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Abstract
Reactive programming is a programming paradigm whereby programs are internally represented by
a dependency graph, which is used to automatically (re)compute parts of a program whenever its
input changes. In practice reactive programming can only be used for some parts of an application:
a reactive program is usually embedded in an application that is still written in ordinary imperative
languages such as JavaScript or Scala. In this paper we investigate this embedding and we distill “the
awkward squad for reactive programming” as 3 concerns that are essential for real-world software
development, but that do not fit within reactive programming. They are related to long lasting
computations, side-effects, and the coordination between imperative and reactive code. To solve
these issues we design a new programming model called the Actor-Reactor Model in which programs
are split up in a number of actors and reactors. Actors and reactors enforce a strict separation of
imperative and reactive code, and they can be composed via a number of composition operators that
make use of data streams. We demonstrate the model via our own implementation in a language
called Stella.
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1 Introduction

Reactive programming is a programming paradigm that revolves around automatically
changing the state of a program based on perpetually incoming values. Historically, it was
conceived as a solution to the problems of inversion of control and callback hell which occur
when programming event-driven programs [3]. Reactive programming languages such as
FrTime [12], Flapjax [34], Elm [15] and REScala [46] propose increasingly rich abstraction
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19:2 Tackling the Awkward Squad for Reactive Programming

C *	9/5 +	32 FData flow

Source Node Sink NodeInternal Nodes

Figure 1 Compiled structure of a reactive program to a DAG. Data flow is usually depicted from
top to bottom, but depicted here from left to right.

mechanisms to represent and compose so-called “time-varying values” or signals, which are
values that can change over time. The “Hello World!” of reactive programming converts
measurements of a Celsius thermometer to Fahrenheit. Given a signal C that represents a
changing temperature in Celsius, the expression F = (C * 9/5) + 32 declares a new signal
F that represents the temperature in Fahrenheit. Changes to the value of C automatically
give rise to a recomputation of F. This is typically realised by compiling the reactive program
into a directed acyclic graph (DAG), as exemplified in Figure 1.

There are many incarnations of reactive languages and libraries built with various
mainstream languages. In academia, reactive languages include FrTime [12] (Racket),
Scala.React [33] (Scala), REScala [46] (Scala) and Flapjax [34] (JavaScript). In industry,
large companies such as Facebook develop and maintain frameworks such as ReactJS [28] and
React Native [21] for reactive Graphical User Interfaces (GUIs), ReactiveX is a specification
for reactive streams implemented in over 18 languages [40] some of which are developed
or maintained by companies such as Microsoft and Netflix, and an implementation of the
“Reactive Streams” specification has been included in Java since version 9 [29, 13]. Results
from an empirical study on program comprehension suggest favourable results for reactive
programming when compared to the Observer pattern in object-oriented programming [47].

In the rest of the paper we will abstract over the details of particular reactive programming
languages and talk about them in terms of their role in the canonical DAG model for reactive
programming. Source nodes correspond to the “input” signals of the reactive program. Their
values are typically provided by code that is external to the reactive program. Internal nodes
are composed signals that constitute the reactive program. Sink nodes correspond to the
“output” signals of the reactive program that constitute the program output.

Reactive programming languages and frameworks focus on the design and concepts of
the internal part of a reactive program. Explained in terms of the DAG, they focus on
language features and abstractions whereby programmers can express DAGs as easily and as
declaratively as possible. Reactive programs also have 2 other parts: an input part provides
input to the reactive program by modifying its source nodes, and another (possibly different)
output part processes the output of the reactive program. For example, in the temperature
converter of Figure 1, the source C may be connected to an input field in the GUI, and the
result F may be displayed in the same GUI. In another application, C may be connected to a
distributed web-based data stream whereby the input of the reactive program is produced by
an entirely different machine (e.g. a weather station).

One cannot help but observe that reactive programming is only used to implement the
internal part of a reactive program, and that it is usually embedded in an application that
is still written in ordinary imperative languages such as JavaScript or Scala. The main
problem tackled in this paper is that the parts of existing reactive programming languages
and frameworks that are responsible for input and output are ill-defined: They use ad-hoc
mechanisms that can violate the invariants of reactive programs. This is especially problematic
for long lasting computations that block the reactive program [7], and computations with
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Listing 1 REScala reactive program that matches a regular expression with an input string.
1 val userInputSignal = Var("") // initial signal value is ""
2 val matches = Signal { "(A+)*B".r.findFirstMatchIn(userInputSignal()) }

side-effects (e.g. modifying or rendering a GUI) [19, 33]. Mechanisms to embed reactive code
between the imperative input and output parts of applications are poorly investigated in
literature. To this end, we have 2 main contributions.

1. In analogy with the “awkward squad” for functional programming which are a set of
application concerns that are essential for real-world software development, but that do
not fit within the purely functional programming paradigm [37], in Section 2 we identify
the “awkward squad for reactive programming”. They are (1) long lasting computations,
(2) embedding imperative code in reactive code, and (3) embedding reactive code in
imperative code.

2. Just like functional programming solves the problem by evacuating the awkward squad
to a different location (i.e. monadic) of the program, we propose a programming model
that solves these issues. First, in Section 3 we define a class-based object-oriented data
model that will guarantee that reactive programs cannot execute imperative code and
long lasting computations. Second, in Section 4 we introduce the Actor-Reactor Model
whereby the imperative input & output parts of reactive programs must be modelled as
actors, and the internal parts of reactive programs are modelled as reactors. Together,
actors and reactors enforce that imperative and reactive code remains separated, but can
still co-exist within the same application. To clearly demonstrate the concepts of this
model we have designed and implemented an experimental language called Stella.

2 Identifying the Awkward Squad for Reactive Programming

In this section we analyse the problems that may occur when embedding a reactive program-
ming model in an imperative programming language, or when allowing the internal nodes of
a reactive program to be programmed with the full power of a Turing-complete language.

2.1 Long Lasting Computations
Responsiveness is 1 of the 4 key properties of reactive systems outlined in the so-called
Reactive Manifesto [7], [31, Chapter 1]: “Responsive systems focus on providing rapid and
consistent response times, establishing reliable upper bounds so they deliver a consistent
quality of service.” [7] However, reactive languages and frameworks often impose little to no
restrictions on the types of expressions that can be used within a reactive program. It is often
easy to write code that accidentally makes the program no longer reactive. For example,
consider the reactive program in Listing 1 (written in REScala) that checks whether user-
provided input strings match a regular expression. Line 1 defines a new source node called
userInputSignal, and Line 2 defines an internal node called matches that is derived from
the source node. Whenever the value of userInputSignal changes, the value of matches
reflects whether the new string matches the regular expression (A+)*B (e.g. AB and AAAB, but
not AAA). This program has a worst-case complexity of O(2n) with n the size of the input
string. Matching the string AAAAA fails after 112 steps, and matching 50 A’s fails only after ~3
quadrillion steps [44]. This program clearly cannot be called reactive in the aforementioned
sense. While this specific example may be a contrived case of catastrophic backtracking in
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19:4 Tackling the Awkward Squad for Reactive Programming

regular expressions, a developer can easily and accidentally introduce computations into
reactive programs that (occasionally) have unintended consequences for their execution time.
We call this the Reactive Thread Hijacking Problem, because long lasting computations
can “hijack” the thread of execution of a reactive program, thereby stopping the reactive
program from being able to react to new input.

The language design problem that needs to be solved is how to ensure that a “reliable
upper bound” can be imposed on long lasting computations within reactive programs.

The Reactive Manifesto is intentionally vague about how to achieve this. We identified 3
levels of reactivity that provide different program termination guarantees.

2.1.1 Weak Reactivity
The set of programs that we call weakly reactive are those for which there are no guarantees
with respect to how long they will take to execute. This is usually because reactive programs
can be programmed with the full power of a Turing-complete language. Programs written
in reactive languages such as FrTime [12], Flapjax [34], Elm [15], REScala [46] and Ambi-
entTalk/R [9], or frameworks such as ReactJS [28], ReactiveX [40] and Akka Streams [45,
Chapter 13] all fall into this category.

