
STM in Clojure

Tom Van Cutsem
Multicore Programming

https://github.com/tvcutsem/stm-in-clojure
http://soft.vub.ac.be/~tvcutsem/multicore

https://github.com/tvcutsem/stm-in-clojure
https://github.com/tvcutsem/stm-in-clojure

Goal

• We have already seen Clojure’s built-in support for STM via refs

• Recall:
(defn make-account [sum]
 (ref sum))

(defn transfer [amount from to]
 (dosync
 (alter from - amount)
 (alter to + amount)))

(def accountA (make-account 1500))
(def accountB (make-account 200))
	
(transfer 100 accountA accountB)
(println @accountA) ; 1400
(println @accountB) ; 300

Goal

• Now we will build our own STM system in Clojure to better understand its
implementation

(defn make-account [sum]
 (mc-ref sum))

(defn transfer [amount from to]
 (mc-dosync
 (mc-alter from - amount)
 (mc-alter to + amount)))

(def accountA (make-account 1500))
(def accountB (make-account 200))
	
(transfer 100 accountA accountB)
(println (mc-deref accountA)) ; 1400
(println (mc-deref accountB)) ; 300

Almost-meta-circular implementation

• We will represent refs via atoms

• We will call such refs “mc-refs” (meta-circular refs)

• Recall: atoms support synchronous but uncoordinated state updates

• We will have to add the coordination through transactions ourselves

• Why “almost”? A truly meta-circular implementation would represent mc-refs
using refs

Atoms: recap

• Atoms encapsulate a value that can be atomically read and set

• Safe to read/write an atom concurrently from multiple threads

• Unlike refs, two or more atoms cannot be updated in a coordinated way

(def x (atom 0))

@x
=> 0
(swap! x inc)
=> 1
@x
=> 1

(def y (atom {:a 0 :b 1}))

@y
=> {:a 0, :b 1}
(swap! y assoc :a 2)
=> {:a 2, :b 1}

MC-STM: API

• A copy of the Clojure ref API:

• (mc-ref val)

• (mc-deref mc-ref)

• (mc-ref-set mc-ref val)

• (mc-alter mc-ref fun & args)

• (mc-commute mc-ref fun & args)

• (mc-ensure mc-ref)

• (mc-dosync & exprs)

MC-STM: overview

• Redo-log approach: transactions do not modify the “public” value of an mc-
ref until they commit

• Each mc-ref has a revision number

• Each transaction stores its own copy of the values for read/written mc-refs.
These are called the in-transaction-values

• Transactions also remember what refs they have written, and the revision
number of each mc-ref they read or write for the first time

MC-STM: overview

• For example:

(def x (mc-ref 42))
(mc-dosync
 (let [y (mc-deref x)]
 (mc-ref-set x (inc y))))

>
 (def x (mc-ref 42))
 T1: (mc-dosync
 T1: (let [y (mc-deref x)]
 T1: (mc-ref-set x (inc y))
 T1: commit

Ref val rev

global state

MC-STM: overview

• For example:

(def x (mc-ref 42))
(mc-dosync
 (let [y (mc-deref x)]
 (mc-ref-set x (inc y))))

> (def x (mc-ref 42))
 T1: (mc-dosync
 T1: (let [y (mc-deref x)]
 T1: (mc-ref-set x (inc y))
 T1: commit

Ref val rev

x 42 0

global state

MC-STM: overview

• For example:

(def x (mc-ref 42))
(mc-dosync
 (let [y (mc-deref x)]
 (mc-ref-set x (inc y))))

Ref val rev
 (def x (mc-ref 42))
>T1: (mc-dosync
 T1: (let [y (mc-deref x)]
 T1: (mc-ref-set x (inc y))
 T1: commit

T1

Ref val rev

x 42 0

global state

MC-STM: overview

• For example:

Ref val rev

x 42 0 (def x (mc-ref 42))
 T1: (mc-dosync
>T1: (let [y (mc-deref x)]
 T1: (mc-ref-set x (inc y))
 T1: commit

T1

Ref val rev

x 42 0

global state(def x (mc-ref 42))
(mc-dosync
 (let [y (mc-deref x)]
 (mc-ref-set x (inc y))))

MC-STM: overview

• For example:

Ref val rev

x 43 0 (def x (mc-ref 42))
 T1: (mc-dosync
 T1: (let [y (mc-deref x)]
>T1: (mc-ref-set x (inc y))
 T1: commit

T1

Ref val rev

x 42 0

global state(def x (mc-ref 42))
(mc-dosync
 (let [y (mc-deref x)]
 (mc-ref-set x (inc y))))

MC-STM: overview

• For example:

Ref val rev

x 43 0 (def x (mc-ref 42))
 T1: (mc-dosync
 T1: (let [y (mc-deref x)]
 T1: (mc-ref-set x (inc y))
>T1: commit

T1

Ref val rev

x 43 1

global state(def x (mc-ref 42))
(mc-dosync
 (let [y (mc-deref x)]
 (mc-ref-set x (inc y))))

MC-STM: overview

• For example:

 (def x (mc-ref 42))
 T1: (mc-dosync
 T1: (let [y (mc-deref x)]
 T1: (mc-ref-set x (inc y))
 T1: commit
>

Ref val rev

x 43 1

global state(def x (mc-ref 42))
(mc-dosync
 (let [y (mc-deref x)]
 (mc-ref-set x (inc y))))

Read/write conflicts

(def x (mc-ref :a))
(def y (mc-ref :b))
T1: (mc-dosync
 (list (mc-deref x)
 (mc-deref y)))
T2: (mc-dosync
 (mc-ref-set x :c))

>
 T1: (mc-deref x)
 T2: (mc-ref-set x :c)
 T1: (mc-deref y)
 T2: commit
 T1: commit

Ref val rev

x :a 0

y :b 0

global state

Ref val rev

T1

Ref val rev

T2

Read/write conflicts

>T1: (mc-deref x)
 T2: (mc-ref-set x :c)
 T1: (mc-deref y)
 T2: commit
 T1: commit

Ref val rev

x :a 0

y :b 0

global state

Ref val rev

x :a 0

T1

Ref val rev

T2

(def x (mc-ref :a))
(def y (mc-ref :b))
T1: (mc-dosync
 (list (mc-deref x)
 (mc-deref y)))
T2: (mc-dosync
 (mc-ref-set x :c))

Read/write conflicts

 T1: (mc-deref x)
>T2: (mc-ref-set x :c)
 T1: (mc-deref y)
 T2: commit
 T1: commit

Ref val rev

x :a 0

y :b 0

global state

Ref val rev

x :a 0

T1

Ref val rev

x :c 0

T2

(def x (mc-ref :a))
(def y (mc-ref :b))
T1: (mc-dosync
 (list (mc-deref x)
 (mc-deref y)))
T2: (mc-dosync
 (mc-ref-set x :c))

Read/write conflicts

 T1: (mc-deref x)
 T2: (mc-ref-set x :c)
>T1: (mc-deref y)
 T2: commit
 T1: commit

Ref val rev

x :a 0

y :b 0

global state

Ref val rev

x :a 0

y :b 0

T1

Ref val rev

x :c 0

T2

(def x (mc-ref :a))
(def y (mc-ref :b))
T1: (mc-dosync
 (list (mc-deref x)
 (mc-deref y)))
T2: (mc-dosync
 (mc-ref-set x :c))

Read/write conflicts

 T1: (mc-deref x)
 T2: (mc-ref-set x :c)
 T1: (mc-deref y)
>T2: commit
 T1: commit

Ref val rev

x :c 2

y :b 0

global state

Ref val rev

x :a 0

y :b 0

T1

Ref val rev

x :c 0

T2

(def x (mc-ref :a))
(def y (mc-ref :b))
T1: (mc-dosync
 (list (mc-deref x)
 (mc-deref y)))
T2: (mc-dosync
 (mc-ref-set x :c))

Read/write conflicts

 T1: (mc-deref x)
 T2: (mc-ref-set x :c)
 T1: (mc-deref y)
 T2: commit
>T1: commit

Ref val rev

x :c 2

y :b 0

global state

Ref val rev

x :a 0

y :b 0

T1

(def x (mc-ref :a))
(def y (mc-ref :b))
T1: (mc-dosync
 (list (mc-deref x)
 (mc-deref y)))
T2: (mc-dosync
 (mc-ref-set x :c))

Read/write conflicts

 T1: (mc-deref x)
 T2: (mc-ref-set x :c)
 T1: (mc-deref y)
 T2: commit
>T1: commit

Ref val rev

x :c 2

y :b 0

global state

Ref val rev

x :a 0

y :b 0

T1

T1 will notice during validation that x has changed. It
discards all its in-transaction-values and tries again.

