NOKIA Bell Labs

Microservices & docker:
from theory to practice

« Tom Van Cutsem, PhD and Nico Janssens, PhD
« Bell Labs, Application platforms and software systems lab
e December 15t 2016

Public

Context

Microservices

docker

2 ©Nokia 2016 Public NOKIA Bell Labs

What drives microservices?

O) \/ Microservices

Continuous

Deployment
3 © Nokia 2016 Public NOKIA Bell Labs

You're in good company

ETFLI
Go Sﬂeg INIIIIIINI

Microservices
\/ amazoncom

Continuous

Deployment
4 © Nokia 2016 Public NOKIA Bell Labs

What are microservices?

— @,

0] R

A————————

HTTP
O—M— %

HTTP HTTP .

G

HTTP

==
HTTP

“SOA done right”

5 © Nokia 2016 Public

g— &= Relational
emd
‘o

DB

Key/Value
Store

\0'0/“‘*'

-- James Lewis and Martin Fowler

NOKIA Bell Labs

Microservices: characteristics

Componentization
via services

6 © Nokia 2016 Public

Web
Services

ms

J2EE JMS MO Packaged
Appl-(al-on Applications

ﬂ“%%‘

Smart endpoints,
dumb pipes

NOKIA Bell Labs

Microservices: characteristics

Products, Organized around
not projects business capabilities

V44

“vou build it, you run it

7 © Nokia 2016 Public NOKIA Bell Labs

Microservices: characteristics

Products, Organized around
not projects business capabilities

V44

“vou build it, you run it

8 © Nokia 2016 Public NOKIA Bell Labs

Microservices: organize around business services

9

© Nokia 2016

Su

Ul Toowm PF

é A Bi Ondens
W dellwera

Ad 3o

AAA DNGAS &i

"Any organization that designs a system ... will inevitably produce a design
whose structure is a copy of the organization's communication structure.”
-- Melvin Conway, 1968

(Source: Martin Fowler)

Public NOKIA Bell Labs

Microservices: characteristics

n ‘ d e @ ﬁ pUthOn .mongol-) HBASE ciss:i,g,-la(

Toky o
hed W
@caﬂlaﬂsw Project Voldemart

*® Neoyj N o d
.. the qr‘dp4h]dﬂl.1b-1?-r Hmembose

Decentralized Decentralized
Governance Data Management

10 © Nokia 2016 Public NOKIA Bell Labs

Large codebases seem to auto-evolve into microservices
War stories from large web companies

1st gen 2" gen 3nd gen

ebay

Monolithic Tiered Polyglot
app architecture microservices
Ewitter Written in one Java as :
) Mix of
language dominant laneUaces
amazoncom (e.g. Perl, C++) language i

(Source: highscalability.com, 2015)

11 © Nokia 2016 Public NOKIA Bell Labs

Microservices: characteristics

Infrastructure Design for Failure Evolutionary
Automation Design
“IT is an APIl”

12 © Nokia 2016 Public NOKIA Bell Labs

Microservices & DevOps culture

Need to be able to provision infrastructure fast

Containerize services (Docker)

Container orchestration (Swarm, Kubernetes, Rancher, Mesos, ...)

Teams maintain their own services in production

¢

docker kubernetes

13 © Nokia 2016 Public NOKIA Bell Labs

Microservices: risks

Independent
services

Service boundaries
not easy to change

End-to-end testing/debugging
more difficult

Distributed systems
challenges

14 © Nokia 2016 Public

Design for Failure

Investment in monitoring

tools

Operational complexity

Technological

Diversity
Reds ¢10: 27

HBASE Cassandra

. mongoDB sriak

"
Aol
CouchDB \L__‘/

Strong and diverse
skill set

NOKIA Bell Labs

Case study: ShowMe

Public NOKIA Bell Labs

ShowMe: location-based video sharing
Discover or share what’s up near a location of interest

ShowMe: location-based video sharing
Prototype app + experience movie

' [} ShowMe App “x ‘ _

€« C [65.99.241.162:8080/showme#live-streal
it Apps (D) ALUHome [ShowMeApp (] bookmarks

Show Me

Koningin Astridplein 26

toce det Feedback

You and 5 of your Swarm friends People viewing

@ c O O O - < People sharing

17 © Nokia 2016 Public NOKIA Bell Labs

Functional architecture
u Auth API
Geocoding .@' A\ Venue AP
API 4 foursquolre)
Session
Web server storage
. Stored

