Adventures in Clojure
Navigating the STM sea and exploring Worlds

Tom Van Cutsem

Part 1: Clojure ina g

Clojure in a nutshell

e A modern Lisp dialect (2007), designed by Rich Hickey
¢ JVM as runtime platform
* Promotes a Functional Programming style

e Designed for Concurrency

@

Functional Style

e Clojure is not a pure functional language (like Haskell), but...
e Emphasis on immutable data structures
e |isp’s lists generalized to abstract sequences: list, vector, set, map, ...

e Used pervasively: all Clojure collections, all Java collections, Java arrays
and Strings, regular expression matches, directory structures, 1/0 streams,
XML trees, ...

e Sequences are lazy and immutable

Clojure and Java

e Clojure compiles to JVM bytecode

e Fasy for Clojure to reuse Java libraries

(new java.util.Random) ; Java: “new java.util.Random()”
=> java.util.Random@18a4f?2

(. aRandom nextInt) ; Java: “aRandom.nextInt()”
=>

Part 2: Concurrency in Clojure

Persistent Data Structures

e The problem with immutable data structures: updates are costly (copy)

e Persistent data structures preserve old copies of themselves by efficiently
sharing structure between older and newer versions.

e Simplest example: consing an element onto a linked list

(def a ‘()
(def b (a)
b\\\ a\\\
0 ° > 1 ° » 0

® b reuses all of a’s structure instead of having its own private copy

Pearsistent Data Structures

e Not only for linked lists, also for vectors, sets, maps, ...

e Example: binary tree insert

(def mapl { : : : })
(def map2 (mapl))

V"

“a”_1 “d”_4

map

“6”_5

Pearsistent Data Structures

e Not only for linked lists, also for vectors, sets, maps

e Example: binary tree insert

(def mapl { : : : })
(def map2 (mapl))

map

, [I]

map?2
\| o \

“b”_

Pt

<«
“a”_-l “d”_4

_//

“d”_4

“6”_5

“C

”_3

Threads

e Clojure reuses JVM threads as the unit of concurrency

(.start (Thread.
fn [] (println "Hello from new thread"))))

e Not as bad as it looks: Clojure does not combine threads with unbridled
access to pervasive shared mutable state

Clojure Philosophy
e [mmutable state is the default

¢ \Where mutable state is required, programmer must explicitly select one of the
following APIs:

state change is |Asynchronous| Synchronous

Coordinated - Refs

Independent Agents Atoms

Clojure’s concurrency primitives

state change is | Asynchronous | Synchronous
Coordinated - Refs
Independent Agents Atoms

Refs and Software Transactional Memory (STM)

e Ref: mutable reference to an immutable object

(def today (“Monday”))

e The ref wraps and protects its internal state. To read its contents, must
explicitly dereference it:

(today)
=> “Monday”

@today
=> “Monday”

Refs and Software Transactional Memory (STM)

e To update a reference:

¢ today “Tuesday”)

e Updates can only occur in the context of a transaction:

C today “Tuesday”)
=> java.lang.IllegalStateException: No transaction running

Refs and Software Transactional Memory (STM)

e Jo start a transaction:

(dosync body)

e Example:

(dosync (today “Tuesday”))
=> “Tuesday”

Coordinated updates

e Changes to multiple refs within a transaction are atomic and isolated

(dosync
(yesterday “Monday”)
(today “Tuesday”))

e No other thread will be able to observe a state in which yesterday is already
updated to “Monday”, while today is still set to “Monday”.

alter

e Often, the new state of a reference is dependent on the old state

(def weekdays [, , , , , ,

(def today-idx ())

(dosync
(today-1dx (@today-1dx))
; alternatively (preferred)
(defn next-day-idx [1] (1)
(dosync

(today-1dx next-day-1dx))

1D

—xample: money transfer

e Transferring money atomically from one bank account to another

(defn make-account [sum]

C sum))

(defn transfer [amount from to]
(dosync
from (fn [bal] (- bal amount))
to (fn [bal] (+ bal amount))))

(def accountA (make-account)
(def accountB (make-account))
(transfer accountA accountB)

(@accountA) ; 1400

(@accountB) ; 300

How STM Works: MVCC

e Multiversion concurrency control (MVCC): each transaction starts with a
"'snapshot" of the database (i.e. the state of all refs).