(def x (mc-ref :a))
(def y (mc-ref :b))
T1: (mc-dosync
 (list (mc-deref x)
 (mc-deref y)))
T2: (mc-dosync
 (mc-ref-set x :c))

Write/write conflicts

(def x (mc-ref :a))
T1: (mc-dosync
 (mc-ref-set x :b))
T2: (mc-dosync
 (mc-ref-set x :c))

>
 T1: (mc-ref-set x :b)
 T2: (mc-ref-set x :c)
 T2: commit
 T1: commit

Ref val rev

x :a 0

global state

T1

Ref val rev

T2

Ref val rev

Write/write conflicts

>T1: (mc-ref-set x :b)
 T2: (mc-ref-set x :c)
 T2: commit
 T1: commit

Ref val rev

x :a 0

global state

T1

Ref val rev

T2

Ref val rev

x :b 0

(def x (mc-ref :a))
T1: (mc-dosync
 (mc-ref-set x :b))
T2: (mc-dosync
 (mc-ref-set x :c))

Write/write conflicts

 T1: (mc-ref-set x :b)
>T2: (mc-ref-set x :c)
 T2: commit
 T1: commit

Ref val rev

x :a 0

global state

T1

Ref val rev

x :c 0

T2

Ref val rev

x :b 0

(def x (mc-ref :a))
T1: (mc-dosync
 (mc-ref-set x :b))
T2: (mc-dosync
 (mc-ref-set x :c))

Write/write conflicts

 T1: (mc-ref-set x :b)
 T2: (mc-ref-set x :c)
>T2: commit
 T1: commit

Ref val rev

x :c 2

global state

T1

Ref val rev

x :c 0

T2

Ref val rev

x :b 0

(def x (mc-ref :a))
T1: (mc-dosync
 (mc-ref-set x :b))
T2: (mc-dosync
 (mc-ref-set x :c))

Write/write conflicts

 T1: (mc-ref-set x :b)
 T2: (mc-ref-set x :c)
 T2: commit
>T1: commit

Ref val rev

x :c 2

global state

T1
Ref val rev

x :b 0

(def x (mc-ref :a))
T1: (mc-dosync
 (mc-ref-set x :b))
T2: (mc-dosync
 (mc-ref-set x :c))

Write/write conflicts

 T1: (mc-ref-set x :b)
 T2: (mc-ref-set x :c)
 T2: commit
>T1: commit

Ref val rev

x :c 2

global state

T1
Ref val rev

x :b 0

T1 will notice during validation that x has changed. It
discards all its in-transaction-values and tries again.

(def x (mc-ref :a))
T1: (mc-dosync
 (mc-ref-set x :b))
T2: (mc-dosync
 (mc-ref-set x :c))

Multiple readers
(def x (mc-ref :a))
(def y (mc-ref :b))
T1: (mc-dosync
 (mc-deref x))
T2: (mc-dosync
 (mc-deref x)
 (mc-ref-set y :c)

>
 T1: (mc-deref x)
 T2: (mc-deref x)
 T2: (mc-ref-set y :c)
 T2: commit
 T1: commit

Ref val rev

x :a 0

y :b 0

global state

T1

Ref val rev

T2

Ref val rev

Multiple readers

>T1: (mc-deref x)
 T2: (mc-deref x)
 T2: (mc-ref-set y :c)
 T2: commit
 T1: commit

Ref val rev

x :a 0

y :b 0

global state

T1

Ref val rev

T2

Ref val rev

x :a 0

(def x (mc-ref :a))
(def y (mc-ref :b))
T1: (mc-dosync
 (mc-deref x))
T2: (mc-dosync
 (mc-deref x)
 (mc-ref-set y :c)

Multiple readers

 T1: (mc-deref x)
>T2: (mc-deref x)
 T2: (mc-ref-set y :c)
 T2: commit
 T1: commit

Ref val rev

x :a 0

y :b 0

global state

T1

Ref val rev

x :a 0

T2

Ref val rev

x :a 0

(def x (mc-ref :a))
(def y (mc-ref :b))
T1: (mc-dosync
 (mc-deref x))
T2: (mc-dosync
 (mc-deref x)
 (mc-ref-set y :c)

Multiple readers

 T1: (mc-deref x)
 T2: (mc-deref x)
>T2: (mc-ref-set y :c)
 T2: commit
 T1: commit

Ref val rev

x :a 0

y :b 0

global state

T1

Ref val rev

x :a 0

y :c 0

T2

Ref val rev

x :a 0

(def x (mc-ref :a))
(def y (mc-ref :b))
T1: (mc-dosync
 (mc-deref x))
T2: (mc-dosync
 (mc-deref x)
 (mc-ref-set y :c)

Multiple readers

 T1: (mc-deref x)
 T2: (mc-deref x)
 T2: (mc-ref-set y :c)
>T2: commit
 T1: commit

Ref val rev

x :a 0

y :c 2

global state

T1

Ref val rev

x :a 0

y :c 0

T2

Ref val rev

x :a 0

(def x (mc-ref :a))
(def y (mc-ref :b))
T1: (mc-dosync
 (mc-deref x))
T2: (mc-dosync
 (mc-deref x)
 (mc-ref-set y :c)

Multiple readers

 T1: (mc-deref x)
 T2: (mc-deref x)
 T2: (mc-ref-set y :c)
 T2: commit
>T1: commit

Ref val rev

x :a 0

y :c 2

global state

T1
Ref val rev

x :a 0

(def x (mc-ref :a))
(def y (mc-ref :b))
T1: (mc-dosync
 (mc-deref x))
T2: (mc-dosync
 (mc-deref x)
 (mc-ref-set y :c)

Multiple readers

 T1: (mc-deref x)
 T2: (mc-deref x)
 T2: (mc-ref-set y :c)
 T2: commit
>T1: commit

Ref val rev

x :a 0

y :c 2

global state

T1
Ref val rev

x :a 0

Revision numbers for T1’s references still
match, so T1 is allowed to commit. Since T1

only read x, it does not change the global state

(def x (mc-ref :a))
(def y (mc-ref :b))
T1: (mc-dosync
 (mc-deref x))
T2: (mc-dosync
 (mc-deref x)
 (mc-ref-set y :c)

MC-STM version 1: mc-refs

• mc-refs are represented as atoms encapsulating a map

• The map contains the ref’s publicly visible value and its revision number

• Each time a transaction commits a new value, the revision number will be
updated

(defn mc-ref [val]
 (atom {:value val
 :revision 0}))

