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Abstract
We believe that embracing nondeterminism and harnessing 
emergence have great potential to simplify the task of 
programming manycore processors. To that end, we have 
designed and implemented Ly, pronounced “Lee”, a new 
parallel programming language built around two new 
concepts: (i) ensembles which provide for parallel 
execution and replace all collections and (ii) iterators, and 
adverbs, which modify the parallel behavior of messages 
sent to ensembles. The broad issues around programming 
in this fashion still need investigation,  but, after our initial 
Ly programming experience, we have identified some 
specific issues that must be addressed in integrating these 
concepts into an object-based language, including empty 
ensembles, partial message understanding, non-local 
returns from ensemble members, and unintended 
ensembles.

Categories and Subject Descriptors D.3.2 [Programming 
Languages]: Language Classifications - Object-oriented 
languages , Nondeterminis t ic languages : D.3 .3 
[Programming Languages]: Language Constructs and 
Features - Concurrent programming structures, 
Inheritance : D.1.3 [Programming Techniques]: 
Concurrent Programming - Parallel programming  :  D.1.5 
[Object-oriented Programming]

General Terms Design, Human Factors, Languages.

Keywords object-based inheritance; ensembles; adverb; 
multicore; manycore

1. Introduction
Within the next decade, nearly every CPU will have dozens 
to hundreds of general-purpose cores.  How can the vast 
majority of programmers, perhaps expert in applications, 
but not so well-versed in the arcane art of parallel 
programming, easily exploit such extreme parallelism? 

Many in our field are exploring ways in which the 
programmer could continue to write deterministic parallel 
programs without over-specifying the order of events, or 
ways in which the runtime enforces determinism [1, 2]. We 
believe that even such a limited attempt to specify essential 
determinism will likely run into scaling problems. Others 
in our field follow a functional approach that frees the 
result from dependencies upon the order of execution. But 
if mutable state is needed, a monad is introduced, which 
makes the temporal dependency quite explicit [3]. We 
believe this approach to be fruitful, but limited in its ability 
to directly model systems that are naturally viewed as 
possessing manifold state.

For example, consider a simulation of a flock of birds, each 
independently choosing its own path, moment by moment. 

At any given time, it seems natural to us that each bird has 
a state, for instance a definite location. Where is that bird, 
now? We search for a programming paradigm that can 
easily model such an interpretation of a massively parallel 
bird flock. Still others in our field turn to actors to order the 
chaos of rampant parallelism [4, 5]. However, actors seem 
to us to merely defer the problem by a constant factor: 
since an actor can contain mutable state, and since an actor 
may receive messages from other actors in various orders, 
we believe that actors do not solve the fundamental 
problem of taming nondeterminacy. Consider an actor A 
that holds a bank balance, an actor B that sends A a 
message to double the balance, and an actor C that sends A 
a message to add $5 to the balance. The final result is as 
indeterminate as the order of message passing. Since our 
field began we have struggled to impose determinism on 
complex computations, and our languages and 
programming models have co-evolved with that goal.  
Significantly easing the challenge of programming with 
massive parallelism requires a complete shift: instead of 
resisting, it is time to embrace nondeterminism.

Nature provides us with many examples of massively 
parallel systems.  Without the benefit of any global 
synchronization at all,  these systems manage to solve 
complex problems and achieve robust behavior.  Consider a 
flock of birds (figure 1), a school of fish, an ant colony, a 
termite mound, a developing embryo, or even,  as some 
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suspect, the phenomenon of consciousness in the human 
brain [6]. In each case,  a large number of individuals,  each 
following local rules, interact asynchronously to exhibit 
coordinated, robust, distributed behavior of a higher degree 
of complexity than that of the individuals. This 
phenomenon is known as emergence.

Could a new programming paradigm based on 
nondeterminism and emergence make it easy for ordinary 
application programmers to exploit the massive parallelism 
of future manycore processor chips? To answer that 
question, we have built a testbed comprised of:

• a Smalltalk virtual machine rewritten to support 
multithreading and object migration [7],  hosting the 
Squeak IDE;

• a new programming language (Ly) featuring ensembles 
and adverbs, with object-based inheritance and a 
JavaScript-like syntax; and

• an integrated development environment including a 
source-management system and a source-level debugger.

