
Poker: Visual Instrumentation of Reactive Programs
With Programmable Probes

Cloé Descheemaeker
cloe.descheemaeker@vub.be
Vrije Universiteit Brussel

Brussels, Belgium

Sam Van den Vonder
sam.van.den.vonder@vub.be
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium

Thierry Renaux
thierry.renaux@vub.be
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium

Wolfgang De Meuter
wolfgang.de.meuter@vub.be
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium

Abstract
This paper presents Poker, a visual instrumentation platform
for reactive programs. Similar to other platforms, Poker fea-
tures a visual dashboard that allows the programmer to in-
spect the flow of values through the reactive program. The
novelty of Poker is that: (a) It features a canvas of so-called
probes that can be dynamically wired into a running reactive
program in order to instrument the running system. (b) In
addition to focusing on the values flowing through the pro-
gram, a probe can measure a particular property about the
way these values flow through the instrumented program.
(c) The set of probes is open because a probe is programmed
in the same language as the instrumented program.

Poker is implemented for Stella [7], an experimental react-
ive programming language. The paper uses an application
written in Stella to motivate the concepts provided by Poker.
We show 4 different probes that help us understand the be-
haviour of the application and we measure the overhead of
using Poker on the running application with some prelimin-
ary benchmarks.

Keywords: Reactive Programming, Debugging, Instrument-
ation, Visual Programming, Actors, Reactors
ACM Reference Format:
Cloé Descheemaeker, Sam Van den Vonder, Thierry Renaux,
and Wolfgang De Meuter. 2021. Poker: Visual Instrumentation
of Reactive Programs With Programmable Probes. In Proceedings

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
REBLS ’21, October 17–22, 2021, Chicago, IL
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

of REBLS ’21: Workshop on Reactive and Event-Based Languages
and Systems (REBLS ’21). ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Reactive code makes up a significant portion of today’s soft-
ware applications. Examples can be found in web-based GUIs,
Cyber Physical Systems, robots and web-based collaborat-
ive platforms. Reactive code is hard to understand and de-
bug because its behaviour is typically driven by incoming
third-party data: It is typically implemented in a declarative
reactive programming language which makes “operational
understanding” harder and because it is often impossible to
switch off; i.e. it is perpetually running. But even if we do
allow a reactive application to be halted for inspection, it
is typically hard to understand the behaviour of the entire
reactive application by merely inspecting “the current state”
of every single reactive operator that is part of the applica-
tion (or nodes if we think about the DAG that corresponds
to the application) at a particular moment in time. After
all, the state of every single node only reveals a very small
portion of the state of the entire system. This is the reason
why researchers have developed visual tools that allow a
programmer to inspect the state changes of said operators by
visualising the flow of values. E.g., [3] allows the developer
to visualise a running reactive program in terms of so-called
marble diagrams. A number of variations on this theme can
be found and we present an overview in Section 2.

In software engineering a distinction is made between the
functional and the non-functional aspects of a system [9].
The former generally constitute what the system is doing
while the latter constitute the way it is performing that
task. Examples of non-functional requirements are memory
consumption, throughput, speed, security, authentication,
etc. With this terminology, the aforementioned visualisation
tools only allows a developer to visualise and understand the
functional aspects of a reactive program. In this paper we

https://orcid.org/0000-0002-9241-1098
https://orcid.org/0000-0002-9301-2187
https://orcid.org/0000-0002-5229-5627
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

REBLS ’21, October 17–22, 2021, Chicago, IL Descheemaeker, et al.

motivate the need for more powerful instrumentation tools
that allow a developer to also understand the non-functional
aspects of their program.

In this paper, we present Poker12. Poker is an instrument-
ation platform for instrumenting the functional as well as
the non-functional aspects of reactive programs. Poker has
the following properties:
Visual Probes Poker features a number of visual compon-
ents called probes. Poker visualises a running reactive
program by displaying a DAG-representation of said pro-
gram. Poker’s probes can be wired into and out of the
running DAG, and every probe displays a functional or a
non-functional property of the running reactive program.
Hence, probes are like measuring instruments or gauges
that a programmer can add and remove from a running
program in a visual way. In Section 4 we will demonstrate
probes for visualising the values flowing through a pro-
gram as well as probes for visualising the performance
and the throughput of the system.

Open Set of Probes The set of Poker’s probes is not lim-
ited to the built-in ones. Because probes are written in the
same language as the reactive program under inspection,
an expert developer can easily extend their suite of probes.
At startup time, Poker loads its set of probes from a file.
Hence, by simply extending this file with code implement-
ing additional probes, Poker is automatically extended. In
section Section 5, we show how to extend Poker with an
intelligent probe that not only instruments the running
application but which also modifies the behaviour of the
program. This allows us to experiment with alternative
implementations while understanding and inspecting the
behaviour of a running reactive application.
A central question that needs to be understood if we instru-

ment a reactive system is to what degree the instrumentation
code itself will affect the instrumented program. In physics
this disturbance of an observed system by the act of observa-
tion is known as The Observer Effect [6]. We will consider
this both from a qualitative as well as from a quantitative
point of view. The former is about how the presence or ab-
sence of Poker probes affects the semantics of the running
system. The latter is about how the presence of absence of
Poker probes affects the run-time performance of the system.

The paper is structured as follows. In Section 2 we motiv-
ate the need for richer tool sets to understand the behaviour
of reactive systems. In Section 3 we briefly introduce Stella,
the programming language that was used as the laboratory
for the research. Stella features both actors and reactors and
having access to its full tool chain allowed us to do the re-
search. In Section 4 we introduce Poker. We show the visual

1Poker (noun): one that pokes.
2Since Poker is a visual tool, we have made an accompanying video in order
to illustrate its working. https://youtu.be/5cqDsq4LikA. Video also available
at https://doi.org/10.5281/zenodo.5196223.

instrumentation platformwith the built-in set of instruments.
In Section 5 we show how to extend the current instrument
suite. In Section 6 we discuss how Poker and Stella interact,
and in Section 7 we elaborate on the observer effect induced
by some Poker probes. Sections 8 and 9 discuss Poker’s lim-
itations and related work respectively, and finally Section 10
concludes the paper.

2 Problem Statement
Programmers require the means for gaining “operational
understanding” of reactive systems, both of their functional
aspects and their non-functional aspects. A survey among
programmers experienced in developing reactive programs
identified 4 overarching practices developers perform when
debugging reactive programs [3]. Those related to acquir-
ing an operational understanding are “Gaining high-level
overview of the reactive structure” and “Understanding de-
pendencies [between time-varying values]”.
Both of the aforementioned practices are supported by

existing visualisation tools for debugging reactive systems.
Those debugging tools excel at granting programmers an un-
derstanding of reactive programs at the micro-level. Often
this is achieved by transforming source code into a visual
representation like a DAG, e.g., the stop-the-world debugger
for reactive programs proposed in [21], or “marble diagrams”
proposed in [3]. Such tools then visualise the way in which
data elements flow through the running program. In general
we say that they offer a very fine-grained view of the func-
tional requirements of a reactive program, i.e., on the level of
individual program statements (e.g., function applications).
Furthermore we say that they are a “hands-off” approach,
since they do not require the developer to modify the code of
the application under inspection. This hands-off nature of the
tools is important, since the extra effort required by “hand-
on” tools holds back engineers from applying the tools [2].
In industry, complex (distributed) systems are typically

monitored using “dashboards” that display metrics such as
average response times, network usage, and disk usage of
their servers, services, etc. We call thesemacro-level met-
rics since they are more coarse-grained. These dashboards
are commonly available for large frameworks used for build-
ing and orchestrating distributed services, e.g., Akka [19] and
Kafka [13], and often take the form of commercial products3
which visualise the macro-level metrics of an entire distrib-
uted application as a number of data points and time series
on a website. The metrics gathered on those dashboards are
not targeted at a deep, micro-level inspection of specific parts
of the reactive application in response to a specific desire for
insight. Instead, they are “always on”, supported by a service