MC-STM version 1: the current transaction

• Thread-local Var holds the current transaction executed by this thread

• If the thread does not execute a transaction, set to nil

(def *current-transaction* nil)

MC-STM version 1: public API

• refs can be read but not written to outside of a transaction

(defn mc-deref [ref]
 (if (nil? *current-transaction*)
 ; reading a ref outside of a transaction
 (:value @ref)
 ; reading a ref inside a transaction
 (tx-read *current-transaction* ref)))

(defn mc-ref-set [ref newval]
 (if (nil? *current-transaction*)
 ; writing a ref outside of a transaction
 (throw (IllegalStateException. "can't set mc-ref outside transaction"))
 ; writing a ref inside a transaction
 (tx-write *current-transaction* ref newval)))

(defn mc-alter [ref fun & args]
 (mc-ref-set ref (apply fun (mc-deref ref) args)))

MC-STM version 1: public API

• Naive but correct implementations of commute and ensure, for now

• both implemented in terms of altering an mc-ref

• commutes and ensures will cause needless conflicts

(defn mc-commute [ref fun & args]
 (apply mc-alter ref fun args))

(defn mc-ensure [ref]
 (mc-alter ref identity))

MC-STM version 1: transactions

• Each transaction has a unique ID

• Also stores the “in-transaction-values” of all refs it reads/writes

• Technically, in-tx-values, written-refs and last-seen-rev don’t need to be
atoms (Vars are sufficient), as they are thread-local

(def NEXT_TRANSACTION_ID (atom 0))

(defn make-transaction
 "create and return a new transaction data structure"
 []
 { :id (swap! NEXT_TRANSACTION_ID inc),
 :in-tx-values (atom {}), ; map: ref -> any value
 :written-refs (atom #{}), ; set of refs
 :last-seen-rev (atom {}) }) ; map: ref -> revision id

MC-STM version 1: reading a ref

• If the ref was read or written before, returns its in-transaction-value

• If the ref is read for the first time, cache its value and remember the first
revision read

(defn tx-read
 "read the value of ref inside transaction tx"
 [tx ref]
 (let [in-tx-values (:in-tx-values tx)]
 (if (contains? @in-tx-values ref)
 (@in-tx-values ref) ; return the in-tx-value
 ; important: read both ref's value and revision atomically
 (let [{in-tx-value :value
 read-revision :revision} @ref]
 (swap! in-tx-values assoc ref in-tx-value)
 (swap! (:last-seen-rev tx) assoc ref read-revision)
 in-tx-value))))

MC-STM version 1: writing a ref

• Update the in-transaction-value of the ref and remember it was “written”

• If the ref was not read or written to before, remember its current revision

(defn tx-write
 "write val to ref inside transaction tx"
 [tx ref val]
 (swap! (:in-tx-values tx) assoc ref val)
 (swap! (:written-refs tx) conj ref)
 (if (not (contains? @(:last-seen-rev tx) ref))
 (swap! (:last-seen-rev tx) assoc ref (:revision @ref)))
 val)

MC-STM version 1: committing a transaction

• Committing a transaction consists of two parts:

• Validation: check revision numbers to see if any read or written refs have
since been modified by another committed transaction

• If not, make the in-transaction-value of all written-to refs public and update
their revision number

• These two steps need to happen atomically: requires locks, since multiple
atoms cannot be updated atomically

• In this version: a single lock guards all mc-refs. Only one transaction can
commit at a time.

(def COMMIT_LOCK (new java.lang.Object))

MC-STM version 1: committing a transaction

• If validation fails, it is up to the caller of tx-commit to retry the transaction

(defn tx-commit
 "returns a boolean indicating whether tx committed successfully"
 [tx]
 (let [validate
 (fn [refs]
 (every? (fn [ref]
 (= (:revision @ref)
 (@(:last-seen-rev tx) ref))) refs))]

 (locking COMMIT_LOCK
 (let [in-tx-values @(:in-tx-values tx)
 success (validate (keys in-tx-values))]
 (if success
 ; if validation OK, make in-tx-value of all written refs public
 (doseq [ref @(:written-refs tx)]
 (swap! ref assoc
 :value (in-tx-values ref)
 :revision (:id tx))))
 success))))

MC-STM version 1: running a transaction

• The transaction body is run with *current-transaction* thread-locally bound to
the transaction

• If the transaction commits successfully, return its result

• If not, the current transaction (including its in-transaction-values) is discarded
and the entire process is retried with a fresh transaction

(defn tx-run
 "runs zero-argument fun as the body of transaction tx"
 [tx fun]
 (let [result (binding [*current-transaction* tx] (fun))]
 (if (tx-commit tx)
 result
 (recur (make-transaction) fun))))

MC-STM version 1: running a transaction

• mc-dosync is a macro that simply wraps its arguments in a function

• If a transaction is already running, this indicates a nested mc-dosync block.
Nested blocks implicitly become part of their “parent” transaction.

(defmacro mc-dosync [& exps]
 `(mc-sync (fn [] ~@exps)))

(defn mc-sync [fun]
 (if (nil? *current-transaction*)
 (tx-run (make-transaction) fun)
 (fun)))

MC-STM version 1: test

• Test from clojure.org/concurrent_programming:
(defn test-stm [nitems nthreads niters]
 (let [refs (map mc-ref (replicate nitems 0))
 pool (Executors/newFixedThreadPool nthreads)
 tasks (map (fn [t]
 (fn []
 (dotimes [n niters]
 (mc-dosync
 (doseq [r refs]
 (mc-alter r + 1 t))))))
 (range nthreads))]
 (doseq [future (.invokeAll pool tasks)]
 (.get future))
 (.shutdown pool)
 (map mc-deref refs)))

; threads increment each ref by 550000 in total
; 550000 = (* (+ 1 2 3 4 5 6 7 8 9 10) 10000)
(def res (time (test-stm 10 10 10000)))
"Elapsed time: 8105.424 msecs" ; built-in stm: "Elapsed time: 2731.11 msecs"
=> (550000 550000 550000 550000 550000 550000 550000 550000 550000 550000)

T0 T1 ... T9

0 0 ... 0

+1 +10

MC-STM version 1: limitations

• Internal consistency is not guaranteed: a transaction may read a value for a
ref before another transaction T committed, and read a value for another ref
after T committed, leading to potentially mutually inconsistent ref values

• Naive implementations of commute and ensure

• A single global commit-lock for all transactions (= severe bottleneck, but
makes it easy to validate and commit)

MC-STM version 2: internal consistency

• In previous version, internal consistency is not guaranteed: transactions may
read reference states before another transaction committed, then read other
reference states after a transaction committed.

• Ref values may become mutually inconsistent

• This may violate invariants in code, leading to bugs, exceptions or infinite
loops

Recall: internal consistency & zombies

• This code sometimes crashes with a Divide by zero exception:

; invariant: x = 2y
(def x (mc-ref 4))
(def y (mc-ref 2))
	
(def T1 (Thread. (fn []
 (mc-dosync
 (mc-alter x (fn [_] 8))
 (mc-alter y (fn [_] 4))))))
(def T2 (Thread. (fn []
 (mc-dosync
 (/ 1 (- (mc-deref x) (mc-deref y)))))))
(.start T1) (.start T2)
(.join T1) (.join T2)

• Why?

Ref val rev

Recall: internal consistency & zombies

>
 T1: (mc-alter x (fn [_] 8))
 T2: x’ = (mc-deref x)
 T1: (mc-alter y (fn [_] 4))
 T1: commit
 T2: y’ = (mc-deref y)
 T2: (/ 1 (- x’ y’))

T1

T2

Ref val rev

x 4 0

y 2 0

global state

Ref val rev

• Why?

