data processing software inside a (reactive) workflow.
Fourth and finally, we provide an implementation of effects
inside Skitter. The introduction of Skitter and reactive work-
flows (Section 2), is accompanied by an evaluation of Skitter
(Section 3), and a discussion of related and future work (Sec-
tions 4 and 5, respectively).

2 Skitter

In this section, we define reactive workflows and their re-
lated concepts. Reactive workflows form the basis of Skitter,
which is also discussed in this section. Specifically, we dis-
cuss how Skitter makes it possible to create and execute
reactive workflows, and how it enables the reuse of existing
data processing software as reactive components.

Reactive workflows are data processing applications which
consist of a set of connected reactive component instances.
Each of these instances automatically react every time data
arrives from the external world, or when a connected com-
ponent instance produces data. Reactive components define
a data processing step that is considered atomic for the work-
flow program and which is reusable across various reactive
workflows. A component can occur multiple times in the
same workflow; a single occurrence of a component in a
workflow is called a component instance. Depending on the
functionality of the component, an instance stores a poten-
tially mutable state, and may be replicated by the underlying
runtime system. We provide additional information about
each of these concepts in the following sections.

Skitter programs consist of two parts: the textual definition
of reactive components and the visual composition of these
components into a reactive workflow. We envision that the
reactive components are written by developers with experi-
ence in reactive or distributed programming. The workflows
can be designed visually by domain experts, who may not
have any programming experience. Skitter’s underlying run-
time can then distribute the execution of a reactive workflow
over a cluster. An example of such a visual workflow can be
found in Figure 1.

We implemented Skitter on top of the Elixir? programming
language. We decided on Elixir for its focus on distributed
systems and because it runs on top of the Erlang VM, which
has a proven track record of scaling to large systems (used
by Amazon, Facebook, Ericsson, ...). Furthermore, Elixir
implements the actor model [1] which provides a natural
way to treat a component instance as an isolated execution
unit.

Zhttps://elixir-lang.org/

https://github.com/mathsaey/skitter
https://elixir-lang.org/

Skitter: A DSL for Distributed Reactive Workflows

2.1 Component Definition

A reactive component is a collection of functions and meta-
information. The functions define how the component reacts
to incoming data, and (optionally) how its state is created,
destroyed, and persisted. The meta-information defines how
the component can be embedded inside a workflow and the
effects it may generate when reacting.

component FahrenheitToCelsius, in: [fahrenheit], out: [celsius]
react fahrenheit
((fahrenheit — 32) « (5 / 9)) ~> celsius

Listing 1. A trivial reactive component which converts
any temperature it receives from Fahrenheit to Celsius.

Before we discuss how Skitter handles state and I/O, we
will discuss the basic meta-information and function imple-
mentations that every component needs to provide. Listing 1
contains the definition of a simple component that converts
each number it receives from Fahrenheit to Celsius. As this
component is stateless, it only foresees the react function,
which defines the action that is triggered by Skitter every
time the component receives new data. Since a reactive com-
ponent is designed to process incoming data, every compo-
nent has to define such a react function.

Besides this, a component definition must specify how
other components can be connected to itself before it can
be embedded inside a workflow. Therefore, each component
specifies a set of in and out ports. The in ports of a compo-
nent specify which data an instance of this component can
receive and react to. Out ports specify the data a component
can publish. While reacting, a component may publish data
on an out port through the use of the spit operator (i.e., the
~> shown on line 3). This data is automatically sent to any
component that is connected to the out port. Since a compo-
nent needs to receive data to react, it must always specify at
least one in port. Specifying an out port, on the other hand,
is not required.

It is often useful to associate some state with a compo-
nent instance. For instance, a component instance may need
to be initialized with some parameters in order to remain
sufficiently generic. An example of such a component is
shown in Listing 2. This component filters data points based
on whether or not they are located within a certain area.
In order to keep this component generic, the target area —
which is provided by the user in the workflow definition —
is provided to the component when it is initialized by the
runtime system. The init function will receive this initial-
ization argument and use the update operator (<~ on line 6)
to store this state in a field; when the component is reacting
to incoming data, it can read the state associated with the in-
stance from these fields (e.g., on Line 12). Note that the fields
of a component instance need to be statically defined in the

REBLS ’18, November 4, 2018, Boston, MA, USA

component GeoFilter, in: [geo_json], out: [inside, outside]
fields area

init area_string
area_struct = ... # Convert area_string into native format
area <~ area_struct

react geo_json
coord = ... # Extract geo data and convert into native format
if Topo.within?(coord, area)
geo_json ~> inside
else
geo_json ~> outside

Listing 2. A stateful reactive component which filters
out data points based on whether or not they are located
within a given area.

component definition (Line 2). In order to achieve horizontal
scalability, Skitter will automatically replicate component
instances over a cluster. To make this possible, the state of a
component instance is immutable by default.

component Average, in: [number], out: [current_average]
fields total, counter
effect state_change

init _
total <~ 0
counter <~ 0

react number
total <~ total + number
counter <~ counter + 1

total / counter ~> current_average

Listing 3. A component with a mutable state, that
calculates the average of all values it received. Note the
effect declaration on line 3.