3Examples include Grafana (https://grafana.com/), DynaTrace (https://
www.dynatrace.com/monitoring/technologies/java-monitoring/akka/), Ka-
mon (https://kamon.io/solutions/monitoring-for-akka/), and Phobos (https:
//phobos.petabridge.com/)

https://youtu.be/5cqDsq4LikA
https://doi.org/10.5281/zenodo.5196223
https://grafana.com/
https://www.dynatrace.com/monitoring/technologies/java-monitoring/akka/
https://www.dynatrace.com/monitoring/technologies/java-monitoring/akka/
https://kamon.io/solutions/monitoring-for-akka/
https://phobos.petabridge.com/
https://phobos.petabridge.com/

Poker: Visual Instrumentation of Reactive Programs With Programmable Probes REBLS ’21, October 17–22, 2021, Chicago, IL

running alongside the application from the start. These types
of frameworks are “hands-on”: Data is exposed to the dash-
board by explicit library calls added to the application source
code. Hence, these types of dashboards are the inverse of
micro-level reactive debugging tools: After provisioning a
reactive program and the infrastructure that it is running on,
they typically offer a generic and coarse-grained view of the
non-functional requirements of a the reactive system.

Currently, hands-off tools such as those proposed in [21]
and [3] give a developer insight into the inner workings of a
system’s functional requirements. In other words, they excel
at showing their users what a system is currently doing (e.g.,
“Are the computed values correct?”). For programmers to gain
an operational understanding of their system, we argue that
it is equally valuable to gain insight into the non-functional
requirements, as demonstrated by the large industrial dash-
boards. In other words, developers should also gain insights
into the way the system is behaving, but without having to
modify the code of the instrumented application. The exist-
ing work on a reactive debugger [21] partly identified this
necessity by visualising metrics about the “performance” of
a particular node in the DAG, but this metric is built-in and
not extensible.

The vision behind Poker is to enrich the existing toolbox
of reactive programmers by allowing them to inspect the
data flow of their reactive program to collect both functional
and non-functional metrics such as throughput and perform-
ance. Furthermore, since the goal is to help them gain a
better operational understanding of their specific programs,
we propose an open instrumentation platform that is easily
extendable via new metrics.

3 The Actor-Reactor Model
Poker was implemented in TypeScript as part of the tool
suite for the experimental programming language Stella [7]
(also written in TypeScript) that is used by the authors to
research new mechanisms for reactive programming. The
overall vision behind Poker is the same as the one behind
Smalltalk [10] and Self [23], two programming languages
that are intricately connected with their IDE. As we will
demonstrate in Section 5, Poker can be extended in Stella as
well. This section gives a brief overview of Stella.

There is a strong correspondence between reactive pro-
grams and their representation as a data flow DAG. Besides
being used in the implementation of the interpreter or com-
piler, reactive code is often easily visualised as a DAG, which
may aid its understanding [3, 21]. Poker also relies on this
correspondence to visualise a reactive program, but not at
the usual granularity of individual program statements (e.g.,
function applications). Instead we assume the Actor-Reactor
Model, where programs consist of actors and reactors that
interact via data streams. The Actor-Reactor Model was first
implemented in Stella, and Poker is designed to instrument

1 (def a 1) // (def <identifier> <expression>)

2 (set! a 2) // (set! <identifier> <expression>)

3 // (if <condition> <consequent> <alternative>)

4 (if (eq? a 1) (println! "y") (println! "n"))

Listing 1. Examples of basic Stella expressions.

1 (def-actor Main

2 (def-constructor (start env)

3 (println! "Hello World!")))

Listing 2. A “Hello World!” program in Stella.

Stella programs on the granularity of its so-called actors and
reactors.

3.1 Base Language
Stella has two layers: a sequential object-oriented (OO) base
language, and the concurrent level of actors and reactors.
The sequential base language contains objects such as num-
bers, strings (e.g., "hello") and symbols (e.g., ’hello), as
well as method invocations on objects and a number of spe-
cial forms (e.g., to spawn actors and reactors). Examples of a
variable definition via def, assignment via set! and a con-
ditional using if are given in Listing 1. Method invocations
follow operator prefix notation. E.g., the expression (eq?
a 1) invokes the method eq? on the value of variable a
with one argument, namely the number 1. In this case eq?
checks for object reference equality, and is implemented by
the root class Object. On the concurrent level, as we will
show, actors are responsible for all imperative code, and
reactors are responsible for all (purely functional) reactive
code. E.g., set! cannot be used in code used by a reactor.
Their separation is desirable, since side-effects can cause
tricky bugs in the reactive program, and have a detrimental
effect on behavioural composition [7, 8].

3.2 Actors and “Hello World!”
A Stella program consists of top-level definitions of OO
classes (which we do not discuss further), actor behaviours
(“the class of an actor”), and reactor behaviours (“the class
of a reactor”, i.e., a reactive program). To start a program,
the Stella developer implements an actor behaviour called
Mainwith a constructor called start, e.g., the “HelloWorld!”
program in Listing 2. Its formal parameter env may contain
values passed from JavaScript (where Stella is started).

Every actor is a concurrent process that has a single be-
haviour (such as Main) and a mailbox, i.e., a first-in first-out
queue that contains messages. Initially, the Stella interpreter
spawns an actor from the Main actor behaviour and invokes
its start constructor. In Listing 2 the constructor of the Main
actor simply prints “Hello World!” to the console.
An atypical feature of Stella’s actors is that they can ex-

port streams. For example, Listing 3 implements an actor
behaviour called Counter that implements a stream of mono-
tonically increasing numbers. Line 2 declares a stream called

REBLS ’21, October 17–22, 2021, Chicago, IL Descheemaeker, et al.

1 (def-actor Counter

2 (def-stream value)

3 (def-fields curr)

4 (def-constructor (init) (set! curr 0))

5 (def-method (increment)

6 (set! curr (+ curr 1))

7 (emit! value curr)))

Listing 3. A Counter actor behaviour.

1 (def-reactor (Add x y)

2 (def res (+ x y))

3 (out res))

Listing 4. An Add reactor behaviour.

value and Line 3 a local field called curr. The init con-
structor on Line 4 initializes the curr field via an assignment.
Line 5 declares a method called increment with no argu-
ments. Whenever a Counter actor receives an increment
message, the corresponding method is invoked, and the actor
will increment curr and emit! the new value on its value
stream. Emitting a new value amounts to sending an asyn-
chronous message to all other actors (and reactors) that are
subscribed to the stream.
Actors are spawned by other actors via a spawn-actor!

statement in the base language, which returns an object of
type ActorReference. For example, the following snippet
spawns an instance of Counter with its init constructor,
and immediately sends it an asynchronous increment mes-
sage.

