
Clojure in a

Tom Van Cutsem

Clojure in a nutshell

• A modern Lisp dialect (2007), designed by Rich Hickey

• Uses the Java Virtual Machine as runtime platform

• Promotes a Functional Programming style

• Designed for Concurrency

Functional Style

• Clojure is not a pure functional language (like Haskell), but...

• Emphasis on immutable data structures: list, vector, set, map, ...

• Emphasis on recursion rather than looping

• Lisp’s lists generalized to abstract sequences

Useful reading material

• clojure.org, in particular clojure.org/rationale and clojure.org/state

• http://www.4clojure.com/

• http://clojuredocs.org/

• Stuart Halloway: Programming Clojure

• Clojure wikibook:
en.wikibooks.org/wiki/Clojure_Programming

http://clojure.org/rationale
http://clojure.org/rationale
http://clojure.org/state
http://clojure.org/state
http://www.4clojure.com/
http://www.4clojure.com/
http://clojuredocs.org/
http://clojuredocs.org/

Exploring Clojure

Syntax

• Clojure reader transforms source code into forms, then translates forms into
Clojure data structures. Examples of Clojure forms:

true, false
\a
:doc
‘(1 2 3)
{ :name “Bill”, :age 42 }
nil
1
#{:foo :bar :baz}
“hello world”
‘foo
[1 2 3]

Boolean
Character
Keyword

List
Map

Nil
Number

Set
String

Symbol
Vector

Read-eval-print Loop

42
=> 42

[1 2 3]
=> [1 2 3]

(+ 1 2)
=> 3

(> 5 2)
=> true

(/ 22 7)
=> 22/7

(class (* 1000 1000 1000))
=> java.lang.Integer

(class (* 1000 1000 1000 1000 1000
1000 1000 1000))
=> java.lang.BigInteger

Lists and vectors

• Immutable!

(def x (list 1 2 3)) ; or ‘(1 2 3)
=> #‘user/x
(first x)
=> 1
(rest x)
=> (2 3)
(cons 0 x)
=> (0 1 2 3)
x
=> (1 2 3)

(def y (vector 1 2 3)) ; or [1 2 3]
=> #‘user/y
(nth y 0)
=> 1
(nth y 5)
=> java.lang.IndexOutOfBoundsException
(assoc y 0 5)
=> [5 2 3]
y
=> [1 2 3]

Keywords

• Keywords are immutable, cached, “constant strings”

• Keywords evaluate to themselves

:foo
=> :foo

(keyword? :foo)
=> true

(string? :foo)
=> false

Maps

• Maps are collections of (key, value) pairs

• Maps are functions f(key) -> value

• Any Clojure value can be a key in a map (most common keys are keywords)

(def inventors {:Lisp "McCarthy", :Clojure "Hickey"})
=> #‘user/inventors

(inventors :Lisp)
=> “McCarthy”

(inventors :foo)
=> nil

(inventors :foo “unknown”)
=> “unknown”

Maps

• Maps are immutable too

(def inventors {:Lisp "McCarthy", :Clojure "Hickey"})
=> #‘user/inventors

(assoc inventors :Python "van Rossum")
=> {:Python "van Rossum", :Lisp "McCarthy", :Clojure "Hickey"}

(dissoc inventors :Lisp)
=> {:Clojure "Hickey"}

inventors
=>{:Lisp "McCarthy", :Clojure "Hickey"}

Keywords and Maps

• Keywords are also functions that take a map as argument and look
themselves up in the map:

(def inventors {:Lisp "McCarthy", :Clojure "Hickey"})
=> #‘user/inventors

(inventors :Clojure)
=> “Hickey”

(:Clojure inventors)
=> “Hickey”

Functions

• Defining Functions:

• Example:

(defn name doc-string? [params*] body)

(defn greeting
 "Returns a greeting of the form 'Hello, username.'"
 [username]
 (str "Hello, " username))

(greeting “Tom”)
=> “Hello, Tom”

Anonymous Functions

• defn defines a named function, fn defines an anonymous function (cf.
lambda in Scheme):

(fn [x] (* x x))

Anonymous Functions: example

• Create a function that filters out short words from a sequence of words:

(defn indexable-word? [word]
 (> (count word) 2))
(filter indexable-word? (split "A fine day it is" #"\W+"))
=> ("fine" "day")

(filter (fn [word] (> (count word) 2))
 (split "A fine day it is" #"\W+"))
=> ("fine" "day")

Anonymous Functions: example

• Use let to define local bindings:

(defn indexable-words [text]
 (let [indexable-word? (fn [word] (> (count word) 2))]
 (filter indexable-word? (split text #"\W+"))))

(indexable-words "A fine day it is")
=> ("fine" "day")

Closures

• Functions close over their lexical scope:

(defn make-greeter [prefix]
 (fn [name]
 (str prefix ", " name)))

(def hello-greeting (make-greeter “Hello”))
(def aloha-greeting (make-greeter “Aloha”))

(hello-greeting “world”)
=> “Hello, world”

(aloha-greeting “world”)
=> “Aloha, world”

Destructuring

• Anywhere names are bound, you can nest a vector or map to destructure a
collection and bind only specific elements of the collection

(def dist [p]
 (let [x (first p)
 y (second p)]
 (Math/sqrt (+ (* x x) (* y y)))))

(def dist [[x y]]
 (Math/sqrt (+ (* x x) (* y y))))

Control flow: loop/recur

• loop is like let, but sets a recursion point that can be jumped to by means
of recur

• Like Scheme’s “named let”:

(loop [result []
 x 5]
 (if (zero? x)
 result
 (recur (conj result x) (dec x))))
=> [5 4 3 2 1]

(let loop ((result ‘())
 (x 5))
 (if (zero? x)
 result
 (loop (append result (list x)) (- x 1))))
=> (5 4 3 2 1)

Accessing Java

(new java.util.Random) ; Java: new java.util.Random()
=> java.util.Random@18a4f2

(. aRandom nextInt 10) ; Java: aRandom.nextInt(10)
=> 8

(.nextInt aRandom 10) ; Java: aRandom.nextInt(10)
=> 8

Exception Handling

• Clojure uses essentially the same exception handling model as Java

(try
 (do-something)
 (catch IOException e
 (println “caught exception”))
 (finally
 (println “clean up”)))

(throw (new Exception “something failed”))

Sequences

Sequences

• An abstract data type: the sequence (seq, pronounce “seek”)

• A logical list

• Not necessarily implemented as a linked-list!

• Used pervasively: all Clojure collections, all Java collections, Java arrays and
Strings, regular expression matches, files, directories, I/O streams, XML
trees, ...

Clojure Sequence Library

• Most Clojure sequences are lazy: they generate elements “on demand”

• Sequences can be infinite

• Sequences are immutable and thus safe for concurrent access

Operations on sequences

(first aseq)

(rest aseq)

(cons elem aseq)

Example: lists and vectors

• Lists and Vectors are sequences

(first ‘(1 2 3))
=> 1

(rest ‘(1 2 3))
=> (2 3)

(cons 0 ‘(1 2 3))
=> (0 1 2 3)

(first [1 2 3])
=> 1

(rest [1 2 3])
=> (2 3)

(cons 0 [1 2 3])
=> (0 1 2 3)

Example: maps

• Maps are sequences of (key, value) pairs:

• Element order is undefined!

(first { :fname “Rich” :lname “Hickey” })
=> [:fname “Rich”]

(rest { :fname “Rich” :lname “Hickey” })
=> ([:lname “Hickey”])

Creating sequences

(range 5)
=> (0 1 2 3 4)

(range 5 10)
=> (5 6 7 8 9)

(range 1 10 2)
=> (1 3 5 7 9)

Creating and filtering sequences

• (iterate f x) lazily constructs the infinite sequence
 x, f(x), f(f(x)), f(f(f(x))), ...

• (take n seq) returns a lazy sequence of the first n items in seq

• (filter pred seq) returns a (lazy) filtered sequence

(defn natural-numbers []
 (iterate inc 0))

(take 5 (natural-numbers))
=> (0 1 2 3 4)

(take 5 (filter even? (natural-numbers)))
=> (0 2 4 6 8)

Transforming sequences

• (map f seq) maps function f lazily over each element of the sequence

• (reduce f val seq) applies f to val and the first argument, then applies f to the
result and the second element, and so on. Returns the accumulated result.

(map inc [0 1 2 3])
=> (1 2 3 4)

(reduce + 0 (range 1 11))
=> 55

Imperative vs. Functional style: case study

• indexOfAny walks a string and reports the index of the first char that matches
any char in searchChars, or -1 if no match is found:

indexOfAny(null, _) => -1
indexOfAny("", _) => -1
indexOfAny(_, null) => -1
indexOfAny(_, []) => -1
indexOfAny("zzabyycdxx",['z','a']) => 0
indexOfAny("zzabyycdxx",['b','y']) => 3
indexOfAny("aba", ['z']) => -1

	 public static int indexOfAny(String str, char[] searchChars);

Imperative vs. Functional style: case study

• Consider the following typical Java implementation:

	 // From Apache Commons Lang, http://commons.apache.org/lang/
	 public static int indexOfAny(String str, char[] searchChars) {
	 if (isEmpty(str) || ArrayUtils.isEmpty(searchChars)) {
	 return -1;
	 }

	 for (int i = 0; i < str.length(); i++) {
	 char ch = str.charAt(i);
	 for (int j = 0; j < searchChars.length; j++) {
	 if (searchChars[j] == ch) {
	 return i;
	 }
	 }
	 }
	 return -1;
	 }

http://commons.apache.org/lang/
http://commons.apache.org/lang/

Strings in Clojure

• Clojure strings are Java strings

• Clojure can manipulate strings as sequences of Characters

(.toUpperCase “hello”)
=> “HELLO”

(count ‘(1 2 3))
=> 3

(count “hello”)
=> 5

Imperative vs. Functional style: case study

• Clojure version: first, define a helper function indexed that takes a collection
and returns an indexed collection:

(defn indexed [coll]
 (map vector
 (iterate inc 0) coll))

(indexed ‘(a b c))
=> ([0 a] [1 b] [2 c])

(indexed “abc”)
=> ([0 \a] [1 \b] [2 \c])

Imperative vs. Functional style: case study

• Next, find the indices of all characters in the string that match the search set:

(defn index-filter [pred coll]
 (loop [icoll (indexed coll)
 acc []]
 (if (empty? icoll)
 acc
 (let [[idx elt] (first icoll)]
 (if (pred elt)
 (recur (rest icoll) (conj acc idx))
 (recur (rest icoll) acc))))))

Imperative vs. Functional style: case study

• In Clojure, sets are functions (predicates) that test membership of their
argument in the set:

• So we can pass a set of characters to index-filter:

(index-filter #{\a \b} "abcdbbb")
=> (0 1 4 5 6)

(index-filter #{\a \b} "xyz")
=> nil

(#{\a \b} \a)
=> \a
(#{\a \b} \c)
=> nil

Imperative vs. Functional style: case study

• To define index-of-any, simply take the first result from index-filter:

(defn index-of-any [pred coll]
 (first (index-filter pred coll)))

(index-of-any #{\z \a} "zzabyycdxx")
=> 0
(index-of-any #{\b \y} "zzabyycdxx")
=> 3

Concurrency in Clojure

Threads

• Clojure reuses JVM threads as the unit of concurrency

(.start (new Thread
 (fn [] (println "Hello from new thread"))))

Clojure Philosophy

• Immutable state is the default

• Where mutable state is required, programmer must explicitly select one of the
following APIs:

state change is Asynchronous Synchronous

Coordinated - Refs

Independent Agents Atoms

Clojure Refs

• Ref: a mutable reference to an immutable value

• The ref wraps and protects its internal state. To read its contents, must
explicitly dereference it:

(def today (ref "Monday"))

(deref today)
=> "Monday"

@today
=> "Monday"

Refs and Software Transactional Memory (STM)

• To update a reference:

• Updates can only occur in the context of a transaction:

(ref-set today "Tuesday")

(ref-set today "Tuesday")
=> java.lang.IllegalStateException: No transaction running

Refs and Software Transactional Memory (STM)

• To start a transaction:

• Example:

(dosync body)

(dosync (ref-set today "Tuesday"))
=> "Tuesday"

Coordinated updates

• “Coordinated”: isolated and atomic

• No thread will be able to observe a state in which yesterday is already
updated to "Monday", while today is still set to "Monday".

(dosync
 (ref-set yesterday "Monday")
 (ref-set today "Tuesday"))

Coordinated updates

• “Coordinated”: isolated and atomic

• No thread will be able to observe a state in which yesterday is already
updated to "Monday", while today is still set to "Monday".

(dosync
 (ref-set yesterday "Monday")
 (ref-set today "Tuesday"))

yesterday "Sunday"

today "Monday"

yesterday "Monday"

today "Monday"

yesterday "Monday"

today "Tuesday"

Example: money transfer

• Transferring money atomically from one bank account to another

(defn make-account [sum]
 (ref sum))

(defn transfer [amount from to]
 (dosync
 (ref-set from (- @from amount))
 (ref-set to (+ @to amount))))

(def accountA (make-account 1000))
(def accountB (make-account 0))
	
(transfer 100 accountA accountB)
(println @accountA) ; 900
(println @accountB) ; 100

Side-effects & retries

• Transactions may be aborted and retried.

• The transaction body may be executed multiple times.

• Should avoid side-effects other than assigning to refs (no I/O)

(dosync
 (println "launch missiles")
 (perform-update))

Wrap-up

Clojure: Summary

• Functional style: a Lisp on the JVM

• Immutable data structures: lists, vectors, sets, maps

• Direct access to Java objects

• All collections are sequences: abstract lists

• Most operations support lazy/infinite sequences

• Designed for concurrency

Important features not covered

• Atoms

• Agents

• Macros

• Multimethods

• Protocols

• Transients

• List comprehensions

• Unit testing

• Metadata

• Namespaces

• ...

