
© Nokia 20171

XStream
Declarative authoring of distributed stream processing pipelines
(Or, embedded DSLs make for great stream processing APIs)

Public

• Tom Van Cutsem
• Nokia Bell Labs, Antwerp, Belgium

© Nokia 20172

Real-time car fleet tracking
Demo

Public

GPS receiver
(position data, 1 update/s)

OBD via CAN bus
(engine data, 1 update/s)

Dashcam
(HD video, H.264 encoded,
500kbps, on-demand)

On-board Unit
(Quad-core ARM Cortex-A9 1Ghz,
1GB RAM + 4G USB Modem)

2 real cars,
10 hours footage
400 virtual cars

ACM DEBS 2017
Best Demo Award

© Nokia 20173

Applications in World-wide Streams

• Applications = continuous queries (a.k.a. “flows”) + dashboards (UI widgets)
• Queries are created using a flow-based programming approach
• Library for JavaScript & TypeScript: XStream/JS
• Script generates a dataflow that is optimized by WWS dataflow compiler

Public

source filter transform

source User_op

join sink

4 © Nokia 2017

• Microsoft Dryad, DryadLINQ, Nectar, Naiad

• IBM JAQL, System S

• MIT WaveScript
• Google Cloud Dataflow, MapReduce, FlumeJava, Sawzall, Millwheel

• Distributed stream processing: Borealis, Stanford STREAM
• Streaming SQL dialects: Esper EQL, StreamSQL, Oracle CQL

• Data-parallel stream processing: Apache Storm, Spark Streaming, Flink, Samza

• Apache Hive
• Apache Quarks

Public

Related Work

5 © Nokia 2017 Public

Example flow
Alert me of congested areas near me

6 © Nokia 2017 Public

Example flow
Alert me of congested areas near me
let all = stream<Array<CarStream>>({"filter": {stream: 'engine'}})

.pipe(union_streams<Array<CarStream>>())

.transform(([e]) => [Object.assign({}, e, { id: e.car_id, lng: e.lon })])

.pipe(resample({ "sample_period": 1 }));

let car = stream({'filter': {stream: 'location', id: $MYCAR }})
.pipe(union_streams<Array<CarStream>>());

car.transform(([e]) => [Object.assign({}, e, { lng: e.lon })])
.expand()
.sink("fenceCenter");

let fence = geofence<Array<CarStream>>({ perimeter: 100 });

all.pipe(fence);
car.pipe(fence.center);

let detector = jerkDetector();
fence.set.pipe(detector);

let clusters = detector.rapid_decel.pipe(geocluster());
clusters.transform((c) =>

({ set: c.top_clusters.map(({centroid: {lon, lat}, cluster_id}) => ({lon, lat, cluster_id})) }))
.sink("congestedAreas");

7 © Nokia 2017 Public

Example flow
Alert me of congested areas near me
let all = stream<Array<CarStream>>({"filter": {stream: 'engine'}})

.pipe(union_streams<Array<CarStream>>())

.transform(([e]) => [Object.assign({}, e, { id: e.car_id, lng: e.lon })])

.pipe(resample({ "sample_period": 1 }));

let car = stream({'filter': {stream: 'location', id: $MYCAR }})
.pipe(union_streams<Array<CarStream>>());

car.transform(([e]) => [Object.assign({}, e, { lng: e.lon })])
.expand()
.sink("fenceCenter");

let fence = geofence<Array<CarStream>>({ perimeter: 100 });

all.pipe(fence);
car.pipe(fence.center);

let detector = jerkDetector();
fence.set.pipe(detector);

let clusters = detector.rapid_decel.pipe(geocluster());
clusters.transform((c) =>

({ set: c.top_clusters.map(({centroid: {lon, lat}, cluster_id}) => ({lon, lat, cluster_id})) }))
.sink("congestedAreas");

Stream sources

Stream sinks

8 © Nokia 2017 Public

Example flow
Alert me of congested areas near me
let all = stream<Array<CarStream>>({"filter": {stream: 'engine'}})

.pipe(union_streams<Array<CarStream>>())

.transform(([e]) => [Object.assign({}, e, { id: e.car_id, lng: e.lon })])

.pipe(resample({ "sample_period": 1 }));

let car = stream({'filter': {stream: 'location', id: $MYCAR }})
.pipe(union_streams<Array<CarStream>>());

car.transform(([e]) => [Object.assign({}, e, { lng: e.lon })])
.expand()
.sink("fenceCenter");

let fence = geofence<Array<CarStream>>({ perimeter: 100 });

all.pipe(fence);
car.pipe(fence.center);

let detector = jerkDetector();
fence.set.pipe(detector);

let clusters = detector.rapid_decel.pipe(geocluster());
clusters.transform((c) =>

