
© Nokia 20161 Public

Microservices & docker:
from theory to practice
• Tom Van Cutsem, PhD and Nico Janssens, PhD
• Bell Labs, Application platforms and software systems lab
• December 1st, 2016

© Nokia 20162

Context

Public

Microservices

© Nokia 20163

What drives microservices?

Public

Cloud

Microservices

Continuous
Deployment

© Nokia 20164

You’re in good company

Public

Cloud

Microservices

Continuous
Deployment

© Nokia 20165

What are microservices?

Public

-- James Lewis and Martin Fowler

“SOA done right”

© Nokia 20166

Microservices: characteristics

Public

Componentization
via services

Smart endpoints,
dumb pipes

© Nokia 20167

Microservices: characteristics

Public

Products,
not projects

Organized around
business capabilities

“you build it, you run it”

© Nokia 20168

Microservices: characteristics

Public

Products,
not projects

Organized around
business capabilities

“you build it, you run it”

© Nokia 20169

Microservices: organize around business services

Public

"Any organization that designs a system … will inevitably produce a design
whose structure is a copy of the organization's communication structure."
-- Melvin Conway, 1968

(Source: Martin Fowler)

© Nokia 201610

Microservices: characteristics

Public

Decentralized
Governance

Decentralized
Data Management

© Nokia 201611

War stories from large web companies
Large codebases seem to auto-evolve into microservices

Public

(Source: highscalability.com, 2015)

Monolithic
app

1st gen 2nd gen 3nd gen

Tiered
architecture

Polyglot
microservices

Written in one
language

(e.g. Perl, C++)

Java as
dominant
language

Mix of
languages

© Nokia 201612

Microservices: characteristics

Public

Infrastructure
Automation

Design for Failure Evolutionary
Design

“IT is an API”

© Nokia 201613

Microservices & DevOps culture

Public

• Need to be able to provision infrastructure fast
• Containerize services (Docker)
• Container orchestration (Swarm, Kubernetes, Rancher, Mesos, …)
• Teams maintain their own services in production

© Nokia 201614

Microservices: risks

Public

Independent
services

Service boundaries
not easy to change

Design for Failure

Investment in monitoring
toolsEnd-to-end testing/debugging

more difficult

Technological
Diversity

Strong and diverse
skill set

Operational complexityDistributed systems
challenges

© Nokia 201615

Case study: ShowMe

Public

© Nokia 201616

Discover or share what’s up near a location of interest
ShowMe: location-based video sharing

Public

LIVE PERSONAL
CONTENT

LOCATION AS
SHARED CONTEXT

© Nokia 201617

Prototype app + experience movie
ShowMe: location-based video sharing

Public

© Nokia 201618

Functional architecture

Public

Web client
(consumer)

Checkin
server

Web server
Session
storage

Analytics
DB

Media server

Web client
(producer)

Foursquare
app Push API

Checkin API

Auth API
Venue APIGeocoding

API

Session
server

Stored
streams

© Nokia 201619

Technology stack

Public

Web client
(consumer)

Checkin
server

Web server
Session
storage

Analytics
DB

Media server

Web client
(producer)

Foursquare
app

Geocoding
API

Session
server

Stored
streamsC++

© Nokia 201620

Service interfaces

Public

Web client
(consumer)

Checkin
server

Web server
Session
storage

Analytics
DB

Media server

Web client
(producer)

Foursquare
app

Geocoding
API

Session
server

Stored
streams

REST/HTTP

REST/HTTP

REST/HTTP

© Nokia 201621

Lessons learned

Public

• Multiple teams working on independent subsystems = highly productive
– Different goals

– Different skillsets

– Different release schedules

– Less conflicts

• Testing and debugging of the overall system was a pain
• We didn’t sufficiently invest in tooling and automation

– Manual configuration and set-up

– Infrastructure not set up to host multiple versions of the app
– No cross-service unit testing infrastructure

© Nokia 201622

Lessons learned

Public

• Micro-service architecture = distributed system
– Deal with asynchrony, failure, latency, keeping data consistent across databases

– Interfaces between services are implicit, not checked by compiler.

