
Harnessing Emergence for Manycore Programming:
Early Experience Integrating Ensembles, Adverbs,

and Object-based Inheritance

David Ungar
IBM Research

davidungar@us.ibm.com

Sam S. Adams
IBM Research

ssadams@us.ibm.com

Abstract
We believe that embracing nondeterminism and harnessing
emergence have great potential to simplify the task of
programming manycore processors. To that end, we have
designed and implemented Ly, pronounced “Lee”, a new
parallel programming language built around two new
concepts: (i) ensembles which provide for parallel
execution and replace all collections and (ii) iterators, and
adverbs, which modify the parallel behavior of messages
sent to ensembles. The broad issues around programming
in this fashion still need investigation, but, after our initial
Ly programming experience, we have identified some
specific issues that must be addressed in integrating these
concepts into an object-based language, including empty
ensembles, partial message understanding, non-local
returns from ensemble members, and unintended
ensembles.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Language Classifications - Object-oriented
languages , Nondeterminis t ic languages : D.3 .3
[Programming Languages]: Language Constructs and
Features - Concurrent programming structures,
Inheritance : D.1.3 [Programming Techniques]:
Concurrent Programming - Parallel programming : D.1.5
[Object-oriented Programming]

General Terms Design, Human Factors, Languages.

Keywords object-based inheritance; ensembles; adverb;
multicore; manycore

1. Introduction
Within the next decade, nearly every CPU will have dozens
to hundreds of general-purpose cores. How can the vast
majority of programmers, perhaps expert in applications,
but not so well-versed in the arcane art of parallel
programming, easily exploit such extreme parallelism?

Many in our field are exploring ways in which the
programmer could continue to write deterministic parallel
programs without over-specifying the order of events, or
ways in which the runtime enforces determinism [1, 2]. We
believe that even such a limited attempt to specify essential
determinism will likely run into scaling problems. Others
in our field follow a functional approach that frees the
result from dependencies upon the order of execution. But
if mutable state is needed, a monad is introduced, which
makes the temporal dependency quite explicit [3]. We
believe this approach to be fruitful, but limited in its ability
to directly model systems that are naturally viewed as
possessing manifold state.

For example, consider a simulation of a flock of birds, each
independently choosing its own path, moment by moment.

At any given time, it seems natural to us that each bird has
a state, for instance a definite location. Where is that bird,
now? We search for a programming paradigm that can
easily model such an interpretation of a massively parallel
bird flock. Still others in our field turn to actors to order the
chaos of rampant parallelism [4, 5]. However, actors seem
to us to merely defer the problem by a constant factor:
since an actor can contain mutable state, and since an actor
may receive messages from other actors in various orders,
we believe that actors do not solve the fundamental
problem of taming nondeterminacy. Consider an actor A
that holds a bank balance, an actor B that sends A a
message to double the balance, and an actor C that sends A
a message to add $5 to the balance. The final result is as
indeterminate as the order of message passing. Since our
field began we have struggled to impose determinism on
complex computations, and our languages and
programming models have co-evolved with that goal.
Significantly easing the challenge of programming with
massive parallelism requires a complete shift: instead of
resisting, it is time to embrace nondeterminism.

Nature provides us with many examples of massively
parallel systems. Without the benefit of any global
synchronization at all, these systems manage to solve
complex problems and achieve robust behavior. Consider a
flock of birds (figure 1), a school of fish, an ant colony, a
termite mound, a developing embryo, or even, as some

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
Onward! 2010 October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright © 2010 ACM 978-1-4503-0236-4/10/10…$10.00.

19

mailto:dungar@ibm.com
mailto:dungar@ibm.com
mailto:ssadams@us.ibm.com
mailto:ssadams@us.ibm.com

suspect, the phenomenon of consciousness in the human
brain [6]. In each case, a large number of individuals, each
following local rules, interact asynchronously to exhibit
coordinated, robust, distributed behavior of a higher degree
of complexity than that of the individuals. This
phenomenon is known as emergence.