(def ctr (spawn-actor! Counter 'init))

(send! ctr 'increment)

3.3 Reactors
Similar to actors, a reactor is a process with a mailbox and
a reactor behaviour, which encapsulates a push-based (func-
tional) reactive program that is compiled to a DAG. A re-
actor continuously dequeues messages from its mailbox and
propagates them through its DAG via an algorithm similar
to FrTime [5]. One of the simplest examples is the Add re-
actor behaviour given in Listing 4. A list of sources (inputs)
are given at the top, in this case two inputs called x and y.
They can be considered as signals or behaviours (i.e., time-
varying values) in other functional reactive programming
languages such as FrTime [5], Flapjax [16] and REScala [20].
The body consists of local variable definitions (such as res)
and method invocations on regular objects (e.g., +). Method
invocations are recomputed using “or”-semantics, meaning
they are reapplied whenever the value of any of the given
inputs change (using the latest value for the others), e.g., +
is recomputed whenever x or y changes. The list of output
signals is given by out, in this case res. Whenever the value
of res changes, it is emitted on a stream called out that is
exported by the reactor.

1 (def-actor Main

2 (def-constructor (start env)

3 (def counter (spawn-actor! Counter 'init))

4 (def adder (spawn-reactor! Add))

5 (react-to! adder 10 counter.value)

6 (monitor! adder.out 'print!))

7 (def-method (print! val)

8 (println! "output: " val)))

Listing 5. Chaining actors and reactors via their streams.

Since reactors are purely functional, only actors can spawn
them via spawn-reactor! in the base language, which re-
turns a ReactorReference object.
(def adder (spawn-reactor! Add))

3.4 Linking Actors and Reactors via Streams
Actors and reactors are linked via the streams which they
export. An example of a complete program that chains the
Counter and Add behaviours is shown in Listing 5, which
links the counter’s stream to a reactor, and prints the val-
ues of the reactor’s stream to the console. Here, the Main
actor first spawns the corresponding Counter actor and Add
reactor (Lines 3 and 4 respectively).

The sources of reactors are changed via a react-to! state-
ment on Line 5, which sends an asynchronous message to
the reactor that instructs them to change their sources to
the number 10 and counter.value respectively. Here, the
counter.value expression yields a reference to the stream
called value exported by the counter actor (returning an
object of type Stream). Note that this dot-notation can only
be used to refer to streams. The reactor will automatically
create a dependency on this stream. Thus, whenever the
counter actor emits a new value to the stream, this value
will arrive as an asynchronous message in the mailbox of the
reactor. When the reactor processes this message, it changes
the value of its corresponding source node (in this case y),
and propagates the new value through the reactive program
in typical reactive programming fashion.
Supplying an actor’s stream to a reactor links the actor

with the reactor. In the reverse direction, actors can monitor
the values of streams via a monitor! statement, for example
on Line 6 of Listing 5. Whenever the adder actor emits a
new value to its out stream, then because of the monitor!
statement, a new print! message will arrive in the mailbox
of the Main actor. When processed, this will lead to the in-
vocation of the corresponding print!method on Line 7 that
prints the output of the reactor to the console.

4 Introducing Poker
Poker is an open instrumentation platform for Stella pro-
grams. It visualises a running Stella program at the granu-
larity of actors, reactors, and the streams that connect them.
Programmers interact with Poker by hooking it up to a run-
ning Stella program, after which they can instrument said

Poker: Visual Instrumentation of Reactive Programs With Programmable Probes REBLS ’21, October 17–22, 2021, Chicago, IL

Figure 1. Screenshot of the instrumented Stella application.

program via a set of built-in probes that inspect various prop-
erties of the data that flows through the Stella program.

In the following sections we first introduce the Stella pro-
gram that is used to exemplify the instrumentation, and
afterwards we introduce various built-in probes that may
help a programmer solve a bug, or gain extra insight into
how the instrumented program operates at run-time.

4.1 A Stella Application
We demonstrate Poker by instrumenting the Stella applic-
ation shown in Figure 1. The application simulates shared
bicycles that float around a city for users to rent, and dis-
plays them on a map in real-time. Every bike is represented
by an actor that continuously emits its location to a stream.
Using this stream, three connected reactors are responsible
for tracking bicycles’ path (drawn via a coloured line), the
time rented, and the current price of the rental which is
calculated based on distance travelled and the elapsed time.
While Stella is capable of distributing actors and reactors
over a network, all actors and reactors giving rise to Figure 1
(as well as Poker) are running in the local browser.

Poker and its visualisation of our application at hand
is shown in Figure 2. Each box represents an actor or re-
actor, and each arrow indicates a connection via a stream.
In this case the application is tracking a single Bike actor
(left), whose data flows through other actors and reactors.
From left to right: PathCalc accumulates the travelled path,
PriceCalc calculates the price, and TripMonitor aggreg-
ates info about the trip (journey) of a rented bike. The data
from all trips (also other bikes) are collected by an actor
called TripManager, and at the end the desired data of each
rented bike reaches the Main actor (right) which modifies
the GUI shown in Figure 1.

The blue buttons at the bottom of Figure 2 depict Poker’s
built-in probes, each of which directly corresponds to an
actor behaviour in Stella. Clicking on a button creates a new
(unconnected) box in the diagram. Users draw new arrows
(via drag & drop) to connect the probes to existing streams:
Incoming streams are connected to the left, and outgoing
streams depart from the right. All changes are tentative until
the user clicks the teal “commit changes” button to modify

the instrumented application, after which the corresponding
actors will be spawned and the streams connected.

4.2 Probe 1: Inspecting values
A developer notices a discrepancy in the calculation of the
price of a rented bike. The price is established based on a
fixed cost, the time rented, and the distance travelled. When
the computed price is not as expected, then there must be a
problem with the price calculation itself (PriceCalc in Fig-
ure 2), or with the accumulation of a bike’s path (PathCalc),
e.g., faulty location data produced by the bike.

4.2.1 Assessing the Problem with Poker. To inspect
the values that are propagated via streams, Poker has a
built-in ValueProbe that logs the values that are propagated
via streams. This probe is effectively the “Hello World!” of
Poker. Figure 3 depicts the addition of two such probes. The
steps to add these probes are the following. (1) We clicked
the blue ValueProbe button in Figure 2 two times, yielding
two “unconnected” probes in the GUI. (2) We dragged a new
arrow from the “output” of PriceCalc and PathCalc to the
“input” of their respective probes. These new arrows are
highlighted in Figure 3 for clarity. (3) We pressed “commit”.
Any values emitted by PriceCalc and PathCalc are now
written to a log by the respective probes, which can be
accessed by clicking the probe. A developer can use this log
to debug the problem at hand.

4.2.2 Implementation. Probes are implemented in Stella.
Due to their imperative nature (e.g., interactions with Poker’s
GUI) they are implemented as actor behaviours. For ex-
ample, Listing 6 shows the implementation of ValueProbe.
It defines a local field called env (Line 2), a constructor called
init (Line 3), and a method called log! (Line 6).
The constructor arguments are provided by Poker when

a user presses the “commit” button and the corresponding
probes are spawned (by Poker). The first argument (_env)
is an object of type JSObjectProxy, i.e., it is a JavaScript
object that automatically wrapped by Stella’s foreign func-
tion interface. Any method invocations on this object are
forwarded by the Stella runtime to the wrapped JavaScript
object, automatically wrapping/unwrapping Stella objects
when needed. All following arguments to the constructor
are expected to be Stream objects (i.e., the result of an a.b
expression, see Section 3.4). The body of the constructor
stores _env in its similarly named local field (Line 4) and
starts monitoring the given stream (Line 5).
The log! method is invoked every time the monitored

stream produces a new value (see Section 3.4). Its body in-
vokes the update!method on env (Line 7), which (via Stella’s
foreign function interface) invokes a JavaScript function sup-
plied by Poker. Its first argument ’text indicates that Poker
should store the given value val in a plain text log.

REBLS ’21, October 17–22, 2021, Chicago, IL Descheemaeker, et al.

