
Adventures in Clojure
Navigating the STM sea and exploring Worlds

Tom Van Cutsem

Part 1: Clojure in a

Clojure in a nutshell

• A modern Lisp dialect (2007), designed by Rich Hickey

• JVM as runtime platform

• Promotes a Functional Programming style

• Designed for Concurrency

Functional Style

• Clojure is not a pure functional language (like Haskell), but...

• Emphasis on immutable data structures

• Lisp’s lists generalized to abstract sequences: list, vector, set, map, ...

• Used pervasively: all Clojure collections, all Java collections, Java arrays
and Strings, regular expression matches, directory structures, I/O streams,
XML trees, ...

• Sequences are lazy and immutable

Clojure and Java

• Clojure compiles to JVM bytecode

• Easy for Clojure to reuse Java libraries

(new java.util.Random) ; Java: “new java.util.Random()”
=> java.util.Random@18a4f2

(. aRandom nextInt) ; Java: “aRandom.nextInt()”
=> 23494372

Part 2: Concurrency in Clojure

Persistent Data Structures

• The problem with immutable data structures: updates are costly (copy)

• Persistent data structures preserve old copies of themselves by efficiently
sharing structure between older and newer versions.

• Simplest example: consing an element onto a linked list

• b reuses all of a’s structure instead of having its own private copy

(def a ‘(1 2))
(def b (cons 0 a))

0 1 2

ab

Persistent Data Structures

• Not only for linked lists, also for vectors, sets, maps, ...

• Example: binary tree insert

(def map1 {"a" 1, "b" 2, "d" 4, "e" 5})
(def map2 (assoc map1 "c" 3))

map1
“b”-2

“a”-1 “d”-4

“e”-5

Persistent Data Structures

• Not only for linked lists, also for vectors, sets, maps, ...

• Example: binary tree insert

(def map1 {"a" 1, "b" 2, "d" 4, "e" 5})
(def map2 (assoc map1 "c" 3))

map1
“b”-2

“a”-1 “d”-4

“e”-5

map2
“b”-2

“d”-4

“c”-3

Threads

• Clojure reuses JVM threads as the unit of concurrency

• Not as bad as it looks: Clojure does not combine threads with unbridled
access to pervasive shared mutable state

(.start (Thread.
 (fn [] (println "Hello from new thread"))))

Clojure Philosophy

• Immutable state is the default

• Where mutable state is required, programmer must explicitly select one of the
following APIs:

state change is Asynchronous Synchronous

Coordinated - Refs

Independent Agents Atoms

Clojure’s concurrency primitives

state change is Asynchronous Synchronous

Coordinated - Refs

Independent Agents Atoms

Refs and Software Transactional Memory (STM)

• Ref: mutable reference to an immutable object

• The ref wraps and protects its internal state. To read its contents, must
explicitly dereference it:

(def today (ref “Monday”))

(deref today)
=> “Monday”

@today
=> “Monday”

Refs and Software Transactional Memory (STM)

• To update a reference:

• Updates can only occur in the context of a transaction:

(ref-set today “Tuesday”)

(ref-set today “Tuesday”)
=> java.lang.IllegalStateException: No transaction running

Refs and Software Transactional Memory (STM)

• To start a transaction:

• Example:

(dosync body)

(dosync (ref-set today “Tuesday”))
=> “Tuesday”

Coordinated updates

• Changes to multiple refs within a transaction are atomic and isolated

• No other thread will be able to observe a state in which yesterday is already
updated to “Monday”, while today is still set to “Monday”.

(dosync
 (ref-set yesterday “Monday”)
 (ref-set today “Tuesday”))

alter

• Often, the new state of a reference is dependent on the old state

(def weekdays ["mon","tue","wed","thu","fri","sat","sun"])

(def today-idx (ref 0))

(dosync
 (ref-set today-idx (mod (inc @today-idx) 7)))

; alternatively (preferred)
(defn next-day-idx [i] (mod (inc i) 7))
(dosync
 (alter today-idx next-day-idx))

Example: money transfer

• Transferring money atomically from one bank account to another

(defn make-account [sum]
 (ref sum))

(defn transfer [amount from to]
 (dosync
 (alter from (fn [bal] (- bal amount)))
 (alter to (fn [bal] (+ bal amount)))))

(def accountA (make-account 1500))
(def accountB (make-account 200))
	
(transfer 100 accountA accountB)
(println @accountA) ; 1400
(println @accountB) ; 300

How STM Works: MVCC

• Multiversion concurrency control (MVCC): each transaction starts with a
"snapshot" of the database (i.e. the state of all refs).