Could a new programming paradigm based on
nondeterminism and emergence make it easy for ordinary
application programmers to exploit the massive parallelism
of future manycore processor chips? To answer that
question, we have built a testbed comprised of:

• a Smalltalk virtual machine rewritten to support
multithreading and object migration [7], hosting the
Squeak IDE;

• a new programming language (Ly) featuring ensembles
and adverbs, with object-based inheritance and a
JavaScript-like syntax; and

• an integrated development environment including a
source-management system and a source-level debugger.

Although still somewhat immature, our testbed, which runs
on dual-core Mac laptops; 8-core, 16-hyperthread Mac
Pros; and a 64-core Tilera manycore processor, has given
us enough experience with these ideas to demonstrate an
algorithm running 50 parallel threads with no application-
level synchronization. More importantly, this effort has
uncovered a number of interesting language issues. We
intend to open-source our system so that others may
experiment with manycore Smalltalk and our language.
This short paper briefly describes our language, its
implementation, and those thorny issues.

2. Ensembles and Adverbs
How do you go from a flock of birds to a programming
language? Gazing at a flock, you see a constantly changing

whole; blink, and you see a collection of individuals, each
operating in parallel with its neighbors. Our language
includes a concept that models this experience, called an
ensemble. Our ensemble is a bit like an APL array; it can be
referenced as one thing, yet performing an operation on it
(i.e. sending it a message) causes each member to perform
the operation in parallel. Unlike an APL array, which can
only contain immutable values (numbers or characters), the
members of an ensemble can be mutable objects, or even
other ensembles.

Once ensemble is admitted to the pantheon of first-class
computing concepts, questions arise: For example, in
performing a computation over an ensemble, there are
many options as to which members are involved: every
member, the closest member geographically on the cores,
some subset of members? Once the computation has
occurred, how shall the results be returned? Shall they be
bundled into a resultant ensemble? Discarded? Or reduced
by some operation (e.g. averaging)? In order to separate out
the specification of these and other questions of execution
strategy, we add another concept to our model of
computation: an adverb. In most object-oriented languages,
the tuple required to perform a computation would be
receiver-selector-argument(s). In our model, an adverb is
added to that mix. Our current syntax denotes an adverb by
appending a double-minus (‘--’) to the list of argument
expressions, and following the double minus with an
expression supplying the adverb. Perhaps even each
argument could have its own adverb. We expect the most
common case to be the parallel computation on every
member, returning an ensemble of results. Therefore no
adverb is needed in that case.

Finally, it is necessary to be able to perform a computation
on an ensemble-as-a-whole. For example, sending size to a
flock would normally return an ensemble of the sizes of
each bird; asking the flock for its size (as a whole) would
be a different kind of request. We add a second message-
passing syntax to indicate this sort of computation: in
aFlock..size() the double-dot indicates that the message is to
be sent to the ensemble-as-a-whole, instead of to its
members. This new variety of reflection completes the
concepts we explore as a means to embrace
nondeterminism.

3. Ly: An experimental programming language
What sort of language would naturally encourage a
programmer of massively parallel hardware to embrace
nondeterminism via the concepts of ensembles and
adverbs? Such a language would have a familiar syntax,
such as JavaScript’s, and a simple yet powerful object-
based inheritance model, such as Self’s [8] (more below).
Ensembles would be as easy to use as regular objects.
Therefore, the concise and familiar message-passing syntax
would also be used for ensemble message sends, for
example aFlock.turnLeft(), would tell every bird in the flock
(ensemble) to turn left simultaneously.

!