Figure 2. Screenshot of Poker.

Figure 3. Adding 2 instances of a ValueProbe.

1 (def-actor ValueProbe

2 (def-fields env)

3 (def-constructor (init _env stream)

4 (set! env _env)

5 (monitor! stream 'log!))

6 (def-method (log! val)

7 (update! env 'text val)))

Listing 6. Stella implementation of ValueProbe

4.3 Probe 2: Measuring Performance
A developer notices that updates to the application input (e.g.,
a bike moves) take a long time to propagate through the ap-
plication, for example, to update the GUI. This means there
may be a bottleneck in the system that is unable to cope with
high demand.

4.3.1 Assessing the Problem with Poker. A developer
may try to find the bottleneck that causes the application to
react slower than expected. Poker has a built-in probe called
the PerformanceProbe that is used to assess the perform-
ance of an actor or reactor. Two such probes are shown in
Figure 4 (highlighted via the red arrows). They are connec-
ted to the “bottom port” of TripMonitor and TripManager
respectively because they measure properties about the actor

Figure 4. Adding 2 instances of a PerformanceProbe. Note
that this figure depicts two instances of TripMonitor (and a
third instance off-screen to the left) whose data is streamed
to one instance of TripManager.

or reactor itself, rather than the streams entering or leaving.
Once connected, they show 2 metrics about the connected
actor or reactor:

1. The size of their mailbox, i.e., the message backlog.
2. How fast are messages processed, measured in messages

per minute.

For example, the rightmost node reads that there are cur-
rently 34 messages in the mailbox of TripManager, and
that it processed 73 messages in the last minute. A large
message backlog may suggest that the implementation of
TripManager should be improved.

4.3.2 Implementation. The PerformanceProbe is imple-
mented in Listing 7. This actor behaviour defines a couple
of local fields (Line 2), an init constructor (Line 4) and 3
auxiliary methods (Line 10, 18 and 22). The main idea is
that the probe continuously monitors the size of the mailbox
of the “probee” (the one who is probed). This information,
among other things, is published by every Stella actor and
reactor via a meta stream that they export (which is used in
the same way as any other stream). Besides tracking mailbox

Poker: Visual Instrumentation of Reactive Programs With Programmable Probes REBLS ’21, October 17–22, 2021, Chicago, IL

1 (def-actor PerformanceProbe

2 (def-fields env size rate)

3
4 (def-constructor (init _env stream)

5 (set! env _env)

6 (set! size 0)

7 (set! rate 0)

8 (monitor! stream 'register-update!))

9
10 (def-method (register-update! stats)

11 (def new-size (get stats 'mailbox-size))

12 (when (< new-size size)

13 (set! rate (+ rate 1))

14 (send-after! #self 60000 'decr!))

15 (set! size new-size)

16 (send! #self 'update-gui!))

17
18 (def-method (decr!)

19 (set! rate (- rate 1))

20 (send! #self 'update-gui!))

21
22 (def-method (update-gui!)

23 (update! env 'inline (append "" size "

msgs (-" rate "/min)"))))

Listing 7. Stella implementation of PerformanceProbe

size, the probe tracks a sliding window of the messages that
were processed in the last minute.

The local fields on Line 2 are used to store the metrics:
size will hold the last known size of the mailbox, and rate
how many messages were processed in the last minute. Sim-
ilar to ValueProbe, the init constructor accepts an argu-
ment _env to interact with Poker. Since the probe is connec-
ted in the GUI to the bottom port of the probee, the second
constructor argument is the aforementioned meta stream.
The body of the constructor initialises fields and monitors
the given stream, invoking register-update! every time
the stream emits a new value.

The meta stream emits a dictionary with various info such
as the mailbox-size, retrieved on Line 11. Whenever the
updated size is smaller than previously recorded in the size
field, then the probee must have processed a message. The
message is then counted towards the current rate of pro-
cessed messages by incrementing rate (Line 13), and on
Line 14 the probe schedules a decr! message to be sent to
itself after 60000 milliseconds to decrease rate by 1 (the
identifier #self refers to the current actor). Finally, the last
known size is updated (Line 15), and the probe sends a mes-
sage to itself to update the GUI.

Similar to ValueProbe, the GUI is updated by invoking an
update! method on env (Line 23). In this case an ’inline
visualisation mode is selected, which will draw the string
constructed via append directly in the box of the probe, as
seen in Figure 4.

Figure 5. Adding an instance of a ThroughputProbe.

4.4 Probe 3: Measuring Throughput
The browser seems to exhibit a large CPU load related to ren-
dering the map in Figure 1. This means that the number of
updates to the GUI possibly exceeds what the application
can handle.

4.4.1 Assessing the Problem with Poker. Poker can be
used to assess whether the number of GUI update events is
exceptionally high, or whether the implementation of the
GUI is too slow to handle a normal load. This problem boils
down to measuring the throughput of values of a stream,
which is implemented by Poker’s ThroughputProbe. Since
the Main actor of the instrumented application is respons-
ible for the GUI, in Figure 5 we attached the probe to its
incoming stream. The gauge shows how many messages
were propagated on the stream in the last minute.

4.4.2 Implementation. In Listing 8 we show the imple-
mentation of ThroughputProbe. It is implemented similarly
to the previously discussed PerformanceProbe, because it
also tracks a “sliding window” (via a counter) of values that
are emitted to a given input stream. Concretely, due to the
monitor! statement on Line 8, the incr!method is invoked
every time the monitored stream publishes a value, and a
decr! message is scheduled to be sent after 60000 milli-
seconds (Line 14). A notable difference is how the GUI is
updated on Line 22. Here, Poker is instructed to visualise
the data as a reactive gauge. Besides the current value of
the gauge ctr, Poker also expects a lower bound and upper
bound to determine its scale. In this case the bound is al-
ways between 0 and the highest throughput value ever seen,
which is tracked in the local field max-ctr.

5 Poker as an Open Platform
To support programmers to get a better operational under-
standing of their program, Poker is designed as an open
platform: Stella code can be used to extend the built-in set of
probes. In other words, new probes with application-specific
knowledge can be added. Concretely users of Poker can up-
load a new file of probes using the “Choose File” button in
Figure 2 (bottom right). The probe definitions in that file are
loaded without restarting the instrumented application, and

REBLS ’21, October 17–22, 2021, Chicago, IL Descheemaeker, et al.

1 (def-actor ThroughputProbe

2 (def-fields env ctr max-ctr)

3
4 (def-constructor (init _env stream)

5 (set! env _env)

6 (set! ctr 0)

7 (set! max-ctr 0)

8 (monitor! stream 'incr!)

9 (send! #self 'update-gui!))

10
11 (def-method (incr! val)

12 (set! ctr (+ ctr 1))

13 (set! max-ctr (max ctr max-ctr))

14 (send-after! #self 60000 'decr!)

15 (send! #self 'update-gui!))

16
17 (def-method (decr!)

18 (set! ctr (- ctr 1))

19 (send! #self 'update-gui!))

20
21 (def-method (update-gui!)

22 (update! env 'gauge ctr 0 max-ctr)))

Listing 8. Stella implementation of ThroughputProbe.

Poker’s GUI is immediately extendedwith new (blue) buttons
to add the probes. If the loaded file contains a probe defini-
tion that already exist (a name clash), then the new definition
replaces the old behaviour, but it will only be applied to new
probes (i.e., existing probes keep the old behaviour until they
are explicitly replaced by new probes).
To exemplify the adding of new probes, we continue the

example of Figure 5 where the throughput of a stream was
too high, causing the GUI of the instrumented application
to slow down due to high CPU load. If the implementation
of the GUI is not the problem, then the situation can still be
remedied by slowing down the rate of GUI updates. More
specifically, the developer has determined that in this applic-
ation GUI updates can be batched to reduce the number of
times the map of Figure 1 is redrawn, thus reducing CPU
load. They decide to implement an application-specific probe
to experimentally determine an acceptable update rate.