2.1.2 Eventual Reactivity
The set of programs that we call eventually reactive are those for which it can be proven
that the program will eventually terminate. There are both static and dynamic approaches
to enforce program termination, each with varying levels of restrictions that they impose
on the underlying program. Static enforcement includes work such as total functional
programming [51], primitive recursion [8, Chapter 3], and model checkers such as TERMIN-
ATOR [11]. Techniques that dynamically enforce program termination can make use of both
static information and run-time values, such as size-change termination [35].

2.1.3 Strong Reactivity
The set of programs that we call strongly reactive are those for which the execution time of
the reactive program does not depend on the size of its input. In other words, the asymptotic
worst-case complexity of the reactive program is guaranteed to be in O(1). Reactive programs
that are strongly reactive will never be unexpectedly slow because of certain types of input.
We consider this to be the strongest form of reactivity, but the trade-off is that the types of
programs that can be written is severely restricted.

Synchronous programming languages such as Esterel [5], Lustre [25], Céu [48] and
Signal [23] apply reactive programming to real-time systems [4]. They rely on the assumption
of the synchronous hypothesis, where the output of the program is conceptually synchronous
with its input and “instantaneous” [17]. In contrast with strong reactivity this is not
a constraint on program complexity or execution time, but on the correctness of event
processing whereby 1 event must be completely processed by the reactive program before
the next event is considered. Constant-time (non-reactive) programming languages such as
FaCT [10] and Jasmin [2] are concerned with bounding execution times of certain instruction
to prevent leaking secret information (encryption keys) based on execution time. Constant-
time programming is not a restriction of program complexity, but a restriction on the
execution time of specific instructions, which may not vary in function of sensitive run-time
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Figure 2 Termination guarantees for different levels of reactivity.

Listing 2 REScala reactive program with side-effects.
1 val counter = Var(0) // initial source value is 0
2 Signal { print("A" + counter() + " ") }
3 Signal { print("B" + counter() + " ") }

information. ActiveSheets [54] is a reactive language where programs consist of Microsoft
Excel spreadsheets. While many spreadsheet operations are strongly reactive (e.g. arithmetic),
there are exceptions such as SEARCH and REPLACE for searching and replacing substrings.
Finally, the RT-FRP language [56] is a statically typed reactive programming language where
the time and space (in memory) cost for each execution step is statically bound. To the best
of our knowledge this language is strongly reactive.

2.1.4 Summary
Expressions in existing reactive languages and frameworks can accidentally or unintentionally
cause long lasting computations that block the reactive program, thus turning the program
no longer reactive. We identified 3 different levels of reactivity that are summarised in
Figure 2, together with the possible techniques on how to enforce them. Stricter enforcement
of program termination will result in reactive programs that have stronger guarantees with
respect to the processing of their input, i.e. a more reliable upper bound can be placed
on their execution time. However, the trade-off is that the types of programs that can be
written is also reduced with stricter enforcement. It is up to developers to choose a reactive
language or framework that can enforce a particular level of reactivity that is appropriate for
the application at hand, i.e. eventually reactive or strongly reactive.

2.2 Embedding Imperative Code in Reactive Code
Effectful computations are extremely tricky to understand and debug when they are embedded
within the nodes of a dependency graph [19, 33]. Consider the reactive program (written in
REScala) in Listing 2. Line 1 defines a new source node called counter, and Lines 2 and 3
define two internal nodes that print either A or B to the console, followed by the value of the
counter. When this program is executed, the initial value of counter is propagated through
the program, and “A0 B0” is printed to the console in the order of evaluation (from top
to bottom). However, when the value of counter is updated to 1, approximately 50% of
the time the program output is reversed and “B1 A1” is printed. We call this problem the
Reactive Update Order Leak, because effectful computations leak information about the
update order of subexpressions within reactive programs, and their correct execution may
even rely on a specific order.

The update order of the DAG is usually not part of the semantics of a reactive program.
Reactive programming languages such as FrTime [12], Flapjax [34] and REScala [46] prevent
glitches (temporary inconsistencies in the program [12]) by specifying that updates should be
executed in a topological order of the dependency graph. Some implementations parallelise
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19:6 Tackling the Awkward Squad for Reactive Programming

the execution of certain regions of the DAG, such as the conceptual propagation model of
Elm [15] and a parallel version of the REScala update algorithm [18]. Streaming frameworks
such as ReactiveX [40] and Akka Streams [45, Chapter 13] do not feature such an algorithm,
and instead only specify that parent nodes should be updated before their child nodes.

All of the aforementioned technologies allow multiple valid update orders to be used for
a given program. This is good for language implementers, because it gives them a lot of
freedom to tweak and optimise (e.g. parallelise) how values propagate through the reactive
program. However, for application developers this means that the concrete update order
can vary across different implementations or versions of the same language or framework.
The order can even change at run-time, which is the case in our experiments with the code
snippet of Listing 2, where the execution of the program yields nondeterministic results.

The root of the problem are unconstrained side-effects in interactive applications. Not
only can side-effects cause bugs that are difficult to find and reproduce because of an unlucky
ordering in some propagations through the DAG, but they are also very difficult to coordinate
and have a detrimental effect on behavioural composition [20]. Recognising these issues,
most reactive programming languages and frameworks already forbid side-effects within the
DAG of a reactive program, either through language design or via programmer guidelines
(e.g. REScala guidelines [41, 1.5.3]). However, as we will discuss in Section 2.3, they are
rarely successful in banishing side-effects completely.

The language design problem that needs to be be solved is how to allow the coexistence
of effectful computations that react to values arriving at a certain internal node of the
dependency graph without accidentally or nondeterministically affecting the behaviour
of effectful computations that reside in other nodes of the dependency graph.

2.3 Embedding Reactive Code in Imperative Code
Programs written in existing reactive programming languages and frameworks are not subject
to the Reactive Update Order Leak (Section 2.2) when their code is purely functional.
However, we observe that this requirement is not met in practice, because parts of real-
world programs often depend on long lasting computations and effectful computations. For
instance, input can come from a GUI or be streamed in from another computer over a network
connection, and output may be used to modify a GUI or to push a notification to a user. A
complete solution must therefore be able to bridge what we call the Reactive/Imperative
Impedance Mismatch, in analogy with the Object-Relational Impedance Mismatch for
object-oriented programming.

Because the embedding of reactive code within imperative code is unavoidable in real-world
reactive applications, existing reactive languages and frameworks all tackle the Reactive/Im-
perative Impedance Mismatch to some degree. We argue that their solutions either have
limited applicability, or are ad hoc solutions with unclear semantics. What follows is a
non-exhaustive list of mechanisms that we could identify in related work.

Domain specific features are special language features tailored to a specific domain, usually
involving GUIs. For instance, Flapjax [34], Elm [15], and ReactJS [28] provide a DSL
for building GUIs whereby source nodes are automatically created and updated by GUI
components, and the GUI automatically integrates with sink nodes. Such languages
typically also feature built-in domain specific signals with narrow applicability, such as
Elm’s Mouse.position signal [15].
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Special forms are built-in language constructs with special evaluation rules. Reactive
languages often offer special forms to provide operators that cannot be implemented from
within the language itself. For example, Elm [15] offers a built-in syncGet operation to
execute synchronous HTTP requests. To prevent this computation from blocking the
reactive program, Elm also offers an async special form to execute operations in the
background.

Metaprogramming involves mechanisms to manually construct or modify parts of the
reactive program. For example, FrTime and REScala offer built-in primitives to create
and (destructively) modify source nodes of the reactive program. The semantics of
manual assignments to source nodes are often unclear, especially when multiple threads
of execution are involved. Streaming frameworks such as ReactiveX [40] and Akka
Streams [45, Chapter 13] offer built-in operators to define new streams ex nihilo, reducing
their dependence on special forms. Still, if there is no built-in support for a specific data
source, a programmer has to open up the implementation of operators to carefully craft a
new one.

Hidden concurrency involves mechanisms whereby multiple threads of execution are used,
but where the concurrent nature of the operations is hidden from the programmer. For
example, in FrTime a dedicated thread manages the execution of the reactive program
behind the scenes, while the Racket Read-Eval-Print Loop continues running on the main
thread. From the REPL, a Scheme program can “send” input values to the reactive
thread. Conversely, the output of FrTime programs can be reactively displayed in the
output of the REPL. However, multi-threading and concurrency-control are not part of
the FrTime programming model.