Figure 1. A starling flock

20

3.1 Object = Ensemble?
Coming from an object-oriented culture, we wanted to
bring along all the benefits of that paradigm, so the next
decision in the language-design process was how to
integrate ensembles and objects. For the sake of uniformity,
we wanted a singleton ensemble, for example a flock of
one bird, to be indistinguishable from an object, the bird in
our example. Following this train of thought, every object
would be (in effect) an ensemble containing only itself as a
member. Every message would burrow into its
destination’s member list and go one deep. For example,
when sending name to a Parrot object named Polly, the
message would be received by the parrot, and since she
would also be an ensemble, the message would get
redispatched to Polly’s members, consisting solely of the
bird herself. At that point, further redispatching would
somehow be avoided, and Polly would answer “Polly”,
which would itself be an ensemble containing itself (i.e.
the string “Polly”). Since Polly the parrot would be an
ensemble, the result(s) of the name message would have to
be returned as an ensemble, and so the one result (the string
“Polly”, itself an ensemble) would have to get wrapped
into a singleton ensemble resulting in a doubly-nested
ensemble containing the string “Polly”. But this result
would have an undesired level of nesting. The gymnastics
required to deal with these potentially infinite member-
regresses became challenging enough that we backed off: a
singleton ensemble in Ly is not the same as the member
object.

Still striving for unification, we next considered allowing
every Ly object to be an ensemble. In this model, every
object would contain slots, a single link to its parent (we
hope to avoid multiple inheritance), and a one-to-many link
to its members. In this scenario, we faced a choice between
two equally plausible alternatives: searching an ensemble’s
slots before its members, or searching its slots after its
members. For example, suppose our flock of birds includes
a centerOfGravity method, which would compute the center
of gravity of the flock, and furthermore that each bird also
includes a centerOfGravity method, returning its own center
of gravity. On one hand, the flock’s slots could be searched
first, so that centerOfGravity() would invoke the flock’s
center of gravity. On the other hand, the flock’s members
could be searched first, in order to obtain an ensemble of
the individual birds’ centers of gravity for a calculation of
the polar moment of the flock. Because the choice of
lookup order between slots and members seemed arbitrary
and hard to remember, and because there might be useful
cases for either choice, we decided to design the language
so that ensembles could not have slots. Rather, using the
power of object-based inheritance, ensembles could be
parents of objects and search the slots first, or ensembles
could be children of objects and search the members first.

In summary, a reference points to either an object or an
ensemble. An object contains a parent reference and zero-
or-more slots. A slot contains a name (i.e. a character
string) and (a reference to) its contents. An ensemble
contains a parent reference and zero-or-more (references to

its) members. By arranging inheritance hierarchies, a
programmer can achieve whatever look up behavior is
desired.

3.2 Inheritance
Given the cache size and memory bandwidth issues in a
manycore system, it seems practical to reify shared
behavior by framing inheritance as a way to share parts of
objects (just as in Self [8]). So, when a message is sent to
an object, if the object has no matching slots, the lookup
continues in its ancestors, but even if the match is found in
an ancestor, the object that was the original destination of
the message is the one bound to self or this. In contrast,
when a message is sent to an ensemble, the result will be
N parallel invocations, one per member, with each member
bound to self or this. An ensemble may have a parent; if its
members do not understand a message, the lookup then
proceeds up the ensemble’s parent chain, resulting in just
one invocation, with the ensemble itself as the receiver.
This scheme attempts to integrate object-based inheritance
with ensembles while avoiding unintended consequences.

But the intended consequences of this model turned out to
be non-trivial: when the lookup dives into an ensemble, it
becomes a parallel lookup from each receiver. But if no
matches are found, it must back out, reset the receiver to
the original object, and continue up the ensemble’s parent
chain (figure 2).

Figure 3 illustrates this complexity with an example: a
message sent to the bottom-left object will first search its
slots. If a match is found, there will be one invocation with
the bottom-left object as receiver. Next, the members of the
left-hand flock are searched, including their ancestors. If
matches are found, there will be many parallel invocations,
one per bird. If no matches are found, the flock defaults
object will be searched. If a match is found, there will be
one invocation, with the bottom-left object as receiver.
Thus, the bottom-left object allows the turnLeft and
turnRight messages to be caught before each bird turns left
or right. The flock defaults object allows a default species
method to be defined for the ensemble. If the birds
understand species, then sending species to a flock will

!