The state of a Skitter component is immutable by default.
However, some components do need to access a mutable
state. For instance, any component that performs some form
of aggregation over its inputs needs some way to preserve the
aggregated value between invocations. In order to support
mutable state while remaining scalable by default, Skitter
components may only modify their state while reacting if
they explicitly specify this behavior. An example of a com-
ponent with a mutable state is shown in Listing 3. This com-
ponent stores an average of all the numbers it receives; the
current average is spit to the current out port every time the
component instance reacts to data. A component can specify
that it might modify its state while reacting by specifying the
state_change effect (shown on Line 3). By specifying this
effect, a component developer signals the Skitter runtime

REBLS ’18, November 4, 2018, Boston, MA, USA

that a component instance may modify its state while it is
reacting. In turn, Skitter’s runtime engine will ensure that
this state is recoverable in the case of partial failure. It will
also adjust its replication strategy to ensure that the instance
state remains consistent.

Instead of using an effect system, Skitter could alterna-
tively analyze the source code of a component to infer if it
updates its state while reacting. We decided on the use of an
effect system over a tracking system based on three reasons:
existing data processing software, consistency, and explicit-
ness. First and foremost, Skitter allows the reuse of existing
data processing software as a component. This reuse is typ-
ically achieved by writing a wrapper around this existing
data processing software. We aim to support existing data
processing software regardless of the technology that was
used to create this software. Since it is infeasible to create a
tracking system that can verify whether an arbitrary piece
of software has a form of internal state, our approach uses
an effect system. Second, the state_change effect is not the
only effect that is supported by Skitter, for instance, later
in this section, we discuss an effect which specifies that a
component may perform I/O. Since arbitrary Elixir code may
be embedded inside react, it is infeasible to track whether
or not this code performs any I/O. Therefore, any I/O effect
should be explicitly declared. In order for the language to
remain consistent, we decided that every effect should be
specified explicitly. Third, when an automatic tracking sys-
tem is used, the state_change effect could be activated by
an accidental use of the update operator. Since the activation
of this effect has major implications for the performance of
the overall reactive workflow, we prefer the use of an explicit
effect system.

Reusing Existing Software As mentioned, Skitter is de-
signed to allow the reuse of existing data processing soft-
ware. This is generally done by writing a wrapper around
an existing piece of software that may be written in another
programming language; an example of such a wrapper can
be seen in Listing 4. A component developer that writes a
wrapper around existing software may not always be able to
pass the internal state of this software to Skitter. This may be
practically infeasible, especially when the software is written
by another developer, or when its source code cannot be ac-
cessed. Therefore, component developers can avoid passing
data to Skitter’s runtime by specifying that the mutable state
of their component instance is hidden from Skitter. This is
done by adding the hidden property to the state_change ef-
fect (shown on Line 2). Specifying this property allows a com-
ponent to avoid passing its state to Skitter. Instead, this com-
ponent instance manages its own state. However, in order to
guarantee fault tolerance, these components are required to
persist their state when this is requested by Skitter’s runtime
system. This is done through Skitter’s checkpoint mechanism,
which allows the runtime to request the creation of a new

Mathijs Saey, Joeri De Koster, and Wolfgang De Meuter

component NearbyUsers, in: [user, location], out: [nearby]
effect state_change hidden
fields exec

init _
exec <~ Executable.start("user_tracker")

terminate
Executable.send(exec, "quit")

react usr, loc
Executable.send(exec, "update_location #{usr} #{loc}")

Executable.read(exec, "nearby users #{loc}") ~> nearby

create_checkpoint
Executable.send(exec, "checkpoint")

clean_checkpoint checkpoint
Executable.send(exec, "clean_checkpoint #{checkpoint}")

restore_checkpoint checkpoint
Executable. start("user_tracker —from—checkpoint #{checkpoint}")

Listing 4. A component that reuses an existing
application to find users near a given location. Note the
checkpoint functions and the use of terminate.

