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Context

Public

Microservices
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What drives microservices?
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Cloud

Microservices

Continuous 
Deployment
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You’re in good company
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Cloud

Microservices

Continuous 
Deployment
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What are microservices?
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-- James Lewis and Martin Fowler

“SOA done right”
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Microservices: characteristics
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Componentization
via services

Smart endpoints,
dumb pipes
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Microservices: characteristics

Public

Products,
not projects

Organized around
business capabilities

“you build it, you run it”
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Microservices: organize around business services

Public

"Any organization that designs a system … will inevitably produce a design 
whose structure is a copy of the organization's communication structure."
-- Melvin Conway, 1968

(Source: Martin Fowler)
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Microservices: characteristics
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Decentralized
Governance

Decentralized
Data Management
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War stories from large web companies
Large codebases seem to auto-evolve into microservices

Public

(Source: highscalability.com, 2015)

Monolithic 
app

1st gen 2nd gen 3nd gen

Tiered 
architecture

Polyglot
microservices

Written in one 
language

(e.g. Perl, C++)

Java as 
dominant 
language

Mix of 
languages
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Microservices: characteristics
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Infrastructure
Automation

Design for Failure Evolutionary
Design

“IT is an API”
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Microservices & DevOps culture

Public

• Need to be able to provision infrastructure fast
• Containerize services (Docker)
• Container orchestration (Swarm, Kubernetes, Rancher, Mesos, …)
• Teams maintain their own services in production
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Microservices: risks
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Independent 
services

Service boundaries
not easy to change

Design for Failure

Investment in monitoring
toolsEnd-to-end testing/debugging

more difficult

Technological
Diversity

Strong and diverse
skill set

Operational complexityDistributed systems
challenges
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Case study: ShowMe

Public
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Discover or share what’s up near a location of interest
ShowMe: location-based video sharing

Public

LIVE PERSONAL 
CONTENT 

LOCATION AS 
SHARED CONTEXT
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Prototype app + experience movie
ShowMe: location-based video sharing

Public
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Functional architecture
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Web client 
(consumer)

Checkin
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Web server
Session 
storage

Analytics 
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Media server

Web client 
(producer)

Foursquare 
app Push API

Checkin API

Auth API
Venue APIGeocoding 

API

Session 
server

Stored 
streams
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Technology stack
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Service interfaces
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Checkin
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Lessons learned

Public

• Multiple teams working on independent subsystems = highly productive
– Different goals

– Different skillsets

– Different release schedules

– Less conflicts

• Testing and debugging of the overall system was a pain
• We didn’t sufficiently invest in tooling and automation

– Manual configuration and set-up

– Infrastructure not set up to host multiple versions of the app
– No cross-service unit testing infrastructure



© Nokia 201622

Lessons learned

Public

• Micro-service architecture = distributed system
– Deal with asynchrony, failure, latency, keeping data consistent across databases

– Interfaces between services are implicit, not checked by compiler.

• Testing services in isolation is not enough
– Focus is on monitoring and detecting anomalies more than on thorough testing before 

deployment

• Deployment is much more complicated
– Fine-grained orchestration and configuration

– Each service needs clustering, monitoring, load-balancing, …
– Variety of runtimes and databases requires larger skill set to tweak, deploy, maintain

– To do microservices right, should keep old and new versions of the service running side-by-side
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Case study: instadash

Public
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Real-time fleet tracking
Instadash app

Public

GPS receiver

OBD via CAN bus

Dashcam

On-board Unit

2 real cars,
10 hours footage
400 virtual cars
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Instadash: functional architecture
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Message Bus
Workers

Web 
gateway

Media 
server

Workers
Workers

Device 
registry

Websocket
server

Web 
client

Devices
Resource 
manager

Query 
deployer

System 
monitor
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Instadash: technology stack
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Instadash: service interfaces
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Message Bus
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Microservice communication patterns
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Microservice
A

Microservice
B

REST over HTTP

Text-based protocol overheadsREST/HTTP is well-understood

HTTP support is ubiquitous

JSON as data model is a natural fit



Microservice communication patterns
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Microservice
A

Microservice
B

RPC

Firewall issues, less ubiquitousFast, often binary encoding

Built-in schema support Need an additional discovery service

JSON-RPC



Microservice communication patterns
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Microservice
A Message Bus Microservice

B

More complex, beware 
bottleneck

Decoupling between components
(bus handles both discovery and routing)
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Communication patterns
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Message Bus
Workers

Web 
gateway

Media 
server

Workers
Workers

Device 
registry

Websocket
server

Web 
client

Devices
Resource 
manager

Query 
deployer

System 
monitor

• Open source

• Large community

• Many client libraries



© Nokia 201633

Communication patterns: point-to-point
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Message Bus
Workers

Web 
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Media 
server

Workers
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Device 
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• JSON-RPC over AMQP

• Messages represent requests or commands
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Communication patterns: publish-subscribe
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Message Bus
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• Use AMQP’s rich routing semantics via topic exchanges

• Messages represent events (JSON payload)
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Communication patterns: work queueing
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Message Bus
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Web 
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Workers
Workers
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Web 
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Devices
Resource 
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deployer

System 
monitor

• A single queue served by multiple workers.