Web client
(consumer)

Session

/ server

Checkin
server

Web client

(producer) Analytics

DB

Push API
Checkin API

Foursquare
app

18 © Nokia 2016 Public

NOKIA Bell Labs

Technology stack

Geocoding [/ : Al u n openstack
7

API foursquare

Session
Web server storage

Web client .
server streams
Web client
(producer)
Foursquare
app
ffoursquare

foursquare NOKIA Bell Labs

Checkin
server

19 © Nokia 2016 Public

Service interfaces

REST/HTTP

Session
Web cllent Weh»C. RTC Session Medi
(consumer) REST/HTTP €dia server Stored
server streams
a Web client Checkin
(producer) Q FAYE server Analytics
DB
REST/HTTP
Foursquare

Geocoding .7,

7

20 © Nokia 2016 Public NOKIA Bell Labs

| essons learned

21

Multiple teams working on independent subsystems = highly productive
— Different goals

— Different skillsets

— Different release schedules

— Less conflicts

Testing and debugging of the overall system was a pain

We didn’t sufficiently invest in tooling and automation

— Manual configuration and set-up

— Infrastructure not set up to host multiple versions of the app
— No cross-service unit testing infrastructure

© Nokia 2016 Public

NOKIA Bell Labs

| essons learned

« Micro-service architecture = distributed system
— Deal with asynchrony, failure, latency, keeping data consistent across databases
— Interfaces between services are implicit, not checked by compiler.

» Testing services in isolation is not enough

— Focus is on monitoring and detecting anomalies more than on thorough testing before
deployment

* Deployment is much more complicated
— Fine-grained orchestration and configuration
— Each service needs clustering, monitoring, load-balancing, ...
— Variety of runtimes and databases requires larger skill set to tweak, deploy, maintain

— To do microservices right, should keep old and new versions of the service running side-by-side

22 © Nokia 2016 Public NOKIA Bell Labs

Case study: instadash

Public NOKIA Bell Labs

Instadash app
Real-time fleet tracking

GPS receiver

9 OBD via CAN bus

® Dashcam

yenl

On-board Unit

7

P

a£ “ ' 2real cars,

3 — 10 hours footage
400 virtual cars

Updmgaoknce ON
~
< > e
v poe
SO
+" &F
& =
[g —m 2 %
>
- P
AN R L ot 7
oL e
Brightwood Park | ¢ L
s :
Kaarigegevens ©2015 Google 500 m L Eon
24 © Nokia 2016 Public

NOKIA Bell Labs

Instadash: functional architecture

Web
client

Web Query System
gateway deployer monitor
Websocket
Message Bus

server

Media
server

Resource Biovlas

Devices

Manager registry

25 © Nokia 2016 Public NOKIA Bell Labs

Instadash: functional architecture

Web Web Query System
client gateway deployer monitor

Websocket
server

N

Media
server

Resource Biovlas
manager registry

26 © Nokia 2016 Public NOKIA Bell Labs

&

Devices

Instadash: technology stack

nede:]
Web Query System
gateway deployer monitor

M Websocket

server
-L/

Web
client

Workers

N

Media k& Kurento H:Rabb|t 0

server

A

python

nedec

Devices

Resource Device
manager registry é redis

27 © Nokia 2016 Public NOKIA Bell Labs

Instadash: service interfaces

REST/HTTP
Web

Query System
deployer monitor Protobuf over TCP

Web
client gateway
M Websocket
server

Message Bus

Workers

Media over
Web© RTC server

&

Devices

JSON-RPC AMQP
over AMQP

Resource
manager

Device

registry

REST/HTTP
28 © Nokia 2016 Public NOKIA Bell Labs

Microservice communication patterns

REST over HTTP
Microservice > Microservice
A - B
REST/HTTP is well-understood Text-based protocol overheads

HTTP support is ubiquitous

JSON as data model is a natural fit

Public

Microservice communication patterns

Microservice > Microservice
A . B
Fast, often binary encoding Firewall issues, less ubiquitous
Built-in schema support Need an additional discovery service

Public

CHHEEY JSON-RPC

Microservice communication patterns

Microservice > > Microservice
A Message Bus B
< <
Decoupling between components More complex, beware
(bus handles both discovery and routing) bottleneck

WaRabbit)0 g redis §gkqfka N[A[T]S]