Figure 2. If members don’t understand a message, try
their parents first, then backtrack to the ensemble parent
if necessary.

parent

parent

parent

message A

AA

message B

B

Ensemble

object object

object

object

A
A

21

return an ensemble of species. But if they do not, the
default species method will invoke the error code.

Pseudocode Description of Ly Lookup in Ly
In order to examine the interesting language issues that
arise from Ly’s lookup semantics, it is necessary to
illustrate those semantics, and this section does so with
pseudocode. Ly syntax is used to help the reader gain a feel
for the syntax as well as the semantics. The pseudocode
ignores many of the features of our actual implementation,
including:

• message sends to implicit self,
• message sends to super,
• message sends with an adverb,
• message sends with the double-dot (to the ensemble as-a-

whole),
• compile-time lookups (an optimization),
• inheritance cycles (e.g. an object that is its own

grandfather),
• membership cycles (i.e. an ensemble that transitively

contains itself),
• the extra complexity of maps (an optimization),
• ensembles of ensembles,
• empty ensembles, as discussed below,
• message arguments (the argument count is also used to

lookup a method), and
• a pluggable architecture that lets us experiment with

different representations of Ly objects.
In the following code, the lookup operation returns an
ensemble of results, which can then be used for method
invocations. Each result will need fields to hold the method
to be invoked and the receiver upon which to invoke it:

object LookupResult {
	
 var receiver, var method;
	
 // In Ly, the empty parentheses can be elided from a
	
 // method call with no arguments as in “super.new” below
	
 function new(r, m) {	

	
 	
 var x = super.new; x.receiver = r; x.method = m;
	
 	
 return x; }
}

In order to represent a slot in a Ly object, our pseudocode
defines an implementation object to hold a slot’s name, its
contents, and a function that returns a lookup result if the
name matches the selector:

object Slot {
	
 var name, contents;
	
 function result_if_I_match(receiver, selector) {
	
 	
 return name == selector
	
 	
 	
 ? LookupResult.new(receiver, contents) : nil;
	
 }
}

Finally, here are the objects that implement a Ly object and
a Ly ensemble. Common attributes are factored out into
LyBase:

object LyBase {
	
 // state & code common to objects & ensembles
	
 var parent; // nil if no parent
	
 // Entry point for a lookup;
	
 // This object or ensemble is both the receiver and
	
 // the place to start looking.
	
 // Result is an ensemble of results
	
 function lookup(selector) {
	
 	
 return lookup(this, selector);
	
 }
	
 // Flexible lookup method; look here,
	
 // but receiver may be somewhere else
	
 function lookup(receiver, selector) {
	
 	
 // local_results is an ensemble
	
 	
 var local_results = lookup_here(receiver, selector);
	
 	
 // The dot-dot syntax below redirects the isNotEmpty
	
 	
 // message to the ensemble-as-a-whole, rather than
	
 	
 // to each of its members.
	
 	
 if (local_results..isNotEmpty) return local_results;
	
 	
 if (parent != nil)
	
 	
 	
 return parent.lookup(receiver, selector);
	
 	
 return Ensemble.new // empty ensemble
	
 }
}
// a Ly object with slots
object LyObject extends LyBase {
	
 var slots; // holds an ensemble of distinctly-named Slots
	
 function lookup_here(receiver, selector) {
	
 	
 // The double dash, ‘--’, after the last argument
	
 	
 // signifies the beginning of an adverb.
	