5.1 Implementing New Probes
The implementation of probes must be conform to Poker’s
API. We briefly summarise its requirements.

Every probe must have a constructor called init that
accepts at least one argument which, up to this point, we
called env. As previously mentioned, this is an object of type
JSObjectProxy that is provided by Poker when it spawns
the probe, i.e., it is a Stella wrapper for a JavaScript object
which is used by the probe to interact with Poker. All suc-
ceeding arguments to the constructor are expected to be
objects of type Stream (i.e., the result of an a.b expres-
sion, see Section 3.4). They directly correspond to the “input
ports” of a box in the visualisation. For example, since the

Figure 6. Batching GUI updates with BatchProbe.

1 (def-actor BatchProbe

2 (def-stream batched-updates)

3 (def-fields buffer frequency)

4
5 (def-constructor (init env stream)

6 // new: instantiate object-oriented class

7 (set! buffer (new List))

8 (set! frequency 1000) // 1 second

9 (monitor! stream 'append-update!)

10 (send-after! #self frequency 'flush!))

11
12 (def-method (append-update! updates)

13 (set! buffer (append buffer updates)))

14
15 (def-method (flush!)

16 (emit! batched-updates buffer)

17 (set! buffer (new List))

18 (send-after! #self frequency 'flush!)))

Listing 9. Stella implementation of BatchProbe.

ThroughputProbe of Listing 8 has 2 constructor arguments
(1 of which is env), Poker draws the corresponding box in
Figure 5 with 1 circle on the left to connect an arrow (a
stream). While we have not shown it, multiple input streams
are supported. They will appear as multiple inputs from top
to bottom in the order of the constructor arguments. By
connecting an arrow and pressing the “commit” button (see
Figure 2), Poker spawns the probe with an env object and
the connected streams as arguments.
To display values in the Poker GUI, probes must invoke

the update! method on env. Its first argument is a display
mode that determines how Poker should visualise the values.
Supported modes are ’text (write to log, see Section 4.2),
’inline (show directly on the probe, see Section 4.3), and
’gauge (draw dynamic gauge, see Section 4.4).

5.2 Batching GUI Updates
Given the above specification, the developer implements
a new probe called BatchProbe that batches GUI updates.
As shown in Figure 6 it is connected “inline” before GUI
updates reach the Main actor. The user connected this probe
by dragging & dropping the stream between TripManager
and Main to the input port of BatchProbe, and by dragging
a new arrow from the output port of BatchProbe to Main.
The implementation of BatchProbe is presented in List-

ing 9. The main idea is that all GUI updates are buffered
in a list that is occasionally flushed to the GUI, in this case
once every second. Many parts of the implementation are

Poker: Visual Instrumentation of Reactive Programs With Programmable Probes REBLS ’21, October 17–22, 2021, Chicago, IL

similar to the built-in probes. However, a crucial difference is
that BatchProbe impacts the application logic of the instru-
mented application: It intercepts a stream of GUI updates,
and exports a new stream with less frequent (batched) up-
dates. This output stream is declared on Line 2.

A buffer is initialised on Line 7 for storing the incoming
GUI updates, and the frequency of updates is hard-coded to
be every 1 second (Line 8)4. Every time the given input stream
emits new GUI updates, these updates are appended to the
stored buffer via the append-update! method on Line 12.
The buffer is periodically flushed to the output stream via
an asynchronous loop, where the probe sends itself flush!
messages (Lines 10 and 18).

The output stream is automatically incorporated by Poker
into the graphical representation of the probe (in Listing 9)
via a circle on the right side of the probe, i.e., an “output
port”. By redirecting (via drag & drop) the arrow that used
to connect TripManager and Main, behind the scenes Poker
automatically performs the necessary work to seamlessly re-
direct streams in the instrumented application by interfacing
directly with the Stella runtime.

6 Interaction Between Poker and Stella
The Stella interpreter was modified to expose some of its
internal information required to implement a tool such as
Poker. To aid the design of tools such as Poker for other
(actor-based) reactive programming languages or frame-
works, we briefly describe the kind of information exposed
by Stella’s interpreter.
In general, the language or framework should minimally

support the following features, e.g., via metaprogramming,
or in our case by modifying Stella’s interpreter.
List (re)actors: Poker requires a list of every (re)actor in

the program. In our case, Stella’s interpreter notifies Poker
every time a process is spawned or killed.

List stream dependencies: Every re(actor) should notify
Poker whenever they establish or remove a subscription
to a stream. This information is required to draw the data
flow between (re)actors.

Spawn actors: To add probes, Poker should be able to
spawn new actors with the desired behaviour.

Create new behaviour: To support the open nature of
Poker, the language or framework should allow new actor
behaviours to be added. E.g., to load (i.e., compile or
interpret) new code at run-time.

Modify stream dependencies: One of the more difficult
requirements is the ability to modify stream dependencies.
When one (re)actor is streaming data to another, then the
language or framework should support a mechanism to
reroute this stream from its original source to a probe, and
to route the probe’s output stream to the original source.

4Note that, to experiment with the frequency of updates, a developer can eas-
ily modify the code and upload a new file without stopping the application.

Figure 7. Series (a) vs. parallel (b) circuits

7 The Observer Effect
In the literature on reflection and meta-programming, a dis-
tinction is made between introspection and intercession. The
former allows a meta-program to refer to values and struc-
tures of a running base program. The latter allows the meta-
program to replace some of the values and structures of
said program. Poker gives the developer the full intercessive
power in the way Stella actors are linked to one another. This
means that Poker probes may have wanted or unwanted ef-
fects on the execution of the program under instrumentation.

In physics, the idea that observing a system inevitable dis-
turbs that system is known as The Observer Effect. Since
Poker allows us to add and remove probes to and from a
running Stella application, the question arises to what extent
the observer effect plays a role when trying to understand a
running system. We make a distinction between semantic
disturbances and disturbances related to the run-time per-
formance.

7.1 Qualitative Observer Effects
In electrical engineering a distinction is often made between
series circuits and parallel circuits when connecting electrical
components such as resistors, inductors and capacitors. This
is illustrated in Figure 7.
The probes illustrated in Section 4 are wired into the

DAG of the running application in a similar way. E.g., the
ValueProbe probe presented in Section 4.2 was connected to
the application in a parallel circuit. Hence this probe cannot
incur a semantic observer effect on the running application.
This is different for the BatchProbe presented in Section 5.
This probe was connected to the application in a series circuit
and can thus affect the values flowing through the program.

7.2 Quantitative Observer Effects (Benchmarking)
Apart from incurring a semantic effect on the running pro-
gram, one might wonder what the cost is of adding probes to
a system.When using series circuits, there will be an obvious
cost that will depend on the complexity of the code sitting in
the probe. More interesting is to know whether parallel cir-
cuits also have a performance hit. The extra work that needs
to be done comes from the fact that a Stella (re)actor now

REBLS ’21, October 17–22, 2021, Chicago, IL Descheemaeker, et al.

has to forward its output to more than just the application
(re)actors that logically depend on that (re)actor.