Public

Communication patterns

Web
gateway

Query System
deployer monitor

Web
client

Websocket

SEIVEr Message Bus

Workers

Media
server

baRabbitVIO

* Open source
Resource

Device « Large community
manager

registry

Devices

* Many client libraries

32 © Nokia 2016 Public NOKIA Bell Labs

Communication patterns: point-to-point

Web Query System
gateway deployer monitor

Web
client

Websocket

RS Message Bus

Workers

Media
server

BhRabbitVIO

Open Source Enterprise Messaging

R * JSON-RPC over AMQP
Devices LIRS Device » Messages represent requests or commands
manager registry

33 © Nokia 2016 Public NOKIA Bell Labs

Communication patterns: publish-subscribe

Web
gateway

Query System
deployer monitor

Web
client

Websocket

SEIVED Message Bus

Workers

Media
server

BhRabbitVIO

Open Source Enterprise Messaging

» Use AMQP’s rich routing semantics via topic exchanges
Resource

Device + Messages represent events (JSON payload)
Mmanager

registry

Devices

34 © Nokia 2016 Public NOKIA Bell Labs

Communication patterns: work queueing

Web
client

Devices

35 © Nokia 2016

Web
gateway

Websocket
server

Media
server

Resource
manager

Public

Query
deployer

Device

registry

System
monitor

Message Bus

Workers

BhRabbitVIO

Open Source Enterprise Messaging
+ Asingle queue served by multiple workers.
* Goal is to spread tasks over multiple instances of the same sen

» Messages represent tasks (work to be done)

NOKIA Bell Labs

Monitoring: our approach

Used Riemann as central dashboard and event monitoring server

Client libraries for a variety of programming languages (remember: polyglot)

Each microservice regularly reports service-specific statistics

Each host machine also reports generic resource statistics

Emai|
el
6 rapk.’*‘e

Riemann

N
\\ _
L:brato

L

36 © Nokia 2016 Public NOKIA Bell Labs

Monitoring

System
monitor

Web Web
client gateway

Websocket
server

Workers

Media
server Protobufs over UDP or TCP

Resource
manager

Device

registry

Devices

37 © Nokia 2016 Public NOKIA Bell Labs

Monitoring: dashboards

[InstadashsystemMonitor x|+

Memory

0175
wws1 flex bl.com
wws2 flex.bl.com
0.150
0.125
0.100
0075
0.050
0.025
0.000
16:07 16:08 16:09 16:10 16:11
350000
message_stats.ack
message_stats.ack_details
300000 [~
Il message_stats.deliver
I message_stats.deliver_details
250000 | HM message_stats.deliver_get
| message_stats.deliver_get_details
200000 I message_stats.deliver_no_ack
Il message_stats.deliver_no_ack_details
Il message_stats.publish
150000 | WM message_stats.publish_details
object_totals.channels
object_totals.connections
100000
| object_totals.consumers
I object_totals.exchanges
50000 | [object_totals.queues
Bl queue_totals messages
0 I queue_totals. messages_details

I queue totals. messages) ready

38 © Nokia 2016

16:10

Load
0012
wws1 flex bl.com
wws2 flex.bl.com
0.010

0.008
0.006
0.004
0.002

0.000

16:07 16:08 16:09 16:10

RabbitMQ Status _

localhost rabbitmq monitoring
localhost rabbitmqg monitoring
localhost rabbitmg monitoring
localhost rabbitmg monitoring
localhost rabbitmq monitoring
localhost rabbitmg monitoring
localhost rabbitmg monitoring
localhost rabbitmg monitoring
localhost rabbitmqg monitoring
localhost rabbitmg monitoring
localhost rabbitmq monitoring
localhost rabbitmq monitoring
localhost rabbitmg monitoring

16:11 localhost rabbitmg monitoring

Public

1611

[Ead0.15.0.13 |[65.99.241.162:5556 | © websockets © sse
CPU Disk
0.10 025
wws1 flex.bl.com wws1 flex.bl.com
wws2 flex.bl.com wws2 flex bl.com
0.08 020
0.06 0.15
0.04 0.10
0.02 0.05
16:07 16:08 16:09 16:10 16:11 16:07 16:08 16:09 16:10 16:11
Redis
Monitori tional 1500000000
onitoring operationa F aof_current_rewrite_time_sec
HTTP connection ok aof_enabled
Monitoring operational 1250000000 | Wl aof_last_bgrewrite_status
) I aof_last_rewrite_time_sec
HTTP connection ok I =of_last_write_status
Monitoring operational 1000000000 | m aof_rewrite_in_progress
HTTP connection ok Il aof_rewrite_scheduled
L) I arch_bits
Monitoring operational 750000000 | g piocked clients
HTTP connection ok I client_biggest_input_buf
Monitoring operational client_longest_outpu._list
g ope 500000000 | | (org file
HTTP connection ok B connected_clients
Monitoring operational 250000000 : Zzgnec\ed_slaves
HTTP connection ok
. . Il evicted_keys
Monitoring operational o o eipied Keys
HTTP connection ok Il gecoversion 16:09 16:10 16:11

