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Context

Microservices

docker
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What drives microservices?
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You're in good company
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What are microservices?
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Microservices: characteristics

Componentization
via services
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Microservices: characteristics

Products, Organized around
not projects business capabilities

V44

“vou build it, you run it
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Microservices: characteristics

Products, Organized around
not projects business capabilities
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Microservices: organize around business services
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"Any organization that designs a system ... will inevitably produce a design
whose structure is a copy of the organization's communication structure.”
-- Melvin Conway, 1968

(Source: Martin Fowler)
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Microservices: characteristics
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Large codebases seem to auto-evolve into microservices
War stories from large web companies

1st gen 2" gen 3nd gen

ebay

Monolithic Tiered Polyglot
app architecture microservices
Ewitter Written in one Java as :
) Mix of
language dominant laneUaces
amazoncom  (e.g. Perl, C++) language i

(Source: highscalability.com, 2015)
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Microservices: characteristics

Infrastructure Design for Failure Evolutionary
Automation Design
“IT is an APIl”
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Microservices & DevOps culture

Need to be able to provision infrastructure fast

Containerize services (Docker)

Container orchestration (Swarm, Kubernetes, Rancher, Mesos, ...)

Teams maintain their own services in production

¢

docker kubernetes
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Microservices: risks

Independent
services

Service boundaries
not easy to change

End-to-end testing/debugging
more difficult

Distributed systems
challenges
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Design for Failure

Investment in monitoring

tools

Operational complexity

Technological

Diversity
Reds ¢10: 27
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Strong and diverse
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Case study: ShowMe
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ShowMe: location-based video sharing
Discover or share what’s up near a location of interest




ShowMe: location-based video sharing
Prototype app + experience movie

' [} ShowMe App “x ‘ _

€« C [ 65.99.241.162:8080/showme#live-streal
it Apps (D) ALUHome [ ShowMeApp (] bookmarks

Show Me
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You and 5 of your Swarm friends People viewing

@ c O O O - < People sharing

17 © Nokia 2016 Public NOKIA Bell Labs



Functional architecture
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Technology stack

Geocoding [/ : Al u n openstack
7

API foursquare

Session
Web server storage

Web client .
server streams
Web client
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Foursquare
app
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Service interfaces

REST/HTTP

Session
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| essons learned

21

Multiple teams working on independent subsystems = highly productive
— Different goals

— Different skillsets

— Different release schedules

— Less conflicts

Testing and debugging of the overall system was a pain

We didn’t sufficiently invest in tooling and automation

— Manual configuration and set-up

— Infrastructure not set up to host multiple versions of the app
— No cross-service unit testing infrastructure

© Nokia 2016 Public
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| essons learned

« Micro-service architecture = distributed system
— Deal with asynchrony, failure, latency, keeping data consistent across databases
— Interfaces between services are implicit, not checked by compiler.

» Testing services in isolation is not enough

— Focus is on monitoring and detecting anomalies more than on thorough testing before
deployment

* Deployment is much more complicated
— Fine-grained orchestration and configuration
— Each service needs clustering, monitoring, load-balancing, ...
— Variety of runtimes and databases requires larger skill set to tweak, deploy, maintain

— To do microservices right, should keep old and new versions of the service running side-by-side
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Case study: instadash
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Instadash app
Real-time fleet tracking

GPS receiver
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Instadash: functional architecture
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Instadash: functional architecture

Web Web Query System
client gateway deployer monitor
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Instadash: technology stack
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Instadash: service interfaces

REST/HTTP
Web

Query System
deployer monitor Protobuf over TCP
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Microservice communication patterns

REST over HTTP
Microservice > Microservice
A - B
REST/HTTP is well-understood Text-based protocol overheads

HTTP support is ubiquitous

JSON as data model is a natural fit
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Microservice communication patterns

Microservice > Microservice
A . B
Fast, often binary encoding Firewall issues, less ubiquitous
Built-in schema support Need an additional discovery service

Public

CHHEEY  JSON-RPC



Microservice communication patterns

Microservice > > Microservice
A Message Bus B
< <
Decoupling between components More complex, beware
(bus handles both discovery and routing) bottleneck

WaRabbit)0 g redis §gkqfka N[A[T]S]
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Communication patterns
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Devices

* Many client libraries
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Communication patterns: point-to-point

Web Query System
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Communication patterns: publish-subscribe
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Communication patterns: work queueing

Web
client

Devices
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Device
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System
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Message Bus

Workers
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Open Source Enterprise Messaging
+ Asingle queue served by multiple workers.
* Goal is to spread tasks over multiple instances of the same sen

» Messages represent tasks (work to be done)
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Monitoring: our approach

Used Riemann as central dashboard and event monitoring server

Client libraries for a variety of programming languages (remember: polyglot)

Each microservice regularly reports service-specific statistics

Each host machine also reports generic resource statistics

Emai|
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N
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L
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Monitoring
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Monitoring: dashboards
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| essons learned

« Message bus as central broker had many advantages

Solved service discovery (all components need to know the broker, not each other)
Queueing makes services more robust to failover

Message bus dashboard gave a wealth of system information about communication patterns,
message rates, etc.