 	
 // The ‘ignoringNils’ adverb filters out the nils
	
 	
 // from the result ensemble.
	
 	
 return slots.result_if_I_match(receiver, selector
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 -- ignoringNils);
	
 }
}
// a Ly ensemble with members
object LyEnsemble extends LyBase {
	
 // holds an ensemble implementing the one-to-many links
	
 var members;
	
 function lookup_here(selector, receiver) {
	
 	
 // In this case, the receivers will be the member objects.
	
 	
 return members.lookup(selector);
	
 }
}

Lookup starts by sending the lookup message with one
argument, the selector, to the receiver of the message. That
method (inherited via LyBase), sends the two-argument
lookup message to itself, in order to start searching locally.
It also passes in the receiver of the eventual invocation,
which will ultimately be bound to “this”. If the receiver of
the two-argument lookup message is an object, its slots are
searched, and if a match is found, a singleton ensemble
holding one result is returned. If no match is found, the
search continues with the parent. But if the receiver of the
two-argument lookup message is an ensemble, its members
are searched, and the receiver(s) of the eventual invocation
(s) is reset to correspond to each member. Only if no
matches are found in the members does the lookup
continue up the ensemble’s parent link with the original
receiver.

!

22

4. Implementation
Using our Smalltalk testbed, we implemented Ly with a
hand-written parser designed to give good error messages,
a compiler to transform parse nodes into Smalltalk objects,
and an interpreter that executes the Ly program represented
by the Smalltalk objects. The Ly interpreter, written in
Smalltalk, runs atop the Smalltalk VM interpreter, written
in C++, which in turn runs atop various platforms: the
Tilera hardware, Intel Linux boxes, Mac Book Pros, and
Mac Pros. The Mac Book Pro affords two-way parallelism,
the other Intel platforms afford 16-way (with
hyperthreading), and the Tilera system runs with 56
independent threads of execution. Figure 4 illustrates the
layers.

The double-interpretation (i.e. many Smalltalk operations
per Ly operation) resulted in intolerable performance, so
we implemented several optimizations:

• the capability to use Smalltalk Point and Number objects
instead of Ly-level points and numbers,

• compile-time lookups for slots in the current activation
record, and

• maps and runtime-lookup caches to transform each run-
time lookup from a sequence of hash table probes to an
access into a linear array at a fixed offset.

These optimizations improved performance sufficiently to
let us implement a simple version of the Boids flocking
algorithm [9, 10] with 50 simulated birds (“boids”) flying
on 56 Tilera cores (figure 5). Boids is an interesting test
application for manycore parallel programming in that
there is an ever-changing mix of data parallelism and task
parallelism that will stress our programming model and
virtual machine implementation.

5. Environment
We have also implemented most of an IDE for Ly using
Squeak’s MVC framework (figure 6). It includes:

• a workspace, in which one can edit, parse, and execute
Ly code;

• an object explorer, which allows one to examine and
change the contents of Ly object slots and methods;

• a snippet browser, which allows one to store Ly code as
text, leveraging the Smalltalk change-management
facilities; and

• a source-level debugger, which shows the Ly invocation
stack at the Ly source level, and has facilities for single-
stepping, etc. The debugger relies on the underlying
Smalltalk facilities and a runtime map from the
Smalltalk-level execution state to the Ly-level execution
state.

!

Processor: 64-core Tilera, 16-hyperthread Intel, or 2-core Intel
Operating system: Linux, or OS X

Our Renaissance Smalltalk Virtual Machine: multithreading & object migration

Smalltalk IDE Ly IDE Ly Source-to-Smalltalk Compiler Ly Runtime Visualization tools
Squeak Smalltalk Virtual Image including class libraries

Figure 4. The layers of our system

Figure 3. A detailed example of inheritance.

true
false

if(thenBlock)

if(thenBlock)

return thenBlock.value

return nil

lobby (holds global defaults)

species
size

flock defaults
error("unknown species")

<code to calculate size>

parent

(members)

parent

flock

turnLeft
turnRight

flock overrides
log("turn left"); super.turnLeft

log("turn right"); super.turnRight

parent

(birds)

turnLeft
turnRight

flock overrides
parent

(members)

parent

flock
(birds)

23

6. Programming Experience in Ly
As of May, 2010, we have written approximately 1,500
lines of Ly code, including many regression tests, a few
versions of Boids, and four adverbs: “totally,” “pairwise,”
“serially,” and a version of “serially” for ensembles of
Smalltalk objects. Figure 5 shows 50 Boids running in 50
threads on 50 cores with several of our visualization tools.
This program has no application-level synchronization, yet
enjoys 50-way concurrency.

