
Software Languages Lab
Brussels, Belgium

AmbientTalk

Tom Van Cutsem

Modern Actors for Modern Networks

 Elisa Gonzalez Boix Andoni Lombide Carreton Christophe Scholliers
 Kevin Pinte Dries Harnie Wolfgang De Meuter

Mobile Ad Hoc Networks

Networks of mobile devices that use wireless p2p communication

2

Mobile Ad Hoc Networks

Networks of mobile devices that use wireless p2p communication

2

Zero
Infrastructure

Mobile Ad Hoc Networks

Networks of mobile devices that use wireless p2p communication

2

Volatile
Connections

Zero
Infrastructure

Mobile Ad Hoc Networks

Networks of mobile devices that use wireless p2p communication

2

Volatile
Connections

Zero
Infrastructure

Local
interactions

Mobile P2P Apps
3

Mobile P2P Apps
3

Discovery

Mobile P2P Apps
3

Discovery Communication

Mobile P2P Apps
3

Discovery Communication Synchronisation

21%

32%

Mobile P2P Apps
4

Discovery Communication Synchronisation

Mobile P2P Apps
4

Discovery Communication Synchronisation

Mobile P2P Apps
4

Failure handlingDiscovery Communication Synchronisation

• Object-oriented, functional patterns,
dynamically typed

• Actor-based concurrency/distribution

• Mirror-based reflection

• JVM as platform

• Runs on

AmbientTalk: fact sheet
5

Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

6

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76

Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

6

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76

Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

6

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76

Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

6

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76

Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

6

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76

Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

6

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76

Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

6

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76

Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

6

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76

Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

6

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76

Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

6

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76

Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

6

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76

Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

6

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76

Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

6

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76

Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

6

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76

ECMAScript 6

How does AmbientTalk help?
7

Volatile Connections

Zero Infrastructure

No blocking synchronization
receive events, even when disconnected

Peer-to-peer service discovery protocol
decentralized, location-based

Asynchronous, buffered messaging
send messages, even when disconnected

Network failures ≠ exceptions
timeouts & leasing, whether connected or disconnected

AmbientTalk Basics

Object-oriented
9

def makePoint(i, j) {
 object: {
 def x := i;
 def y := j;
 def distanceToOrigin() {
 ((self.x * self.x) + (self.y * self.y)).sqrt()
 }
 }
}

Object-oriented
9

def makePoint(i, j) {
 object: {
 def x := i;
 def y := j;
 def distanceToOrigin() {
 ((self.x * self.x) + (self.y * self.y)).sqrt()
 }
 }
}

def point := makePoint(1,1);
point.distanceToOrigin();

Blocks + keyworded message sends
10

def square := { |x| x * x }
square(5) // 25

[1,2,3].map: { |x| x * x } // [1,4,9]
[1,2,3].inject: 0 into: { |sum,x| sum + x } // 6

Control structures
11

if: (foo != nil) then: {
 foo.bar();
} else: {
 raise: Exception.new(“error”);
}

while: { x < 10 } do: {
 x := x + 1
}

0.to: 10 do: { |i|
 system.println(i);
}

Event handlers
12

on: button.click do: {
 system.println(“clicked!”);
}

when: 10.seconds elapsed: {
 system.println(“time’s up!”);
}

Concurrency & Distribution

Event Loop Concurrency
• AmbientTalk programs are event loops

• They react to events from the outside world

• Inter-event loop communication is asynchronous

14

Event Loop Concurrency
• AmbientTalk programs are event loops

• They react to events from the outside world

• Inter-event loop communication is asynchronous

14

Event Loop
(actor)

Message queue

‘local’ object ‘remote’ object

Event Loop Concurrency in AmbientTalk
15

Event Loop Concurrency in AmbientTalk
15

“do m immediately”

obj

obj.m()

Event Loop Concurrency in AmbientTalk
15

“do m eventually”

obj<-m()

Event Loop Concurrency in AmbientTalk
15

“do m eventually”

obj<-m()

Event Loop Concurrency in AmbientTalk
15

?

future

Event Loop Concurrency in AmbientTalk
15

?

future

def future := obj<-m()@TwoWay
when: future becomes: { |value|
 // process reply
}

Event Loop Concurrency in AmbientTalk
15

?