Ref val rev

x 8 0

Recall: internal consistency & zombies

>T1: (mc-alter x (fn [_] 8))
 T2: x’ = (mc-deref x)
 T1: (mc-alter y (fn [_] 4))
 T1: commit
 T2: y’ = (mc-deref y)
 T2: (/ 1 (- x’ y’))

T1

T2

Ref val rev

x 4 0

y 2 0

global state

Ref val rev

• Why?

Ref val rev

x 8 0

Recall: internal consistency & zombies

 T1: (mc-alter x (fn [_] 8))
>T2: x’ = (mc-deref x)
 T1: (mc-alter y (fn [_] 4))
 T1: commit
 T2: y’ = (mc-deref y)
 T2: (/ 1 (- x’ y’))

T1

T2

Ref val rev

x 4 0

y 2 0

global state

Ref val rev

x 4 0

• Why?

Recall: internal consistency & zombies

 T1: (mc-alter x (fn [_] 8))
 T2: x’ = (mc-deref x)
>T1: (mc-alter y (fn [_] 4))
 T1: commit
 T2: y’ = (mc-deref y)
 T2: (/ 1 (- x’ y’))

T1

T2

Ref val rev

x 4 0

y 2 0

global state

Ref val rev

x 4 0

Ref val rev

x 8 0

y 4 0

• Why?

Recall: internal consistency & zombies

 T1: (mc-alter x (fn [_] 8))
 T2: x’ = (mc-deref x)
 T1: (mc-alter y (fn [_] 4))
>T1: commit
 T2: y’ = (mc-deref y)
 T2: (/ 1 (- x’ y’))

T1

T2

Ref val rev

x 8 1

y 4 1

global state

Ref val rev

x 4 0

Ref val rev

x 8 0

y 4 0

• Why?

Recall: internal consistency & zombies

 T1: (mc-alter x (fn [_] 8))
 T2: x’ = (mc-deref x)
 T1: (mc-alter y (fn [_] 4))
 T1: commit
>T2: y’ = (mc-deref y)
 T2: (/ 1 (- x’ y’))

T1

T2

Ref val rev

x 8 1

y 4 1

global state

Ref val rev

x 4 0

y 4 1

Ref val rev

• Why?

Recall: internal consistency & zombies

 T1: (mc-alter x (fn [_] 8))
 T2: x’ = (mc-deref x)
 T1: (mc-alter y (fn [_] 4))
 T1: commit
>T2: y’ = (mc-deref y)
 T2: (/ 1 (- x’ y’))

T1

T2

Ref val rev

x 8 1

y 4 1

global state

Ref val rev

x 4 0

y 4 1

Ref val rev

T2 is now a zombie: it will never pass the validation step

• Why?

Recall: internal consistency & zombies

 T1: (mc-alter x (fn [_] 8))
 T2: x’ = (mc-deref x)
 T1: (mc-alter y (fn [_] 4))
 T1: commit
 T2: y’ = (mc-deref y)
>T2: (/ 1 (- x’ y’))

T1

T2

Ref val rev

x 8 1

y 4 1

global state

Ref val rev

x 4 0

y 4 1 Division by zero

Ref val rev

MC-STM version 2: internal consistency

• We will solve this by using multiversion concurrency control (MVCC), like
Clojure itself

• All reads of Refs will see a consistent snapshot of the global “Ref world” as of
the starting point of the transaction (its read point).

• All changes made to Refs during a transaction will appear to occur at a single
point in the global “Ref world” timeline (its write point).

• When the transaction commits, no changes will have been made by any other
transactions to any Refs that have been ref-set/altered/ensured by this
transaction (otherwise, it is retried)

MC-STM: version 2, internal consistency

Ref v0

x 4

y 2

global state
T1

>
 T1: (mc-alter x (fn [_] 8))
 T2: x’ = (mc-deref x)
 T1: (mc-alter y (fn [_] 4))
 T1: commit
 T2: y’ = (mc-deref y)
 T2: (/ 1 (- x’ y’))

Write-point: 0

Read-point: 0

T2 Read-point: 0

Ref val

Ref val

MC-STM: version 2, internal consistency

Ref v0

x 4

y 2

global state
T1

Ref val

Ref val

x 8

>T1: (mc-alter x (fn [_] 8))
 T2: x’ = (mc-deref x)
 T1: (mc-alter y (fn [_] 4))
 T1: commit
 T2: y’ = (mc-deref y)
 T2: (/ 1 (- x’ y’))

Write-point: 0

Read-point: 0

T2 Read-point: 0

MC-STM: version 2, internal consistency

Ref v0

x 4

y 2

global state
T1

Ref val

x 4

Ref val

x 8

 T1: (mc-alter x (fn [_] 8))
>T2: x’ = (mc-deref x)
 T1: (mc-alter y (fn [_] 4))
 T1: commit
 T2: y’ = (mc-deref y)
 T2: (/ 1 (- x’ y’))

Write-point: 0

Read-point: 0

T2 Read-point: 0

MC-STM: version 2, internal consistency

Ref v0

x 4

y 2

global state
T1

Ref val

x 4

Ref val

x 8

y 4

 T1: (mc-alter x (fn [_] 8))
 T2: x’ = (mc-deref x)
>T1: (mc-alter y (fn [_] 4))
 T1: commit
 T2: y’ = (mc-deref y)
 T2: (/ 1 (- x’ y’))

Write-point: 0

Read-point: 0

T2 Read-point: 0

MC-STM: version 2, internal consistency

Ref v0 v1

x 4 8

y 2 4

global state
T1

Ref val

x 4

Ref val

x 8

y 4

 T1: (mc-alter x (fn [_] 8))
 T2: x’ = (mc-deref x)
 T1: (mc-alter y (fn [_] 4))
>T1: commit
 T2: y’ = (mc-deref y)
 T2: (/ 1 (- x’ y’))

Write-point: 1

Read-point: 0

T2 Read-point: 0

MC-STM: version 2, internal consistency

Ref v0 v1

x 4 8

y 2 4

global state
T1

Ref val

x 4

y 2

Ref val

x 8

y 4

 T1: (mc-alter x (fn [_] 8))
 T2: x’ = (mc-deref x)
 T1: (mc-alter y (fn [_] 4))
 T1: commit
>T2: y’ = (mc-deref y)
 T2: (/ 1 (- x’ y’))

Write-point: 1

Read-point: 0

T2 Read-point: 0

MC-STM: version 2, internal consistency

Ref v0 v1

x 4 8

y 2 4

global state
T1

Ref val

x 4

y 2

Ref val

x 8

y 4

 T1: (mc-alter x (fn [_] 8))
 T2: x’ = (mc-deref x)
 T1: (mc-alter y (fn [_] 4))
 T1: commit
>T2: y’ = (mc-deref y)
 T2: (/ 1 (- x’ y’))

Write-point: 1

Read-point: 0

T2 Read-point: 0

Since T2’s read-point is 0, it
reads v0 of the global state

MC-STM: version 2, internal consistency

Ref v0 v1

x 4 8

y 2 4

global state
T1

Ref val

x 4

y 2

Ref val

x 8

y 4

 T1: (mc-alter x (fn [_] 8))
 T2: x’ = (mc-deref x)
 T1: (mc-alter y (fn [_] 4))
 T1: commit
 T2: y’ = (mc-deref y)
>T2: (/ 1 (- x’ y’))

Write-point: 1

Read-point: 0

T2 Read-point: 0

Now calculates 1/2
as expected

MC-STM version 2: mc-refs

• mc-refs are now represented as a list of {:value, :write-point} pairs, potentially
followed by trailing nil values. These pairs represent successive values
assigned to the mc-ref, also called the history chain of the mc-ref.