Despite the optimizations described above, Ly’s
performance on a manycore CPU with a relatively slow
memory system led us to investigate other implementation
techniques in the past few months, instead of writing many
other programs in Ly. However our experience already has
uncovered some interesting issues with this model of
computation. We do not have all the answers as of yet, but
uncovering the following questions may be the most
interesting result of our efforts to date.

6.1 Empty Ensembles
For the sake of consistency, a programmer would expect
the behavior of an ensemble to remain the same as its
membership declined. For example, given a flock of birds,
he would expect the turnLeft message to cause each bird to
turn left, and, given a flock of no birds, he would expect
the turnLeft message to just do nothing (assuming the
ensemble’s parent has no turnLeft slot). However, given the
dynamically-typed nature of Ly, this expectation means that
any message could be sent to an empty ensemble and the
system would just silently do nothing. Later, if a member
lacking the method in question were to join the empty
ensemble, it would cause a previously running program to
incur a “message not understood” error!

What if the ensemble’s parent does have a turnLeft slot? In
that case, the transition between an empty ensemble and a
singleton ensemble would involve a switch from the
method in the parent’s turnLeft slot to the method in the
member’s. Such a change could be an unpleasant surprise.
These scenarios suggest that Ly’s current design is not
satisfactory.

!

Figure 5. 50 Boids running on 56 cores. Clockwise from the top left: the graphical output of the Boids simulation, the
instantaneous execution activity per core, the degree of parallelism vs time, and the occupancy of each core’s heap vs time.
(Time approximated by samples, so that GC appears to be instantaneous.)

24

6.2 Partial Message Understanding
What if a message is sent to an ensemble and but
understood by only some of its members? For example if
the program sends “lay eggs” to a flock of birds, should the
males silently ignore the request? Or should it result in a
global error? Or should special return values come back in
the result ensemble? We can see arguments for any of the
three possibilities.

6.3 Partial Non-local Returns
Ly includes Smalltalk-like blocks, and as a consequence, a
method may be passed a block that, when evaluated, causes
the call stack to be cut back to a point above the invocation
of said method. This scenario occurs when the block
contains a return statement, as such statements cause the
block to return from its enclosing lexical scope.

Suppose such a block were passed as an argument to an
ensemble, so that each member ran a method which
received the block as an argument. If some of the members
were to invoke the block and it returned, there would be an
attempt to cut back the call stack across a fork/join point!
Should such non-local returns be an error? If not, what
should they do?

6.4 Unintended Ensembles
Unlike the previous three situations, the following one took
us by surprise; we were unaware of it until it actually

happened to one of the authors. Ly is intended to make
massively parallel programming easy, but it became too
easy: parallel ensemble computation occurred where none
was expected! Our system was executing a method that,
like turnLeft in the diagram above, had an ensemble as
receiver. Said method contained if (true) doSomething, but
instead of invoking doSomething once, it invoked
doSomething in parallel for every member of the ensemble!
Single-stepping with the source-level debugger exposed the
cause of the problem: Ly’s compiler treats if(condition)
statement as syntactic sugar for condition.if({statement});
that is, it turns the special form into a message sent to the
condition, with a block argument. Rather than being built-
in, true is merely a slot high up in the inheritance
hierarchy. So, when the true message was sent to the
current receiver, a match was found in every member
(because every member inherited the true slot), and an
ensemble containing a true for each member was returned.
Then, when if was sent to that ensemble, there was a
parallel invocation for each true in our ensemble of truth!
The result was not what we expected at all: many
“somethings” were done.

What can be done about this issue? Recasting true as a
literal instead of a slot would merely defer the problem to
other cases. Reducing an ensemble containing identical
members into a singleton by default would destroy
important frequency information.

!