But: can quickly become a bottleneck: proper configuration and tuning was key

Also: all components needed hardening to e.g. auto-reconnect when broker went down

« Use external configuration files that can be generated or templated from a central place
« Use schema validation to catch bugs faster (e.g. JSON-Schema, Protobufs, AVRO, ...)
« Monitoring was essential to see what’s going on

» Dockerizing services was key to getting this system going (20+ processes)

Public



PART I

On MicroServices, Docker and
DevOps
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Context

Microservices

docker
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Docker Containers
Efficiency

Lightweight application isolation = very low performance overhead

App 3

Bins/Libs Bins/Libs Bins/Libs

IE

Guest OS Guest OS |l Guest OS

Hypervisor

Host Operating System

Infrastructure
= see)
=N

Virtual Machines

App 1 App 3
Bins/Libs

Infrastructure

| ==

Containers

source: https://blog.jayway.com/2015/03/21/a-not-very-short-introduction-to-docker/



Docker Containers
Programmability

Container programming =» Dockerfile

FROM ubuntu:16.04
MAINTAINER Sven Dowideit <SvenDowideit@docker.com>

RUN apt-get update &% apt-get install -y openssh-server

RUN mkdir /var/run/sshd

RUN echo 'root:screencast' | chpasswd

RUN sed -i 's/PermitRootLogin prohibit-password/PermitRootLogin yes/' /etc/ssh/sshd_config

# SSH login fix. Otherwise user is kicked off after login
RUN sed 's@session\s*required\s*pam_loginuid.so@session optional pam_loginuid.so@g' -i /etc/pam.d/sshd

ENV NOTVISIBLE "in users profile"
RUN echo "export VISIBLE=now" >> /etc/profile

EXPOSE 22
CMD ["/usr/sbin/sshd", "-D"]




Docker Containers
Active eco-system
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Docker Containers
Portability

The matrix from hell

-*7 ? ) ? ? ?

DEL - ? ? ? ? ?
MHSQRL ? 2 ? 2 2 2
? 2 2 ?
2 2 2 2
2 2 2 2

source: http://www.slideshare.net/Docker/docker-lpc-2014cristian



Docker Containers
Flexibility

Build, ship and run any app, anyware [docker]

72N

Code

=)
Dockerfile /
\ Source Repository
* Cl Server
o Docker Registry

Deploy (docker push)

A

Build (docker buﬂd “ Test (docker run)

o // \\

a<:¢* |

Service =
ests .

source: http://blog.terranillius.com/post/docker_testing/



Docker Containers
Demo



DevOps
@10k feet

Development Operations

Development Operations

source: htto://www.drdobbs.com/architecture-and-desion/cettine-devobps-richt-the-lav-of-the-land/240062639



DevOps
CALMS

Culture
Automation
Lean

Measurement

Sharing

ePromotes collaborative and open culture between Dev and Ops
eEmbrace change and experimentation

eAutomate whenever possible
¢Cl/CD, Infrastructure as Code, ...

eFocus on producing value for the end-user
eSmall size batches, higher release cycles

eMeasure everything all the time and use this info to improve/refine cycles
*Show the improvement

*Open information sharing — experiences, successes, failures, etc.
eCollaboration & communication — learn from each other (Kanban board, IM, wiki)



Moving away from traditional telco service design

Operational costs pressures push Telcos to virtualize environments while
preserving non-functional requirements

® 5 nines availability
e Reliability

e Performance and response times



Moving away from traditional telco service design

*docker

Low overhead

Additional non-functional
requirements to take into account

e Scalability Portability

e Elasticity Micro-service architectures

Active eco-system + public image
registries

* Operability and portability Facilitates DevOps methodology

o Agility



Bell Labs Projects: New Home/loT Service Platform

High Performance & Predictability

Distributed Cloud

Small footprints Platform
. . For Heterogeneous HW
I — l\s\ :
s Hub ’{ N infrastructure

Sensor network
WiFi network
Mobile 5G network



Bell Labs Projects: Bandwidth Optimized Streaming Analytics

N N N N N N
ACCESS l

EDGE

B. Theeten and N. Janssens, CHive:
QUERY Bandwidth Optimized Continuous
[animated Querying in Distributed Clouds. IEEE
slide] CORIFS,[A\ITI,EATCYVECI)\EI'IEIQ PROJECT GROUP-BY Transactions on Cloud Computing 3
FILTER ORDER-BY (2), pp. 219-232, 2015.
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Bell Labs Projects: New Communication Service

Key Goal: Simplify interactions among people, machines,
and their environments —w

:0”
» From transaction-oriented Web model to persistent N
conversations
« Uniform interaction model for people, machines, and ol 4

objects

 Rich context-based communications and collaboration



Micro-service chat architecture location and T
geo-fencing analytics
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Initial production design
20 node cluster with RANCHER and DOCKER