¢ Instead of updating data directly, each transaction modifies its own private
copy of the data.

e Persistent data structures: private copy shares most of its structure with
the original value

e Changes made to private copies will not be seen by other transactions
until the transaction commits.

MVCC: Example

(def today (ref)

(def yesterday (ref) global “ret” state
T Cdosync Ref revO | rev i
C deref today
deref yesterday)) today | “mon”
T2: (dosync yesterday | “sun”
(ref-set today)

(ref-set yesterday D)

MVCC: Example

(def today (ref)
(def yesterday (ref
T1l: (dosync

(deref today

)

deref yesterday))

T2: (dosync
(ref-set today
(ref-set yesterday

IN-transaction-values of T1

Ref val rev

IN-transaction-values of 12

Ref val rev

)
)

]]]]]
N NN

global “ref” state

Ref revO | rev

today |“mon”

yesterday | “sun”

A

(Both T1 and T2 start with read-point O)

: (ref-set today “tue”)

: (deref today)

: (ref-set yesterday “mon”)
: (deref yesterday)

: commit

. commit

MVCC: Example

(def today (ref) L
(def yesterday (ref) global ret” state
T Cdosync Ref revO | rev i

C deref today

deref yesterday)) today | “mon’

T2: (dosync yesterday | “sun”

(ref-set today)

(ref-set yesterday)

IN-transaction-values of T1

Ref val rev

>T2: (ref-set today “tue”)
T1: (deref today)
T2: (ref-set yesterday “mon”)
in-transaction-values of T2 T1l: (deref yesterday)
Ref val rev T2: commit
T1l: commit

today | “tue” 0

MVCC: Example

(def today (ref)

(def yesterday (ref) global “ret” state
T (d(C)S)/nC deref today Ref revO | rev 1
deref yesterday)) today | "mon”
T2 (dosync yesterday | “sun”
(ref-set today)
(ref-set yesterday)
INn-transaction-values of T1
Ref val rev
today |“mon”| 0 T2: (ref-set today “tue”)
>T1: (deref today)
T2: (ref-set yesterday “mon”)
in-transaction-values of T2 T1l: (deref yesterday)
Ref val rev T2: commit
T1l: commit

today “tue” 0

MVCC: Example

(def today (ref) y y
(def yesterday (ref) global ret” state
T1l: (dosync

(deref today Ref revO | rev 1

today |“mon”

deref yesterday))

yesterday | “sun”

T2: (dosync
(ref-set today)
(ref-set yesterday D)

IN-transaction-values of T1

Ref val rev

: (ref-set today “tue”)

: (deref today)

: (ref-set yesterday “mon”)
: (deref yesterday)

today “mon” 0

IN-transaction-values of 12

Ref

val

rev

today

“tue”

0

\
| 4 <4 - - -
R NPEFPNEFEN

yesterday

“mon”

0

: commit
: commit

MVCC: Example

(def today (ref) y y
(def yesterday (ref) global ret” state
T1l: (dosync

(deref today Ref revO | rev 1

today |“mon”

deref yesterday))

yesterday

“mon”

0

T2: (dosync yesterday | “sun”
(ref-set today)
(ref-set yesterday)
INn-transaction-values of T1
Ref val rev
today | “mon”| © T2: (ref-set today “tue”)
yesterday | “sun” | 0 T1: (deref today)
T2: (ref-set yesterday “mon”)
in-transaction-values of T2 >T1l: (deref yesterday)
Ref val rev T2: commit
today | “tue” | © T1l: commit

MVCC: Example

(def today (ref)
(def yesterday (ref)
T1l: (dosync
(deref today
deref yesterday))
T2: (dosync
(ref-set today)

(ref-set yesterday

IN-transaction-values of T1

Ref val rev
today “mon” 0
yesterday | “sun’ 0]

IN-transaction-values of 12

]]]]]]
P NP NRN

Ref val rev
today “tue” 0
yesterday | “mon” 0

Ref revO | revi
today [|“mon”| “tue”
yesterday | “sun” | “mon”

A

global “ref” state

T2 has write-point 1, updates
global ref state atomically

: (ref-set today “tue”)

: (deref today)

