
Software Languages Lab
Brussels, Belgium

AmbientTalk

Tom Van Cutsem

A scripting language for mobile phones



Mobile Ad Hoc Networks

Networks of mobile devices that use wireless p2p communication

2



Mobile Ad Hoc Networks

Networks of mobile devices that use wireless p2p communication

2

Zero 
Infrastructure



Mobile Ad Hoc Networks

Networks of mobile devices that use wireless p2p communication

2

Volatile 
Connections

Zero 
Infrastructure



Mobile Ad Hoc Networks

Networks of mobile devices that use wireless p2p communication

2

Volatile 
Connections

Zero 
Infrastructure

Local 
interactions



• Object-oriented, functional patterns, 
dynamically typed

• Actor-based concurrency/distribution

• Mirror-based reflection

• JVM as platform

• Runs on              and J2ME/CDC phones

AmbientTalk: fact sheet
3



Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

4

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76



Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

4

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76



Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

4

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76



Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

4

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76



Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

4

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76



Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

4

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76



Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

4

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76



Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

4

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76



Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

4

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76



Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

4

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76



Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

4

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76



Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

4

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76



Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

4

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76



Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

4

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76

ECMAScript Harmony



How does AmbientTalk help?
5

Volatile Connections

Zero Infrastructure 

No blocking synchronization
receive events, even when disconnected

Peer-to-peer service discovery protocol
decentralized, location-based

Asynchronous, buffered messaging
send messages, even when disconnected

Network failures ≠ exceptions
timeouts & leasing, whether connected or disconnected



Event Loop Concurrency

• AmbientTalk programs are event loops

• They react to events from the outside world

• Inter-event loop communication is asynchronous

6



Event Loop Concurrency

• AmbientTalk programs are event loops

• They react to events from the outside world

• Inter-event loop communication is asynchronous

6

Event Loop 
(actor)

Message queue

objects



Demo



def service := object: {
  def echo(text) {
    system.println("Received: "+text);
    text
  }
}

deftype EchoService;

def pub := export: service as: EchoService;

deftype EchoService;

def echoF := when: EchoService discovered: { |echoSvc|
  system.println("Discovered an echo service");
  echoSvc;
} within: 2.minutes

echoF<-echo("test1");

def resultF := echoF<-echo("test2")@TwoWay;
when: resultF becomes: { |value|
  system.println("Reply: " + value);
}

echoF<-echo("test3");

EchoServer

EchoClient



AmbientTalk = OO + Events
9

when: type discovered: { |ref| ... }

when: future becomes: { |result| ... }

when: ref disconnected: { ... }

when: ref reconnected: { ... }

when: ref expired: { ... }

Follow-up on 
outstanding requests

React to services appearing 
and disappearing

Generate and receive 
application requests

React to references 
disconnecting, 
reconnecting, expiring

obj<-msg(arg)
def msg(param) { ... }



Urbiflock
10

• P2P Geosocial networking 
framework

• Test deployment on Brussels 
public transport network



Summary
11

Volatile ConnectionsZero Infrastructure

ad hoc



Summary
11

Volatile ConnectionsZero Infrastructure

Android 1.6J2ME CDCJ2SE 1.5

ad hoc



Summary
11

Volatile ConnectionsZero Infrastructure

Non-blocking
Synchronisation

Decentralized
Discovery

Asynchronous
Communication

Disconnections
≠ Failures

Android 1.6J2ME CDCJ2SE 1.5

ad hoc



ambienttalk.googlecode.com

Interpreter
(MIT License)

http://prog.vub.ac.be/amop
http://prog.vub.ac.be/amop