Although still somewhat immature, our testbed, which runs 
on dual-core Mac laptops; 8-core, 16-hyperthread Mac 
Pros; and a 64-core Tilera manycore processor, has given 
us enough experience with these ideas to demonstrate an 
algorithm running 50 parallel threads with no application-
level synchronization. More importantly, this effort has 
uncovered a number of interesting language issues. We 
intend to open-source our system so that others may 
experiment with manycore Smalltalk and our language. 
This short paper briefly describes our language, its 
implementation, and those thorny issues.

2. Ensembles and Adverbs
How do you go from a flock of birds to a programming 
language? Gazing at a flock, you see a constantly changing 

whole; blink, and you see a collection of individuals, each 
operating in parallel with its neighbors. Our language 
includes a concept that models this experience, called an 
ensemble. Our ensemble is a bit like an APL array; it can be 
referenced as one thing, yet performing an operation on it 
(i.e. sending it a message) causes each member to perform 
the operation in parallel. Unlike an APL array, which can 
only contain immutable values (numbers or characters), the 
members of an ensemble can be mutable objects, or even 
other ensembles.

Once ensemble is admitted to the pantheon of first-class 
computing concepts, questions arise: For example, in 
performing a computation over an ensemble, there are 
many options as to which members are involved: every 
member, the closest member geographically on the cores, 
some subset of members? Once the computation has 
occurred, how shall the results be returned? Shall they be 
bundled into a resultant ensemble? Discarded? Or reduced 
by some operation (e.g. averaging)?  In order to separate out 
the specification of these and other questions of execution 
strategy, we add another concept to our model of 
computation: an adverb. In most object-oriented languages, 
the tuple required to perform a computation would be 
receiver-selector-argument(s). In our model, an adverb is 
added to that mix. Our current syntax denotes an adverb by 
appending a double-minus (‘--’) to the list of argument 
expressions, and following the double minus with an 
expression supplying the adverb. Perhaps even each 
argument could have its own adverb. We expect the most 
common case to be the parallel computation on every 
member, returning an ensemble of results. Therefore no 
adverb is needed in that case. 

Finally, it is necessary to be able to perform a computation 
on an ensemble-as-a-whole. For example, sending size to a 
flock would normally return an ensemble of the sizes of 
each bird; asking the flock for its size (as a whole) would 
be a different kind of request.  We add a second message-
passing syntax to indicate this sort of computation: in 
aFlock..size() the double-dot indicates that the message is to 
be sent to the ensemble-as-a-whole, instead of to its 
members. This new variety of reflection completes the 
concepts we explore as a means to embrace 
nondeterminism.

3. Ly: An experimental programming language
What sort of language would naturally encourage a 
programmer of massively parallel hardware  to embrace 
nondeterminism via the concepts of ensembles and 
adverbs?  Such a language would have a familiar syntax, 
such as JavaScript’s, and a simple yet powerful object-
based inheritance model, such as Self’s [8] (more below). 
Ensembles would be as easy to use as regular objects. 
Therefore, the concise and familiar message-passing syntax 
would also be used for ensemble message sends, for 
example aFlock.turnLeft(), would tell every bird in the flock 
(ensemble) to turn left simultaneously.

!

Figure 1. A starling flock
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3.1 Object = Ensemble?
Coming from an object-oriented culture, we wanted to 
bring along all the benefits of that paradigm, so the next 
decision in the language-design process was how to 
integrate ensembles and objects. For the sake of uniformity, 
we wanted a singleton ensemble,  for example a flock of 
one bird, to be indistinguishable from an object, the bird in 
our example. Following this train of thought, every object 
would be (in effect) an ensemble containing only itself as a 
member. Every message would burrow into its 
destination’s member list and go one deep. For example, 
when sending name to a Parrot object named Polly, the 
message would be received by the parrot, and since she 
would also be an ensemble, the message would get 
redispatched to Polly’s members, consisting solely of the 
bird herself. At that point, further redispatching would 
somehow be avoided, and Polly would answer “Polly”, 
which would itself  be an ensemble containing itself (i.e. 
the string “Polly”). Since Polly  the parrot would be an 
ensemble, the result(s) of the name message would have to 
be returned as an ensemble, and so the one result (the string 
“Polly”, itself an ensemble)  would have to get wrapped 
into a singleton ensemble resulting in a doubly-nested 
ensemble containing the string “Polly”. But this result 
would have an undesired level of nesting. The gymnastics 
required to deal with these potentially infinite member-
regresses became challenging enough that we backed off: a 
singleton ensemble in Ly is not the same as the member 
object. 