• Pairs are ordered latest :write-point first, oldest :write-point last

• Only the last MAX_HISTORY assigned values are stored in the history chain

(def MAX_HISTORY 10)
(def DEFAULT_HISTORY_TAIL (repeat (dec MAX_HISTORY) nil))

(defn mc-ref [val]
 (atom (cons {:value val :write-point @GLOBAL_WRITE_POINT}
 DEFAULT_HISTORY_TAIL)))

(def most-recent first)

MC-STM version 2: the current transaction

• Unchanged from v1

• Thread-local Var holds the current transaction executed by this thread

• If the thread does not execute a transaction, set to nil

(def *current-transaction* nil)

MC-STM version 2: public API

• Unchanged from v1, except how to access the most recent mc-ref value:

(defn mc-deref [ref]
 (if (nil? *current-transaction*)
 ; reading a ref outside of a transaction
 (:value (most-recent @ref))
 ; reading a ref inside a transaction
 (tx-read *current-transaction* ref)))

(defn mc-ref-set [ref newval]
 (if (nil? *current-transaction*)
 ; writing a ref outside of a transaction
 (throw (IllegalStateException. "can't set mc-ref outside transaction"))
 ; writing a ref inside a transaction
 (tx-write *current-transaction* ref newval)))

(defn mc-alter [ref fun & args]
 (mc-ref-set ref (apply fun (mc-deref ref) args)))

MC-STM version 2: public API

• Unchanged from v1

• Naive but correct implementations of commute and ensure, for now

• both implemented in terms of altering an mc-ref

• commutes and ensures will cause needless conflicts

(defn mc-commute [ref fun & args]
 (apply mc-alter ref fun args))

(defn mc-ensure [ref]
 (mc-alter ref identity))

MC-STM version 2: transactions

• Transactions no longer have a unique ID but record their read point as the
value of the global write point when they start

• Still stores the “in-transaction-values” of all refs it reads/writes

• No need for :last-seen-rev map anymore

(def GLOBAL_WRITE_POINT (atom 0))

(defn make-transaction
 "create and return a new transaction data structure"
 []
 { :read-point @GLOBAL_WRITE_POINT,
 :in-tx-values (atom {}), ; map: ref -> any value
 :written-refs (atom #{}) }) ; set of refs

MC-STM version 2: reading a ref

• If the ref was read or written before, returns its in-transaction-value

• If the ref is read for the first time, only read a value whose write-point <= the
transaction’s read-point. If such a value was not found, abort and retry.

(defn tx-read
 "read the value of ref inside transaction tx"
 [tx mc-ref]
 (let [in-tx-values (:in-tx-values tx)]
 (if (contains? @in-tx-values mc-ref)
 (@in-tx-values mc-ref) ; return the in-tx-value
 ; search the history chain for entry with write-point <= tx's read-point
 (let [ref-entry (find-entry-before-or-on @mc-ref (:read-point tx))]
 (if (not ref-entry)
 ; if such an entry was not found, retry
 (tx-retry))
 (let [in-tx-value (:value ref-entry)]
 (swap! in-tx-values assoc mc-ref in-tx-value) ; cache the value
 in-tx-value))))) ; save and return the ref's value

MC-STM version 2: reading a ref

• Auxiliary function to scan the history list of an mc-ref

(defn find-entry-before-or-on
 "returns an entry in history-chain whose write-pt <= read-pt,
 or nil if no such entry exists"
 [history-chain read-pt]
 (some (fn [pair]
 (if (and pair (<= (:write-point pair) read-pt))
 pair)) history-chain))

MC-STM version 2: writing a ref

• Update the in-transaction-value of the ref and remember it was “written” to

• No need to remember the revision of the ref anymore

(defn tx-write
 "write val to ref inside transaction tx"
 [tx mc-ref val]
 (swap! (:in-tx-values tx) assoc mc-ref val)
 (swap! (:written-refs tx) conj mc-ref)
 val)

MC-STM version 2: committing a transaction

• Committing a transaction still consists of two parts:

• Validation: for each written ref, check if the ref has since been modified by
another committed transaction

• If not, store the in-transaction-value of all written-to refs in the history
chain of the refs under a new write-point. Then update the global write-
point such that new transactions can see the new values.

• These two steps need to happen atomically: requires locks, since multiple
atoms cannot be updated atomically

• In this version: still a single lock that guards all mc-refs. Only one transaction
can commit at a time.

(def COMMIT_LOCK (new java.lang.Object))

MC-STM version 2: committing a transaction

• Note: transactions that only read refs will always commit, and don’t need to
acquire the lock

(defn tx-commit
 "returns normally if tx committed successfully, throws RetryEx otherwise"
 [tx]
 (let [written-refs @(:written-refs tx)]
 (when (not (empty? written-refs))
 (locking COMMIT_LOCK
 (doseq [written-ref written-refs]
 (if (> (:write-point (most-recent @written-ref))
 (:read-point tx))
 (tx-retry)))

 (let [in-tx-values @(:in-tx-values tx)
 new-write-point (inc @GLOBAL_WRITE_POINT)]
 (doseq [ref written-refs]
 (swap! ref (fn [history-chain]
 (cons {:value (in-tx-values ref)
 :write-point new-write-point} (butlast history-chain)))))
 (swap! GLOBAL_WRITE_POINT inc)))))) ; make the new write-point public

MC-STM version 2: retrying a transaction

• Retrying causes a special exception to be thrown

• The exception is a java.lang.Error, not a java.lang.Exception, so applications
will not normally catch this

(defn tx-retry []
 (throw (new stm.RetryEx)))

; in a separate file stm/RetryEx.clj
(ns stm.RetryEx
 (:gen-class :extends java.lang.Error))

MC-STM version 2: running a transaction

• To catch RetryEx, must run the function in a try-block

• Cannot perform tail-recursion with recur from within a catch-clause, so need
to exit try-block and test the value before calling recur:

(defn tx-run
 "runs zero-argument fun as the body of transaction tx."
 [tx fun]
 (let [res (binding [*current-transaction* tx]
 (try
 (let [result (fun)]
 (tx-commit tx)
 ; commit succeeded, return result
 {:result result}) ; wrap result, as it may be nil
 (catch stm.RetryEx e
 nil)))]
 (if res
 (:result res)
 (recur (make-transaction) fun)))) ; read or commit failed, retry with fresh tx

MC-STM version 2: running a transaction

• mc-dosync and mc-sync unchanged from v1

(defmacro mc-dosync [& exps]
 `(mc-sync (fn [] ~@exps)))

(defn mc-sync [fun]
 (if (nil? *current-transaction*)
 (tx-run (make-transaction) fun)
 (fun))) ; nested blocks implicitly run in parent transaction

MC-STM: version 2 limitations

• Naive implementations of commute and ensure

• A single global commit-lock for all transactions (= severe bottleneck, but
makes it easy to validate and commit)

MC-STM version 3: support for commute/ensure

• Up to now, commute and ensure resulted in needless conflicts, as both were
implemented in terms of mc-alter:

• Ensure needed to prevent write skew

(defn mc-commute [ref fun & args]
 (apply mc-alter ref fun args))

(defn mc-ensure [ref]
 (mc-alter ref identity))

Recall: write skew

(def cats (mc-ref 1))
(def dogs (mc-ref 1))
(def john (Thread. (fn []
 (mc-dosync
 (if (< (+ (mc-deref cats) (mc-deref dogs)) 3)
 (mc-alter cats inc))))))
(def mary (Thread. (fn []
 (mc-dosync
 (if (< (+ (mc-deref cats) (mc-deref dogs)) 3)
 (mc-alter dogs inc))))))
(doseq [p [john mary]] (.start p))
(doseq [p [john mary]] (.join p))
(if (> (+ (mc-deref cats) (mc-deref dogs)) 3)
 (println "write skew detected"))) ; can occur!