: (ref-set yesterday “mon”)
: (deref yesterday)

: commit

. commit

MVCC: Example

(def today (ref)
(def yesterday (ref
T1l: (dosync

(deref today

)

deref yesterday))

T2: (dosync
(ref-set today
(ref-set yesterday

)

)

global “ref” state

Ref revO | revi
today |“mon”| “tue”
yesterday | “sun” | “mon”

IN-transaction-values of T1
Ref val rev

T1 has read consistent versions of both refs, no Conflict)

today

‘Emon”

0

yesterday

“Sun”

0

IN-transaction-values of 12

Ref val rev
today “tue” 0
yesterday | “mon” 0

]]]]]]
P NP NRN

: (ref-set today “tue”)

: (deref today)

: (ref-set yesterday “mon”)
: (deref yesterday)

: commit

. commit

MVCC: Example of a conflict

(def today (ref)

(def yesterday (ref) global “ret” state

T Cdosync Ref revO | rev i
(ref-set today)
(ref-set yesterday) today [“mon’

T2: (dosync yesterday | “sun”
(ref-set today)

(ref-set yesterday D)

MVCC: Example of a conflict

(def today (ref)
(def yesterday (ref
T1l: (dosync
(ref-set today
(ref-set yesterday
T2: (dosync
(ref-set today

(ref-set yesterday

IN-transaction-values of T1

Ref val rev

IN-transaction-values of 12

Ref val rev

)

)

)

)

]]]]]
NEFENRPN P

global “ref” state

Ref revO | rev

today |“mon”

yesterday | “sun”

A

(Both T1 and T2 start with read-point O)

: (ref-set today “sun”)

2: (ref-set today “tue”)

: (ref-set yesterday “sat”)
: (ref-set yesterday “mon”)
: commit

. commit

MVCC: Example of a conflict

(def today (ref)
(def yesterday (ref)
T1l: (dosync
(ref-set today)
(ref-set yesterday)
T2: (dosync
(ref-set today)
(ref-set yesterday)

IN-transaction-values of T1

Ref val rev

today “sun” 0

IN-transaction-values of 12

Ref val rev

]]]]]]
NEFENRPN P

global “ref” state

Ref

rev O

rev 1

today

“mon”

yesterday

“Sun”

: (ref-set today “sun”)
: (ref-set today “tue”)
: (ref-set yesterday “sat”)
: (ref-set yesterday “mon”)
: commit
. commit

MVCC: Example of a conflict

(def today (ref)
(def yesterday (ref)
T1l: (dosync
(ref-set today)
(ref-set yesterday)
T2: (dosync
(ref-set today)
(ref-set yesterday)

IN-transaction-values of T1

Ref

val

rev

today

“Sun”

0

IN-transaction-values of 12

Ref

val

rev

today

“tue”

0

l l l l l l
NEFENRPN P

global “ref” state

Ref

rev O

rev 1

today

“mon”

yesterday

“Sun”

: (ref-set today “sun”)

2: (ref-set today “tue”)

: (ref-set yesterday “sat”)
: (ref-set yesterday “mon”)
: commit

. commit

MVCC: Example of a conflict

(def today (ref)
(def yesterday (ref)
T1l: (dosync
(ref-set today)
(ref-set yesterday)
T2: (dosync
(ref-set today)
(ref-set yesterday)

IN-transaction-values of T1

Ref

val

rev

today

“Sun”

0

yesterday

“Sat”

0

IN-transaction-values of 12

Ref

val

rev

today

“tue”

0

l l l l l l
NEFENRPN P

global “ref” state

Ref

rev O

rev 1

today

“mon”

yesterday

“Sun”

: (ref-set today “sun”)

2: (ref-set today “tue”)

: (ref-set yesterday “sat”)
: (ref-set yesterday “mon”)
: commit

. commit

MVCC: Example of a conflict

(def today (ref)
(def yesterday (ref)
T1l: (dosync
(ref-set today)
(ref-set yesterday)
T2: (dosync
(ref-set today)
(ref-set yesterday)

IN-transaction-values of T1

Ref

val

rev

today

“Sun”

0

yesterday

“Sat”

0

IN-transaction-values of 12

Ref

val

rev

today

“tue”

