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• Object-oriented, functional patterns, 
dynamically typed

• Actor-based concurrency/distribution

• Mirror-based reflection

• JVM as platform

• Runs on              and J2ME/CDC phones

AmbientTalk: fact sheet
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How does AmbientTalk help?
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Volatile Connections

Zero Infrastructure 

No blocking synchronization
receive events, even when disconnected

Peer-to-peer service discovery protocol
decentralized, location-based

Asynchronous, buffered messaging
send messages, even when disconnected

Network failures ≠ exceptions
timeouts & leasing, whether connected or disconnected
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• Inter-event loop communication is asynchronous
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Event Loop 
(actor)

Message queue

objects



Demo



def service := object: {
  def echo(text) {
    system.println("Received: "+text);
    text
  }
}

deftype EchoService;

def pub := export: service as: EchoService;

deftype EchoService;

def echoF := when: EchoService discovered: { |echoSvc|
  system.println("Discovered an echo service");
  echoSvc;
} within: 2.minutes

echoF<-echo("test1");

def resultF := echoF<-echo("test2")@TwoWay;
when: resultF becomes: { |value|
  system.println("Reply: " + value);
}

echoF<-echo("test3");

EchoServer

EchoClient



AmbientTalk = OO + Events
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when: type discovered: { |ref| ... }

when: future becomes: { |result| ... }

when: ref disconnected: { ... }

when: ref reconnected: { ... }

when: ref expired: { ... }

Follow-up on 
outstanding requests

React to services appearing 
and disappearing

Generate and receive 
application requests

React to references 
disconnecting, 
reconnecting, expiring

obj<-msg(arg)
def msg(param) { ... }



Urbiflock
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• P2P Geosocial networking 
framework

• Test deployment on Brussels 
public transport network
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Summary
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Volatile ConnectionsZero Infrastructure

Non-blocking
Synchronisation

Decentralized
Discovery

Asynchronous
Communication

Disconnections
≠ Failures

Android 1.6J2ME CDCJ2SE 1.5

ad hoc



ambienttalk.googlecode.com

Interpreter
(MIT License)

http://prog.vub.ac.be/amop
http://prog.vub.ac.be/amop