• Testing services in isolation is not enough
– Focus is on monitoring and detecting anomalies more than on thorough testing before

deployment

• Deployment is much more complicated
– Fine-grained orchestration and configuration

– Each service needs clustering, monitoring, load-balancing, …
– Variety of runtimes and databases requires larger skill set to tweak, deploy, maintain

– To do microservices right, should keep old and new versions of the service running side-by-side

© Nokia 201623

Case study: instadash

Public

© Nokia 201624

Real-time fleet tracking
Instadash app

Public

GPS receiver

OBD via CAN bus

Dashcam

On-board Unit

2 real cars,
10 hours footage
400 virtual cars

© Nokia 201625

Instadash: functional architecture

Public

Message Bus
Workers

Web
gateway

Media
server

Workers
Workers

Device
registry

Websocket
server

Web
client

Devices
Resource
manager

Query
deployer

System
monitor

© Nokia 201626

Instadash: functional architecture

Public

Message Bus
Workers

Web
gateway

Media
server

Workers
Workers

Device
registry

Websocket
server

Web
client

Devices
Resource
manager

Query
deployer

System
monitor

© Nokia 201627

Instadash: technology stack

Public

Message Bus
Workers

Web
gateway

Media
server

Workers
Workers

Device
registry

Websocket
server

Web
client

Devices
Resource
manager

Query
deployer

System
monitor

© Nokia 201628

Instadash: service interfaces

Public

Message Bus
Workers

Web
gateway

Media
server

Workers
Workers

Device
registry

Websocket
server

Web
client

Devices
Resource
manager

Query
deployer

System
monitor

JSON-RPC
over AMQP

Protobuf over TCP

REST/HTTP

JSON
over

AMQP

REST/HTTP

Microservice communication patterns

Public

Microservice
A

Microservice
B

REST over HTTP

Text-based protocol overheadsREST/HTTP is well-understood

HTTP support is ubiquitous

JSON as data model is a natural fit

Microservice communication patterns

Public

Microservice
A

Microservice
B

RPC

Firewall issues, less ubiquitousFast, often binary encoding

Built-in schema support Need an additional discovery service

JSON-RPC

Microservice communication patterns

Public

Microservice
A Message Bus Microservice

B

More complex, beware
bottleneck

Decoupling between components
(bus handles both discovery and routing)

© Nokia 201632

Communication patterns

Public

Message Bus
Workers

Web
gateway

Media
server

Workers
Workers

Device
registry

Websocket
server

Web
client

Devices
Resource
manager

Query
deployer

System
monitor

• Open source

• Large community

• Many client libraries

© Nokia 201633

Communication patterns: point-to-point

Public

Message Bus
Workers

Web
gateway

Media
server

Workers
Workers

Device
registry

Websocket
server

Web
client

Devices
Resource
manager

Query
deployer

System
monitor

• JSON-RPC over AMQP

• Messages represent requests or commands

© Nokia 201634

Communication patterns: publish-subscribe

Public

Message Bus
Workers

Web
gateway

Media
server

Workers
Workers

Device
registry

Websocket
server

Web
client

Devices
Resource
manager

Query
deployer

System
monitor

• Use AMQP’s rich routing semantics via topic exchanges

• Messages represent events (JSON payload)

© Nokia 201635

Communication patterns: work queueing

Public

Message Bus
Workers

Web
gateway

Media
server

Workers
Workers

Device
registry

Websocket
server

Web
client

Devices
Resource
manager

Query
deployer

System
monitor

• A single queue served by multiple workers.

• Goal is to spread tasks over multiple instances of the same service

• Messages represent tasks (work to be done)

© Nokia 201636

Monitoring: our approach

Public

• Used Riemann as central dashboard and event monitoring server
• Client libraries for a variety of programming languages (remember: polyglot)
• Each microservice regularly reports service-specific statistics
• Each host machine also reports generic resource statistics

© Nokia 201637

Monitoring

Public

Message Bus
Workers

Web
gateway

Media
server

Workers
Workers

Device
registry

Websocket
server

Web
client

Devices
Resource
manager

Query
deployer

System
monitor

Protobufs over UDP or TCP

© Nokia 201638

Monitoring: dashboards

Public

Lessons learned

Public

• Message bus as central broker had many advantages
– Solved service discovery (all components need to know the broker, not each other)

– Queueing makes services more robust to failover

– Message bus dashboard gave a wealth of system information about communication patterns,
message rates, etc.

– But: can quickly become a bottleneck: proper configuration and tuning was key

– Also: all components needed hardening to e.g. auto-reconnect when broker went down

• Use external configuration files that can be generated or templated from a central place
• Use schema validation to catch bugs faster (e.g. JSON-Schema, Protobufs, AVRO, …)
• Monitoring was essential to see what’s going on
• Dockerizing services was key to getting this system going (20+ processes)

© Nokia 201640

PART II
On MicroServices, Docker and

DevOps

© Nokia 201641

Context

Public

Microservices

© Nokia 201642

Efficiency
Docker Containers

Public

Lightweight application isolation è very low performance overhead

source: https://blog.jayway.com/2015/03/21/a-not-very-short-introduction-to-docker/

© Nokia 201643

Programmability
Docker Containers

Public

Container programming è Dockerfile

FROM ubuntu:16.04
MAINTAINER Sven Dowideit <SvenDowideit@docker.com>

RUN apt-get update && apt-get install -y openssh-server
RUN mkdir /var/run/sshd
RUN echo 'root:screencast' | chpasswd
RUN sed -i 's/PermitRootLogin prohibit-password/PermitRootLogin yes/' /etc/ssh/sshd_config