0

l l l l l l
NEFENRPN P

yesterday

“mon”

0

global “ref” state

Ref

rev O

rev 1

today

“mon”

yesterday

“Sun”

: (ref-set today “sun”)

2: (ref-set today “tue”)

: (ref-set yesterday “sat”)
: (ref-set yesterday “mon”)
: commit

. commit

MVCC: Example of a conflict

(def today (ref)
(def yesterday (ref)
T1l: (dosync

(ref-set today)

(ref-set yesterday
T2: (dosync

(ref-set today)

(ref-set yesterday

IN-transaction-values of T1

Ref val rev
today “sun” 0
yesterday | “sat” 0

IN-transaction-values of 12

Ref val rev
today “tue” 0
yesterday | “mon” 0

)

)

]]]]
NEFENRPN P

Ref revO | rev 1
today [|“mon”|“sun”
yesterday | “sun” | “sat”

A

global “ref” state

T1 has write-point 1, updates

global ref state atomically

J

: (ref-set today “sun”)

: (ref-set today “tue”)

: (ref-set yesterday “sat”)
: (ref-set yesterday “mon”)
: commit

. commit

MVCC: Example of a conflict

(def today (ref) y .
(def yesterday (ref) global ret” state
T1l: (dosync — » 1
(ref-set today) ° il
(ref-set yesterday), today | mon"] "sun
T2 (dO sync yesterday | “sun” | “sat”
(ref-set today) A
CI"E]C— set yeSte r'day >) T2 notices that the refs it modified have already
been modified, since the latest version of the refs (1)
in-transaction-values of T1 is no longer equal to its read-point (0)
Ref val rev
today | “sun” | 0O T1l: (ref-set today “sun”)
T - _ ¢« ””
estorday | “sat” | © “2. (ref-set today “tue”)
1: (ref-set yesterday “sat”)
in-transaction-values of T2 T2: (ref-set yesterday “mon”)
Ref val rev T1l: commit
today | “tue” | © >';\2 . commit
yesterday | “mon” | 0 (T2 will abort and retry, this time with read-point 1 |

Transactions, side effects, retries

(dosync body)

¢ [ransactions may be aborted and retried.

e The transaction body may be executed multiple times.

e Should avoid side-effects other than assigning to refs

e Especially: avoid any form of I/0 (LaunchMissiles())

Clojure’s concurrency primitives

state change is | Asynchronous | Synchronous
Coordinated - Refs
Independent Agents Atoms

Atoms

e For uncoordinated (independent), synchronous updates

e More lightweight than refs: atoms are updated independently, no need for
transactions

¢ Two or more atoms cannot be updated in a coordinated way

(def today-idx (atom 0))

@today-1dx
=> 0

Updating Atoms

¢ o update an atom, use swap!

(swap! today-idx 1nc)

e swap! calculates new value and performs an atomic test-and-set: if the
atom’s value was changed concurrently (by another thread), it will retry

e The update function may be called multiple times => should be side-
effect free

e Concurrently calling swap! on the same atom is thread-safe

Clojure’s concurrency primitives

state change is | Asynchronous | Synchronous

Coordinated - Refs

Independent Agents Atoms

Agents

e Both refs and atoms can be updated synchronously

e |f you can tolerate updates happening asynchronously, use agents

(agent 1nitial-state)

e Can send a function (“action”) to an agent to update its state at a later point
In time:
(send agent update-fn)

e send queues an update-fn to run later, on a thread in a thread pool

Agents: example

(defn make-account [1nit]

¢ 1nit))

(defn deposit [account amnt]
(account (fn [bal] (+ bal amnt)))

(defn withdraw [account amnt]
(account (fn [bal] (- bal amnt)))

(def a (make-account ©))

(deposit a) ; asynchronous
(withdraw a 50) ; asynchronous
(a)

@a

=>

Unified Update Model

e Refs, Atoms and Agents all enable mutation of state by applying a function on

an “old state” returning a “new state”:

e Refs: (alter a-ref update-fn)

e Atoms: (swap! an-atom update-fn)

e Agents: (send an-agent update-fn)

e To read, call deref/@

state change is |Asynchronous| Synchronous
Coordinated - Refs
Independent Agents Atoms