Periodic polling enables embedding by periodically updating the source values of a reactive
program from some computational process that is external to the reactive program. The
quintessential example of this approach is the seconds behaviour as found in FrTime [12].
The seconds behaviour is a free variable in the reactive program that is automagically
updated to the current Unix time. Typically, dependents of the seconds behaviour use
the timestamp only to determine whether they should imperatively poll an application-
specific data source. Such code lets the reactive runtime schedule imperative code, giving
rise to Reactive Update Order Leaks.

The language design problem that needs to be solved is how to design a reactive
programming language that supports the features of the awkward squad, but without
introducing the Reactive Thread Hijacking Problem and the Reactive Update Order
Leak.

In other words, it is important that imperative code and reactive code can coexist
within the same application in such a way that the imperative code cannot accidentally
violate the invariants of the reactive code. The mechanisms employed by existing languages
and frameworks are often highly specialised, have unclear semantics with regards to their
interactions with the reactive program, and they do not solve these problems.

2.4 Solution: General Idea
The idea is to embrace that reactive applications always consist of both imperative and
reactive parts. Both are desired, and they complement each other [19]. We give each their
own thread and effect-set, and design simple composition operators to link them together.
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19:8 Tackling the Awkward Squad for Reactive Programming

Listing 3 A “Hello World!” program in Stella.
1 (actor Main
2 (def-constructor (start)
3 (println "Hello World!")))

The result is called the Actor-Reactor Model, which can be summarised as follows.
Actors are used to represent the imperative input and output parts of reactive programs.
They imperatively manage their own state and input-output, and are solely responsible
for executing long lasting computations and effectful computations.
Reactors are used to encapsulate reactive programs, each with their own DAG and update
thread. By construction it is impossible for reactors to perform long lasting computations
and side-effects.
Coordination of actors and reactors happens via the data streams which they consume
and produce. We define a set of composition operators whereby the streams defined by
actors can be linked to the source nodes of reactors and vice-versa how actors can act on
changes to the sink nodes of reactors.

We have implemented the Actor-Reactor Model in an experimental language called Stella,
which can be roughly divided into two levels. First, an object-oriented base language is used
to restrict reactors from producing side-effects and performing long lasting computations
(Section 3). Second, actors and reactors are used to strictly separate the imperative and
reactive parts of programs (Section 4). We have written a prototypical Continuation-Passing
Style interpreter for Stella in TypeScript (in the style of [22, Chapter 5]).

3 Base Language: OOP with Effect and Termination Guarantees

In this section we will focus on the object-oriented base language of Stella. Throughout all
code examples we will consistently syntax highlight special forms (expressions with special
evaluation rules) in blue. Strings are surrounded by double quotes and are highlighted in
green. Symbols start with a single quote and are highlighted in red.

Stella is a dynamically typed language where all run-time values are objects. Its native
objects are booleans, numbers, strings, symbols and the value #undefined, which are
instances of the classes Boolean, Number, String, Symbol and Undefined respectively. A
program in Stella consists of 3 sets of top-level definitions: a set of classes, a set of actor
behaviours (“the class of an actor”), and a set of reactor behaviours (“the class of a reactor”).

3.1 Basic Expressions and “Hello World!”
Each Stella program must contain an actor behaviour called Main. This actor behaviour
must have a constructor named start. To start a Stella program, the Stella runtime spawns
an instance of the Main actor behaviour and invokes the start constructor. Consider the
“Hello World!” program in Listing 3 that defines such a behaviour. The body of its start
constructor contains a single println statement in operator prefix notation (Polish Notation).
This can be seen as synchronously sending a println message with no arguments to the
“Hello World!” object of class String. Similarly, (+ 1 2) can be seen as sending a +
message to the object representation of the number 1 with one argument which is the object
corresponding to number 2. In the rest of this paper we will use the terminology of “calling”
or “invoking” a method rather than sending synchronous messages (cf. SmallTalk [24]).
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Listing 4 Examples of basic expressions in Stella
1 (def hello "Hey")
2 (set! hello "... from the other side")
3 (if (equal? hello "Hey") (println "yes") (println "no")) // console prints "no"

Expressions that may be used in the body of constructors and methods follow S-expression
syntax [1, Chapter 1] and are shown in Listing 4. Local variables are introduced via the
def special form (similar to define in Scheme), assignments use the set! special form,
conditionals use the if and cond special forms. Two methods to test for equality are
implemented by the superclass of all classes (Object): equal? tests for object equality, eq?
for object reference equality. All values are #true except for #false and #undefined.

3.2 Abstract Data Types
Code in Stella can be either imperative or reactive. Both kinds of code can operate on the
same data, but the allowed sets of operations differ. Whereas imperative code may use the
full power of a Turing-complete language, reactive code is restricted to operations that are
guaranteed to terminate and that are free from side-effects. To this end, abstract data types
in Stella are represented by classes which may define local fields, constructors, methods, as
well as routines. Routines are special kinds of methods whose expressive power is a strict
subset of that of methods. Routines have the following properties.

1. Routines have no side-effects.
2. Routines always terminate.
3. Routines can only invoke other routines.

To explain how we can enforce those properties, consider the Pair class defined in
Listing 5 which can be used to represent linked lists. Local fields of the class are declared
on Line 2. Line 4 defines a constructor called initialize-with with 2 formal parameters
called initial-car and initial-cdr that will initialize the fields of a new pair. Lines 8–9
define two routines called first and second with no arguments which are “getters” for the
car and cdr field, and correspondingly, Lines 10 and 11 define two methods set-first!
and set-second! which are setters for these fields. Line 13 defines a routine called length
that will compute the length of a linked list by calling length on the cdr field as long as it
is also a pair1. We can enforce the properties of routines as follows.

Routines that contain expressions with side-effects are rejected by the interpreter. In our
case they are set! and a couple of other special forms2. Together with property #3, which
is upheld using a run-time check, this ensures that routines will never have side-effects. This
must be checked at run-time because Stella is a dynamic language. A run-time error occurs
when a routine calls a method, for example println which performs IO.

Our current implementation of Stella uses size-change termination (SCT) for higher-order
programs [35] to ensure at run-time that routines terminate. In a nutshell, this form of SCT
dynamically constructs a size-change graph based on the argument values of a routine call

1 Note that the type-of invocation in Listing 5 Line 15 returns a symbol that represents the name of
the class. This is because classes are not reified as objects in our language (such as in SmallTalk [24,
Chapter 5]). They cannot be referenced directly except via the new special form to create an instance.

2 The special forms forbidden in reactors and routines are set!, spawn-actor, spawn-reactor, send,
emit, monitor, and react-to.
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Listing 5 The Pair class which has 2 kinds of operations, methods and routines.
1 (class Pair
2 (def-fields car cdr)
3

4 (def-constructor (initialize-with initial-car initial-cdr)
5 (set! car initial-car)
6 (set! cdr initial-cdr))
7

8 (def-routine (first) car)
9 (def-routine (second) cdr)

10 (def-method (set-first! new-car) (set! car new-car))
11 (def-method (set-second! new-cdr) (set! cdr new-cdr))
12

13 (def-routine (length)
14 (cond ((eq? cdr #undefined) 1)
15 ((eq? (type-of cdr) 'Pair) (+ 1 (length cdr)))
16 (else 2))))

Listing 6 Creating a circular data structure with Pair of Listing 5.
1 (def p1 (new Pair 'initialize-with 1 2))
2 (set-second! p1 p1)
3 (length p1) // successfully rejected via a run-time error

every time a routine is called. Before entering a new routine call, the size-change termination
principle is used to compare the argument values to those of earlier calls to that routine
(of the same class) higher on the call stack. If the new argument list is not decreasing in
size, a run-time exception is thrown. Note that the algorithm assumes a well-founded partial
order on values, for example, for numbers this is defined as |x| < |y|. In this case a recursive
routine such as factorial is permitted as long as recursion stops when the value of its
argument has decreased to 0.