future

def future := obj<-m()@TwoWay
when: future becomes: { |value|
 // process reply
}

Exporting & discovering objects
16

mplayer

Exporting & discovering objects
16

mplayer

deftype MusicPlayer deftype MusicPlayer

Exporting & discovering objects
16

mplayer

export: mplayer as: MusicPlayer

deftype MusicPlayer deftype MusicPlayer

Exporting & discovering objects
16

mplayer

export: mplayer as: MusicPlayer

whenever: MusicPlayer discovered: { |mplayer|
 // open a session
}

deftype MusicPlayer deftype MusicPlayer

Exporting & discovering objects
16

mplayer

export: mplayer as: MusicPlayer

whenever: MusicPlayer discovered: { |mplayer|
 // open a session
}

deftype MusicPlayer deftype MusicPlayer

Far References
17

session

uploadSong

Far References
17

session

uploadSong

Far References
17

session

uploadSong

Far References
17

session

Far References
17

session

Far References
17

session

Far References
17

session

when: session<-uploadSong(s)@Due(timeout) becomes: { |ack|
 // continue exchange
} catch: TimeoutException using: { |e|
 // stop exchange
}

AmbientTalk = OO + Events
18

when: type discovered: { |ref| ... }

when: future becomes: { |result| ... }

when: ref disconnected: { ... }

when: ref reconnected: { ... }

when: ref expired: { ... }

Follow-up on
outstanding requests

React to services appearing
and disappearing

Generate and receive
application requests

React to references
disconnecting,
reconnecting, expiring

obj<-msg(arg)
def msg(param) { ... }

• Event notification = sending an apply message to a block

• apply message is executed in its own event loop turn

AmbientTalk = OO + Events
19

when: MusicPlayer discovered: { |p|
 ...
}

• Event notification = sending an apply message to a block

• apply message is executed in its own event loop turn

AmbientTalk = OO + Events
19

def block := { |p| ... }
when: MusicPlayer discovered: block

• Event notification = sending an apply message to a block

• apply message is executed in its own event loop turn

AmbientTalk = OO + Events
19

def block := { |p| ... }
when: MusicPlayer discovered: block

block

• Event notification = sending an apply message to a block

• apply message is executed in its own event loop turn

AmbientTalk = OO + Events
19

block<-apply(ref)

def block := { |p| ... }
when: MusicPlayer discovered: block

block

Demo

Demo
21

Mobile echo service

Demo
22

1. Discover

Mobile echo service

Demo
23

1. Discover

2. Communicate

Mobile echo service

Demo
24

1. Discover

2. Communicate

3. Deal with failures

Mobile echo service

def service := object: {
 def echo(text) {
 system.println("Received: "+text);
 text
 }
}

deftype EchoService;

def pub := export: service as: EchoService;

deftype EchoService;

def echoF := when: EchoService discovered: { |echoSvc|
 system.println("Discovered an echo service");
 echoSvc;
} within: 2.minutes

echoF<-echo("test1");

def resultF := echoF<-echo("test2")@TwoWay;
when: resultF becomes: { |value|
 system.println("Reply: " + value);
}

echoF<-echo("test3");

Experiences

Applications

• P2P chat, music match maker, picture sharing, ...

• P2P multiplayer games (Atari Pong game, rock-paper-scissors, urban game
using GPS coordinates)

• Collaborative drawing app

27

REME-D: Distributed Debugger

• Editor, debugger (inspect actor state, mailbox, breakpoints on messages)

• Eclipse plug-in

29

Operational semantics

Small-step operational semantics

• Covers actors, objects, futures, discovery, fault-tolerant async messages

• Executable in PLT Redex

31

Tom Van Cutsem, Christophe Scholliers, Dries Harnie, Wolfgang De Meuter.
An operational semantics of Event Loop Concurrency in AmbientTalk
Tech. report VUB-SOFT-TR-12-04, April 2012

Summary
32

Volatile ConnectionsZero Infrastructure
ad hoc

Summary
32

Volatile ConnectionsZero Infrastructure

Non-blocking
Synchronisation

Decentralized
Discovery

Asynchronous
Communication

Disconnections
≠ Failures

ad hoc

ambienttalk.googlecode.com

Interpreter
(MIT License)

http://prog.vub.ac.be/amop
http://prog.vub.ac.be/amop