Still striving for unification, we next considered allowing 
every Ly object to be an ensemble. In this model, every 
object would contain slots, a single link to its parent (we 
hope to avoid multiple inheritance), and a one-to-many link 
to its members. In this scenario, we faced a choice between 
two equally plausible alternatives: searching an ensemble’s 
slots before its members, or searching its slots after its 
members. For example, suppose our flock of birds includes 
a centerOfGravity method, which would compute the center 
of gravity of the flock, and furthermore that each bird also 
includes a centerOfGravity method, returning its own center 
of gravity. On one hand, the flock’s slots could be searched 
first, so that centerOfGravity() would invoke the flock’s 
center of gravity. On the other hand, the flock’s members 
could be searched first, in order to obtain an ensemble of 
the individual birds’  centers of gravity for a calculation of 
the polar moment of the flock.  Because the choice of 
lookup order between slots and members seemed arbitrary 
and hard to remember, and because there might be useful 
cases for either choice, we decided to design the language 
so that ensembles could not have slots. Rather, using the 
power of object-based inheritance, ensembles could be 
parents of objects and search the slots first, or ensembles 
could be children of objects and search the members first.

In summary, a reference points to either an object or an 
ensemble. An object contains a parent reference and zero-
or-more slots. A slot contains a name (i.e. a character 
string) and (a reference to) its contents. An ensemble 
contains a parent reference and zero-or-more (references to 

its) members. By arranging inheritance hierarchies, a 
programmer can achieve whatever look up behavior is 
desired.

3.2 Inheritance
Given the cache size and memory bandwidth issues in a 
manycore system, it seems practical to reify shared 
behavior by framing inheritance as a way to share parts of 
objects (just as in Self [8]). So, when a message is sent to 
an object, if the object has no matching slots, the lookup 
continues in its ancestors, but even if the match is found in 
an ancestor, the object that was the original destination of 
the message is the one bound to self or this. In contrast, 
when a message is sent to an  ensemble,  the result will be 
N parallel invocations, one per member,  with each member 
bound to self or this. An ensemble may have a parent; if its 
members do not understand a message, the lookup then 
proceeds up the ensemble’s parent chain, resulting in just 
one invocation, with the ensemble itself as the receiver. 
This scheme attempts to integrate object-based inheritance 
with ensembles while avoiding unintended consequences.

But the intended consequences of this model turned out to 
be non-trivial: when the lookup dives into an ensemble, it 
becomes a parallel lookup from each receiver. But if no 
matches are found, it must back  out, reset the receiver to 
the original object, and continue up the ensemble’s parent 
chain (figure 2). 

Figure 3 illustrates this complexity with an example: a 
message sent to the bottom-left object will first search its 
slots. If a match is found,  there will be one invocation with 
the bottom-left object as receiver. Next, the members of the 
left-hand flock are searched, including their ancestors. If 
matches are found, there will be many parallel invocations, 
one per bird. If no matches are found, the flock defaults 
object will be searched. If a match is found, there will be 
one invocation, with the bottom-left object as receiver. 
Thus, the bottom-left object allows the turnLeft and 
turnRight messages to be caught before each bird turns left 
or right. The flock defaults object allows a default species 
method to be defined for the ensemble. If the birds 
understand species, then sending species to a flock will 

!

Figure 2. If members don’t understand a message, try 
their parents first, then backtrack to the ensemble parent 
if necessary.
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return an ensemble of species.  But if they do not, the 
default species method will invoke the error code. 