In order to get a preliminary idea of the cost of wiring
extra parallel probes in a running Stella application, we have
conducted preliminary benchmarks that vary along the fol-
lowing dimensions:
1. The number of times that the data is copied. Since

actors and reactors have no shared (mutable) state, mes-
sages between them are always sent by (deep) copy. Hence,
adding an additional recipient (a probe) will slow down
the overall performance of the system since the data needs
to be copied more than once.

2. The size of the data that is copied. It is clear that an
actor that emits primitive numbers will experience a smal-
ler slowdown than an actor that emits “heavy” data struc-
tures that take longer to copy.

7.2.1 Benchmark Setup. Stella is implemented as a con-
tinuation passing style interpreter in TypeScript. We ran the
experiments on Ubuntu 20.04.2 LTS with Node.js v14.16.0.
While Stella is single-threaded, experiments were run on an
AMD Ryzen™ Threadripper™ 3990X with 128GB of DDR4-
3200 RAM (our benchmark only used around 1.6GB). All
measurements were measured using Node.js’ “performance
measurement API”, which implements the W3C recommend-
ation for high resolution time with sub-millisecond preci-
sion [11].

The benchmarked application is simple: 1 actor repeatedly
emits data to its stream, which is received by a varying
number of ValueProbe actors (from Listing 6). We modified
Stella’s interpreter to measure the time it takes (on average)
to execute the emit! statement of the data emitter.
1. To measure the impact of larger numbers of probes, we

ran the benchmark multiple times with 1 to 64 probes
(stepping the powers of 2).

2. To measure the impact of data size, we ran the benchmark
with a producer of small data (primitive numbers) and a
producer of larger data (a list of 1000 actor references).

Since the measured time of a single emission will be very
small, we emitted the data 1,000,000 times. Total run-time of
the benchmarks ranges between approximately 15 seconds
(1 probe) and 10 minutes (64 probes) for the small data, and
30 seconds to 30 minutes for the larger data.

7.2.2 Results. The results of our benchmarks are graphed
in Figure 8. The run-times using small data are depicted in
blue, and those with large data in orange. As expected, the
propagation times for both small and large data grow linearly
with the number of probes, and copying larger data takes
longer with more probes.
Considering the measured times are in the order of mi-

croseconds, attaching parallel probes has an almost (but
not entirely) negligible observer effect on the application
that is being instrumented. However, one can imagine using

0 10 20 30 40 50 60
Probes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ti
m

e
(m

ill
is

ec
on

ds
)

Probe overhead

small
large

Figure 8. Benchmark results. Error bars = 95% confidence
interval over 1,000,000 runs (drawn, but not visible due to
their small size).

Poker to create rich dashboards by automatically attaching
a whole range of parallel probes to various (if not all) actors
and reactors in the application. Since the dashboard then
indiscriminately adds many probes to the system, some of
the measured stream values may contain large (i.e., slow
to copy) data. In those cases the monitoring of Poker may
unexpectedly impact the total performance or throughput
of a system. To remedy these issues, approaches exist to
pass data between actors without copying, e.g., via reference
capabilities demonstrated by the Pony language [4].

8 Limitations and Future Work
8.1 Configuring Probes
The metrics collected by probes currently use hard-coded
constants. For example, the ThroughputProbe always meas-
ures the throughput of a stream in values per minute. Cur-
rently developers have to upload a file with new probes to
change these constants. It is conceivable to further extend
Poker to allow probes to be configured even at run-time,
e.g., by requiring probes to implement an additional method
(e.g., configure!) such that Poker can send configuration
messages to probes. A possible use case is a GUI slider that
changes the reporting period of a ThroughputProbe.

8.2 Many-to-one Hierarchies
Poker is currently most suited to probe a single stream
between two (re)actors. While probes with multiple input
streams are supported (as long as the number of streams is
fixed), sometimes situations arise where an actor or reactor
is on the receiving end of a variable number of streams. For
example, TripManager in Figure 2 (right) receives data from
one stream for each rented bike in the application. Currently
we do not support such many-to-one hierarchies where a

Poker: Visual Instrumentation of Reactive Programs With Programmable Probes REBLS ’21, October 17–22, 2021, Chicago, IL

probe intercepts a variable number of the input streams. This
seems to be challenging to implement from a GUI perspect-
ive, and also has its own challenges from the perspective
of a probe’s implementation when adding such probes in
series-type circuits, since there currently is only one output
stream. In analogy with electronics, we suspect this situation
is similar to a multiplexer and demultiplexer.

8.3 Cause and Effect
When we initially experimented with Poker and its imple-
mentation, an appealing type of probe that perfectly fits
within Poker’s paradigm is a “latency probe”: A probe that
measures the latency between two parts of the system, i.e.,
the time it takes for a message to be processed between
two selected points. However, this type of probe is currently
very difficult to implement because it is not possible to track
“cause and effect” between streams. More specifically, it is
not possible to know that a certain input message (e.g., for
an actor) gives rise to a certain output message published to
its stream.

8.4 Complex Data Structures
In general, any Stella object can be passed from Stella to
Poker (e.g., via the update! method used by probes). Simple
Stella objects such as numbers, strings, dictionaries and ar-
rays naturally map to a JavaScript equivalent. However, if
no reasonable JavaScript equivalent exists (e.g., for complex
data structures), Stella converts them to JSON before passing
the objects to Poker. Concretely this means that Poker has
no special mechanisms to visualise complex data other than
the standard JavaScript tools, e.g., printing “prettified” JSON.

8.5 Beyond Stella
Poker targets actor-based reactive programs, which seems
to limit its applicability in practice. However, the combina-
tion of reactive programming and actors has been noticed
by others as well [22]. A notable example from industry
is Akka Streams [19, Chapter 13], a framework based on
the principles of “reactive streams” [1] built on top of the
Akka actor framework [19] for Scala. Akka Streams allows
developers to construct and compose “flows”, which corres-
pond to a DAG. Flows are executed by dedicated actors that
are responsible for propagating values through the DAG.
Thus, Akka Streams implements a model of Akka actors that
communicate with Akka Streams “reactors”. Given sufficient
knowledge about metaprogramming in Akka, we believe it
is conceivable to build a version of Poker for Akka Streams.
The notion of debugging actor-based systems by means of a
visualisation has been proposed before by [15].

9 Related Work
Throughout this paper we have discussed some related work
for building visualisations of reactive systems. In this section

we aim to more concretely distinguish Poker from those
other works.

[21] describes a stop-the-world debugger with operations
designed specifically for reactive programs. Beyond provid-
ing insight in the functional requirements of a reactive pro-
gram, the debugger offers the means of measuring perform-
ance in a reactive system. They note that the typical approach
of profiling the time a program spends executing a function is
not as relevant in reactive programming. Instead, the fraction
of the global update-time spent in a certain function is key
to measuring performance in a reactive program. Poker does
not provide this functionality, since the notion of a single
global update phase does not exist in Stella: Each (re)actor
handles updates independently. Hence, visualisation of non-
functional requirements differs in two ways between [21]
and Poker. First, Poker measures reactive performance as
messages per time (i.e., throughput) instead of time per update.
Second, since Poker is an open platform, it can be extended
with probes that measure other metrics.

In addition tomeasuring the performance of a reactive pro-
gram, there is also the aspect of managing the performance
of the visualisation tool itself. On this front, the authors of
[21] foresee some issues with the scalability of their system.
To support larger reactive programs they provide a number
of “countermeasures” to the scalability issues for their “al-
ways on” style of visualisation. The core idea behind their
countermeasures is to reduce the number of nodes to visual-
ise by pruning away parts of the reactive program DAG. In
addition, they offer a search feature and show a thumbnail
to help the user navigate the visualisation. Poker does not
currently offer such countermeasures, limiting the size of
the programs which can practically be visualised with Poker.
However, Poker’s approach does not suffer from these scalab-
ility issues to the same extent: Actors and reactors are, by
nature, at a coarser granularity than the individual program
statements in [21], and the number of Poker probes is not
proportionate to the size of the input program. However,
similar problems will occur in large programs with many
actors and reactors.
[3] describes RxFiddle, a graphic debugger for RxJS.