checkpoint (through create_checkpoint), or the removal
of an old one (clean_checkpoint). Should failure occur, Skit-
ter can restore the state of the component instance by re-
covering the latest checkpoint (restore_checkpoint). This
mechanism is discussed in additional detail in Section 2.4.

component Archive, in: [data]
effect external_effect
fields conn, table

init {url, username, password, table name}
conn <~ Database.open_connection(url, username, password)
table <~ table_name

terminate
Database. close_connection (conn)

react data
after_failure
res = Database.get_by(table, data.id)
if res != nil
skip

Database. write(table, data)

Listing 5. A component that performs I/O. Note the use

of after_failure and skip. skip aborts the current call

to react, but does not undo any spits or state updates that
already occurred.

Skitter: A DSL for Distributed Reactive Workflows

Skitter provides one effect besides the state_change ef-
fect: external_effect. This effect specifies that a compo-
nent may cause some external effect — i.e., I/O — while it
reacts to incoming data; an example of such a component
can be found in Listing 5. Skitter defines this effect due to the
influence that the occurrence of I/O has on the recovery from
a partial failure. Consider what happens when a cluster node
crashes while some component is reacting. When the compo-
nent does not generate any external effects, the runtime can
re-execute the call to react, and proceed with the execution
of the workflow. However, if this component might cause an
external effect, re-executing react may cause the same exter-
nal effect to be activated twice. Not re-executing react would
lead to the workflow ending up in an inconsistent state, as
any connected components will not be activated. To deal
with this issue, Skitter offers the after_failure block. This
block can be used inside react, and will only be executed
if the current invocation of react occurs after a previous
call to react with the same data did not complete due to
partial failure. Note that the same after_failure block can
be activated multiple times when a call to react fails mul-
tiple times. Shortly put, the after_failure block enables
developers to verify if an external effect already occurred
and to deal with this accordingly.

Skitter’s component definition language allows developers
to write reactive components by specifying a set of meta-
information about the component and by implementing a
small set of key functions, which are summarized in Ta-
ble 1. The meta-information defines how a workflow can be
embedded inside a workflow and specifies which effects a
component may generate. The functions allow a component
to react to incoming data, and manage state throughout the
lifetime of the component instance.

2.2 Workflow Definition

Source S

Figure 1. A Skitter workflow that calculates and visualizes
the average noise level within a given geographical area.

Geo
Visualization

Kelvin

kelvin
Temperature Log
[ceta| § celsius celsius
Unit Temperature

Figure 2. A legal use of multiple incoming links for a single
in port.

Fahrenheit
To

Celsius

REBLS ’18, November 4, 2018, Boston, MA, USA

A reactive workflow consists of three entities: a set of
reactive component instances, a source, and a set of links;
an example of a reactive workflow in Skitter can be seen in
Figure 1. Reactive component instances are defined based on
their component type and the data which is used to initialize
them. In Skitter, this data is provided through the use of a
contextual menu (not shown here). The source of a reac-
tive workflow is an entity with an out port that connects
a reactive workflow to the external world. Links represent
connections between in and out ports in a reactive workflow.
For reasons which we explain in Section 2.3, a reactive work-
flow must process each incoming data record in isolation and
may not contain cycles. A workflow has to satisfy certain
conditions in order to be valid:

e A component instance can only process one input per
workflow invocation. Therefore, a reactive workflow
must be built in such a way that an in port receives at
most one data record per invocation. It is worth noting
that this does not imply that an in port cannot have
more than one incoming link. This is the case because
components may spit values based on conditions. An
example of a legal use of multiple incoming links for a
single in port can be found in Figure 2.

e A component instance can only react when it has re-
ceived an input for each in port; if a component in-
stance only receives inputs for a subset of its in ports
at a given invocation, it will store these inputs forever
without reacting, thus leaking memory. Therefore, the
following two conditions must hold: first, every in port
must be connected to at least one out port. Second, a
reactive workflow must be built in such a way that an
in port can not receive a partial input for an invocation.
These conditions are not identical, as an in port that is
connected to an out port does not necessarily receive
data from its connected out port; this can happen when
a component in the workflow spits a value based on a
condition.

e An out port does not have to be connected to an in
port, and may be connected to multiple in ports. Any
value spit to an out port with no connections will be
discarded. A value that is spit to an out port that has
multiple outgoing connections is copied and sent to
each connected in port.