• Instead of updating data directly, each transaction modifies its own private
copy of the data.

• Persistent data structures: private copy shares most of its structure with
the original value

• Changes made to private copies will not be seen by other transactions
until the transaction commits.

MVCC: Example

(def today (ref “mon”))
(def yesterday (ref “sun”))
T1: (dosync
 (list (deref today)
 (deref yesterday)))
T2: (dosync
 (ref-set today “tue”)
 (ref-set yesterday “mon”))

Ref rev 0 rev 1

today “mon”

yesterday “sun”

global “ref” state

MVCC: Example

(def today (ref “mon”))
(def yesterday (ref “sun”))
T1: (dosync
 (list (deref today)
 (deref yesterday)))
T2: (dosync
 (ref-set today “tue”)
 (ref-set yesterday “mon”))

>
 T2: (ref-set today “tue”)
 T1: (deref today)
 T2: (ref-set yesterday “mon”)
 T1: (deref yesterday)
 T2: commit
 T1: commit

Ref rev 0 rev 1

today “mon”

yesterday “sun”

global “ref” state

Ref val rev

in-transaction-values of T1

in-transaction-values of T2

Both T1 and T2 start with read-point 0

Ref val rev

MVCC: Example

(def today (ref “mon”))
(def yesterday (ref “sun”))
T1: (dosync
 (list (deref today)
 (deref yesterday)))
T2: (dosync
 (ref-set today “tue”)
 (ref-set yesterday “mon”))

>T2: (ref-set today “tue”)
 T1: (deref today)
 T2: (ref-set yesterday “mon”)
 T1: (deref yesterday)
 T2: commit
 T1: commit

global “ref” state

in-transaction-values of T1

in-transaction-values of T2

Ref rev 0 rev 1

today “mon”

yesterday “sun”

Ref val rev

Ref val rev

today “tue” 0

MVCC: Example

(def today (ref “mon”))
(def yesterday (ref “sun”))
T1: (dosync
 (list (deref today)
 (deref yesterday)))
T2: (dosync
 (ref-set today “tue”)
 (ref-set yesterday “mon”))

 T2: (ref-set today “tue”)
>T1: (deref today)
 T2: (ref-set yesterday “mon”)
 T1: (deref yesterday)
 T2: commit
 T1: commit

global “ref” state

in-transaction-values of T1

in-transaction-values of T2

Ref rev 0 rev 1

today “mon”

yesterday “sun”

Ref val rev

today “mon” 0

Ref val rev

today “tue” 0

MVCC: Example

(def today (ref “mon”))
(def yesterday (ref “sun”))
T1: (dosync
 (list (deref today)
 (deref yesterday)))
T2: (dosync
 (ref-set today “tue”)
 (ref-set yesterday “mon”))

 T2: (ref-set today “tue”)
 T1: (deref today)
>T2: (ref-set yesterday “mon”)
 T1: (deref yesterday)
 T2: commit
 T1: commit

global “ref” state

in-transaction-values of T1

in-transaction-values of T2

Ref rev 0 rev 1

today “mon”

yesterday “sun”

Ref val rev

today “mon” 0

Ref val rev

today “tue” 0

yesterday “mon” 0

MVCC: Example

(def today (ref “mon”))
(def yesterday (ref “sun”))
T1: (dosync
 (list (deref today)
 (deref yesterday)))
T2: (dosync
 (ref-set today “tue”)
 (ref-set yesterday “mon”))

 T2: (ref-set today “tue”)
 T1: (deref today)
 T2: (ref-set yesterday “mon”)
>T1: (deref yesterday)
 T2: commit
 T1: commit

global “ref” state

in-transaction-values of T1

in-transaction-values of T2

Ref rev 0 rev 1

today “mon”

yesterday “sun”