As an example, consider the excerpt of Stella code in Listing 6 that uses the Pair class of
Listing 5. Here, a Pair is made to point to itself, creating a circular linked list. A subsequent
call to length on the Pair gives rise to a recursive call to length on the same class. SCT
rejects this call, since the argument values have not decreased since previous invocations.

While [35] report that the overhead of their SCT analysis can be as high as a factor 100
(e.g. for merge-sort), it is negligible for applications that perform a lot of work in between
recursive calls (they give a factorial function as an example). In any case, overhead remains
constant with respect to the size of the input of the program. Crucially, it works for high-level
programming languages such as Stella, and – unlike other approaches such as specialized type
systems – SCT requires no programmer assistance. Stella is not coupled to any specific SCT
algorithm, or even to SCT itself. What is part of the semantics of Stella, is that long-lasting
computations are illegal, and that termination of routines must be enforced by the Stella
runtime.

4 The Actor-Reactor Model

With the base language defined, we can now describe how Stella tackles the problem
described in Section 2.3. We sketched the general idea in Section 2.4. The Actor-Reactor
Model separates programs into actors and reactors. Actors handle the parts of a program
that involve long-lasting computations or side-effects, whereas reactors handle the parts that
are inherently reactive, or that are more easily expressed using reactive programming.



S. Van den Vonder, T. Renaux, B. Oeyen, J. De Koster, and W. De Meuter 19:11

Wind speed Turbine info Power output

Figure 3 Diagram of data flow in a wind turbine simulator consisting of a wind, a turbine, a
turbine power calculator, and a console to print the result.

Coordination between actors and reactors is achieved using data streams that are produced
by actors and reactors. Stella defines a number of composition operators to statically and
dynamically manage how data can flow to and from actors and reactors. In the following
sections we first introduce actors and data streams. In Section 4.3 we introduce reactors and
how to compose them with actors.

4.1 Running Example: Wind Turbine Simulator
Consider a wind turbine simulator that calculates the real-time power output of a wind
turbine. A simple simulator can be defined using the 4 components depicted in Figure 3.
From left to right: a blowing wind, a wind turbine, a power calculator, and a console to
print the output. Simulating wind can involve complex wind patterns and how they affect a
turbine, or it can be a simple process that generates random values corresponding to the
current wind speed. Even the simple version is challenging because it involves a process
“a wind” that is continuously running and always changing. It also requires reactive processes:
A blowing wind impacts the rotation of the wind turbine, which then impacts the power
output. Important to note is that eliminating long lasting computations within reactive
programs by itself is not enough to prevent them from blocking reactive programs. It is
equally important that reactive processes cannot be accidentally blocked by long lasting
computations in other parts of the program, for example the simulation of wind patterns.

We model wind as an actor because it is inherently an active process that is always
running and changing independently. The console is also an actor because it performs IO.
We opt to model a turbine and the power calculator as reactors: a turbine reacts to a wind,
and a power calculator reacts to changes in the turbine.

4.2 Actors and Data Streams
Actors are typically defined in terms of a behaviour and a mailbox [30]. The behaviour of an
actor describes its internal state and the messages that can be processed. Messages that are
sent to an actor are inserted into its mailbox (e.g. a FIFO queue), and the actor continuously
dequeues messages from its mailbox to process them one-by-one. Actors in Stella are based
on the Active Objects model [57, 30, 16], where actor behaviours are defined similar to classes
in object-oriented programming. In addition to receiving and processing messages, actors
can be used to implement zero or more data streams to which they can emit (publish) values.
The following sections explain the different parts of actor behaviours using the wind from
our running example. We explain how actor behaviours are defined, how data streams can
be implemented using actors, and how actors can monitor data streams.

4.2.1 Actor Behaviours
Listing 7 defines the Wind actor behaviour. An actor behaviour has a number of local fields,
in this case 1 field called rng (Line 3). A constructor called init is defined on Line 5, which
initializes the rng field with a new random number generator (an object). A method called

ECOOP 2020



19:12 Tackling the Awkward Squad for Reactive Programming

Listing 7 The Wind actor behaviour to implement a stream that represents wind speed.
1 (actor Wind
2 (def-stream speed 1)
3 (def-fields rng)
4

5 (def-constructor (init) (set! rng (new Random)))
6

7 (def-method (blow)
8 (emit speed (integer-between rng 0 30))
9 (sleep 10000)

10 (send #self 'blow)))

blow without arguments is defined on Line 7, whose implementation we will explain later
when we define data streams. A Wind actor is thus capable of processing blow messages that
are inserted into its mailbox, which amounts to invoking the corresponding blow method.

The special form spawn-actor is used to spawn new actors, in this case to create new
winds. The following expression spawns an instance of Wind, which could be used to
represent the mistral wind. A reference is returned to the new actor, which is an object of
type ActorReference. To initialize the actor, spawn-actor takes the name of a constructor
(as a symbol) and any arguments it requires. Constructors are special kinds of methods that
may only be invoked once, and only as the very first message an actor processes. The act
of spawning an actor via a constructor is semantically equivalent to spawning an actor and
inserting a message in its empty mailbox that will initialize the actor.

1 (def mistral (spawn-actor Wind 'init))

Actors communicate via asynchronous message passing via the send special form that
inserts a new message in the mailbox of the designated actor. The following expression sends
a blow message to mistral, which is expected to be an actor reference. While in this case
blow does not expect any arguments, they would be provided after the ’blow symbol. The
message payload between actors (and reactors) is always passed by (deep) copy, and actors
can send messages to themselves by sending them to #self, which represents a reference to
the current actor.

1 (send mistral 'blow)

4.2.2 Declaring Data Streams
Every actor can export data streams. The behaviour of an actor determines which data
streams an actor implements via def-stream as seen on Line 2 of Listing 7. This expression
takes two arguments: the name of the stream and its arity. The name is used to uniquely
identify a particular stream that belongs to a given actor, and the arity of a stream specifies
the number of elements that must be emitted to the stream in one “emit step”. In our
example a Wind actor exports a single stream called speed with arity 1.

Stream arity is used to emit new values that are intrinsically connected, and must
therefore always change simultaneously. For example, an actor might export a stream called
location of arity 2 that represents coordinates in the form of latitude and longitude.
Since they describe the real-time location of some real-world moving object, latitude and
longitude should always change simultaneously. Otherwise, a consumer of the stream might
first update the entire application (e.g. some world map) with a new value for latitude, and
only after some time with the corresponding value for longitude. After the first update the
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Listing 8 Monitoring data streams with actors
1 (actor Main
2 (def-constructor (start)
3 (def sirocco (spawn-actor Wind 'init))
4 (monitor sirocco.speed 'print-wind))
5

6 (def-method (print-wind wind-speed)
7 (println "the new wind speed is: " wind-speed)))

application would be in an inconsistent state, similar to a glitch in reactive programming [12].
An alternative approach is to emit location as a single object. However, we will use stream
arity to facilitate the composition of actors and reactors in Section 4.3.

4.2.3 Publishing to Data Streams

Actors can emit values to their own data streams by using the emit special form. Emitting a
value amounts to sending the new value to all subscribers of the stream. Consider the blow
method in Listing 7. Whenever a Wind actor processes a blow message, on Line 8 the actor
will emit a new value to the speed stream, which in this case is a random number between
0 and 30 representing the wind speed in meters/second. Now, a special type of message
(a publication) is added to the mailbox of subscribers, which are other actors or reactors.
Because the speed stream is defined with arity 1, emit only requires 1 argument. The actor
then sleeps for 10000ms (Line 9), and afterwards sends itself a new blow message to emit
another value (Line 10).

4.2.4 Qualifying and Monitoring Data Streams

Two mechanisms are required to create a subscription on a data stream: qualification and
monitoring. Both are explained using the Main behaviour in Listing 8 which can be seen as
the console from our running example, but instead of monitoring and printing power output,
it monitors and prints the wind speed. When the start constructor is executed, Line 3 first
spawns an instance of the Wind behaviour, and Line 4 exemplifies both qualification and
monitoring.