Pseudocode Description of Ly Lookup in Ly
In order to examine the interesting language issues that 
arise from Ly’s lookup semantics, it is necessary to 
illustrate those semantics, and this section does so with 
pseudocode. Ly syntax is used to help the reader gain a feel 
for the syntax as well as the semantics. The pseudocode 
ignores many of the features of our actual implementation, 
including:

• message sends to implicit self,
• message sends to super,
• message sends with an adverb,
• message sends with the double-dot (to the ensemble as-a-

whole),
• compile-time lookups (an optimization),
• inheritance cycles (e.g. an object that is its own 

grandfather),
• membership cycles (i.e.  an ensemble that transitively 

contains itself),
• the extra complexity of maps (an optimization),
• ensembles of ensembles,
• empty ensembles, as discussed below,
• message arguments (the argument count is also used to 

lookup a method), and
• a pluggable architecture that lets us experiment with 

different representations of Ly objects. 
In the following code, the lookup operation returns an 
ensemble of results,  which can then be used for method 
invocations. Each result will need fields to hold the method 
to be invoked and the receiver upon which to invoke it:

object LookupResult {
	
 var receiver, var method;
	
 // In Ly, the empty parentheses can be elided from a
	
 // method call with no arguments as in “super.new” below
	
 function new(r, m) {	

	
 	
 var x = super.new;  x.receiver = r;  x.method = m; 
	
 	
 return x; }
}

In order to represent a slot in a Ly object, our pseudocode 
defines an implementation object to hold a slot’s name, its 
contents, and a function that returns a lookup result if the 
name matches the selector:

object Slot { 
	
 var name, contents; 
	
 function result_if_I_match(receiver, selector) {
	
 	
 return name == selector
	
 	
 	
  ?  LookupResult.new(receiver, contents)  :  nil;
	
 }
}

Finally, here are the objects that implement a Ly object and 
a Ly ensemble. Common attributes are factored out into 
LyBase:

object LyBase {
	
 // state & code common to objects & ensembles
	
 var parent; // nil if no parent
	
 // Entry point for a lookup; 
	
 // This object or ensemble is both the receiver and 
	
 // the place to start looking.
	
 // Result is an ensemble of results
	
 function lookup(selector) {  
	
 	
 return lookup( this, selector);
	
 }
	
 // Flexible lookup method; look here, 
	
 // but receiver may be somewhere else
	
 function lookup(receiver, selector) { 
	
 	
 // local_results is an ensemble
	
 	
 var local_results = lookup_here(receiver, selector); 
	
 	
 // The dot-dot syntax below redirects the isNotEmpty
	
 	
 // message to the ensemble-as-a-whole, rather than
	
 	
 // to each of its members.
	
 	
 if (local_results..isNotEmpty) return local_results;
	
 	
 if (parent != nil)
	
 	
 	
 return parent.lookup(receiver, selector);
	
 	
 return  Ensemble.new // empty ensemble
	
 }
}
// a Ly object with slots 
object LyObject extends LyBase { 
	
 var slots; // holds an ensemble of distinctly-named Slots
	
 function lookup_here(receiver, selector)  { 
	
 	
 // The double dash, ‘--’, after the last argument
	
 	
 // signifies the beginning of an adverb.
	
 	
 // The ‘ignoringNils’ adverb filters out the nils
	
 	
 // from the result ensemble.
	
 	
 return slots.result_if_I_match(receiver,  selector
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 -- ignoringNils);
	
 }
}
// a Ly ensemble with members
object LyEnsemble extends LyBase {
	
 // holds an ensemble implementing the one-to-many links 
	
 var members; 
	
 function lookup_here(selector, receiver)  { 
	
 	
 // In this case, the receivers will be the member objects.
	
 	
 return members.lookup(selector); 
	
 }
}

Lookup starts by sending the lookup message with one 
argument,  the selector, to the receiver of the message. That 
method (inherited via LyBase), sends the two-argument 
lookup message to itself, in order to start searching locally. 
It also passes in the receiver of the eventual invocation, 
which will ultimately be bound to “this”. If the receiver of 
the two-argument lookup message is an object, its slots are 
searched, and if a match is found, a singleton ensemble 
holding one result is returned. If no match is found, the 
search continues with the parent. But if the receiver of the 
two-argument lookup message is an ensemble,  its members 
are searched, and the receiver(s) of the eventual invocation
(s) is reset to correspond to each member.  Only if no 
matches are found in the members does the lookup 
continue up the ensemble’s parent link with the original 
receiver.