• Goal is to spread tasks over multiple instances of the same service

• Messages represent tasks (work to be done)
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Monitoring: our approach

Public

• Used Riemann as central dashboard and event monitoring server
• Client libraries for a variety of programming languages (remember: polyglot)
• Each microservice regularly reports service-specific statistics
• Each host machine also reports generic resource statistics
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Monitoring
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Message Bus
Workers

Web 
gateway

Media 
server

Workers
Workers

Device 
registry

Websocket
server
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client

Devices
Resource 
manager

Query 
deployer

System 
monitor

Protobufs over UDP or TCP



© Nokia 201638

Monitoring: dashboards

Public



Lessons learned

Public

• Message bus as central broker had many advantages
– Solved service discovery (all components need to know the broker, not each other)

– Queueing makes services more robust to failover

– Message bus dashboard gave a wealth of system information about communication patterns, 
message rates, etc.

– But: can quickly become a bottleneck: proper configuration and tuning was key

– Also: all components needed hardening to e.g. auto-reconnect when broker went down

• Use external configuration files that can be generated or templated from a central place
• Use schema validation to catch bugs faster (e.g. JSON-Schema, Protobufs, AVRO, …)
• Monitoring was essential to see what’s going on
• Dockerizing services was key to getting this system going (20+ processes)
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PART II
On MicroServices, Docker and 

DevOps
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Context

Public

Microservices
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Efficiency
Docker Containers

Public

Lightweight application isolation è very low performance overhead

source: https://blog.jayway.com/2015/03/21/a-not-very-short-introduction-to-docker/
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Programmability
Docker Containers

Public

Container programming è Dockerfile

FROM ubuntu:16.04
MAINTAINER Sven Dowideit <SvenDowideit@docker.com>

RUN apt-get update && apt-get install -y openssh-server
RUN mkdir /var/run/sshd
RUN echo 'root:screencast' | chpasswd
RUN sed -i 's/PermitRootLogin prohibit-password/PermitRootLogin yes/' /etc/ssh/sshd_config

# SSH login fix. Otherwise user is kicked off after login
RUN sed 's@session\s*required\s*pam_loginuid.so@session optional pam_loginuid.so@g' -i /etc/pam.d/sshd

ENV NOTVISIBLE "in users profile"
RUN echo "export VISIBLE=now" >> /etc/profile

EXPOSE 22
CMD ["/usr/sbin/sshd", "-D"]
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Active eco-system
Docker Containers

Public
source: http://slidedeck.io/dpdornseifer/reveal_docker
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Portability
Docker Containers

Public

The matrix from hell

source: http://www.slideshare.net/Docker/docker-lpc-2014cristian
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Flexibility
Docker Containers

Public

Build, ship and run any app, anyware [docker]

source: http://blog.terranillius.com/post/docker_testing/
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Demo
Docker Containers

Public
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@10k feet
DevOps

Public

source: http://www.drdobbs.com/architecture-and-design/getting-devops-right-the-lay-of-the-land/240062639
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CALMS
DevOps

Public

••Promotes collaborative and open culture between Dev and Ops
••Embrace change and experimentationCulture
••Automate whenever possible
••CI/CD, Infrastructure as Code, …Automation
••Focus on producing value for the end-user
••Small size batches, higher release cycles Lean
••Measure everything all the time and use this info to improve/refine cycles
••Show the improvementMeasurement
••Open information sharing – experiences, successes, failures, etc.
••Collaboration & communication – learn from each other (Kanban board, IM, wiki)Sharing
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Operational costs pressures push Telcos to virtualize environments while 
preserving non-functional requirements

• 5 nines availability
• Reliability

• Performance and response times

Moving away from traditional telco service design

Public
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Moving away from traditional telco service design
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Additional non-functional 
requirements to take into account

• Scalability

• Elasticity

• Agility

• Operability and portability

Low overhead

Portability

Micro-service architectures
Active eco-system + public image 
registries
Facilitates DevOps methodology 
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Bell Labs Projects: New Home/IoT Service Platform
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Mobile 5G Network

WIFI Network Edge 
Cloud

HubDevice

Distributed Cloud 
Platform

For Heterogeneous HW 
infrastructure

Home

High Performance & Predictability

Small footprints

Central
Cloud

Sensor network
WiFi network

Mobile 5G network
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[animated 
slide]

B. Theeten and N. Janssens, CHive: 
Bandwidth Optimized Continuous 
Querying in Distributed Clouds. IEEE 
Transactions on Cloud Computing 3 
(2), pp. 219-232, 2015.