Ref val rev

today “mon” 0

yesterday “sun” 0

Ref val rev

today “tue” 0

yesterday “mon” 0

MVCC: Example

(def today (ref “mon”))
(def yesterday (ref “sun”))
T1: (dosync
 (list (deref today)
 (deref yesterday)))
T2: (dosync
 (ref-set today “tue”)
 (ref-set yesterday “mon”))

 T2: (ref-set today “tue”)
 T1: (deref today)
 T2: (ref-set yesterday “mon”)
 T1: (deref yesterday)
>T2: commit
 T1: commit

global “ref” state

in-transaction-values of T1

in-transaction-values of T2

Ref rev 0 rev 1

today “mon” “tue”

yesterday “sun” “mon”

Ref val rev

today “mon” 0

yesterday “sun” 0

Ref val rev

today “tue” 0

yesterday “mon” 0

T2 has write-point 1, updates
global ref state atomically

MVCC: Example

(def today (ref “mon”))
(def yesterday (ref “sun”))
T1: (dosync
 (list (deref today)
 (deref yesterday)))
T2: (dosync
 (ref-set today “tue”)
 (ref-set yesterday “mon”))

 T2: (ref-set today “tue”)
 T1: (deref today)
 T2: (ref-set yesterday “mon”)
 T1: (deref yesterday)
 T2: commit
>T1: commit

global “ref” state

in-transaction-values of T1

in-transaction-values of T2

Ref rev 0 rev 1

today “mon” “tue”

yesterday “sun” “mon”

Ref val rev

today “mon” 0

yesterday “sun” 0

Ref val rev

today “tue” 0

yesterday “mon” 0

T1 has read consistent versions of both refs, no conflict

MVCC: Example of a conflict

(def today (ref “mon”))
(def yesterday (ref “sun”))
T1: (dosync
 (ref-set today “sun”)
 (ref-set yesterday “sat”))
T2: (dosync
 (ref-set today “tue”)
 (ref-set yesterday “mon”))

Ref rev 0 rev 1

today “mon”

yesterday “sun”

global “ref” state

MVCC: Example of a conflict

(def today (ref “mon”))
(def yesterday (ref “sun”))
T1: (dosync
 (ref-set today “sun”)
 (ref-set yesterday “sat”))
T2: (dosync
 (ref-set today “tue”)
 (ref-set yesterday “mon”))

Ref rev 0 rev 1

today “mon”

yesterday “sun”

global “ref” state

>
 T1: (ref-set today “sun”)
 T2: (ref-set today “tue”)
 T1: (ref-set yesterday “sat”)
 T2: (ref-set yesterday “mon”)
 T1: commit
 T2: commit

in-transaction-values of T1

in-transaction-values of T2

Both T1 and T2 start with read-point 0

Ref val rev

Ref val rev

MVCC: Example of a conflict

(def today (ref “mon”))
(def yesterday (ref “sun”))
T1: (dosync
 (ref-set today “sun”)
 (ref-set yesterday “sat”))
T2: (dosync
 (ref-set today “tue”)
 (ref-set yesterday “mon”))

Ref rev 0 rev 1

today “mon”

yesterday “sun”

global “ref” state

>T1: (ref-set today “sun”)
 T2: (ref-set today “tue”)
 T1: (ref-set yesterday “sat”)
 T2: (ref-set yesterday “mon”)
 T1: commit
 T2: commit

in-transaction-values of T1

in-transaction-values of T2

Ref val rev

today “sun” 0

Ref val rev

MVCC: Example of a conflict

(def today (ref “mon”))
(def yesterday (ref “sun”))
T1: (dosync
 (ref-set today “sun”)
 (ref-set yesterday “sat”))
T2: (dosync
 (ref-set today “tue”)
 (ref-set yesterday “mon”))

Ref rev 0 rev 1

today “mon”

yesterday “sun”

global “ref” state

 T1: (ref-set today “sun”)
>T2: (ref-set today “tue”)
 T1: (ref-set yesterday “sat”)
 T2: (ref-set yesterday “mon”)
 T1: commit
 T2: commit

in-transaction-values of T1

in-transaction-values of T2

Ref val rev

today “sun” 0

Ref val rev

today “tue” 0

MVCC: Example of a conflict

(def today (ref “mon”))
(def yesterday (ref “sun”))
T1: (dosync
 (ref-set today “sun”)
 (ref-set yesterday “sat”))
T2: (dosync
 (ref-set today “tue”)
 (ref-set yesterday “mon”))