Qualification is the act of designating a reference to a particular stream exported by
a particular actor (or reactor). On Line 4, the expression sirocco.speed evaluates to an
object of class Stream that represents a reference to the speed stream exported by the
sirocco actor. Data will only start flowing once a consumer (an actor or reactor) subscribes
to the stream, in which case data flows directly from the producer to the consumer.

Actors subscribe to data streams by monitoring them. This is exemplified by Line 4,
where the sirocco.speed stream is monitored for changes. Whenever this stream emits a
new value, a ’print-wind message will enter the mailbox of the actor, which is processed
by the corresponding print-wind method on Line 6. This method requires exactly 1 formal
parameter because the speed stream has an arity of 1. We will see in Section 4.3 that reactors
do not explicitly monitor data streams like actors, and instead they will automatically react
to values that are emitted to data streams.
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4.3 Reactors
Reactive languages rely on 2 fundamental mechanisms. First, at compile-time, the program
text is compiled to a DAG that consists of source nodes that represent the input of the
reactive program, sink nodes represent the output of the reactive program, and internal nodes
represent all computations that occur between the sources and sinks. Second, at run-time, a
reactive engine is responsible for propagating new values through the DAG, such that the
calculation that makes up the output remains consistent with the values of the input. The
reactive engine is smart enough to prevent glitches [12].

In the following sections we gradually explain Stella’s reactors by implementing a simple
reactive wind turbine and power calculator. Stella features 2 different ways to statically
compose reactor behaviours: via point-wise and point-free composition, named after function
composition in Haskell [32, Chapter 5]. In Section 4.3.6 we explain the run-time semantics of
reactors and how they manage dependencies on data streams.

4.3.1 Definitions
A reactor consists of 3 layers.
Layer 1: Reactor Behaviour. A reactor behaviour describes the static properties of a reactive

program, represented by a DAG that is constructed at “DAG compile-time” (a pre-
processing step of our interpreter). The DAG is constructed from the program text, for
example the reactor behaviour of Listing 9 which we will explain in Section 4.3.2. It
describes the source nodes, sink nodes, and internal nodes of the reactive program, and
all of the dependencies between them. We may refer to an actor or reactor behaviour as
simply “behaviour” if it is clear from context to which one we are referring.

Layer 2: Reactor Deployment. Reactive languages usually store the run-time information
of a reactive program (e.g. node values and local state) directly in the nodes of the DAG.
However, in our case reactor behaviours can be composed and reused by multiple reactors,
and every use of a DAG can be in a different state depending on the values that were
propagated. Therefore, a reactor deployment represents a specific instance of a reactor
behaviour. In other words, a reactor deployment stores all run-time information pertinent
to a specific instance of a DAG that is used by a specific reactor.

Layer 3: Reactor. A reactor is process with a mailbox and a vat (collection) of reactor
deployments. It is the driving force behind a reactive program: a reactor continuously
dequeues values from its mailbox and propagates them through the destined deployment
via a built-in reactive engine. Similar to how actors are spawned from actor behaviours,
a reactor is spawned from a reactor behaviour (that represents a DAG). At spawn-time,
the reactor creates an initial deployment for this DAG, which we call the root deployment.
A reactor has exactly 1 output stream of arity n, where n corresponds to the number of
sinks of the root deployment. Every time the root deployment updates, its sink values
are emitted on the output stream of the reactor. Our definition of reactors intentionally
covers deployments that give rise to other deployments within the same vat, but we will
not discuss those features in this paper. Reactors will therefore always contain exactly 1
deployment (namely the root deployment).

4.3.2 Basic Reactor Behaviours
A reactor behaviour is the textual representation of the DAG of a reactive program: it has a
name, at least 1 source, at least 1 sink, and any number of internal nodes that describe the
computations between the sources and sinks. An example of a computation is the theoretical
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Listing 9 The WindPower behaviour calculates the maximum theoretical power output of a turbine.
1 (reactor (WindPower blade-length air-density wind-speed)
2 (def swept-area (* #Pi (expt blade-length 2)))
3 (out (* 0.5 swept-area air-density (expt wind-speed 3))))

blade-length

Sources

Sinks
sink	#1

air-density wind-speed

const:	#Pi const:	3apply:	expt

apply:	* const:	0.5apply:	*

apply:	expt

const:	2

(a) WindPower

blade-length

Sources

Sinks
sink	#1

efficiency wind-speed

apply:	expt

const:	2

const:	#Pi

apply:	* apply:	*

const:	1.225
apply:	*

const:	3apply:	expt

const:	0.5

(b) PowerOutput

Figure 4 Side-by-side comparison for the DAGs of WindPower and PowerOutput of Listing 9
and 10. Nodes and dependencies introduced by PowerOutput are highlighted in red.

power output of a wind turbine (in Watt) which is based on the area swept by its blades, the
air density surrounding the turbine, and the velocity of the wind [43]. It can be calculated
as follows:

Power (W ) = 0.5× Swept Area (m2)×Air Density (kg/m3)× V elocity3 (m/s)

This formula is implemented in Listing 9 in a reactor behaviour called WindPower with
3 source nodes and 1 sink node. Its 3 sources are called blade-length, air-density, and
wind-speed. There is one local variable called swept-area, and one sink node that is
immediately linked to the result of a multiplication. The DAG of this behaviour is depicted in
Figure 4a. Every invocation of a routine is depicted by an “apply” node, and all expressions
without dependencies are wrapped in a “const” node that will be computed when the DAG
is compiled. Since the run-time values that are propagated through the DAG are regular
objects, reactors can only invoke routines on those objects, and the invocation of regular
methods will result in a run-time error.

4.3.3 Point-wise Graph Composition
While the WindPower behaviour computes the theoretical power output of a turbine, a more
accurate calculation takes into account turbine efficiency (typically between 10–30% [42]).
To this end, Listing 10 defines a behaviour called PowerOutput that shows how reactor
behaviours can be composed in a point-wise manner. It has 3 sources called blade-length,
efficiency and wind-speed. They correspond to the 3 pieces of information that a wind

Listing 10 Point-wise composition of reactor behaviours.
1 (reactor (PowerOutput blade-length efficiency wind-speed)
2 (def wind-power (tick WindPower blade-length 1.225 wind-speed))
3 (out (* efficiency wind-power)))
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Listing 11 The Turbine behaviour implements a simple wind turbine.
1 (reactor (Turbine blade-length efficiency wind)
2 (out blade-length efficiency wind.speed))

turbine is expected to produce to be able to calculate its power output. Line 2 performs a
point-wise composition of reactor behaviours via the tick special form. This can be thought
of as a function application but for reactor behaviours, of which the result is bound to
the wind-power variable. Line 3 then scales the theoretical output by the efficiency of the
turbine.

A tick operation is resolved at compile-time as the inlining of a DAG. First, the
source nodes of the composed behaviour (WindPower) are connected to the corresponding
arguments of tick. Second, the sink node of the composed behaviour is connected back into
the composer, in this case to all nodes in PowerOutput that use the wind-power variable
(multiple sinks would be defined via a def-values special form). The resulting graph
is depicted in Figure 4b, where the nodes and dependencies introduced by PowerOutput
are highlighted in red. For brevity, in the tick expression we assume a default value of
1.225kg/m3 (the air density at 15◦C at sea level).

While it is not part of our goals, the structure of the DAG can be optimised when it is
compiled. In this case the source and sink nodes of the inlined WindPower behaviour were
automatically eliminated because they are redundant, and because (by definition) sources
and sinks can only exist at the boundaries of a DAG. For example, the constant value 1.225
provided by the composer in Listing 10 is represented by a constant node in Figure 4b
(depicted in the bottom right). This node is directly connected to the apply node because
the original air-density source node (which it replaces) was eliminated.

4.3.4 Behaviour Stream Composition
From the PowerOutput behaviour we know that a wind turbine should provide its blade length,
efficiency, and the current wind speed affecting it. The simplest possible implementation
of a turbine that we can think of is defined in Listing 11. This reactor behaviour has 3
sources: blade-length is a number usually between 20 and 80 (meters), efficiency is a
number between 0.1 and 0.3 (10-30%), and wind should be a reference to an actor. The
output of Turbine is a stream of arity 3 that echoes the blade length and efficiency, and the
qualification “wind.speed” will echo the contents of the speed stream.