Part 3: A meta-circular STM in Clojure

Goal

e \We have seen Clojure’s built-in support for STM via refs

e Recall:

(defn make-account [sum]

C sum))

(defn transfer [amount from to]
(dosync
from (fn [bal] (- bal amount))
to (fn [bal] (+ bal amount))))

(def accountA (make-account)
(def accountB (make-account)
(transfer accountA accountB)

(@accountA) ; 1400

(@accountB) ; 300

Goal

e Build our own STM system in Clojure to better understand its implementation

(defn make-account [sum]
(mc-ref sum))

(defn transfer [amount from to]
(mc-dosync
mc-alter from (fn [bal] (- bal amount))
mc-alter to (fn [bal] (+ bal amount))))

(def accountA (make-account)
(def accountB (make-account)
(transfer accountA accountB)

((mc-deref accountA)) ; 1400

((mc-deref accountB)) ; 300

Almost-meta-circular implementation

e \We represent refs via atoms
e \We call such refs “mc-refs” (meta-circular refs)

e Recall: atoms support synchronous but uncoordinated state updates

¢ \We have to add the coordination through transactions ourselves

lterative approach

¢ Developed 4 versions:

e v1: does not use MVCC, simple but transactions may have an inconsistent
view on the world (~120 loc)

e v2: uses MVCC (like real Clojure), simple version with 1 global lock (~155 loc)

e v3: adds support for advanced features (commute and ensure) (~197 loc)

e v4: uses fine-grained locking (1 lock / mc-ref) (~222 loc)

e v5 upcoming: introduce contention management to ensure liveness (current
versions prone to livelock)

Demo

e https://github.com/tvcutsem/stm-in-clojure

https://github.com/tvcutsem/stm-in-clojure
https://github.com/tvcutsem/stm-in-clojure

Part 4: Worlds

Worlds

e ECOOP 2011 paper by Alex Warth (Viewpoints Research Institute)

e (Goal: scoped side-effects

p = new Point(l, 2);

(p's identity)

X
=
X
(WY
X
[y

Worlds/JS

e Javascript implementation of Worlds:

Before commit;

A = thisWorld;
3 =
p = new Point(l, 2); | =

(p's identity

B = A.sprout(); % [1] x[1]
in B { p.y = 3; } = e

C = A.sprout(); After commit:
in C{p.y=7;}

C.commit();

g plaom

(p's identity

x[1] x[1]
y|7] y|3]

cll-worlds

e A Clojure Library for Worlds

e As in the STM experiment, we implemented our own new type of “ref”

e A “world-aware” ref or w-ref

A = thisWorld; (let [A (this-world)
p = new Point(1l, 2); p (new Point)
B = A.sprout(); B (sprout A)]
in B {p.y=3;} (in-world B
w-ref-set (D))
C = A.sprout(); (let [C (sprout A]
in C{py=7;} in-world C

(w-ref-set (p) /)
C.commit(); commit C)))

—Xample

(let [w (sprout (this-world)

r (w-ref 0)]
(w-deref r) ; 0
(1n-world w
w-deref r ; also 0
w-ref-set r)
(w-deref r) ; still 9!

(commit w)
(w-deref r)) 1

—xample: safe exception handling

(try
(doseq [elt seq]
elt update-fn
catch e

; undo successful updates

)

N

Ikl K

—xample: safe exception handling

Ctry
(1in-world (sprout (this-world)
doseq [elt seq]
(w-alter elt update-fn)
commit (this-world)
catch e
; ho cleanup required!

)

More examples

e “undo” functionality for objects / applications

e Scoped monkey-patching. E.g. extending java.lang.Object, but only for your
application

e Safe backtracking in a logic language with side-effects (think Prolog assert)

e Or in any kind of backtracking search in general...

1. choice

2. try 1st alternative
(causes side-effects)

4. undo 5. try 2nd alternative

side-effects
3. stuck

Future steps

e Experiment with concurrent Worlds

e How to merge concurrent updates to parallel worlds?

Conclusion

e Clojure: Lisp on the JVM

e Functional, but not pure

e Unified update model: refs, atoms, agents

e Experiments with extending the unified update model:

e MC-STM: implementing meta-circular refs

e clj-worlds: adding “world-refs” for scoped side-effects