NOKIA Bell Labs

| essons learned

« Message bus as central broker had many advantages

Solved service discovery (all components need to know the broker, not each other)
Queueing makes services more robust to failover

Message bus dashboard gave a wealth of system information about communication patterns,
message rates, etc.

But: can quickly become a bottleneck: proper configuration and tuning was key

Also: all components needed hardening to e.g. auto-reconnect when broker went down

« Use external configuration files that can be generated or templated from a central place
« Use schema validation to catch bugs faster (e.g. JSON-Schema, Protobufs, AVRO, ...)
« Monitoring was essential to see what’s going on

» Dockerizing services was key to getting this system going (20+ processes)

Public

PART I

On MicroServices, Docker and
DevOps

40 © Nokia 2016 NOKIA Bell Labs

Context

Microservices

docker

41 © Nokia 2016 Public NOKIA Bell Labs

Docker Containers
Efficiency

Lightweight application isolation = very low performance overhead

App 3

Bins/Libs Bins/Libs Bins/Libs

IE

Guest OS Guest OS |l Guest OS

Hypervisor

Host Operating System

Infrastructure
= see)
=N

Virtual Machines

App 1 App 3
Bins/Libs

Infrastructure

| ==

Containers

source: https://blog.jayway.com/2015/03/21/a-not-very-short-introduction-to-docker/

Docker Containers
Programmability

Container programming =» Dockerfile

FROM ubuntu:16.04
MAINTAINER Sven Dowideit <SvenDowideit@docker.com>

RUN apt-get update &% apt-get install -y openssh-server

RUN mkdir /var/run/sshd

RUN echo 'root:screencast' | chpasswd

RUN sed -i 's/PermitRootLogin prohibit-password/PermitRootLogin yes/' /etc/ssh/sshd_config

SSH login fix. Otherwise user is kicked off after login
RUN sed 's@session\s*required\s*pam_loginuid.so@session optional pam_loginuid.so@g' -i /etc/pam.d/sshd

ENV NOTVISIBLE "in users profile"
RUN echo "export VISIBLE=now" >> /etc/profile

EXPOSE 22
CMD ["/usr/sbin/sshd", "-D"]

Docker Containers
Active eco-system

-*f Service Providers

@radispace. 3 DEIS

the open cloud company p 1

......

openstack

amazon
webservices™

Yandex <5 OPENSHIFT Microsoft Azure <2 DigitalOcean

* Operating Systems
& rednat © core0s

(©debian

SOPTRES ubuntu®
fedoroo 4% Cent0s

.) * Configuration Management
% ‘ linode L QUOY.IO Bai.C:b.'EB Rmmv‘.v:dhlu':(:u\uwx
g Iglleov:.'g % @ Epstackato E;':%c /'\II“-'PPIabs Chef @Jenkms C
o Dot Packer
@ scoocc [FIII voxoz| ANStBLE SALTSTACK
* Big Data

-& Dev Tools O Synicsort (G lEnbop
@Fig W vaceant [N heroku [shippable dOCer

55 runnable JINODEC

S =mmm

wercker

* Official Repositories

A Ruby
.mongoDB MySQ\\L ;\g}l () WoroPress
¢ i

—
RAILS

Java

& redis NGIUX node

HECKER

(©debian uﬁfe 0S ubuntu®

source: http://slidedeck.io/dpdornseifer/reveal_docker

* Service Discovery
£
t ¥

Orchestration

SkyDNS

B @ sipper [GREM s> @ Marathon (© fleet

* System Integrators

& OpDemand’

7
W Wiredcraft Momentumsl InfoSiftr
) DOWeYsSOF) e
G770/ T DEVY wemmcomol(Nizur

Docker Containers
Portability

The matrix from hell

-*7 ?) ? ? ?