A qualification in the body of a reactor behaviour represents a dependency to a stream.
However, handling such dependencies can be quite tricky since there are potentially two kinds
of changing values. First, the exporting actor of a stream may change, for instance when
a new actor reference is propagated for the wind source node (e.g. sirocco or mistral).
Second, the speed stream is continuously emitting new values. A reader may recognise this
as a higher-order stream [34]. The source node is conceptually a stream of values, and every
value is an actor (or reactor) that exports streams.

Inspired by the compilation of the async expression in Elm [15], every qualification is
compiled to 2 graph nodes. First, an internal node manages the dependency on the referenced
stream. Second, an implicit source node is responsible for processing the values emitted by
the stream. The resulting graph for Turbine is depicted in Figure 5. When the source node
wind changes to a different actor (e.g. another wind) then this new value is propagated to
the special qualification node. This node unsubscribes from its current stream (if present)
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Figure 5 DAG of the Turbine behaviour.

Listing 12 Point-free composition of reactor behaviours.
1 (reactor TurbinePowerOutput (ror PowerOutput Turbine))

and subscribes to the newly referenced speed stream. The value of the implicit source is
immediately changed to the most recent value emitted by the newly referenced stream. From
that point onwards, whenever publications of the new stream enter the mailbox of the reactor,
the reactor will process them by changing the value of the corresponding implicit source
node.

4.3.5 Point-free Graph Composition

There are two ways to implement a wind turbine that is linked to a power calculator. Either
a new reactor is spawned for each of them and their input/output streams are subsequently
linked together, or the 2 reactor behaviours are composed and spawned as a single reactor.
Both approaches are valid, and which one is more desirable depends on the application. We
take the second approach by composing the 2 behaviours via point-free graph composition.

In Haskell, new functions can be defined point-free via a function composition operator.
The composition f ◦ g (“f after g”) is a function that first applies g to its argument, then f
to the value returned by g; (f . g) x = f(g(x)). Similarly, the ror operator composes
reactor behaviours: r1 ◦ r2 constructs a new behaviour where data is first propagated
through r2 and then through r1. The DAG of this behaviour is the composition of r1 and
r2, where the sinks of r2 are connected to the sources of r1.

As an example, Listing 12 defines a new behaviour called TurbinePowerOutput that
combines the behaviours of Turbine and PowerOutput. We designed those behaviours such
that they can be easily composed, i.e. the sinks of Turbine directly match the sources of
PowerOutput. If the behaviours would not directly fit together, intermediate behaviours can
take care of reordering sources and sinks, or transforming data.

The ror operator is capable of connecting multiple “input” behaviours to 1 “output”
behaviour. The following expression defines a new behaviour R that is the composition of an
output behaviour Rout with input behaviours R1 to Rn.

1 (reactor R (ror Rout R1 R2 . . . Rn))

Behaviour R can be compiled as long as the number of sinks of all input behaviours
matches the number of sources in Rout. If this is the case, they will be connected in order
from left to right to construct the behaviour R. The sources of R will be the same as the
sources of the inputs, ordered from left to right.

sources(R) := sources(R1) + sources(R2) + . . . + sources(Rn)
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The sinks of R are the same as the sinks of Rout.

sinks(R) := sinks(Rout)

Additional point-free graph composition operators with different semantics are conceivable,
such as the parallel and parallel* operators in [36].

4.3.6 Run-time Semantics of Reactors: Spawning and Linking

We now complete the running example of Section 4.1 by showing how the program is started,
and how actors and reactors are linked together. We will focus on the composition of actors
and reactors rather than the internal semantics of reactors. Internally, it suffices to know that
every reactor has a reactive engine that is responsible for propagating values from sources
to sinks. Similar to Flapjax [34] and REScala [46], we based our propagation algorithm on
that of FrTime [12], but without the complexity of a dynamic dependency graph. It ensures
that only the parts of a DAG that are affected by a change will be recomputed, and that
computations produce no glitches when multiple nodes change simultaneously.

Listing 13 implements the Main program for the running example. Its purpose is to
spawn an actor representing a wind, spawn a reactor representing a wind turbine and its
power output calculation, and to print this power output to the console. This functionality
is implemented by the start constructor. Most of the expressions have been discussed
previously. Line 3 spawns an instance of the Wind actor behaviour and Line 4 sends it a
blow message. The wind will now start periodically emitting values.

The spawn-reactor expression on Line 5 spawns a new reactor that is now waiting for
data on its sources. Remember that a reactor is defined as a vat of reactor deployments, and
in this case TurbinePowerOutput will be the root deployment, as well as the only deployment
for this reactor throughout its lifetime.

Reactors are linked to actors (or other reactors) via the react-to special form that will
change the values of source nodes. If the new value of a source node is an object of type
Stream, instead of changing the value of the source node, the reactor will automatically
create a subscription on the stream (possibly replacing an existing subscription). Then,
whenever new values are emitted by this stream, they enter the mailbox of the reactor which
will process them by modifying the value of the corresponding source node. In Listing 13 the
sources of turbine are changed on Line 6 to 80, 0.3, and sirocco. In the context of our
application, this means that this is a reactor that represents a turbine with a blade length
of 80 meters, an efficiency of 30%, which is influenced by the sirocco wind. To print the
output of the turbine the console, on Line 7 the main actor monitors the turbine for changes.
Reactors export exactly 1 output stream called out.

Reactors are aware of stream arity, and the react-to composition operator can be used
to react to streams with an arity greater than 1. In this case, the reactor requires exactly as
many source nodes as the arity of the input streams. For example, a reactor that is made to
react (via react-to) to a stream of arity 2 will require exactly 2 source nodes. Whenever the
input stream emits new values they will enter the mailbox as a single publication, but (in this
case) the value of the 2 source nodes of the reactor will change simultaneously. The react-to
composition operator ensures that there is a one-to-one mapping between its arguments and
the source nodes of the reactor.
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Listing 13 The Main program for the wind turbine simulator of Section 4.1.
1 (actor Main
2 (def-constructor (start)
3 (def sirocco (spawn-actor Wind 'init))
4 (send sirocco 'blow)
5 (def turbine (spawn-reactor TurbinePowerOutput))
6 (react-to turbine 80 0.3 sirocco)
7 (monitor turbine.out 'print))
8

9 (def-method (print watt)
10 (println "turbine produced: " (round (/ watt 1000000)) " MW")))

5 Evaluating the Awkward Squad for Reactive Programming

We introduced the awkward squad for reactive programming as a set of issues that are essential
for real-world software development, but that do not fit within reactive programming. In
this section we investigate the extent to which these issues can be present in existing reactive
languages and frameworks. We find that it is indeed the case that existing languages and
frameworks expose operations or mechanisms to developers that fall within one or all issues
of the awkward squad. In many cases these operations and mechanisms will be unavoidable
for developers, either because they are an inherent part of the language or framework, or
because otherwise it would be impossible to write certain applications, e.g. applications
with a GUI. In this paper we do not investigate the extent to which possibly issue-causing
operations are used in real applications, and if they are present, which bugs they can possibly
cause in those specific applications.

Table 1 lists a number of reactive languages and frameworks that we consider to be rep-
resentative for the state-of-the-art. They are FrTime [12] (Racket), Flapjax [34] (JavaScript),
REScala [46] (Scala), ReactJS [28] (JavaScript), Akka Streams [45, Chapter 13] (Scala), and
RxJS [49] (JavaScript). We used them to implement our running example of Section 4.13.
Below the double horizontal line we list 3 other reactive languages which we did not use
to implement the application (for technical reasons) but which we classified according to
their respective papers. They will be discussed in Section 5.8. Based on our findings we
categorised these languages and frameworks as follows.

Reactive Thread Hijacking Problem (RTHP). Does the language or framework solve the
Reactive Thread Hijacking Problem? In other words, does the language or framework
prevent infinite computations from blocking the reactive program? We make no distinction
between eventual reactivity and strong reactivity. If not, we discuss the features that can
be used to block the reactive program.

Reactive Update Order Leak (RUOL). Does the language or framework solve the Reactive
Update Order Leak? In other words, does the language or framework disallow side-effects
in internal nodes of the DAG? If not, we will highlight the features where side-effects can
be executed inside the DAG.