!
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4. Implementation
Using our Smalltalk testbed,  we implemented Ly with a 
hand-written parser designed to give good error messages, 
a compiler to transform parse nodes into Smalltalk objects, 
and an interpreter that executes the Ly program represented 
by the Smalltalk objects. The Ly interpreter, written in 
Smalltalk, runs atop the Smalltalk VM interpreter, written 
in C++, which in turn runs atop various platforms: the 
Tilera hardware, Intel Linux boxes, Mac Book Pros, and 
Mac Pros. The Mac Book Pro affords two-way parallelism, 
the other Intel platforms afford 16-way (with 
hyperthreading), and the Tilera system runs with 56 
independent threads of execution. Figure 4 illustrates the 
layers.

The double-interpretation (i.e. many Smalltalk operations 
per Ly operation) resulted in intolerable performance, so 
we implemented several optimizations:

• the capability to use Smalltalk Point and Number objects 
instead of Ly-level points and numbers,

• compile-time lookups for slots in the current activation 
record, and

• maps and runtime-lookup caches to transform each run-
time lookup from a sequence of hash table probes to an 
access into a linear array at a fixed offset.

These optimizations improved performance sufficiently to 
let us implement a simple version of the Boids flocking 
algorithm [9, 10] with 50 simulated birds (“boids”) flying 
on 56 Tilera cores (figure 5). Boids is an interesting test 
application for manycore parallel programming in that 
there is an ever-changing mix of data parallelism and task 
parallelism that will stress our programming model and 
virtual machine implementation.

5. Environment
We have also implemented most of an IDE for Ly using 
Squeak’s MVC framework (figure 6). It includes:

• a workspace, in which one can edit, parse, and execute 
Ly code;

• an object explorer, which allows one to examine and 
change the contents of Ly object slots and methods;

• a snippet browser, which allows one to store Ly code as 
text, leveraging the Smalltalk change-management 
facilities; and

• a source-level debugger, which shows the Ly invocation 
stack at the Ly source level, and has facilities for single-
stepping, etc. The debugger relies on the underlying 
Smalltalk facilities and a runtime map from the 
Smalltalk-level execution state to the Ly-level execution 
state. 

!

Processor: 64-core Tilera, 16-hyperthread Intel, or 2-core Intel
Operating system: Linux, or OS X

Our Renaissance Smalltalk Virtual Machine: multithreading & object migration

Smalltalk IDE Ly IDE Ly Source-to-Smalltalk Compiler Ly Runtime Visualization tools
Squeak Smalltalk Virtual Image including class libraries

Figure 4. The layers of our system

Figure 3. A detailed example of inheritance.
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6. Programming Experience in Ly
As of May, 2010, we have written approximately 1,500 
lines of Ly code, including many regression tests, a few 
versions of Boids, and four adverbs: “totally,” “pairwise,” 
“serially,” and a version of “serially” for ensembles of 
Smalltalk objects. Figure 5 shows 50 Boids running in 50 
threads on 50 cores with several of our visualization tools. 
This program has no application-level synchronization,  yet 
enjoys 50-way concurrency. 

Despite the optimizations described above, Ly’s 
performance on a manycore CPU with a relatively slow 
memory system led us to investigate other implementation 
techniques in the past few months, instead of writing many 
other programs in Ly. However our experience already has 
uncovered some interesting issues with this model of 
computation. We do not have all the answers as of yet, but 
uncovering the following questions may be the most 
interesting result of our efforts to date.

6.1 Empty Ensembles
For the sake of consistency, a programmer would expect 
the behavior of an ensemble to remain the same as its 
membership declined. For example, given a flock of birds, 
he would expect the turnLeft message to cause each bird to 
turn left, and, given a flock of no birds, he would expect 
the turnLeft message to just do nothing (assuming the 
ensemble’s parent has no turnLeft slot). However,  given the 
dynamically-typed nature of Ly, this expectation means that 
any message could be sent to an empty ensemble and the 
system would just silently do nothing. Later,  if a member 
lacking the method in question were to join the empty 
ensemble, it would cause a previously running program to 
incur a “message not understood” error!

What if the ensemble’s parent does have a turnLeft slot? In 
that case,  the transition between an empty ensemble and a 
singleton ensemble would involve a switch from the 
method in the parent’s turnLeft slot to the method in the 
member’s. Such a change could be an unpleasant surprise. 
These scenarios suggest that Ly’s current design is not 
satisfactory.

!