Figure 6. The Ly Environment

25

6.5 Synchronization
On a broader level, Ly’s attempt to eschew synchronization
and embrace nondeterminism will not be compatible with
many classic algorithms. For example, an exchange-based
sort would require synchronization to serialize adjacent
exchanges. We have started an exploration of alternative
algorithms, but do not yet understand their effectiveness or
efficiency. We will need to gain significant experience in
implementing applications with this programming model
before we can assess its efficacy.

7. Related Work
We are not the first to dream of harnessing emergence.
Anthony has looked carefully at natural distributed systems
and their application to distributed computer systems, and
has devised an election algorithm that exploits
emergence [11]. Agent-oriented computing also seeks to
harness emergence. Varghese and McKee investigate
swarms of agents as a means to achieve fault-
tolerance [12]. Parunak and Brueckner have taken an
information-theoretic approach to understand the
conditions under which emergence can be effective [13].
Devescovi et al have devised a computational framework
called SelfLets, and incorporated biologically-inspired self-
organizing algorithms into it [14]. Finally, Fleissner and
Baniassad investigated a programming paradigm based on
information diffusion [15], in which there may be a duality
relationship between information diffusing across a space
with many points, and a system of active individuals in
many points in space.

8. Conclusions
We hope to cut the Gordian knot that is manycore
programming by embracing nondeterminism and
harnessing emergence. To that end, we propose two new
concepts: ensembles, which capture the notion of a flock or
swarm, and adverbs, which specify how to perform an
ensemble computation and how to treat the results. To test
these concepts, we designed and implemented a new
language, Ly, adding ensembles and adverbs to an object
model loosely based on Self, in a syntax loosely based on
JavaScript. Early experience with Ly has uncovered a
number of issues which will point the way for our next
iteration.

Acknowledgements
We would like to thank Erik Altman, Doug Kimelman, Kristen
McIntyre, Leo Ungar for their help with this paper.

References
1. E.D. Berger, et al., “Grace: Safe Multithreaded

Programming for C/C++,” OOPSLA, 2009.
2. R.L.B. Jr., et al., “A Type and Effect System for

Deterministic Parallel Java,” OOPSLA, 2009.
3. S.P. Jones, et al., “Concurrent Haskell,” POPL, 1996.
4. C. Hewitt, et al., “A universal modular actor formalism

for artificial intelligence,” IJCAI, 1973.
5. B. Bloom, et al., “Thorn—Robust, Concurrent,

Extensible Scripting on the JVM,” OOPSLA, 2009.
6. D.R. Hofstadter, Gödel, Escher, Bach: an Eternal

Golden Braid, Basic Books, Inc., 1979.
7. D. Ungar and S.S. Adams, “Hosting an Object Heap on

Manycore Hardware: An Exploration,” Dynamic
Language Symposium, 2009.

8. D. Ungar and R.B. Smith, “Self: The power of
simplicity,” SIGPLAN Not., vol. 22, no. 12, 1987, pp.
227-242; DOI http://doi.acm.org/10.1145/38807.38828.

9. C.W. Reynolds, “Flocks, Herds, and Schools: A
Distributed Behavioral Model,” SIGGRAPH, 1987.

10. C. Reynolds, “Boids,” 1995; http://www.red3d.com/
cwr/boids/.

11. R.J. Anthony, “Emergence: a Paradigm for Robust and
Scalable Distributed Applications,” International
Conference on Autonomic Computing, 2004.

12. C.A. Moritz, et al., “Exploring Optimal Cost-
Performance Designs for Raw Microprocessors,” Field-
Programmable Custom Computing Machines, 1998.

13. H.V.D. Parunak and S. Brueckner, “Entropy and Self-
Organization in Multi-Agent Systems,” AGENTS'01,
2001.

14. D. Devescovi, et al., “Self-organization algorithms for
autonomic systems in the SelfLet approach,”
Autonomic Computing and Communication Systems,
2007.

15. S. Fleissner and E. Baniassad, “Harmony-oriented
programming and software evolution,” OOPSLA, 2009.

!

26