DEL - ? ? ? ? ?
MHSQRL ? 2 ? 2 2 2
? 2 2 ?
2 2 2 2
2 2 2 2

source: http://www.slideshare.net/Docker/docker-lpc-2014cristian

Docker Containers
Flexibility

Build, ship and run any app, anyware [docker]

72N

Code

=)
Dockerfile /
\ Source Repository
* Cl Server
o Docker Registry

Deploy (docker push)

A

Build (docker buﬂd “ Test (docker run)

o // \\

a<:¢* |

Service =
ests .

source: http://blog.terranillius.com/post/docker_testing/

Docker Containers
Demo

DevOps
@10k feet

Development Operations

Development Operations

source: htto://www.drdobbs.com/architecture-and-desion/cettine-devobps-richt-the-lav-of-the-land/240062639

DevOps
CALMS

Culture
Automation
Lean

Measurement

Sharing

ePromotes collaborative and open culture between Dev and Ops
eEmbrace change and experimentation

eAutomate whenever possible
¢Cl/CD, Infrastructure as Code, ...

eFocus on producing value for the end-user
eSmall size batches, higher release cycles

eMeasure everything all the time and use this info to improve/refine cycles
*Show the improvement

*Open information sharing — experiences, successes, failures, etc.
eCollaboration & communication — learn from each other (Kanban board, IM, wiki)

Moving away from traditional telco service design

Operational costs pressures push Telcos to virtualize environments while
preserving non-functional requirements

® 5 nines availability
e Reliability

e Performance and response times

Moving away from traditional telco service design

*docker

Low overhead

Additional non-functional
requirements to take into account

e Scalability Portability

e Elasticity Micro-service architectures

Active eco-system + public image
registries

* Operability and portability Facilitates DevOps methodology

o Agility

Bell Labs Projects: New Home/loT Service Platform

High Performance & Predictability

Distributed Cloud

Small footprints Platform
. . For Heterogeneous HW
I — l\s\ :
s Hub ’{ N infrastructure

Sensor network
WiFi network
Mobile 5G network

Bell Labs Projects: Bandwidth Optimized Streaming Analytics

N N N N N N
ACCESS l

EDGE

B. Theeten and N. Janssens, CHive:
QUERY Bandwidth Optimized Continuous
[animated Querying in Distributed Clouds. IEEE
slide] CORIFS,[A\ITI,EATCYVECI)\EI'IEIQ PROJECT GROUP-BY Transactions on Cloud Computing 3
FILTER ORDER-BY (2), pp. 219-232, 2015.

Bell Labs Projects: New Communication Service

Key Goal: Simplify interactions among people, machines,
and their environments —w

:0”
» From transaction-oriented Web model to persistent N
conversations
« Uniform interaction model for people, machines, and ol 4

objects

 Rich context-based communications and collaboration

Micro-service chat architecture location and T
geo-fencing analytics

service J\Z

Sporl(

coTURN Stateless Workers

HURENTO
Chat-Thread Mgr
e TURN/STUN Media Server \
) User View Mgr
mobile client User Mgr
Group Mgr

L)

web browser

I

SDK

€<

Ls

@ .

:

WS server
message
broker
HTTP server
web storage redls
/Y

machine buddies

nedec g

Call Mgr
[]
NGiNX g)
s,
node @ COMCAST =
CcMB Java
.m ngo
:;;‘:f;:si (Q) [key-value J [document-
and FS ceph redis database oriented db

Public

< -
I

User Presence Mgr

Push Notification Adapter

Initial production design
20 node cluster with RANCHER and DOCKER

Mgmt Server Mgmt Server Server ‘
VM
Rancher :
F ll
. Mgmt Rancher Private IP Net NA'}'r’eSﬁcp, ~~ R:nch:r
N\ Memt 4 LB,DNS S o T
~
pubtc covs (R
S Operator
Rancher Cluster Manager
Host Host Host RAN HER
Rancher c * Native Docker support

prsn || LI * Re-usage of Docker Compose files
Container * Low entry hurdle

» Dashboard

Docker - Redundancy

Daemon
* IPSec support

Container

Docker
Daemon

Evaluation
MicroServices

Rapid and independent evolution (lifecycle management) v/
Use the right tool for the job v/
Decentralized governance and data management v/