SSH login fix. Otherwise user is kicked off after login
RUN sed 's@session\s*required\s*pam_loginuid.so@session optional pam_loginuid.so@g' -i /etc/pam.d/sshd

ENV NOTVISIBLE "in users profile"
RUN echo "export VISIBLE=now" >> /etc/profile

EXPOSE 22
CMD ["/usr/sbin/sshd", "-D"]

© Nokia 201644

Active eco-system
Docker Containers

Public
source: http://slidedeck.io/dpdornseifer/reveal_docker

© Nokia 201645

Portability
Docker Containers

Public

The matrix from hell

source: http://www.slideshare.net/Docker/docker-lpc-2014cristian

© Nokia 201646

Flexibility
Docker Containers

Public

Build, ship and run any app, anyware [docker]

source: http://blog.terranillius.com/post/docker_testing/

© Nokia 201647

Demo
Docker Containers

Public

© Nokia 201648

@10k feet
DevOps

Public

source: http://www.drdobbs.com/architecture-and-design/getting-devops-right-the-lay-of-the-land/240062639

© Nokia 201649

CALMS
DevOps

Public

••Promotes collaborative and open culture between Dev and Ops
••Embrace change and experimentationCulture
••Automate whenever possible
••CI/CD, Infrastructure as Code, …Automation
••Focus on producing value for the end-user
••Small size batches, higher release cycles Lean
••Measure everything all the time and use this info to improve/refine cycles
••Show the improvementMeasurement
••Open information sharing – experiences, successes, failures, etc.
••Collaboration & communication – learn from each other (Kanban board, IM, wiki)Sharing

© Nokia 201650

Operational costs pressures push Telcos to virtualize environments while
preserving non-functional requirements

• 5 nines availability
• Reliability

• Performance and response times

Moving away from traditional telco service design

Public

© Nokia 201651

Moving away from traditional telco service design

Public

Additional non-functional
requirements to take into account

• Scalability

• Elasticity

• Agility

• Operability and portability

Low overhead

Portability

Micro-service architectures
Active eco-system + public image
registries
Facilitates DevOps methodology

© Nokia 201652

Bell Labs Projects: New Home/IoT Service Platform

Public

Mobile 5G Network

WIFI Network Edge
Cloud

HubDevice

Distributed Cloud
Platform

For Heterogeneous HW
infrastructure

Home

High Performance & Predictability

Small footprints

Central
Cloud

Sensor network
WiFi network

Mobile 5G network

© Nokia 201653

QUERY

UNION

GROUP-BY

ORDER-BY

LIMIT

FILTER

PROJECTPROJECT

FILTER

PROJECTPROJECT

FILTER

PROJECTPROJECT

FILTER

PROJECTPROJECT

FILTER

PROJECTPROJECT

FILTER

PROJECTPROJECT

UNIONUNION

ACCESS

EDGE

CORE NETWORK /
DATA CENTER

[animated
slide]

B. Theeten and N. Janssens, CHive:
Bandwidth Optimized Continuous
Querying in Distributed Clouds. IEEE
Transactions on Cloud Computing 3
(2), pp. 219-232, 2015.

Bell Labs Projects: Bandwidth Optimized Streaming Analytics

© Nokia 201654

Bell Labs Projects: New Communication Service

Public

Key Goal: Simplify interactions among people, machines,
and their environments

• From transaction-oriented Web model to persistent
conversations

• Uniform interaction model for people, machines, and
objects

• Rich context-based communications and collaboration

© Nokia 201655

Micro-service chat architecture

Public

load balancer

WS server
message

broker

key-value
database

document-
oriented db

Stateless Workers
Chat-Thread Mgr

User Mgr

Group Mgr

User View Mgr

User Presence Mgr
Push Notification Adapter

Call Mgr

…

TURN/STUN Media Server

SD
K

mobile client

web browser

machine buddies

web storage

distributed
object store

and FS

RT + batch
analytics

HTTP server

location and
geo-fencing

service

CMB

coTURN

© Nokia 201656

20 node cluster with RANCHER and DOCKER
Initial production design

Public

Host Host Host

…
Rancher

Agent

Rancher
Agent

Private IP Net

Server

Firewall
NAT, DHCP,

LB,DNS

Docker
Daemon

Docker
Daemon

VM

Rancher
Agent

Docker
Daemon

WorkerContainer WorkerContainer

Rancher Cluster Manager

• Native Docker support
• Re-usage of Docker Compose files
• Low entry hurdle
• Dashboard
• Redundancy
• IPSec support