Ref rev 0 rev 1

today “mon”

yesterday “sun”

global “ref” state

 T1: (ref-set today “sun”)
 T2: (ref-set today “tue”)
>T1: (ref-set yesterday “sat”)
 T2: (ref-set yesterday “mon”)
 T1: commit
 T2: commit

in-transaction-values of T1

in-transaction-values of T2

Ref val rev

today “sun” 0

yesterday “sat” 0

Ref val rev

today “tue” 0

MVCC: Example of a conflict

(def today (ref “mon”))
(def yesterday (ref “sun”))
T1: (dosync
 (ref-set today “sun”)
 (ref-set yesterday “sat”))
T2: (dosync
 (ref-set today “tue”)
 (ref-set yesterday “mon”))

Ref rev 0 rev 1

today “mon”

yesterday “sun”

global “ref” state

 T1: (ref-set today “sun”)
 T2: (ref-set today “tue”)
 T1: (ref-set yesterday “sat”)
>T2: (ref-set yesterday “mon”)
 T1: commit
 T2: commit

in-transaction-values of T1

in-transaction-values of T2

Ref val rev

today “sun” 0

yesterday “sat” 0

Ref val rev

today “tue” 0

yesterday “mon” 0

MVCC: Example of a conflict

(def today (ref “mon”))
(def yesterday (ref “sun”))
T1: (dosync
 (ref-set today “sun”)
 (ref-set yesterday “sat”))
T2: (dosync
 (ref-set today “tue”)
 (ref-set yesterday “mon”))

Ref rev 0 rev 1

today “mon” “sun”

yesterday “sun” “sat”

global “ref” state

 T1: (ref-set today “sun”)
 T2: (ref-set today “tue”)
 T1: (ref-set yesterday “sat”)
 T2: (ref-set yesterday “mon”)
>T1: commit
 T2: commit

in-transaction-values of T1

in-transaction-values of T2

Ref val rev

today “sun” 0

yesterday “sat” 0

Ref val rev

today “tue” 0

yesterday “mon” 0

T1 has write-point 1, updates
global ref state atomically

MVCC: Example of a conflict

(def today (ref “mon”))
(def yesterday (ref “sun”))
T1: (dosync
 (ref-set today “sun”)
 (ref-set yesterday “sat”))
T2: (dosync
 (ref-set today “tue”)
 (ref-set yesterday “mon”))

Ref rev 0 rev 1

today “mon” “sun”

yesterday “sun” “sat”

global “ref” state

 T1: (ref-set today “sun”)
 T2: (ref-set today “tue”)
 T1: (ref-set yesterday “sat”)
 T2: (ref-set yesterday “mon”)
 T1: commit
>T2: commit

in-transaction-values of T1

in-transaction-values of T2

Ref val rev

today “sun” 0

yesterday “sat” 0

Ref val rev

today “tue” 0

yesterday “mon” 0

T2 notices that the refs it modified have already
been modified, since the latest version of the refs (1)

is no longer equal to its read-point (0)

T2 will abort and retry, this time with read-point 1

Transactions, side effects, retries

• Transactions may be aborted and retried.

• The transaction body may be executed multiple times.

• Should avoid side-effects other than assigning to refs

• Especially: avoid any form of I/O (launchMissiles())

(dosync body)

Clojure’s concurrency primitives

state change is Asynchronous Synchronous

Coordinated - Refs

Independent Agents Atoms

Atoms

• For uncoordinated (independent), synchronous updates

• More lightweight than refs: atoms are updated independently, no need for
transactions

• Two or more atoms cannot be updated in a coordinated way

(def today-idx (atom 0))

@today-idx
=> 0

Updating Atoms

• To update an atom, use swap!