({ set: c.top_clusters.map(({centroid: {lon, lat}, cluster_id}) => ({lon, lat, cluster_id})) }))
.sink("congestedAreas");

Built-in operators on streams

9 © Nokia 2017 Public

Example flow
Alert me of congested areas near me
let all = stream<Array<CarStream>>({"filter": {stream: 'engine'}})

.pipe(union_streams<Array<CarStream>>())

.transform(([e]) => [Object.assign({}, e, { id: e.car_id, lng: e.lon })])

.pipe(resample({ "sample_period": 1 }));

let car = stream({'filter': {stream: 'location', id: $MYCAR }})
.pipe(union_streams<Array<CarStream>>());

car.transform(([e]) => [Object.assign({}, e, { lng: e.lon })])
.expand()
.sink("fenceCenter");

let fence = geofence<Array<CarStream>>({ perimeter: 100 });

all.pipe(fence);
car.pipe(fence.center);

let detector = jerkDetector();
fence.set.pipe(detector);

let clusters = detector.rapid_decel.pipe(geocluster());
clusters.transform((c) =>

({ set: c.top_clusters.map(({centroid: {lon, lat}, cluster_id}) => ({lon, lat, cluster_id})) }))
.sink("congestedAreas");

“External” (user-defined) operators

10 © Nokia 2017 Public

Example flow
Alert me of congested areas near me
let all = stream<Array<CarStream>>({"filter": {stream: 'engine'}})

.pipe(union_streams<Array<CarStream>>())

.transform(([e]) => [Object.assign({}, e, { id: e.car_id, lng: e.lon })])

.pipe(resample({ "sample_period": 1 }));

let car = stream({'filter': {stream: 'location', id: $MYCAR }})
.pipe(union_streams<Array<CarStream>>());

car.transform(([e]) => [Object.assign({}, e, { lng: e.lon })])
.expand()
.sink("fenceCenter");

let fence = geofence<Array<CarStream>>({ perimeter: 100 });

all.pipe(fence);
car.pipe(fence.center);

let detector = jerkDetector();
fence.set.pipe(detector);

let clusters = detector.rapid_decel.pipe(geocluster());
clusters.transform((c) =>

({ set: c.top_clusters.map(({centroid: {lon, lat}, cluster_id}) => ({lon, lat, cluster_id})) }))
.sink("congestedAreas");

External operator “wiring”

11 © Nokia 2017 Public

Example flow
Alert me of congested areas near me
let all = stream<Array<CarStream>>({"filter": {stream: 'engine'}})

.pipe(union_streams<Array<CarStream>>())

.transform(([e]) => [Object.assign({}, e, { id: e.car_id, lng: e.lon })])

.pipe(resample({ "sample_period": 1 }));

let car = stream({'filter': {stream: 'location', id: $MYCAR }})
.pipe(union_streams<Array<CarStream>>());

car.transform(([e]) => [Object.assign({}, e, { lng: e.lon })])
.expand()
.sink("fenceCenter");

let fence = geofence<Array<CarStream>>({ perimeter: 100 });

all.pipe(fence);
car.pipe(fence.center);

let detector = jerkDetector();
fence.set.pipe(detector);

let clusters = detector.rapid_decel.pipe(geocluster());
clusters.transform((c) =>

({ set: c.top_clusters.map(({centroid: {lon, lat}, cluster_id}) => ({lon, lat, cluster_id})) }))
.sink("congestedAreas");

Delayed/remote code execution

© Nokia 201712

Launching XStream Flows

Public

Functional dataflow
specification

XStream
Developer

Logical Query Plan Physical Query Plan

(optimized plan, e.g.
operators are fused)

Placed Query Plan

let fence =
resolve_streams({type: "Car", port: "engine"})
-> resample({ period: 1, primary_key: "id" })
-> geofence({ perimeter: 100 });

let car = resolve_stream({
id: $MYCAR,
type: 'Car',
port: 'location' });

car -> fence.center;

let detector = fence.set -> detectSpeedDrop({
threshold: 10, // 10 mph drop
time_window: 2 // within 2 seconds

});

detector
-> geocluster({

proximity_radius: 100, // meters
min_cluster_size: 2, // at least 2 cars
time_window: 5 // within 5 seconds