Recall: write skew

(def cats (mc-ref 1))
(def dogs (mc-ref 1))
(def john (Thread. (fn []
 (mc-dosync
 (mc-ensure dogs)
 (if (< (+ (mc-deref cats) (mc-deref dogs)) 3)
 (mc-alter cats inc))))))
(def mary (Thread. (fn []
 (mc-dosync
 (mc-ensure cats)
 (if (< (+ (mc-deref cats) (mc-deref dogs)) 3)
 (mc-alter dogs inc))))))
(doseq [p [john mary]] (.start p))
(doseq [p [john mary]] (.join p))
(if (> (+ (mc-deref cats) (mc-deref dogs)) 3)
 (println "write skew detected"))) ; cannot occur!

MC-STM version 3: public API

• Like alter, commute and ensure can only be called inside a transaction:

(defn mc-commute [ref fun & args]
 (if (nil? *current-transaction*)
 (throw (IllegalStateException. "can't commute mc-ref outside transaction"))
 (tx-commute *current-transaction* ref fun args)))

(defn mc-ensure [ref]
 (if (nil? *current-transaction*)
 (throw (IllegalStateException. "can't ensure mc-ref outside transaction"))
 (tx-ensure *current-transaction* ref)))

MC-STM version 3: transactions

• Transactions now additionally store:

• A map containing all commutative updates

• A set of ensure’d refs

(defn make-transaction
 "create and return a new transaction data structure"
 []
 { :read-point @GLOBAL_WRITE_POINT,
 :in-tx-values (atom {}), ; map: ref -> any value
 :written-refs (atom #{}), ; set of written-to refs
 :commutes (atom {}), ; map: ref -> seq of commute-fns
 :ensures (atom #{}) }) ; set of ensure-d refs

MC-STM version 3: ensure

• To ensure a ref, simply mark it as “ensured” by adding it to the ensures set

• When the transaction commits, it will check to see if these refs were not
changed

(defn tx-ensure
 "ensure ref inside transaction tx"
 [tx ref]
 ; mark this ref as being ensure-d
 (swap! (:ensures tx) conj ref))

MC-STM version 3: commute

• When a ref is commuted, its function is applied to either the in-transaction-
value or the most recent ref value

• Add function and arguments to the list of commutative updates for the ref
(defn tx-commute
 "commute ref inside transaction tx"
 [tx ref fun args]
 (let [in-tx-values @(:in-tx-values tx)
 res (apply fun (if (contains? in-tx-values ref)
 (in-tx-values ref)
 (:value (most-recent @ref))) args)]
 ; retain the result as an in-transaction-value
 (swap! (:in-tx-values tx) assoc ref res)
 ; mark the ref as being commuted,
 ; storing fun and args because it will be re-executed at commit time
 (swap! (:commutes tx) (fn [commutes]
 (assoc commutes ref
 (cons (fn [val] (apply fun val args))
 (commutes ref)))))
 res))

MC-STM version 3: writing a ref

• Commuted refs cannot later be altered by the same transaction

(defn tx-write
 "write val to ref inside transaction tx"
 [tx ref val]
 ; can't set a ref after it has already been commuted
 (if (contains? @(:commutes tx) ref)
 (throw (IllegalStateException. "can't set after commute on " ref)))
 (swap! (:in-tx-values tx) assoc ref val)
 (swap! (:written-refs tx) conj ref)
 val)

MC-STM version 3: committing a transaction

• Committing a transaction consists of three parts:

• 1: For each written ref and ensured ref, check if the ref was not modified
by other transactions in the mean time

• 2: For each commuted ref, re-apply all commutes based on the most
recent value

• 3: Make the changes made to each written and commuted ref public

MC-STM version 3: committing a transaction

• 1: For each written ref and ensured ref, check if the ref was not modified by
other transactions in the mean time

(defn tx-commit
 "returns normally if tx committed successfully, throws RetryEx otherwise"
 [tx]
 (let [written-refs @(:written-refs tx)
 ensured-refs @(:ensures tx)
 commuted-refs @(:commutes tx)]
 (when (not-every? empty? [written-refs ensured-refs commuted-refs])
 (locking COMMIT_LOCK
 ; validate both written-refs and ensured-refs
 ; Note: no need to validate commuted-refs
 (doseq [ref (union written-refs ensured-refs)]
 (if (> (:write-point (most-recent @ref))
 (:read-point tx))
 (tx-retry)))
 ; part 2 ...

MC-STM version 3: committing a transaction

• 2: For each commuted ref, re-apply all commutes based on the most recent
value

(defn tx-commit
 "returns normally if tx committed successfully, throws RetryEx otherwise"
 [tx]
 (let [written-refs @(:written-refs tx)
 ensured-refs @(:ensures tx)
 commuted-refs @(:commutes tx)]
 (when (not-every? empty? [written-refs ensured-refs commuted-refs])
 (locking COMMIT_LOCK
 ; ... part 1

 ; if validation OK, re-apply all commutes based on its most recent value
 (doseq [[commuted-ref commute-fns] commuted-refs]
 (swap! (:in-tx-values tx) assoc commuted-ref
 ; apply each commute-fn to the result of the previous commute-fn,
 ; starting with the most recent value
 ((reduce comp commute-fns) (:value (most-recent @commuted-ref)))))
 ; ... part 3

MC-STM version 3: committing a transaction

• 3: Make the changes made to each written and commuted ref public (almost
identical to v2)

(defn tx-commit
 "returns normally if tx committed successfully, throws RetryEx otherwise"
 [tx]
 (let [written-refs @(:written-refs tx)
 ensured-refs @(:ensures tx)
 commuted-refs @(:commutes tx)]
 (when (not-every? empty? [written-refs ensured-refs commuted-refs])
 (locking COMMIT_LOCK
 ; ... part 1 and 2

 (let [in-tx-values @(:in-tx-values tx)
 new-write-point (inc @GLOBAL_WRITE_POINT)]
 (doseq [ref (union written-refs (keys commuted-refs))]
 (swap! ref (fn [history-chain]
 (cons {:value (in-tx-values ref)
 :write-point new-write-point} (butlast history-chain)))))
 (swap! GLOBAL_WRITE_POINT inc)))))) ; make the new write-point public

MC-STM version 3: test

• Test from clojure.org/concurrent_programming, now using commute:
(defn test-stm [nitems nthreads niters]
 (let [refs (map mc-ref (replicate nitems 0))
 pool (Executors/newFixedThreadPool nthreads)
 tasks (map (fn [t]
 (fn []
 (dotimes [n niters]
 (mc-dosync
 (doseq [r refs]
 (mc-commute r + 1 t))))))
 (range nthreads))]
 (doseq [future (.invokeAll pool tasks)]
 (.get future))
 (.shutdown pool)
 (map mc-deref refs)))

; threads increment each ref by 550000 in total
; 550000 = (* (+ 1 2 3 4 5 6 7 8 9 10) 10000)
(def res (test-stm 10 10 10000))
=> (550000 550000 550000 550000 550000 550000 550000 550000 550000 550000)
; using mc-alter: 112677 retries, using mc-commute: 0 retries

T0 T1 ... T9

0 0 ... 0

+1 +10

MC-STM: version 3 limitations

• A single global commit-lock for all transactions (= severe bottleneck, but
makes it easy to validate and commit)

• Transactions that modify disjoint sets of references can’t commit in parallel

MC-STM version 4: fine-grained locking

• Instead of a single global commit lock, use fine-grained locking

• One lock per mc-ref (we will reuse internal Java object locks)

• Transactions that alter/commute/ensure disjoint sets of mc-refs can commit
in parallel

• To prevent deadlock, transactions must all acquire mc-ref locks in the same
order

• Add a unique ID to each mc-ref

• mc-refs are sorted according to unique ID before being locked

MC-STM version 4: fine-grained locking

• Each mc-ref is guarded by a lock. Lock is only held for very short periods of
time, never for the entire duration of a transaction.