• swap! calculates new value and performs an atomic test-and-set: if the
atom’s value was changed concurrently (by another thread), it will retry

• The update function may be called multiple times => should be side-
effect free

• Concurrently calling swap! on the same atom is thread-safe

(swap! today-idx inc)

Clojure’s concurrency primitives

state change is Asynchronous Synchronous

Coordinated - Refs

Independent Agents Atoms

Agents

• Both refs and atoms can be updated synchronously

• If you can tolerate updates happening asynchronously, use agents

• Can send a function (“action”) to an agent to update its state at a later point
in time:

• send queues an update-fn to run later, on a thread in a thread pool

(agent initial-state)

(send agent update-fn)

Agents: example

(defn make-account [init]
 (agent init))

(defn deposit [account amnt]
 (send account (fn [bal] (+ bal amnt))))

(defn withdraw [account amnt]
 (send account (fn [bal] (- bal amnt))))

(def a (make-account 0))
(deposit a 100) ; asynchronous
(withdraw a 50) ; asynchronous
(await a)
@a
=> 50

Unified Update Model

• Refs, Atoms and Agents all enable mutation of state by applying a function on
an “old state” returning a “new state”:

• Refs: (alter a-ref update-fn)

• Atoms: (swap! an-atom update-fn)

• Agents: (send an-agent update-fn)

• To read, call deref/@ state change is Asynchronous Synchronous

Coordinated - Refs

Independent Agents Atoms

Part 3: A meta-circular STM in Clojure

Goal

• We have seen Clojure’s built-in support for STM via refs

• Recall: (defn make-account [sum]
 (ref sum))

(defn transfer [amount from to]
 (dosync
 (alter from (fn [bal] (- bal amount)))
 (alter to (fn [bal] (+ bal amount)))))

(def accountA (make-account 1500))
(def accountB (make-account 200))
	
(transfer 100 accountA accountB)
(println @accountA) ; 1400
(println @accountB) ; 300

Goal

• Build our own STM system in Clojure to better understand its implementation

(defn make-account [sum]
 (mc-ref sum))

(defn transfer [amount from to]
 (mc-dosync
 (mc-alter from (fn [bal] (- bal amount)))
 (mc-alter to (fn [bal] (+ bal amount)))))

(def accountA (make-account 1500))
(def accountB (make-account 200))
	
(transfer 100 accountA accountB)
(println (mc-deref accountA)) ; 1400
(println (mc-deref accountB)) ; 300

Almost-meta-circular implementation

• We represent refs via atoms

• We call such refs “mc-refs” (meta-circular refs)

• Recall: atoms support synchronous but uncoordinated state updates

• We have to add the coordination through transactions ourselves

Iterative approach

• Developed 4 versions:

• v1: does not use MVCC, simple but transactions may have an inconsistent
view on the world (~120 loc)

• v2: uses MVCC (like real Clojure), simple version with 1 global lock (~155 loc)

• v3: adds support for advanced features (commute and ensure) (~197 loc)

• v4: uses fine-grained locking (1 lock / mc-ref) (~222 loc)

• v5 upcoming: introduce contention management to ensure liveness (current
versions prone to livelock)

Demo

• https://github.com/tvcutsem/stm-in-clojure

https://github.com/tvcutsem/stm-in-clojure
https://github.com/tvcutsem/stm-in-clojure

Part 4: Worlds

Worlds

• ECOOP 2011 paper by Alex Warth (Viewpoints Research Institute)

• Goal: scoped side-effects

Fig. 1. Projections/views of the same object in three different worlds.

We now describe the way in which these operations are supported in Worlds/JS, an ex-
tension of JavaScript [9] we have prototyped in order to explore with the ideas discussed
in this paper. (Worlds/JS is available at http://www.tinlizzie.org/ometa-js/
#Worlds_Paper. No installation is necessary; you can experiment with the language
directly in your web browser.)

Worlds/JS extends JavaScript with the following new syntax:

– thisWorld — is an expression whose value is the world in which it is evaluated
(i.e., the “current world”), and

– in <expr> <block> — is a statement that executes <block> inside the world obtained
from evaluating <expr>.

All worlds delegate to the world prototype, whose sprout and commit methods can be
used to create a new world that is a child of the receiver, and propagate the side effects
captured in the receiver to its parent, respectively.

In the following example, we modify the y property of the same instance of Point in
two different ways, each in its own world, and then commit one of them to the original
world. This serves the dual purpose of illustrating the syntax of Worlds/JS and the
semantics of the sprout and commit operations.