In order to enable non-programmers to create reactive
workflows, we plan to enable the composition of existing
components in a visual programming language. An example
of a workflow designed in such a language can be seen in Fig-
ure 1. In this example, we aim to visualize a metric (e.g., the
noise level) of a specific area in a city. All the noise and coordi-
nation data enters the GeoFilter defined in Listing 2, which
filters the data within the desired area. All the measurements
inside the area are persisted by the Archive component,

REBLS ’18, November 4, 2018, Boston, MA, USA

Mathijs Saey, Joeri De Koster, and Wolfgang De Meuter

Table 1. Summary of the functions a reactive component written in Skitter can implement.

Name Arguments State Access Description

react One for each in port read’ Process data

init Single initialization argument read / write Initialize instance state on creation
terminate None read Clean up resources before instance removal
create_checkpoint® None read Create checkpoint of current state
restore_checkpoint® Checkpoint to restore read / write Recover instance from existing checkpoint
clean_checkpoint® Checkpoint to remove read Remove old checkpoint

T read / write when the state_change effect is present.
¥ Only available when state_change hidden is present.

which is defined in Listing 5. The GeoAggregation compo-
nent computes various metrics of our target area, which are
visualized in a live view by the GeoVisualization compo-
nent.

~
workflow
_ = {Source, _, data ~> filter.geo_json}
filter = {
GeoFilter, "...", # Target area represented as a geojson string
inside ~> datastore.value,
inside ~> aggregator.value
}
data_store = {DataStore, "noisetube raw data"}
aggregator = {GeoAggregation, _, average ~> visualizer.value}
visualizer = {GeoVisualisation, _}
_J

Listing 6. Textual representation of the workflow shown
in Figure 1.

As a first step towards such a visual language, Skitter
offers a textual workflow definition language shown in List-
ing 6. This example maps directly to the visual representa-
tion shown in Figure 1. In this language, a workflow is repre-
sented by a list of named component instances. Each instance
consists of the name of the component, the initialization ar-
gument and a set of links. Finally, Skitter provides a primitive
component, Source, with a single out port. This primitive
component represents the source of a reactive workflow.

2.3 Workflow Execution

In order to scale with the amount of computational resources
at its disposal, Skitter attempts to exploit the parallelism
which is present in a given workflow. There are two sources
of parallelism which can be exploited in a reactive work-
flow: the parallelism inherent in the workflow, and the par-
allelism which can be obtained from processing incoming
data records in parallel.

In order to extract the parallelism which is present in a
given workflow, Skitter uses the dataflow model [7]. In this
model, an operation (i.e., an invocation of react) can be
executed when all of its inputs are present. We decided to

use this model due to its ability to extract the latent paral-
lelism present in a given program, as multiple operations are
allowed to execute in parallel, if this is permitted by the data
dependencies. For instance, in the example workflow shown
in Figure 1 the Archive and GeoAggregation component
instances can react to incoming data in parallel.

The data-driven nature of reactive workflow make it pos-
sible to process the various data records which enter the
system in isolation. To achieve this, our execution strategy
relies on a variant of the dataflow model, called tagged-token
dataflow [3]. Processing the various data records in parallel
implies that various invocations of react may be active con-
currently for a single component instance. This enables com-
ponents with an immutable state to scale with the amount
of incoming data. However, when components do need to
change their state, the Skitter runtime needs to ensure that
this state remains consistent.

2.4 Component Orchestration

Since every invocation of react effectively occurs in isola-
tion, Skitter needs to ensure that the states of the component
instances in a reactive workflow remains consistent. This
is done by the component orchestration algorithm. This al-
gorithm manages the creation of component replicas and
synchronizes changes between them. Furthermore, this algo-
rithm ensures that changes to this state are not lost if partial
failure occurs.

Table 2. Amount of replicas that can be created for a
component instance depending on the effects it has on its
state. External effects are omitted as they do not influence
the amount of replicas. n implies that an arbitrary amount

of replicas can be created.

Immutable State n
Mutable State 1 or n when synchronized
Hidden Mutable State 1

Skitter: A DSL for Distributed Reactive Workflows

Table 2 summarizes the various replication strategies Skit-
ter can employ. When the state of a component instance is
immutable, or when it has no state at all, a runtime can create
an arbitrary amount of replicas of this instance. Skitter cre-
ates a new replica of a stateless instance whenever it needs
to react to a new data record; when a replica has finished re-
acting, it is eliminated. This is possible due to the lightweight
nature of Elixir processes (i.e., actors), which are cheap to
create and destroy. When a component has a mutable state,
Skitter can spawn a single replica and ensure that all requests
get served by this replica. Alternatively, Skitter can spawn
an arbitrary amount of replicas and use a synchronization
mechanism to ensure that the state of these replicas remains
consistent. Since it is expensive to synchronize an arbitrary
mutable state in a distributed system, Skitter currently uses
the former approach; in future work, we aim to investigate
language-level mechanisms which enable the efficient syn-
chronization of the state of a component instance. Finally,
Skitter’s runtime cannot control the state of a component
instance which hides its mutable state. Therefore, only a
single replica of such an instance is created.