• Lock held for “writing” by a committing transaction when it publishes a
new value

• Lock held for “reading” by a transaction the first time it reads the value of
an mc-ref

• To ensure that a new transaction, started after the write-point was
increased, waits for a committing transaction that is still writing to that
write-point

• Note: could use a multiple reader/single writer lock (didn’t do this because the
overhead of using such locks from Clojure was prohibitive)

MC-STM version 4: fine-grained locking

• As before, when a transaction is created it saves the current global write point
as its read point

(defn make-transaction
 "create and return a new transaction data structure"
 []
 { :read-point @GLOBAL_WRITE_POINT,
 :in-tx-values (atom {}), ; map: ref -> any value
 :written-refs (atom #{}), ; set of written-to refs
 :commutes (atom {}), ; map: ref -> seq of commute-fns
 :ensures (atom #{}) }) ; set of ensure-d refs

MC-STM version 4: mc-refs

• mc-ref is now a map storing both the history list, a unique ID and a lock

• We will use built-in Java locks, so the lock is just a fresh Java object

(def REF_ID (atom 0))

(defn mc-ref [val]
 {:id (swap! REF_ID inc)
 :lock (new Object)
 :history-list (atom (cons {:value val
 :write-point @GLOBAL_WRITE_POINT}
 DEFAULT_HISTORY_TAIL))})

MC-STM version 4: transaction commit

• On commit, a transaction first acquires the lock for all mc-refs it altered,
commuted or ensured, in sorted order:

(defn tx-commit
 "returns normally if tx committed successfully, throws RetryEx otherwise"
 [tx]
 (let [written-refs @(:written-refs tx)
 ensured-refs @(:ensures tx)
 commuted-refs @(:commutes tx)]
 (when (not-every? empty? [written-refs ensured-refs commuted-refs])
 (with-ref-locks-do (sort-by :id <
 (union written-refs ensured-refs (keys commuted-refs)))
 (fn []
 ; ...

MC-STM version 4: transaction commit

• The transaction can make the new write-point public even before it writes the
new mc-ref values, as it still holds the lock. Other transactions will not be able
to access these values yet (note: reads outside of a transaction will!)

; ... (while holding locks)
(let [in-tx-values @(:in-tx-values tx)
 new-write-point (swap! GLOBAL_WRITE_POINT inc)]
 ; make in-tx-value of all written-to or commuted refs public
 (doseq [ref (union written-refs (keys commuted-refs))]
 (swap! (:history-list ref)
 (fn [prev-history-list]
 ; add a new entry to the front of the history list and remove the eldest
 (cons {:value (in-tx-values ref)
 :write-point new-write-point} (butlast prev-history-list)))))))))))

MC-STM version 4: transaction commit

• Auxiliary function to acquire all mc-refs’ locks

(defn with-ref-locks-do
 "acquires the lock on all refs, then executes fun"
 [refs fun]
 (if (empty? refs)
 (fun)
 (locking (:lock (first refs))
 (with-ref-locks-do (next refs) fun))))

MC-STM version 4: transaction read

• When a transaction first reads an mc-ref’s value, it acquires the lock to ensure
it is not reading from a write-point still being committed

(defn tx-read
 "read the value of ref inside transaction tx"
 [tx mc-ref]
 (let [in-tx-values (:in-tx-values tx)]
 (if (contains? @in-tx-values mc-ref)
 (@in-tx-values mc-ref) ; return the in-tx-value
 ; search the history chain for entry with write-point <= tx's read-point
 (let [ref-entry
 ; acquire read-lock to ensure ref is not modified by a committing tx
 (locking (:lock mc-ref)
 (find-entry-before-or-on
 @(:history-list mc-ref) (:read-point tx)))]
 (if (not ref-entry)
 ; if such an entry was not found, retry
 (tx-retry))
 (let [in-tx-value (:value ref-entry)]
 (swap! in-tx-values assoc mc-ref in-tx-value) ; cache the value
 in-tx-value))))) ; save and return the ref's value

MC-STM version 4: lock on read really necessary?

• Is it really necessary to acquire a lock when reading? Can’t we just increment
the write-point after having updated all mc-refs as in version 3?

• Unfortunately, no: because of fine-grained locking, transactions T1 and T2
that modify disjoint sets of mc-refs can commit in parallel. Assume T1 and T2
are committing, T1 has write-point w and T2 has write-point w+1

• Say T2 finishes committing first. It needs to increment the write-point to
make its changes public, but it can’t because incrementing the write-point
would also make T1’s changes public, and T1 is still committing.

• By requiring acquisition of a lock when reading a ref, we allow transactions
to increment the public write-point even before all other transactions that
are still writing to it (or even to an earlier write-point) have committed.

MC-STM version 4: fine-grained locking

• Example of why locking on read is required:

T1

Ref val

Ref val

>
 T1: (mc-alter x inc)
 T2: (mc-alter z inc)
 T2: starts to commit
 T1: (mc-alter y inc)
 T1: starts to commit
 T2: finished committing

Global write-point: 0

Read-point: 0

T2 Read-point: 0

Ref v0
x 1
y 1
z 1

global state

• Example of why locking on read is required:

MC-STM version 4: fine-grained locking

T1

Ref val

Ref val

x 2

>T1: (mc-alter x inc)
 T2: (mc-alter z inc)
 T2: starts to commit
 T1: (mc-alter y inc)
 T1: starts to commit
 T2: finished committing

Read-point: 0

T2 Read-point: 0

Global write-point: 0

Ref v0
x 1
y 1
z 1

global state

• Example of why locking on read is required:

MC-STM version 4: fine-grained locking

T1

Ref val

z 2

Ref val

x 2

 T1: (mc-alter x inc)
>T2: (mc-alter z inc)
 T2: starts to commit
 T1: (mc-alter y inc)
 T1: starts to commit
 T2: finished committing

Read-point: 0

T2 Read-point: 0

Global write-point: 0

Ref v0
x 1
y 1
z 1

global state

• Example of why locking on read is required:

MC-STM version 4: fine-grained locking

T1

Ref val

z 2

Ref val

x 2

 T1: (mc-alter x inc)
 T2: (mc-alter z inc)
>T2: starts to commit
 T1: (mc-alter y inc)
 T1: starts to commit
 T2: finished committing

Read-point: 0

T2 Read-point: 0

Ref v0 v1
x 1
y 1
z 1 2

Global write-point: 1

Write-point: 1

global state

• Example of why locking on read is required:

MC-STM version 4: fine-grained locking

T1

Ref val

z 2

Ref val

x 2

y 2

 T1: (mc-alter x inc)
 T2: (mc-alter z inc)
 T2: starts to commit
>T1: (mc-alter y inc)
 T1: starts to commit
 T2: finished committing

Read-point: 0

T2 Read-point: 0

Ref v0 v1
x 1
y 1
z 1 2

Global write-point: 1

Write-point: 1

global state

• Example of why locking on read is required:

MC-STM version 4: fine-grained locking

T1

Ref val

z 2

Ref val

x 2

y 2

 T1: (mc-alter x inc)
 T2: (mc-alter z inc)
 T2: starts to commit
 T1: (mc-alter y inc)
>T1: starts to commit
 T2: finished committing

Read-point: 0

T2 Read-point: 0

Ref v0 v1 v2
x 1 2
y 1
z 1 2

Write-point: 1

Global write-point: 2

Write-point: 2

global state

• Example of why locking on read is required:

MC-STM version 4: fine-grained locking

T1

Ref val

z 2

Ref val

x 2

y 2

 T1: (mc-alter x inc)
 T2: (mc-alter z inc)
 T2: starts to commit
 T1: (mc-alter y inc)
>T1: starts to commit
 T2: finished committing

Read-point: 0

T2 Read-point: 0

Note that T1 first acquires locks on all refs it
wrote to before changing any of them

Write-point: 1

global state
Ref v0 v1 v2
x 1 2
y 1
z 1 2

Global write-point: 2

• Example of why locking on read is required:

MC-STM version 4: fine-grained locking

T1

Ref val

z 2

Ref val

x 2

y 2

 T1: (mc-alter x inc)
 T2: (mc-alter z inc)
 T2: starts to commit
 T1: (mc-alter y inc)
 T1: starts to commit
>T2: finished committing

Read-point: 0

T2 Read-point: 0

Write-point: 1

global state
Ref v0 v1 v2
x 1 2
y 1
z 1 2

Global write-point: 2

Write-point: 2

• Example of why locking on read is required:

MC-STM version 4: fine-grained locking

T1

Ref val

z 2

Ref val

x 2

y 2

 T1: (mc-alter x inc)
 T2: (mc-alter z inc)
 T2: starts to commit
 T1: (mc-alter y inc)
 T1: starts to commit
>T2: finished committing

Read-point: 0

T2 Read-point: 0

A transaction T3 that starts with read-point 2 will not see an
inconsistent state where x = 2 and y = 1 because T1 still

holds the locks, and T3 will acquire these on first read

Write-point: 1

global state
Ref v0 v1 v2
x 1 2
y 1
z 1 2

Global write-point: 2

MC-STM: version 4 limitations

• MC-STM v1-v4 does lazy conflict detection: transactions with write-conflicts
abort only when they fail validation at commit-time

• Can lead to lots of irrelevant computation before retrying

Contention Management

• Clojure STM uses “barging”: transactions detect write conflicts during the
transaction and proactively try to “barge” other transactions.

• Transactions publicly “mark” refs written inside transaction. This enables
early conflict detection before commit (eager acquire)

• Transaction A can only barge transaction B if A is older than B (according
to starting time), and B is still running. Otherwise, A itself retries.

• When a transaction is barged, it retries

MC-STM version 5: barging

• Transactions extended with a start timestamp and a status field (status is one
of :RUNNING, :RETRY, :KILLED, :COMMITTING, :COMMITTED)

• Each mc-ref extended with :acquired-by field pointing to the last transaction
that successfully acquired it

• On tx-write, a transaction actively checks for write conflicts and either barges
the other transaction or retries itself.

• On tx-commit, no longer necessary to validate written-refs

• Whenever a transaction reads/writes/ensures/commutes a ref or commits, it
checks whether it was barged and if so, retries.

• Won’t cover all the details, see https://github.com/tvcutsem/stm-in-clojure

https://github.com/tvcutsem/stm-in-clojure
https://github.com/tvcutsem/stm-in-clojure

MC-STM version 5: barging

• Example of eager acquisition: T1 and T2 both try to increment x by 1

T1
Ref val

Global write-point: 0

Read-point: 0

T2 Read-point: 0

Ref Acq v0

x 1

global state

id: 1
status: RUNNING

id: 2
status: RUNNING

Ref val

>
 T1: (mc-alter x inc)
 T2: (mc-alter x inc)
 T2: retry
 T1: commits
 T2: restarts
 T2: (mc-alter x inc)
 T2: commits

MC-STM version 5: barging

T1
Ref val

x 2

>T1: (mc-alter x inc)
 T2: (mc-alter x inc)
 T2: retry
 T1: commits
 T2: restarts
 T2: (mc-alter x inc)
 T2: commits

Global write-point: 0

Read-point: 0

T2 Read-point: 0

Ref Acq v0

x T1 1

global state

id: 1
status: RUNNING

id: 2
status: RUNNING

Ref val

T1 notices that x was not yet acquired by
any other transaction, so acquires x by

marking it as acquired by T1

MC-STM version 5: barging

T1
Ref val

x 2

Global write-point: 0

Read-point: 0

T2 Read-point: 0

Ref Acq v0

x T1 1

global state

id: 1
status: RUNNING

id: 2
status: RUNNING

Ref val

T2 notices that x was acquired by T1.
Since T1 is still RUNNING, T2 tries to barge

T1 but fails since T1’s id < T2’s id

 T1: (mc-alter x inc)
>T2: (mc-alter x inc)
 T2: retry
 T1: commits
 T2: restarts
 T2: (mc-alter x inc)
 T2: commits

MC-STM version 5: barging

T1
Ref val

x 2

Global write-point: 0

Read-point: 0

T2 Read-point: 0

Ref Acq v0

x T1 1

global state

id: 1
status: RUNNING

id: 2
status: RETRY

Ref val Therefore, T2
will retry

 T1: (mc-alter x inc)
 T2: (mc-alter x inc)
>T2: retry
 T1: commits
 T2: restarts
 T2: (mc-alter x inc)
 T2: commits

MC-STM version 5: barging

T1
Ref val

x 2

Global write-point: 1

Read-point: 0

T2 Read-point: 0

Ref Acq v0 v1

x T1 1 2

global state

id: 1
status: COMMITTED

id: 2
status: RETRY

Ref val

 T1: (mc-alter x inc)
 T2: (mc-alter x inc)
 T2: retry
>T1: commits
 T2: restarts
 T2: (mc-alter x inc)
 T2: commits

MC-STM version 5: barging

T1
Ref val

x 2

Global write-point: 1

Read-point: 0

T2 Read-point: 1

Ref Acq v0 v1

x T1 1 2

global state

id: 1
status: COMMITTED

id: 2
status: RUNNING

Ref val

 T1: (mc-alter x inc)
 T2: (mc-alter x inc)
 T2: retry
 T1: commits
>T2: restarts
 T2: (mc-alter x inc)
 T2: commits

MC-STM version 5: barging

T1
Ref val

x 2

Global write-point: 1

Read-point: 0

T2 Read-point: 1

Ref Acq v0 v1

x T2 1 2

global state

id: 1
status: COMMITTED

id: 2
status: RUNNING

Ref val

x 3

 T1: (mc-alter x inc)
 T2: (mc-alter x inc)
 T2: retry
 T1: commits
 T2: restarts
>T2: (mc-alter x inc)
 T2: commits

T2 notices that x was acquired by T1.
Since T1 is COMMITTED, so no longer

active, T2 can safely acquire x

MC-STM version 5: barging

T1
Ref val

x 2

Global write-point: 2

Read-point: 0

T2 Read-point: 1

Ref Acq v0 v1 v2

x T2 1 2 3

global state

id: 1
status: COMMITTED

id: 2
status: COMMITTED

Ref val

x 3

 T1: (mc-alter x inc)
 T2: (mc-alter x inc)
 T2: retry
 T1: commits
 T2: restarts
 T2: (mc-alter x inc)
>T2: commits

MC-STM: summary

• Like Clojure, based on MVCC to guarantee internal consistency

• Supports conflict-free commutative updates

• Supports ensure to prevent write skew

• From single global commit-lock to fine-grained locking (one lock / mc-ref)