Bell Labs Projects: Bandwidth Optimized Streaming Analytics
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Bell Labs Projects: New Communication Service

Public

Key Goal: Simplify interactions among people, machines, 
and their environments

• From transaction-oriented Web model to persistent 
conversations

• Uniform interaction model for people, machines, and 
objects

• Rich context-based communications and collaboration
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Micro-service chat architecture
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load balancer

WS server
message 

broker

key-value 
database

document-
oriented db

Stateless Workers
Chat-Thread Mgr

User Mgr

Group Mgr

User View Mgr

User Presence Mgr
Push Notification Adapter

Call Mgr

…

TURN/STUN Media Server

SD
K

mobile client

web browser

machine buddies

web storage

distributed 
object store 

and FS

RT + batch 
analytics

HTTP server
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geo-fencing 

service

CMB
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20 node cluster with RANCHER and DOCKER
Initial production design

Public

Host Host Host

…
Rancher

Agent

Rancher
Agent

Private IP Net

Server

Firewall
NAT, DHCP,

LB,DNS

Docker
Daemon

Docker
Daemon

VM

Rancher
Agent

Docker
Daemon

WorkerContainer WorkerContainer

Rancher Cluster Manager

• Native Docker support
• Re-usage of Docker Compose files
• Low entry hurdle
• Dashboard
• Redundancy
• IPSec support

Public Cloud 
Operator

Mgmt Server

Rancher
Mgmt

Docker
Registry

Mgmt Server

Rancher
Mgmt

Docker
Registry

Server

Firewall
NAT, DHCP,

LB,DNS
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MicroServices
Evaluation

Public

Rapid and independent evolution (lifecycle management) ✔
Use the right tool for the job ✔
Decentralized governance and data management ✔
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Docker
Evaluation

Public

Low overhead ✔

Portability ✔

Micro-service architectures ✔

Active eco-system with public image registries ✔

Facilitates DevOps methodology ✔

toolbox

compose

registry
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Docker
Evaluation

Public

Docker lifecycle management
• Don’t forget to clean old containers and dangling images
• For non-trivial lifecycle mgmt and production environments, rely on other tools

– compose, swarm, kubernetes, mesos+marathon/chronos, saltstack, terraform, etc.

Dockerfiles
• Think carefully how to structure your Dockerfiles (across Dockerfiles)

– Each line in a Docker file is a separate image layer, which by default will be cached (exceptions!)

• Order from generic/stable commands to specific/unstable commands
– Use explicit version tagging for all installed packages (consistency across future builds)

– Avoid unnecessary layers & packages à smartly combine commands

Performance when sharing host resources (e.g. when using bridge network)
No need to dockerize all your services ...
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Docker
Evaluation

Public

Application packaging à KISS!
– Containers are not VMs, but application environments

– Don’t try to stuff too many background services inside each container (sshd, logging, etc.)

– Don’t install build tools (e.g. gcc) without good reason à use build containers for that!

Data storage
– Try to avoid storing (all) data inside the application containers

• Containers should be as much as possible easily replacable

– Use key-value stores (etcd), DBs (mysql), data containers or host-volumes (-v)

Security
Networking
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Background reading and references
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• Martin Fowler’s article (must read): http://martinfowler.com/articles/microservices.html

• Community site: http://microservices.io/

• A. Cockcroft (prev. Netflix lead engineer) on migrating to micro-services: 
http://www.infoq.com/presentations/migration-cloud-native

• Insightful blogs:
– http://www.tigerteam.dk/2014/micro-services-its-not-only-the-size-that-matters-its-also-how-you-use-them-part-1/

– http://gomorpheus.com/blog/2014-10-24-the-new-reality-microservices-apply-the-internet-model-to-app-development

– A critical note: http://contino.co.uk/microservices-not-a-free-lunch/

– http://highscalability.com/blog/2015/12/1/deep-lessons-from-google-and-ebay-on-building-ecosystems-of.html

• Colossus (Tumblr Engineering Blog): http://engineering.tumblr.com/post/102906359034/colossus-a-new-service-
framework-from-tumblr

• Finagle (Twitter Engineering Blog): https://blog.twitter.com/2011/finagle-a-protocol-agnostic-rpc-system
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