An instance replica can be created at two points: when the
workflow is loaded by Skitter, and when a data record arrives.
In both cases, the component orchestration algorithm must
decide where to create this replica. When Skitter loads a
workflow, it creates a single replica for each component
with a mutable state. Currently, these replicas are distributed
over the cluster according to a round-robin strategy. When
a data record enters the system, Skitter must decide where a
record will be processed. As each data record is processed
in isolation (as discussed in Section 2.3), a data record can
be processed on any node. The chosen node will process the
received data record, creating instance replicas or forwarding
records to the appropriate replica as needed. Once again,
Skitter selects a node according to a round-robin strategy.
The round-robin strategy that is used to determine where
a record is processed, and where a replica with a mutable
state is created does not take the current load of the nodes in
the cluster into account. In the future, we will dynamically
select the appropriate node to process data records and move
replicas between nodes based on the current load.

Table 3. Steps to recover a component instance after a
failure depending on its effects.

No Effects External Effects

Immutable State replay replay’
Mutable State restore, replay restore, replay’
Hidden State restore, replay* restore, replay ¥

 Replay should use after_failure.
* Replay all inputs since last checkpoint.

REBLS ’18, November 4, 2018, Boston, MA, USA

Table 3 summarizes the approach Skitter takes to deal
with partial failure. When a component instance is reacting
on a cluster node that crashes, Skitter automatically replays
the react invocation on a replica on a different machine. Any
spits that already occurred during the crashed invocation of
react may safely be replayed, as spit data is only forwarded to
connected component instances after an invocation of react
has finished. When a component has external effects, Skitter
will use the after_failure mechanism while replaying. If
the component has a mutable state, Skitter will fetch the lat-
est copy of the instance state before reacting. If the mutable
state is hidden, any input that was sent to the instance after
the latest checkpoint will be replayed, the after_failure
mechanism will be used for this if needed; while recovering,
data that is spit during the replay of a react is ignored. Due
to the way Skitter replays inputs in the case of partial failure,
the react function of components with a mutable state is
expected to be deterministic: when provided with the same
inputs and the same state, it should return the same state.

3 Evaluation

Remove
ez | profanity
Analyse
Feelings Average
o Average

Figure 3. Tweet processing workflow.

In this section, we evaluate Skitter. Based on a tweet pro-
cessing workflow shown in Figure 3, we provide a quanti-
tative evaluation of the scaling behavior of a preliminary
version of the Skitter runtime system, and briefly discuss to
what extent a component developer needs to reason about
distribution.

The tweet processing workflow receives a set of tweets,
which are represented as JSON strings, and uses various data
processing software to perform operations on these tweets.
First, the workflow counts the total amount of tweets it has
received over its lifetime. Second, the workflow decodes
the json and extracts the tweet message from this decoded
json. This message is sent to various other steps, which re-
move profanity from the tweet, rate the sentiment of the
tweet, and count the amount of words contained within the
tweet. The results of the latter two operations are sent to
two Average components, which track the average word
count and sentiment score of all tweets. It is worth noting
that most of these components are built using existing data
processing software. Specifically, the RemoveProfanity?,

Shttps://github.com/xavier/expletive

https://github.com/xavier/expletive

REBLS ’18, November 4, 2018, Boston, MA, USA

AnalyseFeelings?, and JsonToMessage® components are
built using existing Elixir code. We discuss our experiments
and their results in the next few paragraphs.

Experimental Setup In order to measure the throughput
of Skitter and its scaling behavior, we set up the following
experiment®. We used the workflow shown in Figure 3, and
let it process a set of tweets which were scraped from twitter
at an earlier point in time. The aforementioned tweets were
read from a file and pushed into Skitter one by one; once the
workflow finished processing all the data, Skitter shut itself
down. Using the time command, we measured the time that
elapsed between the first data record entering the system
and the successful termination of Skitter. Afterwards, we
calculated the average amount of tweets Skitter processed
every second based on the elapsed time and the provided
amount of data. We repeated this process multiple times, and
report the average throughput in this paper. To measure the
scaling behavior of our system, we repeated this experiment
multiple times with a varying amount of cluster nodes at
Skitter’s disposal. Furthermore, we repeated the experiment
with a different amount of tweets. Our benchmarks were ex-
ecuted on a cluster which consists of 11 nodes. Each of these
nodes is equipped with a 4-core Intel® E5-1620 Xeon® CPU
with 8 hardware threads running at 3.50GHz and with 32GB
of RAM. Communication between the nodes is done using
a 10 Gigabit Ethernet connection. Each node ran Ubuntu
16.04.05 and used Elixir 1.7.1/0TP 21.Every node ran
a single Elixir instance, which was set up to use 8 threads
(i.e., one for every hardware thread). One of the nodes was
used to push data into the system, while the ten other nodes
were used as workers for Skitter.