Evaluation
Docker

Low overhead v/

Portability v/

Micro-service architectures v/

Active eco-system with public image registries v/

Facilitates DevOps methodology v/

L
RANCHER

58 © Nokia 2016 Public

OO

compose

registry

NOKIA Bell Labs

Evaluation
Docker

Docker lifecycle management
« Don't forget to clean old containers and dangling images
 For non-trivial lifecycle mgmt and production environments, rely on other tools
— compose, swarm, kubernetes, mesos+marathon/chronos, saltstack, terraform, etc.
Dockerfiles
 Think carefully how to structure your Dockerfiles (across Dockerfiles)
— Eachline in a Docker file is a separate image layer, which by default will be cached (exceptions!)
« Order from generic/stable commands to specific/unstable commands
— Use explicit version tagging for all installed packages (consistency across future builds)
— Avoid unnecessary layers & packages - smartly combine commands
Performance when sharing host resources (e.g. when using bridge network)
No need to dockerize all your services ...

Evaluation
Docker

Application packaging - KISS!

— Containers are not VMs, but application environments

— Don’t try to stuff too many background services inside each container (sshd, logging, etc.)

— Don’t install build tools (e.g. gcc) without good reason - use build containers for that!
Data storage

— Try to avoid storing (all) data inside the application containers
« Containers should be as much as possible easily replacable

— Use key-value stores (etcd), DBs (mysql), data containers or host-volumes (-v)
Security
Networking

60 © Nokia 2016 Public NOKIA Bell Labs

Background reading and references

« Martin Fowler’s article (must read): http://martinfowler.com/articles/microservices.html

« Community site: http://microservices.io/

» A. Cockcroft (prev. Netflix lead engineer) on migrating to micro-services:
http://www.infog.com/presentations/migration-cloud-native
* Insightful blogs:

— http://www.tigerteam.dk/2014/micro-services-its-not-only-the-size-that-matters-its-also-how-you-use-them-part-1/

— http://gomorpheus.com/blog/2014-10-24-the-new-reality-microservices-apply-the-internet-model-to-app-development

— Acritical note: http://contino.co.uk/microservices-not-a-free-lunch/

http://highscalability.com/blog/2015/12/1/deep-lessons-from-google-and-ebay-on-building-ecosystems-of.html

* Colossus (Tumblr Engineering Blog): http://engineering.tumblr.com/post/102906359034/colossus-a-new-service-

framework-from-tumblr

* Finagle (Twitter Engineering Blog): https://blog.twitter.com/2011/finagle-a-protocol-agnostic-rpc-system

61 © Nokia 2016 Public NOKIA Bell Labs

NOKIA

Copyright and confidentiality

The contents of this document are proprietary and
confidential property of Nokia. This document is
provided subject to confidentiality obligations of the
applicable agreement(s).

This document is intended for use of Nokia’s
customers and collaborators only for the purpose
for which this document is submitted by Nokia. No
part of this document may be reproduced or made
available to the public or to any third party in any
form or means without the prior written permission
of Nokia. This document is to be used by properly
trained professional personnel. Any use of the
contents in this document is limited strictly to the
use(s) specifically created in the applicable
agreement(s) under which the document is
submitted. The user of this document may
voluntarily provide suggestions, comments or other
feedback to Nokia in respect of the contents of this
document ("Feedback").

63 © Nokia 2016 Public

Such Feedback may be used in Nokia products and
related specifications or other documentation.
Accordingly, if the user of this document gives Nokia
Feedback on the contents of this document, Nokia
may freely use, disclose, reproduce, license,
distribute and otherwise commercialize the
feedback in any Nokia product, technology, service,
specification or other documentation.

Nokia operates a policy of ongoing development.
Nokia reserves the right to make changes and
improvements to any of the products and/or
services described in this document or withdraw this
document at any time without prior notice.

The contents of this document are provided "as is".
Except as required by applicable law, no warranties
of any kind, either express or implied, including, but
not limited to, the implied warranties of
merchantability and fitness for a particular purpose,

are made in relation to the accuracy, reliability or
contents of this document. NOKIA SHALL NOT BE
RESPONSIBLE IN ANY EVENT FOR ERRORS IN THIS
DOCUMENT or for

any loss of data or income or any special, incidental,
consequential, indirect or direct damages
howsoever caused, that might arise from the use of
this document or any contents of this document.

This document and the product(s) it describes
are protected by copyright according to the
applicable laws.

Nokia is a registered trademark of Nokia

Corporation. Other product and company names
mentioned herein may be trademarks or trade
names of their respective owners.

NOKIA Bell Labs