})
-> sink("brakeAlert");

SourceSource

(opted- in) (car status)

Table

Table Union

Filter
(parked)

Join

Source

(schedule)

Transfrm

Average

Join

Size

Zip

Expand

Transfrm

Select

Sink

Source Source Source

wwsql bind

Table Table

wwsql

route

Sink

Source Source Source

wwsql bind

Table Table

wwsql

route

Sink

13 © Nokia 2017

function relay({events: ev, switches: s}) {
let left = ev -> transform [$,null];
let right = s -> filter $ == true

-> transform [null,$];

union(left, right)
-> reduce [null,false] [[pe,pb], [e,b]]:

[e ?? pe, b ?? false]
-> filter [e,b]: b
-> transform [e,b]: e

};

Public

XStream: external or embedded DSL?

function relay({ events: ev, switches: s }) {
let left = ev.transform($ => [$, null]);
let right = s.filter(($) => $ === true)

.transform($ => [null, $]);

return union(left, right)
.reduce([null, false], ([[pe, pb], [e, b]]) =>

[e || pe, b !== null])
.filter(([e, b]) => b)
.transform(([e, b]) => e);

}

XStream DSL XStream/JS

14 © Nokia 2017

“fluent APIs” in Java/Scala: Apache Storm, Apache Spark (incl. Spark Streaming), Apache Flink

Craig Chambers et al. on FlumeJava’s predecessor called “Lumberjack” (PLDI 2010):

Public

Embedded DSLs make for great stream processing APIs

• “The implicitly parallel, mostly functional programming model was not natural for many of its
intended users. FlumeJava’s explicitly parallel model […] coupled with its “mostly imperative” model
[…], is much more natural for most of these programmers."

• LumberJack: static analysis (hard and imprecise) vs FlumeJava: just run the program to generate
the graph and then reason from that. Simpler and more precise.

• Tooling. “Building an efficient, complete, usable Lumberjack-based system is much more difficult
[…] than building an equivalently efficient, complete, and usable FlumeJava system.”

• “Novelty is an obstacle to adoption. By being embedded in a well-known programming language,
FlumeJava focuses the potential adopter’s attention on a few new features, namely the Flume
abstractions and the handful of Java classes and methods implementing them.”

© Nokia 201715

Summary: XStream

• A high-level query interface to compose end-to-end dataflows
• Embeddable as a library in existing programming languages
• Compiler optimizes generated query plan prior to deployment
• Deployer deploys operators across (wide-area) distributed execution environment

Public

source filter transform

source User_op

join sink

© Nokia 201717 Public

Copyright and confidentiality

The contents of this document are proprietary
and confidential property of Nokia. This
document is provided subject to confidentiality
obligations of the applicable agreement(s).

This document is intended for use of Nokia’s
customers and collaborators only for the
purpose for which this document is submitted by
Nokia. No part of this document may be
reproduced or made available to the public or to
any third party in any form or means without the
prior written permission of Nokia. This document
is to be used by properly trained professional
personnel. Any use of the contents in this
document is limited strictly to the use(s)
specifically created in the applicable
agreement(s) under which the document is
submitted. The user of this document may
voluntarily provide suggestions, comments or
other feedback to Nokia in respect of the
contents of this document ("Feedback"). Such

Feedback may be used in Nokia products and
related specifications or other documentation.
Accordingly, if the user of this document gives
Nokia Feedback on the contents of this
document, Nokia may freely use, disclose,
reproduce, license, distribute and otherwise
commercialize the feedback in any Nokia
product, technology, service, specification or
other documentation.

Nokia operates a policy of ongoing development.
Nokia reserves the right to make changes and
improvements to any of the products and/or
services described in this document or withdraw
this document at any time without prior notice.

The contents of this document are provided "as
is". Except as required by applicable law, no
warranties of any kind, either express or implied,
including, but not limited to, the implied
warranties of merchantability and fitness for a

particular purpose, are made in relation to the
accuracy, reliability or contents of this
document. NOKIA SHALL NOT BE RESPONSIBLE
IN ANY EVENT FOR ERRORS IN THIS DOCUMENT
or for
any loss of data or income or any special,
incidental, consequential, indirect or direct
damages howsoever caused, that might arise
from the use of this document or any contents
of this document.

This document and the product(s) it describes
are protected by copyright according to the
applicable laws.

Nokia is a registered trademark of Nokia
Corporation. Other product and company names
mentioned herein may be trademarks or trade
names of their respective owners.