20,000
18,000 |-
16,000 -

/

—_

-

(=3

i=3

=}
T

12,000
10,000 |-
8,000 |-
6,000 -
4,000 -

—e—n = 5,000,000

2,000 ——n = 1,000,000

ob—1 0 T
1 2 3 4 5 6 7 8 9 10

Nodes

<
=

ut(fweets/s

Throughp

Figure 4. Throughput of the tweet processing workflow for
n tweets.

“https://github.com/dantame/sentient
Shttps://github.com/michalmuskala/jason

The code of our benchmark can be found online at: https://soft.vub.ac.be/
~mathsaey/artefacts/rebls-2018-evaluation.zip

Mathijs Saey, Joeri De Koster, and Wolfgang De Meuter

Results The results of our experiments can be seen in Fig-
ure 4. These results indicate Skitter can scale along with
the amount of computational resources at its disposal for
this benchmark. In both benchmarks, Skitter’s throughput
initially increases with the amount of nodes at its disposal.
This trends slows down after the addition of the fourth node,
and ends after the addition of the fifth node. Every node
that is added to the system after this point has a negligible
impact on Skitter’s throughput. After this point, the CPU’s of
the workers are no longer fully saturated, showing that the
throughput is effectively dictated by the speed at which data
enters the system. As this speed is bounded by the speed of
the network, Skitter’s throughput is effectively capped after
this point. This initial benchmark seems to indicate Skitter
can scale effectively along with the amount of computational
resources at its disposal. However, as we only provide a sin-
gle experiment, we cannot draw any permanent conclusions.
In future work, we aim to examine Skitter’s throughput and
scaling behavior in a multitude of scenarios.

Distribution Concerns A developer who writes code for
a distributed system must reason about 4 concerns: distri-
bution (i.e., deploying the computations over the various
nodes in the cluster), communication, fault tolerance and
replication. Frameworks or languages that are designed to
run on a cluster will often hide some of these concerns from
a developer. In this paragraph, we discuss these concerns,
and how they are handled by Skitter. We do this based on
our experience developing the tweet processing workflow.
Specifically, we investigate the amount of code we had to
write that explicitly deals with distribution. Overall, the en-
tire tweet processing application only contains two lines
of code that deal with distribution. Both of these lines are
effect declarations. Besides these two lines the remaining
application code deals with data processing or workflow
logic. In contrast, creating an ad hoc implementation of this
application in Elixir would require one to manually distribute
and replicate data processing steps over the cluster machine.
Furthermore, any recovery from partial failure would have to
be provided by the developer. Overall, Skitter is designed in
such a way that one needs to write very little code that deals
directly with distribution: the effect system, checkpoints and
the after_failure block are the only elements present in
Skitter which force the developer to deal directly with dis-
tribution. Out of these features, the checkpoint system is
only required in the case that the state of a component is not
managed through Skitter.

4 Related Work

Our work aims to create reactive, scalable workflows built
from existing data processing software. Current approaches
for large-scale or data driven processing, such as stream

https://github.com/dantame/sentient
https://github.com/michalmuskala/jason
https://soft.vub.ac.be/~mathsaey/artefacts/rebls-2018-evaluation.zip
https://soft.vub.ac.be/~mathsaey/artefacts/rebls-2018-evaluation.zip

Skitter: A DSL for Distributed Reactive Workflows

processing [9], scientific workflows [8] or reactive program-
ming [4] address some of the issues we aim to tackle. In this
section, we briefly compare these approaches to our work.

Stream processing Throughout the last decade, there has
been a great deal of work that focuses on large-scale data
processing (commonly known as Big Data processing). More
recently, some of this work [10, 13] started to focus on pro-
cessing real-time data with stream processing frameworks.
These frameworks are highly relevant to our problem area,
and are designed with distributed execution in mind. Unfor-
tunately, to achieve scaling, these frameworks only allow a
programmer to use a limited set of primitives. While some of
these primitives enable the invocation of external data pro-
cessing software, they don’t provide the abstractions which
are required to replicate these programs over a cluster.