Reactive/Imperative Impedance Mismatch (RIIM). In Section 2.3 we listed a number of
different mechanisms used by reactive languages to be able to embed reactive code within
imperative code. We discuss, to the best of our knowledge, which of the listed mechanisms
are used.

3 All code from this paper and the implementations used to guide our evaluation of the different languages
and frameworks are available in an artefact. To download this artefact, see the supplementary material
on the first page of this paper.
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Table 1 Categorisation of reactive languages and frameworks.

RTHP RUOL RIIM
FrTime × × Periodic polling, hidden concurrency, domain spe-

cific features, metaprogramming
Flapjax × × Metaprogramming, domain specific features
REScala × × Metaprogramming
ReactJS × × Metaprogramming, domain specific features
Akka Streams × × X

RxJS × × Metaprogramming
Stella X X X

Elm × × Domain specific features, special forms
ActiveSheets X X X

Coherence × X X

5.1 FrTime
FrTime is a functional reactive programming language built in Racket that can be interacted
with via the Racket Read-Eval-Print Loop [12].

RTHP. The execution time of expressions in FrTime is unrestricted. While there exists
a limited set of built-in functions (e.g. arithmetic) that always terminate, the built-
in lift-strict primitive is used to integrate any (possibly infinitely looping) Racket
function with the DAG. The implementation of FrTime exposes multiple threads of
execution to developers: one thread is responsible for updating the reactive program, and
another thread is responsible for the REPL. To implement an infinite loop that represents
a wind, we blocked one thread of execution to continuously modify a source node of the
dependency graph.

RUOL. Any Racket function may be used in internal nodes of the DAG via the aforementioned
lift-strict function. Additionally, FrTime offers abstractions for “event streams” that
can be mapped and filtered (via map-e and filter-e respectively) using using regular
Racket functions.

RIIM. We have identified 4 mechanisms that are used to embed reactive code within
imperative code. Firstly, there are 2 built-in signals called seconds and milliseconds
that are updated automagically by the runtime, which can be used for periodic polling.
Secondly, multiple threads of execution are exposed to developers. While the Racket
REPL thread can be used to send and receive values to and from the reactive program,
the semantics of their interaction is not part of the language definition. Thirdly, FrTime
has domain specific features in the form of a wrapper around the Racket GUI toolkit [26],
which automatically integrates with the DAG. Lastly, source nodes of the DAG can
be manually defined via cells and event-receivers, and they can be assigned to via
set-cell! and send-event respectively. The semantics of modifying a source node is
unspecified, especially when assignments to the same sources occur in multiple threads.

5.2 Flapjax
Flapjax is a reactive programming language based on JavaScript [34].

RTHP. Nodes in the dependency graph consist of arbitrary JavaScript functions, which
are unrestricted in their execution time. To create an infinite loop that implements a
wind without blocking the browser, we implemented a non-blocking loop by wrapping
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JavaScript’s setTimeout to asynchronously schedule an event in the JavaScript event-loop.
Some built-in operations can unintentionally block the reactive program. For example,
the evalForeignScriptValE operation is applied to a reactive value that contains a
URL. It retrieves and evaluates the (foreign) JavaScript file on the URL, and publishes
its return value as a new reactive value [50].

RUOL. Flapjax programs consist of arbitrary JavaScript expressions that may involve
arbitrary side-effects inside the DAG. Some built-in operations execute side-effects in
the DAG, such as the GUI modification operators insertDomB and insertDomE to insert
a reactive value in the browser DOM, operations such as getWebServiceObjectE to
perform XMLHttpRequests, or the aforementioned evalForeignScriptValE to evaluate
an arbitrary JavaScript file.

RIIM. To embed reactive code within imperative JavaScript code, Flapjax has 2 mechanisms.
Source nodes of the DAG can be manually created from the GUI via operations such as
extractValueB and extractValueE which are updated automatically by the runtime,
and ex nihilo via receiverE (to create a new event stream) and sendEvent (to modify
an event stream). Flapjax also offers special features to construct GUI elements that
automatically integrate with reactive values.

5.3 REScala
REScala is a reactive programming library in Scala that unifies the concepts of functional
reactive programming with object-oriented programming [46].

RTHP. REScala imposes no restrictions on the execution time of expressions inside the DAG
of a reactive program. Since it is built as a library, regular Scala functions are used to
perform computations on reactive values. To model a wind from our running example
without blocking the reactive program, we manually constructed a new Scala thread with
an infinite loop that non-reactively modifies a source node of the reactive program.

RUOL. Since REScala is conceived as a library, the Scala functions used in nodes of the DAG
may perform arbitrary side-effects. As a design guideline, the REScala documentation
explicitly mentions that functions inside the DAG must be pure [41, 1.5.3].

RIIM. To embed reactive code within imperative code, REScala offers special features to
manually create new source nodes of the DAG (Vars) and to modify them via assignment.
Conversely, callbacks can be installed on sink nodes of the DAG to act on their changes.

5.4 ReactJS
ReactJS is a JavaScript reactive GUI framework developed by Facebook [28], which is used
to develop reactive web applications and mobile applications [21].

RTHP. The types of expressions that constitute a ReactJS program are regular JavaScript
expressions, and are unrestricted in their computation time. To implement a wind
without blocking the browser, we used JavaScript’s setInterval that calls a function on
a repeated interval.

RUOL. There are no restrictions on side-effects inside a ReactJS dependency graph. The
documentation mentions that reactive components should be pure only with respect
to their “props” object, which is a framework-provided object that is used to create
dependencies between reactive components [27].
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RIIM. The state of a reactive component is manually modified via a special setState
method that triggers a new propagation cycle. ReactJS offers domain specific features
(via JSX templates) to construct user interfaces that automatically display the values of
sink nodes of the dependency graph.

5.5 Akka Streams
Akka Streams is a streaming library in Scala based on the Akka actor library [45, Chapter 13].
We had some difficulties reproducing the semantics of our running example in Akka Streams
because we found it to be very difficult to create dependency graphs that are not linear
(multiple sources or sinks) and which have similar update semantics.

RTHP. There are no restrictions on performing long lasting computations inside the DAG,
e.g. via the stream operator map to apply a regular Scala function to a stream, or zipWith
to combine 2 or more streams via a regular Scala function.

RUOL. Many built-in streaming operators are designed to be without side-effects. While we
could not find explicit programmer guidelines discussing side-effects in the Akka Streams
documentation, we believe that stream operators are intended to be pure, including
those that accept arbitrary Scala functions (e.g. map or zipWith). We found at least
some interest by users of the Akka project on GitHub for stream operators that execute
side-effects. In one instance a user requested a novel operator to execute side-effects
without performing a value transformation, noting that the only way to achieve the
desired effect was via the map operator (which, in the experience of the user, lead to code
duplication) [52]. In response to this issue a new wireTap stream operator was added to
Akka version 2.5.13. A new variant of this operator (with different semantics) is currently
being requested by a different user [53]. This anecdotal evidence is at least an indication
that functional purity is not always upheld by the users of Akka. Some operators with
side-effects are built-in, for example, the log operator logs the elements flowing through
a stream, and the ask operator sends an asynchronous message to an actor. Sink nodes
also perform side-effects to act on the elements of a data stream, e.g. to print results to
the console via a forEach operator.

RIIM. As far as we know, Akka Streams has a clean separation between the code that
is responsible for supplying values to the reactive program (which are actors) and the
code that is responsible for the reactive program itself (which are actors that run data
streams). Note that this is not always the case, since there exist many operators to
create new source nodes ex nihilo whereby the reactive program (an actor running data
streams) is itself responsible for collecting/retrieving its input data. For example, the
FiloIO.fromPath operator that creates a source node to read the contents of a file.

5.6 RxJS
RxJS [49] is a streaming library for JavaScript based on the ReactiveX specification [40],
which has currently been implemented in 18 languages.