Figure 5.  50 Boids running on 56 cores. Clockwise from the top left: the graphical output of the Boids simulation,  the 
instantaneous execution activity per core, the degree of parallelism vs time, and the occupancy of each core’s heap vs time. 
(Time approximated by samples, so that GC appears to be instantaneous.)
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6.2 Partial Message Understanding
What if a message is sent to an ensemble and but 
understood by only some of its members? For example if 
the program sends “lay eggs” to a flock of birds, should the 
males silently ignore the request? Or should it result in a 
global error?  Or should special return values come back in 
the result ensemble? We can see arguments for any of the 
three possibilities.

6.3 Partial Non-local Returns
Ly includes Smalltalk-like blocks, and as a consequence, a 
method may be passed a block that,  when evaluated, causes 
the call stack to be cut back to a point above the invocation 
of said method. This scenario occurs when the block 
contains a return statement, as such statements cause the 
block to return from its enclosing lexical scope.

Suppose such a block were passed as an argument to an 
ensemble, so that each member ran a method which 
received the block as an argument. If some of the members 
were to invoke the block and it returned, there would be an 
attempt to cut back the call stack across a fork/join point! 
Should such non-local returns be an error? If not, what 
should they do?

6.4 Unintended Ensembles
Unlike the previous three situations, the following one took 
us by surprise; we were unaware of it until it actually 

happened to one of the authors. Ly is intended to make 
massively parallel programming easy, but it became too 
easy: parallel ensemble computation occurred where none 
was expected! Our system was executing a method that, 
like turnLeft in the diagram above, had an ensemble as 
receiver.  Said method contained if (true) doSomething, but 
instead of invoking doSomething once, it invoked 
doSomething in parallel for every member of the ensemble! 
Single-stepping with the source-level debugger exposed the 
cause of the problem: Ly’s compiler treats if(condition) 
statement as syntactic sugar for condition.if( {statement} ); 
that is, it turns the special form into a message sent to the 
condition, with a block argument. Rather than being built-
in,  true is merely a slot high up in the inheritance 
hierarchy. So, when the  true message was sent to the 
current receiver, a match was found in every member 
(because every member inherited the true slot), and an 
ensemble containing a true for each member was returned. 
Then,  when if was sent to that ensemble, there was a 
parallel invocation for each true in our ensemble of truth! 
The result was not what we expected at all: many 
“somethings” were done.

What can be done about this issue? Recasting true as a 
literal instead of a slot would merely defer the problem to 
other cases. Reducing an ensemble containing identical 
members into a singleton by default would destroy 
important frequency information.

!

Figure 6. The Ly Environment
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6.5 Synchronization
On a broader level, Ly’s attempt to eschew synchronization 
and embrace nondeterminism will not be compatible with 
many classic algorithms. For example, an exchange-based 
sort would require synchronization to serialize adjacent 
exchanges. We have started an exploration of alternative 
algorithms, but do not yet understand their effectiveness or 
efficiency. We will need to gain significant experience in 
implementing applications with this programming model 
before we can assess its efficacy. 

7. Related Work
We are not the first to dream of harnessing emergence. 
Anthony has looked carefully at natural distributed systems 
and their application to distributed computer systems, and 
has devised an election algorithm that exploits 
emergence [11]. Agent-oriented computing also seeks to 
harness emergence. Varghese and McKee investigate 
swarms of agents as a means to achieve fault-
tolerance [12]. Parunak and Brueckner have taken an 
information-theoretic approach to understand the 
conditions under which emergence can be effective [13]. 
Devescovi et al have devised a computational framework 
called SelfLets, and incorporated biologically-inspired self-
organizing algorithms into it [14]. Finally, Fleissner and 
Baniassad investigated a programming paradigm based on 
information diffusion [15],  in which there may be a duality 
relationship between information diffusing across a space 
with many points,  and a system of active individuals in 
many points in space.

8. Conclusions
We hope to cut the Gordian knot that is manycore 
programming by embracing nondeterminism and 
harnessing emergence. To that end, we propose two new 
concepts: ensembles,  which capture the notion of a flock or 
swarm, and adverbs,  which specify how to perform an 
ensemble computation and how to treat the results. To test 
these concepts, we designed and implemented a new 
language, Ly,  adding ensembles and adverbs to an object 
model loosely based on Self, in a syntax loosely based on 
JavaScript.  Early experience with Ly has uncovered a 
number of issues which will point the way for our next 
iteration.
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