Scientific workflows Previous work makes it possible to
combine existing data processing software into scientific
workflows [5, 12]. However, none of these systems are reac-
tive, i.e. they don’t automatically start to process data when it
it arrives from some external data source (such as a cellphone
or a sensor). Instead, these tools are almost entirely query-
driven. A consequence of this query-driven nature is that
scientific workflow systems are all inherently batch-based:
they work on a complete data set, which is not compatible
with the real-time nature of the applications we target.

Reactive programming Work in this area lead to the de-
sign of programming languages that automatically respond
to data as soon as it arrives from an external data source.
While distributed reactive programming languages exist
(e.g.,[6]), they are not designed to be used on a cluster. There-
fore, these languages do not automatically distribute a pro-
gram over a cluster machine, instead, programmers have to
manually specify where each computation is executed. Fur-
thermore, reactive languages have issues dealing with long
lasting computations and effectful statements [11], which
are required by contemporary data processing applications.

5 Future Work

So far, our work on Skitter mainly focused on the design
of language abstractions that allow the creation of reactive
components which can be distributed over a cluster while
remaining resilient to partial failure. In future work, we
would like to investigate how we can improve the scaling
behavior of Skitter. Before we do so, we aim to provide a
comprehensive benchmark set that we can use to evaluate
the runtime behavior of Skitter in more detail. We mainly aim
to improve Skitter’s scaling behavior in two ways: stateful
component replication and scheduling. We discuss these in
the next paragraphs.

REBLS ’18, November 4, 2018, Boston, MA, USA

Comprehensive Benchmarks In order to gain a better un-
derstanding of Skitter’s behavior when it is executing dif-
ferent workflows under varying amount of loads, we aim
to create a benchmark suite for Skitter. Such a suite would
contain various workflows, which contain a different com-
bination of components of varying computational intensity
with varying effects. Such a benchmark suite would allow
us to gain a better understanding of Skitter’s limitations
and would aid us in identifying areas where Skitter can be
improved. Furthermore, we would like to implement com-
mon big data applications in order to compare Skitter with
existing tools.

Stateful component replication Components with a mu-
table state are currently not replicated by Skitter. This pre-
vents them from scaling together with the amount of in-
coming data they receive, which can slow down an entire
reactive workflow. In the future, we would like to investigate
mechanisms that allow us to replicate component instances
with a mutable state. Particularly, we aim to enhance Skitter
with mechanisms that can merge the state and spits of the
various replicas of a component instance, which each receive
a part of the data the component instance receives.

Load Balancing Skitter’s current runtime system uses a
simple approach to distribute the various component replicas
and data records over a cluster, which does not take the
current load of the cluster nodes into account. In the future,
we will dynamically select the appropriate node to process an
incoming data record. Furthermore, we will move replicas to
different nodes when needed. To do this, we will investigate
the impact various load balancing techniques may have on
Skitter’s absolute performance and scaling behavior.

6 Conclusion

We facilitated the creation of reactive big data applications
by building a system that enables the creation of reactive,
scalable applications out of composable components. We
achieved this by introducing Skitter and reactive workflows.
Reactive workflows combine notions from the fields of
reactive programming and scientific workflows. Reactive
workflows consist of a set of connected reactive components,
each of which represents a single data processing step that is
automatically executed when data enters the reactive work-
flow, or when a connected component produces data.
Skitter is a domain specific language which makes it pos-
sible to write reactive components which can be composed
into reactive workflows. These reactive workflows can be
executed on a cluster by Skitter’s runtime system, which au-
tomatically handles replication and fault tolerance concerns.
Skitter’s runtime system aggressively replicates each com-
ponent instance over a cluster. However, components may
modify their state, or generate I/O, which can cause issues
when various replicas of this instance exist. Therefore, we

REBLS ’18, November 4, 2018, Boston, MA, USA

introduce effects. Effects allow a component developer to
specify additional information about the side-effects a com-
ponent may generate when it reacts to data. Skitter’s runtime
system uses this information to ensure the reactive work-
flow can be executed efficiently while remaining resilient to
partial failures.

Acknowledgments

This work is funded by the FLAMENCO project of the Flemish
agency for Innovation by Science and Technology.

References

(1]

[2

—

Gul Agha. 1986. Actors: A Model of Concurrent Computation in
Distributed Systems. (1986).

Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,
Rafael J. Fernandez-Moctezuma, Reuven Lax, Sam McVeety, Daniel
Mills, Frances Perry, Eric Schmidt, and Sam Whittle. 2015. The
Dataflow Model: A Practical Approach to Balancing Correctness, La-
tency, and Cost in Massive-Scale, Unbounded, Out-of-Order Data Pro-
cessing. Proc. VLDB Endow. 8, 12 (Aug. 2015), 1792-1803. https:
//doi.org/10.14778/2824032.2824076

Arvind and R. S. Nikhil. 1990. Executing a Program on the MIT Tagged-
Token Dataflow Architecture. IEEE Trans. Comput. 39, 3 (March 1990),
300-318. https://doi.org/10.1109/12.48862

Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem,
Stijn Mostinckx, and Wolfgang de Meuter. 2013. A Survey on Reactive
Programming. Comput. Surveys 45, 4 (Aug. 2013), 52:1-52:34. https:
//doi.org/10.1145/2501654.2501666

Paolo Di Tommaso, Maria Chatzou, Evan W Floden, Pablo Prieto
Barja, Emilio Palumbo, and Cedric Notredame. 2017. Nextflow Enables
Reproducible Computational Workflows. Nature Biotechnology 35
(April 2017), 316. https://doi.org/10.1038/nbt.3820

Mathijs Saey, Joeri De Koster, and Wolfgang De Meuter

[6] Joscha Drechsler, Guido Salvaneschi, Ragnar Mogk, and Mira Mezini.

7

8

[9

—

—

—

2014. Distributed REScala: An Update Algorithm for Distributed Re-
active Programming. In Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages & Ap-
plications (OOPSLA ’14). ACM, New York, NY, USA, 361-376. https:
//doi.org/10.1145/2660193.2660240

Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. 2004.
Advances in Dataflow Programming Languages. Comput. Surveys 36,
1 (March 2004), 1-34. https://doi.org/10.1145/1013208.1013209

Ji Liu, Esther Pacitti, Patrick Valduriez, and Marta Mattoso. 2015. A
Survey of Data-Intensive Scientific Workflow Management. Journal
of Grid Computing 13, 4 (Dec. 2015), 457-493. https://doi.org/10.1007/
$10723-015-9329-8

Saeed Shahrivari. 2014. Beyond Batch Processing: Towards Real-Time
and Streaming Big Data. Computers 3, 4 (Oct. 2014), 117-129. https:
//doi.org/10.3390/computers3040117

[10] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy,

Jignesh M. Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade,
Maosong Fu, Jake Donham, Nikunj Bhagat, Sailesh Mittal, and Dmitriy
Ryaboy. 2014. Storm@Twitter. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’14). ACM,
New York, NY, USA, 147-156. https://doi.org/10.1145/2588555.2595641

[11] Sam Van den Vonder, Joeri De Koster, Florian Myter, and Wolfgang

De Meuter. 2017. Tackling the Awkward Squad for Reactive Pro-
gramming: The Actor-Reactor Model. In Proceedings of the 4th ACM
SIGPLAN International Workshop on Reactive and Event-Based Lan-
guages and Systems (REBLS 2017). ACM, New York, NY, USA, 27-33.
https://doi.org/10.1145/3141858.3141863

[12] Michael Wilde, Mihael Hategan, Justin M Wozniak, Ben Clifford,

Daniel S Katz, and Ian Foster. 2011. Swift: A Language for Dis-
tributed Parallel Scripting. Parallel Comput. 37, 9 (2011), 633-652.
https://doi.org/10.1016/j.parco.2011.05.005

[13] Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion

Stoica. 2012. Discretized Streams: An Efficient and Fault-Tolerant
Model for Stream Processing on Large Clusters. HotCloud 12 (2012),
10-10.

https://doi.org/10.14778/2824032.2824076
https://doi.org/10.14778/2824032.2824076
https://doi.org/10.1109/12.48862
https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1145/2660193.2660240
https://doi.org/10.1145/2660193.2660240
https://doi.org/10.1145/1013208.1013209
https://doi.org/10.1007/s10723-015-9329-8
https://doi.org/10.1007/s10723-015-9329-8
https://doi.org/10.3390/computers3040117
https://doi.org/10.3390/computers3040117
https://doi.org/10.1145/2588555.2595641
https://doi.org/10.1145/3141858.3141863
https://doi.org/10.1016/j.parco.2011.05.005

	Abstract
	1 Introduction
	2 Skitter
	2.1 Component Definition
	2.2 Workflow Definition
	2.3 Workflow Execution
	2.4 Component Orchestration

	3 Evaluation
	4 Related Work
	5 Future Work
	6 Conclusion
	Acknowledgments
	References

