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Failure handlingDiscovery Communication Synchronisation



• Object-oriented, functional patterns, 
dynamically typed

• Actor-based concurrency/distribution

• Mirror-based reflection

• JVM as platform

• Runs on            

AmbientTalk: fact sheet
5



Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

6

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76



Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

6

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76



Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

6

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76



Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

6

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76



Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

6

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76



Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

6

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76



Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

6

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76



Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

6

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76



Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

6

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76



Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

6

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76



Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

6

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76



Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

6

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76



Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

6

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76



Scheme
1975

ABCL

Smalltalk
‘70s-‘80s

6

Four Decades of Language Research

AmbientTalk
2006

1986

1997

1986

Hewitt’s actors
(PLASMA)
 ‘73-’76

ECMAScript 6



How does AmbientTalk help?
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Volatile Connections

Zero Infrastructure 

No blocking synchronization
receive events, even when disconnected

Peer-to-peer service discovery protocol
decentralized, location-based

Asynchronous, buffered messaging
send messages, even when disconnected

Network failures ≠ exceptions
timeouts & leasing, whether connected or disconnected



AmbientTalk Basics



Object-oriented
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def makePoint(i, j) {
  object: {
    def x := i;
    def y := j;
    def distanceToOrigin() {
      ((self.x * self.x) + (self.y * self.y)).sqrt()
    }
  }
}



Object-oriented
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def makePoint(i, j) {
  object: {
    def x := i;
    def y := j;
    def distanceToOrigin() {
      ((self.x * self.x) + (self.y * self.y)).sqrt()
    }
  }
}

def point := makePoint(1,1);
point.distanceToOrigin();



Blocks + keyworded message sends
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def square := { |x| x * x }
square(5) // 25

[1,2,3].map: { |x| x * x } // [1,4,9]
[1,2,3].inject: 0 into: { |sum,x| sum + x } // 6



Control structures
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if: (foo != nil) then: {
  foo.bar();
} else: {
  raise: Exception.new(“error”);
}

while: { x < 10 } do: {
  x := x + 1
}

0.to: 10 do: { |i|
  system.println(i);
}



Event handlers
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on: button.click do: {
  system.println(“clicked!”);
}

when: 10.seconds elapsed: {
  system.println(“time’s up!”);
}



Concurrency & Distribution



Event Loop Concurrency
• AmbientTalk programs are event loops

• They react to events from the outside world

• Inter-event loop communication is asynchronous
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Event Loop 
(actor)

Message queue

‘local’ object ‘remote’ object
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mplayer

export: mplayer as: MusicPlayer

whenever: MusicPlayer discovered: { |mplayer|
  // open a session
}

deftype MusicPlayer deftype MusicPlayer
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Far References
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session

when: session<-uploadSong(s)@Due(timeout) becomes: { |ack|
  // continue exchange
} catch: TimeoutException using: { |e|
  // stop exchange
}



AmbientTalk = OO + Events
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when: type discovered: { |ref| ... }

when: future becomes: { |result| ... }

when: ref disconnected: { ... }

when: ref reconnected: { ... }

when: ref expired: { ... }

Follow-up on 
outstanding requests

React to services appearing 
and disappearing

Generate and receive 
application requests

React to references 
disconnecting, 
reconnecting, expiring

obj<-msg(arg)
def msg(param) { ... }



• Event notification = sending an apply message to a block

• apply message is executed in its own event loop turn

AmbientTalk = OO + Events
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when: MusicPlayer discovered: { |p|
  ...
}
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def block := { |p| ... }
when: MusicPlayer discovered: block
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• Event notification = sending an apply message to a block

• apply message is executed in its own event loop turn

AmbientTalk = OO + Events
19

block<-apply(ref)

def block := { |p| ... }
when: MusicPlayer discovered: block

block
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Mobile echo service
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1. Discover

2. Communicate

Mobile echo service
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24

1. Discover

2. Communicate

3. Deal with failures

Mobile echo service



def service := object: {
  def echo(text) {
    system.println("Received: "+text);
    text
  }
}

deftype EchoService;

def pub := export: service as: EchoService;

deftype EchoService;

def echoF := when: EchoService discovered: { |echoSvc|
  system.println("Discovered an echo service");
  echoSvc;
} within: 2.minutes

echoF<-echo("test1");

def resultF := echoF<-echo("test2")@TwoWay;
when: resultF becomes: { |value|
  system.println("Reply: " + value);
}

echoF<-echo("test3");



Experiences



Applications

• P2P chat, music match maker, picture sharing, ...

• P2P multiplayer games (Atari Pong game, rock-paper-scissors, urban game 
using GPS coordinates)

• Collaborative drawing app

27







REME-D: Distributed Debugger

• Editor, debugger (inspect actor state, mailbox, breakpoints on messages)

• Eclipse plug-in

29



Operational semantics



Small-step operational semantics

• Covers actors, objects, futures, discovery, fault-tolerant async messages

• Executable in PLT Redex

31

Tom Van Cutsem, Christophe Scholliers, Dries Harnie, Wolfgang De Meuter. 
An operational semantics of Event Loop Concurrency in AmbientTalk
Tech. report VUB-SOFT-TR-12-04, April 2012
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Volatile ConnectionsZero Infrastructure

Non-blocking
Synchronisation

Decentralized
Discovery

Asynchronous
Communication

Disconnections
≠ Failures

ad hoc



ambienttalk.googlecode.com

Interpreter
(MIT License)

http://prog.vub.ac.be/amop
http://prog.vub.ac.be/amop