Mgmt Server Mgmt Server Server ‘
VM
Rancher :
F ll
. Mgmt Rancher Private IP Net NA'}'r’eSﬁcp, ~~ R:nch:r
N\ Memt 4 LB,DNS S o T
~
pubtc covs (R
S Operator
Rancher Cluster Manager
Host Host Host RAN HER
Rancher c * Native Docker support

prsn || LI * Re-usage of Docker Compose files
Container * Low entry hurdle

» Dashboard

Docker - Redundancy

Daemon
* IPSec support

Container

Docker
Daemon




Evaluation
MicroServices

Rapid and independent evolution (lifecycle management) v/
Use the right tool for the job v/
Decentralized governance and data management v/



Evaluation
Docker

Low overhead v/

Portability v/

Micro-service architectures v/

Active eco-system with public image registries v/

Facilitates DevOps methodology v/

L
RANCHER
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Evaluation
Docker

Docker lifecycle management
« Don't forget to clean old containers and dangling images
 For non-trivial lifecycle mgmt and production environments, rely on other tools
— compose, swarm, kubernetes, mesos+marathon/chronos, saltstack, terraform, etc.
Dockerfiles
 Think carefully how to structure your Dockerfiles (across Dockerfiles)
— Eachline in a Docker file is a separate image layer, which by default will be cached (exceptions!)
« Order from generic/stable commands to specific/unstable commands
— Use explicit version tagging for all installed packages (consistency across future builds)
— Avoid unnecessary layers & packages - smartly combine commands
Performance when sharing host resources (e.g. when using bridge network)
No need to dockerize all your services ...



Evaluation
Docker

Application packaging - KISS!

— Containers are not VMs, but application environments

— Don’t try to stuff too many background services inside each container (sshd, logging, etc.)

— Don’t install build tools (e.g. gcc) without good reason - use build containers for that!
Data storage

— Try to avoid storing (all) data inside the application containers
« Containers should be as much as possible easily replacable

— Use key-value stores (etcd), DBs (mysql), data containers or host-volumes (-v)
Security
Networking
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Background reading and references

« Martin Fowler’s article (must read): http://martinfowler.com/articles/microservices.html

« Community site: http://microservices.io/

» A. Cockcroft (prev. Netflix lead engineer) on migrating to micro-services:
http://www.infog.com/presentations/migration-cloud-native
* Insightful blogs:

—  http://www.tigerteam.dk/2014/micro-services-its-not-only-the-size-that-matters-its-also-how-you-use-them-part-1/

—  http://gomorpheus.com/blog/2014-10-24-the-new-reality-microservices-apply-the-internet-model-to-app-development

— Acritical note: http://contino.co.uk/microservices-not-a-free-lunch/

http://highscalability.com/blog/2015/12/1/deep-lessons-from-google-and-ebay-on-building-ecosystems-of.html

* Colossus (Tumblr Engineering Blog): http://engineering.tumblr.com/post/102906359034/colossus-a-new-service-

framework-from-tumblr

* Finagle (Twitter Engineering Blog): https://blog.twitter.com/2011/finagle-a-protocol-agnostic-rpc-system
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Copyright and confidentiality

The contents of this document are proprietary and
confidential property of Nokia. This document is
provided subject to confidentiality obligations of the
applicable agreement(s).

This document is intended for use of Nokia’s
customers and collaborators only for the purpose
for which this document is submitted by Nokia. No
part of this document may be reproduced or made
available to the public or to any third party in any
form or means without the prior written permission
of Nokia. This document is to be used by properly
trained professional personnel. Any use of the
contents in this document is limited strictly to the
use(s) specifically created in the applicable
agreement(s) under which the document is
submitted. The user of this document may
voluntarily provide suggestions, comments or other
feedback to Nokia in respect of the contents of this
document ("Feedback").
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Such Feedback may be used in Nokia products and
related specifications or other documentation.
Accordingly, if the user of this document gives Nokia
Feedback on the contents of this document, Nokia
may freely use, disclose, reproduce, license,
distribute and otherwise commercialize the
feedback in any Nokia product, technology, service,
specification or other documentation.

Nokia operates a policy of ongoing development.
Nokia reserves the right to make changes and
improvements to any of the products and/or
services described in this document or withdraw this
document at any time without prior notice.

The contents of this document are provided "as is".
Except as required by applicable law, no warranties
of any kind, either express or implied, including, but
not limited to, the implied warranties of
merchantability and fitness for a particular purpose,

are made in relation to the accuracy, reliability or
contents of this document. NOKIA SHALL NOT BE
RESPONSIBLE IN ANY EVENT FOR ERRORS IN THIS
DOCUMENT or for

any loss of data or income or any special, incidental,
consequential, indirect or direct damages
howsoever caused, that might arise from the use of
this document or any contents of this document.

This document and the product(s) it describes
are protected by copyright according to the
applicable laws.

Nokia is a registered trademark of Nokia

Corporation. Other product and company names
mentioned herein may be trademarks or trade
names of their respective owners.
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