RxFiddle visualises a small RxJS program as a marble
diagram. Unlike Poker, RxFiddle heavily focuses on the
functional aspects of a reactive program: what concrete
value is produced where. Visualisation of non-functional
aspects is not possible with RxFiddle’s marble diagrams.
With respect to scalability, the authors of [3] note that their
visualisation works best when the visualised application has
a small number of events (<20), and is not suitable for higher
volume data flow. As future work they propose handling
high volume streams differently, e.g., by offering filtering
features or watch expressions. Poker’s approach would
enable implementing those filters and watch expressions in
Stella code, and exposing that code as new probes through
the openness of the Poker platform.

REBLS ’21, October 17–22, 2021, Chicago, IL Descheemaeker, et al.

[12] describes the Vega debugger. This tool displays events
produced inside a reactive program as rows of time series
data, or plots them as, e.g., timelines of values. The visual-
isation of the functional data is completely detached from a
visualisation of the reactive DAG structure. Visualisation of
non-functional aspects is not supported in the Vega debug-
ger.
[17] describes how a platform like Poker could be used

not only for gaining insights, but also for live code manip-
ulation to handle the insights gained. The work appears to
be conceived mostly for experimenting with changes: In-
put values as well as the reactive structure can be modified,
and time-travel debugging is supported to inspect how the
changes impact the program’s behaviour. In Poker we made
the deliberate decision that the definitions of probes must be
stored in a file, loaded into the application through the open
platform as described in Section 5. The decision to load from
files prevents us from offering the same degree of dynamism
as [17], but gains us reproducibility.
Since Poker makes it possible to add code to a running

program and modify its behaviour, Poker could be seen as a
Live Programming Environment [14] or as a visual program-
ming language or tool [18]. However, the goal of Poker is
not to serve as a visual programming environment (or IDE)
for Stella. A live or visual programming tool for Stella has to
tackle additional concerns which are not tackled by Poker,
e.g., viewing and modifying the code of existing (re)actors,
hot code reloading, and persisting changes made via the tool
to the underlying codebase.

10 Conclusion
We presented Poker, a visual instrumentation platform for
reactive programs written in Stella. The main novelty of
Poker is that: (a) Its probes can be transparently wired into
a running program. (b) A probe can measure a functional
or non-functional requirement of a particular stream. (c)
Probes are programmed in Stella itself, and can be added
to Poker without stopping the instrumented application. As
such, Poker can form the basis for debuggers for perpetually
running reactive platforms.
While the tool Poker is specifically aimed at Stella ap-

plications, the concepts and mechanisms are more broadly
applicable. More specifically, Poker has demonstrated a new
mode of interaction with a reactive program that enriches
the toolbox of reactive programmers with which they can
collect both functional and non-functional metrics about
the reactive program. By allowing new probes to be pro-
grammed and added at run-time, programmers can gain a
better understanding of their programs.

Acknowledgments
Sam Van den Vonder is funded by the Research Foundation
- Flanders (FWO) under grant number 1S95318N. Thierry

Renaux is funded by the Flanders Innovation & Entrepreneur-
ship (VLAIO) “Cybersecurity Initiative Flanders” program.

References
[1] [n.d.]. Reactive Streams. http://web.archive.org/web/20191009093755/

https://www.reactive-streams.org/ Accessed 2019-10-09.
[2] Manuel Alabor and Markus Stolze. 2020. Debugging of RxJS-Based

Applications. In Proceedings of the 7th ACM SIGPLAN International
Workshop on Reactive and Event-Based Languages and Systems (Virtual,
USA) (REBLS 2020). Association for Computing Machinery, New York,
NY, USA, 15–24. https://doi.org/10.1145/3427763.3428313

[3] Herman Banken, Erik Meijer, and Georgios Gousios. 2018. Debugging
Data Flows in Reactive Programs. In Proceedings of the 40th Inter-
national Conference on Software Engineering, ICSE 2018, Gothenburg,
Sweden, May 27 - June 03, 2018 (Gothenburg, Sweden) (ICSE ’18), Michel
Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark Harman (Eds.).
Association for Computing Machinery, New York, NY, USA, 752–763.
https://doi.org/10.1145/3180155.3180156

[4] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy
McNeil. 2015. Deny capabilities for safe, fast actors. In Proceedings
of the 5th International Workshop on Programming Based on Actors,
Agents, and Decentralized Control, AGERE! 2015, Pittsburgh, PA, USA,
October 26, 2015, Elisa Gonzalez Boix, Philipp Haller, Alessandro Ricci,
and Carlos Varela (Eds.). Association for Computing Machinery, New
York, NY, USA, 1–12. https://doi.org/10.1145/2824815.2824816

[5] Gregory H. Cooper and Shriram Krishnamurthi. 2006. Embedding
Dynamic Dataflow in a Call-by-Value Language. In Programming
Languages and Systems, 15th European Symposium on Programming,
ESOP 2006, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2006, Vienna, Austria, March 27-28,
2006, Proceedings (Lecture Notes in Computer Science, Vol. 3924), Peter
Sestoft (Ed.). Springer-Verlag, Berlin, Heidelberg, 294–308. https:
//doi.org/10.1007/11693024_20

[6] Massimiliano Sassoli de Bianchi. 2013. The observer effect. Foundations
of science 18, 2 (2013), 213–243. https://doi.org/10.1007/s10699-012-
9298-3

[7] Sam Van den Vonder, Thierry Renaux, Bjarno Oeyen, Joeri De Koster,
and Wolfgang De Meuter. 2020. Tackling the Awkward Squad for Re-
active Programming: The Actor-Reactor Model. In 34th European Con-
ference on Object-Oriented Programming (ECOOP 2020) (Leibniz Inter-
national Proceedings in Informatics (LIPIcs), Vol. 166), Robert Hirschfeld
and Tobias Pape (Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Inform-
atik, Dagstuhl, Germany, 19:1–19:29. https://doi.org/10.4230/LIPIcs.
ECOOP.2020.19

[8] Jonathan Edwards. 2009. Coherent Reaction. Technical Report MIT-
CSAIL-TR-2009-024. Massachusetts Institute of Technology, Computer
Science and Artificial Intelligence Laboratory, Cambridge, 02139 Mas-
sachusetts, USA. http://web.archive.org/web/20181103183154/http:
//dspace.mit.edu/bitstream/handle/1721.1/45563/MIT-CSAIL-TR-
2009-024.pdf?sequence=1

[9] Martin Glinz. 2007. On Non-Functional Requirements. In 15th IEEE
International Requirements Engineering Conference, RE 2007, October
15-19th, 2007, New Delhi, India. IEEE Computer Society, Washington,
D.C., United States, 21–26. https://doi.org/10.1109/RE.2007.45

[10] Adele Goldberg and David Robson. 1983. Smalltalk-80: The Language
and Its Implementation. Addison-Wesley Longman Publishing Co., Inc.,
Boston, Massachusetts, USA. ISBN: 978-0-201-11371-6.

[11] Ilya Grigorik. 2019. High Resolution Time Level 2. W3C Recom-
mendation. W3C. https://web.archive.org/web/20210325154905/https:
//www.w3.org/TR/2019/REC-hr-time-2-20191121/ Accessed: 2021-03-
25.