RTHP. There are no restrictions on the execution time of the expressions that constitute a
stream, and long lasting computations will block the entire program. Implementations of
ReactiveX in other languages may support Schedulers which are designed to introduce
multithreaded processing to streams, but this can cause other issues, especially when
used in combination with side-effects.
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RUOL. Many built-in streaming operators are designed to be without side-effects, and the
documentation of RxJS describes operators in general as “pure functions” [39]. We
believe that operators that rely on arbitrary JavaScript functions (e.g. map or zipWith)
are intended to be functionally pure as well (but which cannot be enforced). In some cases
side-effects are unavoidable, for example when defining a type of source node called a
Subject, which is manually updated to start the propagation of new values. Frameworks
in the family of ReactiveX (such as RxJS) also offer a whole range of “Do” operators
that are specifically designed to execute side-effects within a reactive program without
performing a value transformation [38].

RIIM. Programmers in RxJS can manually create and update new source nodes (a Subject)
of the DAG, and they can manually create new streaming operators using metaprogram-
ming to read from unsupported data sources. Callbacks are registered on sink nodes
of the program to imperatively act upon their changes (e.g. by modifying the GUI, or
printing to the console).

5.7 Stella
RTHP. Stella solves the Reactive Thread Hijacking Problem by eliminating infinite compu-

tations from reactive programs. Whether our implementation also solves the problem of
responsiveness in general depends on the expectations of the application developer. We
believe there is no one-size-fits-all solution to ensure that an application remains “reactive”
or “responsive”, since their meaning is likely to change depending on the application
requirements or domain. The Actor-Reactor Model facilitates restricting certain parts of
the application (the reactive parts) to provide extra guarantees with respect to respons-
iveness or computational complexity without introducing the problems that we identify
in this paper. The design choice that we made in Stella is to enforce eventual reactivity
via size-change termination. Thus, Stella ensures that reactors must eventually terminate,
and that the execution thread of a reactor is not accidentally hijacked by computations
in other parts of the program (other actors or reactors). In different application domains
with stronger memory or timing requirements (e.g. safety systems, robotics, . . . ) it would
be conceivable to further restrict reactors, for example by imposing strong reactivity and
bounded-size mailboxes.

RUOL. Stella solves the Reactive Update Order Leak by ensuring that effectful computations
cannot be part of the dependency graph of a reactive program. This is realised by routines
in the object-oriented base language. However, using methods and routines may be a
burden for programmers, since they must make an effort to correctly program a piece of
functionality as a regular method or as a routine. When using built-in classes or libraries
they must also know whether functionality is offered as a method or as a routine.

RIIM. Stella solves the Reactive/Imperative Impedance Mismatch. It ensures that the
embedding of reactive code within imperative code does not introduce the Reactive
Thread Hijacking Problem and the Reactive Update Order Leak, and that the semantics
of embedded reactive code are clear. There are 2 composition operators available to
actors: react-to and monitor. To imperatively change the source nodes of a reactive
program, actors must use react-to with clearly defined semantics: a message is sent to
the reactor that, when processed, changes its source nodes. To imperatively act on the
changes of reactive programs, actors must use monitor: whenever the monitored stream
produces a new result, a new message is enqueued in the mailbox of the actor. Reactors
have no imperative operators to “send” or “receive” values, or to manually react to the
changes of values (e.g. via callbacks). In the true spirit of reactive programming, they
can only declaratively express dependencies on data sources via their source nodes and
qualifications.

ECOOP 2020



19:24 Tackling the Awkward Squad for Reactive Programming

5.8 Additional Mentions

There are some reactive languages and frameworks that require a special mention. When
possible we list them in Table 1 below the double horizontal line.

Elm [15] is a reactive programming language that compiles to JavaScript. We were
unable to build our running example in Elm because its current distribution is no longer
reactive [14]. Expressions inside the DAG in Elm may perform infinite computations that
block the reactive program. An interesting observation is that Elm is presented as a purely
functional reactive programming language, but its paper describes a syncGet operation to
execute a web request (e.g. to fetch an image from a URL), which is clearly a side-effect. The
reason why this operation (among others) is built-in is because it is necessary for building
web applications, but introducing this operation in the reactive language also causes the
problems of the awkward squad. This is exactly the essence of the awkward squad.

ActiveSheets [54] is a reactive language based on Microsoft Excel where the DAG consists
of regular spreadsheet operations. ActiveSheets adds features to Excel to automatically insert
values into cells based on external data streams, and, like a regular spreadsheet, updates to
cells automatically propagate throughout the program. The core language of ActiveSheets
is formalised and used to prove that, for any given update of a cell, computation time and
memory usage are bound. Furthermore, as far as we know there are no spreadsheet operations
that have side-effects on other cells, so there can be no side-effects in internal nodes of the
DAG. However, ActiveSheets is not a general purpose programming language. Conceptually
an ActiveSheets program can be represented by 1 reactor that implements the spreadsheet
logic.

In the Coherence language, code is divided in derivations and reactions [19]. Derivation is
used to automatically compute the program output by deriving values from input via purely
functional computations. Side-effects are isolated to different parts of the code, namely
reactions, that are responsible for imperatively keeping the application state consistent with
derived values. This stems from the insight that derivation and reaction need each other, but
that coordinating side-effects in an event-based application is extremely difficult. A reactive
program constructed via derivations is guaranteed to be free of side-effects, and is thus not
subject to the Reactive Update Order Leak. The Coherent Reaction programming model
offers no mechanisms to solve the Reactive Thread Hijacking Problem.

HipHop is a synchronous reactive programming language inspired by Esterel with an
implementation in Scheme [6] and JavaScript [55]. HipHop is not classified in Table 1
because the programming style and evaluation model of synchronous reactive programming
languages makes them difficult to compare with the approaches in Table 1. However, there
are interesting parallels between some aspects of the HipHop language and the Actor-Reactor
Model. HipHop is embedded as a DSL within the Hop language, and Hop code interfaces
with HipHop code via reactive machines that conceptually fulfil the same role as reactors.
Hop code sends input events to a reactive machine and manually triggers a propagation
cycle. Output events produced by the HipHop machine can be observed by Hop code via
event handlers. Interestingly, one of the core language statements called atom& is used within
HipHop to execute Hop code, which may contain side-effects and recursive functions. While
side-effects in synchronous reactive programs are arguably not subject to the issues discussed
in Section 2.2, the authors make a note that the “execution time [of atom statements] should
be kept negligible in practice” [6, 3.4].
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6 Conclusion

To conclude this paper we reflect on our 2 largest contributions, namely identifying the
awkward squad for reactive programming and the Actor-Reactor Model. We believe that
there is no panacea to write both imperative and reactive programs within a single unified
language that exposes the same concepts and operations in both types of programs. Instead,
we believe that imperative and reactive programs are fundamentally different, and that
they should be programmed whilst guaranteeing their own invariants. To this end the
Actor-Reactor Model serves as a new mental model to classify and design reactive systems.

As a secondary contribution, our definition of reactors may prove to be valuable to the
field of reactive programming in two ways. First, we define distinct terminology for the
different stages of a reactive program: a reactor behaviour represents a dependency graph that
is constructed from code, a deployment is a specific instance of a graph that keeps track of all
run-time information and state, and a reactor contains the reactive engine that propagates
values through one or more deployments. Conceptually, the reactive programs in many
existing reactive programming languages are analogous to 1 reactor with 1 deployment. By
using our definitions, we open the door for modularity and composition of reactive programs
both statically (e.g. via point-wise and point-free composition operators) and dynamically by
composing data streams. Second, we conjecture that reactors together with the mechanism
of qualification is an alternative, but equally powerful, way to construct higher-order reactive
programs. Reactors may provide more insights or clarities with respect to the run-time
semantics and resource usage of higher order reactive programs.

The Actor-Reactor Model may inspire designers of reactive languages, framework de-
velopers, and researchers to be strict about what can and cannot be programmed within
a reactive program, and it may help them to define precisely the rules by which reactive
programs interact with their environment. Additionally, the Actor-Reactor Model may be
especially useful in application domains where certain parts of a program must be reactive,
for example, with specific memory or timing constraints (e.g. robotics and safety systems).
Operations that might not fit this model, but which are necessary for program development,
are evacuated into actors which are complementary to the reactive program, but which do
not violate the invariants of the reactive programming model.
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