Public Cloud
Operator

Mgmt Server

Rancher
Mgmt

Docker
Registry

Mgmt Server

Rancher
Mgmt

Docker
Registry

Server

Firewall
NAT, DHCP,

LB,DNS

© Nokia 201657

MicroServices
Evaluation

Public

Rapid and independent evolution (lifecycle management) ✔
Use the right tool for the job ✔
Decentralized governance and data management ✔

© Nokia 201658

Docker
Evaluation

Public

Low overhead ✔

Portability ✔

Micro-service architectures ✔

Active eco-system with public image registries ✔

Facilitates DevOps methodology ✔

toolbox

compose

registry

© Nokia 201659

Docker
Evaluation

Public

Docker lifecycle management
• Don’t forget to clean old containers and dangling images
• For non-trivial lifecycle mgmt and production environments, rely on other tools

– compose, swarm, kubernetes, mesos+marathon/chronos, saltstack, terraform, etc.

Dockerfiles
• Think carefully how to structure your Dockerfiles (across Dockerfiles)

– Each line in a Docker file is a separate image layer, which by default will be cached (exceptions!)

• Order from generic/stable commands to specific/unstable commands
– Use explicit version tagging for all installed packages (consistency across future builds)

– Avoid unnecessary layers & packages à smartly combine commands

Performance when sharing host resources (e.g. when using bridge network)
No need to dockerize all your services ...

© Nokia 201660

Docker
Evaluation

Public

Application packaging à KISS!
– Containers are not VMs, but application environments

– Don’t try to stuff too many background services inside each container (sshd, logging, etc.)

– Don’t install build tools (e.g. gcc) without good reason à use build containers for that!

Data storage
– Try to avoid storing (all) data inside the application containers

• Containers should be as much as possible easily replacable

– Use key-value stores (etcd), DBs (mysql), data containers or host-volumes (-v)

Security
Networking

© Nokia 201661

Background reading and references

Public

• Martin Fowler’s article (must read): http://martinfowler.com/articles/microservices.html

• Community site: http://microservices.io/

• A. Cockcroft (prev. Netflix lead engineer) on migrating to micro-services:
http://www.infoq.com/presentations/migration-cloud-native

• Insightful blogs:
– http://www.tigerteam.dk/2014/micro-services-its-not-only-the-size-that-matters-its-also-how-you-use-them-part-1/

– http://gomorpheus.com/blog/2014-10-24-the-new-reality-microservices-apply-the-internet-model-to-app-development

– A critical note: http://contino.co.uk/microservices-not-a-free-lunch/

– http://highscalability.com/blog/2015/12/1/deep-lessons-from-google-and-ebay-on-building-ecosystems-of.html

• Colossus (Tumblr Engineering Blog): http://engineering.tumblr.com/post/102906359034/colossus-a-new-service-
framework-from-tumblr

• Finagle (Twitter Engineering Blog): https://blog.twitter.com/2011/finagle-a-protocol-agnostic-rpc-system

© Nokia 201663

Copyright and confidentiality

Public

The contents of this document are proprietary and
confidential property of Nokia. This document is
provided subject to confidentiality obligations of the
applicable agreement(s).

This document is intended for use of Nokia’s
customers and collaborators only for the purpose
for which this document is submitted by Nokia. No
part of this document may be reproduced or made
available to the public or to any third party in any
form or means without the prior written permission
of Nokia. This document is to be used by properly
trained professional personnel. Any use of the
contents in this document is limited strictly to the
use(s) specifically created in the applicable
agreement(s) under which the document is
submitted. The user of this document may
voluntarily provide suggestions, comments or other
feedback to Nokia in respect of the contents of this
document ("Feedback").

Such Feedback may be used in Nokia products and
related specifications or other documentation.
Accordingly, if the user of this document gives Nokia
Feedback on the contents of this document, Nokia
may freely use, disclose, reproduce, license,
distribute and otherwise commercialize the
feedback in any Nokia product, technology, service,
specification or other documentation.

Nokia operates a policy of ongoing development.
Nokia reserves the right to make changes and
improvements to any of the products and/or
services described in this document or withdraw this
document at any time without prior notice.

The contents of this document are provided "as is".
Except as required by applicable law, no warranties
of any kind, either express or implied, including, but
not limited to, the implied warranties of
merchantability and fitness for a particular purpose,

are made in relation to the accuracy, reliability or
contents of this document. NOKIA SHALL NOT BE
RESPONSIBLE IN ANY EVENT FOR ERRORS IN THIS
DOCUMENT or for
any loss of data or income or any special, incidental,
consequential, indirect or direct damages
howsoever caused, that might arise from the use of
this document or any contents of this document.

This document and the product(s) it describes
are protected by copyright according to the
applicable laws.

Nokia is a registered trademark of Nokia
Corporation. Other product and company names
mentioned herein may be trademarks or trade
names of their respective owners.