[12] Jane Hoffswell, Arvind Satyanarayan, and Jeffrey Heer. 2016. Visual
Debugging Techniques for Reactive Data Visualization. Computer

http://web.archive.org/web/20191009093755/https://www.reactive-streams.org/
http://web.archive.org/web/20191009093755/https://www.reactive-streams.org/
https://doi.org/10.1145/3427763.3428313
https://doi.org/10.1145/3180155.3180156
https://doi.org/10.1145/2824815.2824816
https://doi.org/10.1007/11693024_20
https://doi.org/10.1007/11693024_20
https://doi.org/10.1007/s10699-012-9298-3
https://doi.org/10.1007/s10699-012-9298-3
https://doi.org/10.4230/LIPIcs.ECOOP.2020.19
https://doi.org/10.4230/LIPIcs.ECOOP.2020.19
http://web.archive.org/web/20181103183154/http://dspace.mit.edu/bitstream/handle/1721.1/45563/MIT-CSAIL-TR-2009-024.pdf?sequence=1
http://web.archive.org/web/20181103183154/http://dspace.mit.edu/bitstream/handle/1721.1/45563/MIT-CSAIL-TR-2009-024.pdf?sequence=1
http://web.archive.org/web/20181103183154/http://dspace.mit.edu/bitstream/handle/1721.1/45563/MIT-CSAIL-TR-2009-024.pdf?sequence=1
https://doi.org/10.1109/RE.2007.45
https://web.archive.org/web/20210325154905/https://www.w3.org/TR/2019/REC-hr-time-2-20191121/
https://web.archive.org/web/20210325154905/https://www.w3.org/TR/2019/REC-hr-time-2-20191121/

Poker: Visual Instrumentation of Reactive Programs With Programmable Probes REBLS ’21, October 17–22, 2021, Chicago, IL

Graphics Forum 35, 3 (2016), 271–280. https://doi.org/10.1111/cgf.12903
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12903

[13] Jay Kreps, Neha Narkhede, and Jun Rao. 2011. Kafka: A distributed
messaging system for log processing. In Proceedings of the NetDB, 2011,
Athens, Greece, Vol. 11. Association for Computing Machinery, New
York, NY, USA, 1–7.

[14] Louis Mandel and Florence Plateau. 2009. Interactive Programming
of Reactive Systems. Electron. Notes Theor. Comput. Sci. 238, 1 (2009),
21–36. https://doi.org/10.1016/j.entcs.2008.01.004

[15] Aman Shankar Mathur, Burcu Kulahcioglu Ozkan, and Rupak Majum-
dar. 2018. IDeA: An Immersive Debugger for Actors. In Proceedings of
the 17th ACM SIGPLAN International Workshop on Erlang (St. Louis,
MO, USA) (Erlang 2018). Association for Computing Machinery, New
York, NY, USA, 1–12. https://doi.org/10.1145/3239332.3242762

[16] Leo A. Meyerovich, Arjun Guha, Jacob P. Baskin, Gregory H. Cooper,
Michael Greenberg, Aleks Bromfield, and ShriramKrishnamurthi. 2009.
Flapjax: a programming language for Ajax applications. In Proceed-
ings of the 24th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2009,
October 25-29, 2009, Orlando, Florida, USA, Shail Arora and Gary T.
Leavens (Eds.). Association for Computing Machinery, New York, NY,
USA, 1–20. https://doi.org/10.1145/1640089.1640091

[17] Ragnar Mogk, Pascal Weisenburger, Julian Haas, David Richter, Guido
Salvaneschi, and Mira Mezini. 2018. From Debugging Towards Live
Tuning of Reactive Applications. In 2018 LIVE Programming Workshop.
LIVE, Vol. 18.

[18] Mitchel Resnick, John H. Maloney, Andrés Monroy-Hernández, Nat-
alie Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric
Rosenbaum, Jay S. Silver, Brian Silverman, and Yasmin B. Kafai. 2009.
Scratch: programming for all. Commun. ACM 52, 11 (Nov. 2009), 60–67.

https://doi.org/10.1145/1592761.1592779
[19] Raymond Roestenburg, Rob Bakker, and Rob Williams. 2016. Akka

in action (1 ed.). Manning Publications Co., Shelter Island, New York,
United States. ISBN: 978-1-61729-101-2.

[20] Guido Salvaneschi, Gerold Hintz, and Mira Mezini. 2014. REScala:
bridging between object-oriented and functional style in reactive
applications. In 13th International Conference on Modularity, MOD-
ULARITY ’14, Lugano, Switzerland, April 22-26, 2014, Walter Binder,
Erik Ernst, Achille Peternier, and Robert Hirschfeld (Eds.). Associ-
ation for Computing Machinery, New York, NY, USA, 25–36. https:
//doi.org/10.1145/2577080.2577083

[21] Guido Salvaneschi and Mira Mezini. 2016. Debugging for React-
ive Programming. In Proceedings of the 38th International Confer-
ence on Software Engineering (Austin, Texas) (ICSE ’16), Laura K.
Dillon, Willem Visser, and Laurie A. Williams (Eds.). Association
for Computing Machinery, New York, NY, USA, 796–807. https:
//doi.org/10.1145/2884781.2884815

[22] Kazuhiro Shibanai and Takuo Watanabe. 2018. Distributed Functional
Reactive Programming on Actor-Based Runtime. In Proceedings of the
8th ACM SIGPLAN International Workshop on Programming Based on
Actors, Agents, and Decentralized Control (Boston, MA, USA) (AGERE
2018), Joeri De Koster, Federico Bergenti, and Juliana Franco (Eds.).
Association for Computing Machinery, New York, NY, USA, 13–22.
https://doi.org/10.1145/3281366.3281370

[23] David M. Ungar and Randall B. Smith. 2007. Self. In Proceedings of the
Third ACM SIGPLAN History of Programming Languages Conference
(HOPL-III), San Diego, California, USA, 9-10 June 2007, Barbara G. Ryder
and Brent Hailpern (Eds.). Association for Computing Machinery, New
York, NY, USA, 1–50. https://doi.org/10.1145/1238844.1238853

https://doi.org/10.1111/cgf.12903
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12903
https://doi.org/10.1016/j.entcs.2008.01.004
https://doi.org/10.1145/3239332.3242762
https://doi.org/10.1145/1640089.1640091
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/2577080.2577083
https://doi.org/10.1145/2577080.2577083
https://doi.org/10.1145/2884781.2884815
https://doi.org/10.1145/2884781.2884815
https://doi.org/10.1145/3281366.3281370
https://doi.org/10.1145/1238844.1238853

	Abstract
	1 Introduction
	2 Problem Statement
	3 The Actor-Reactor Model
	3.1 Base Language
	3.2 Actors and ``Hello World!''
	3.3 Reactors
	3.4 Linking Actors and Reactors via Streams

	4 Introducing Poker
	4.1 A Stella Application
	4.2 Probe 1: Inspecting values
	4.3 Probe 2: Measuring Performance
	4.4 Probe 3: Measuring Throughput

	5 Poker as an Open Platform
	5.1 Implementing New Probes
	5.2 Batching GUI Updates

	6 Interaction Between Poker and Stella
	7 The Observer Effect
	7.1 Qualitative Observer Effects
	7.2 Quantitative Observer Effects (Benchmarking)

	8 Limitations and Future Work
	8.1 Configuring Probes
	8.2 Many-to-one Hierarchies
	8.3 Cause and Effect
	8.4 Complex Data Structures
	8.5 Beyond Stella

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