A = thisWorld;
p = new Point(1, 2);

B = A.sprout();
in B { p.y = 3; }

C = A.sprout();
in C { p.y = 7; }

C.commit();

p = new Point(1, 2);

Worlds/JS

• Javascript implementation of Worlds:

Fig. 1. Projections/views of the same object in three different worlds.

We now describe the way in which these operations are supported in Worlds/JS, an ex-
tension of JavaScript [9] we have prototyped in order to explore with the ideas discussed
in this paper. (Worlds/JS is available at http://www.tinlizzie.org/ometa-js/
#Worlds_Paper. No installation is necessary; you can experiment with the language
directly in your web browser.)

Worlds/JS extends JavaScript with the following new syntax:

– thisWorld — is an expression whose value is the world in which it is evaluated
(i.e., the “current world”), and

– in <expr> <block> — is a statement that executes <block> inside the world obtained
from evaluating <expr>.

All worlds delegate to the world prototype, whose sprout and commit methods can be
used to create a new world that is a child of the receiver, and propagate the side effects
captured in the receiver to its parent, respectively.

In the following example, we modify the y property of the same instance of Point in
two different ways, each in its own world, and then commit one of them to the original
world. This serves the dual purpose of illustrating the syntax of Worlds/JS and the
semantics of the sprout and commit operations.

A = thisWorld;
p = new Point(1, 2);

B = A.sprout();
in B { p.y = 3; }

C = A.sprout();
in C { p.y = 7; }

C.commit();

A = thisWorld;

p = new Point(1, 2);

B = A.sprout();
in B { p.y = 3; }

C = A.sprout();
in C { p.y = 7; }

C.commit();

Before commit:

After commit:

Fig. 2. The state of the “universe” shown in Figure 1 after a commit from world C.

Figures 1 and 2 show the state of the point in each world, before and after the
commit operation, respectively. Note that p’s identity is “universal,” and each world
associates it with p’s state in that world.

2.2 Safety Properties

Programming with worlds should not be error-prone or dangerous. In particular, if wchild
is a world that was sprouted from wparent :

– Changes in wparent—whether explicit (caused by assignments in wparent itself) or
implicit (caused by a commit from one of wchild’s siblings)—should never make
variables appear to change spontaneously in wchild . We call this the “no surprises”
property.

– Similarly, a commit from wchild should never leave wparent in an inconsistent state,
e.g., because the changes being committed are incompatible with changes made in
wparent after wchild was sprouted. We call this property “consistency.”

In this section, we explain how the semantics of worlds ensures these properties.

Preventing “Surprises” Once a variable (or slot, memory location, etc.) has been read
or modified in a world w, subsequent changes to that variable in w’s parent world are
not visible in w. This ensures that variables do not appear to change spontaneously in
child worlds.

For example, Figure 2 shows that the effects of the commit from world C (p.y← 7)
are not visible in world B (because it has also modified p.y). However, if yet another
world that is sprouted from A changes the value of p.x and then commits, as shown
below,

D = A.sprout();
in D {

clj-worlds

• A Clojure Library for Worlds

• As in the STM experiment, we implemented our own new type of “ref”

• A “world-aware” ref or w-ref

(let [A (this-world)

 p (new Point 1 2)

 B (sprout A)]
 (in-world B
 (w-ref-set (:y p) 3))
 (let [C (sprout A)]
 (in-world C
 (w-ref-set (:y p) 7))
 (commit C)))

A = thisWorld;

p = new Point(1, 2);

B = A.sprout();
in B { p.y = 3; }

C = A.sprout();
in C { p.y = 7; }

C.commit();

Example

(let [w (sprout (this-world))
 r (w-ref 0)]
 (w-deref r) ; 0
 (in-world w
 (w-deref r) ; also 0
 (w-ref-set r 1))
 (w-deref r) ; still 0!
 (commit w)
 (w-deref r)) ; 1

Example: safe exception handling

(try
 (doseq [elt seq]
 (alter elt update-fn)
 (catch e
 ; undo successful updates
))

0 1 2 3 4

Example: safe exception handling

(try
 (in-world (sprout (this-world))
 (doseq [elt seq]
 (w-alter elt update-fn))
 (commit (this-world))
 (catch e
 ; no cleanup required!
))

More examples

• “undo” functionality for objects / applications

• Scoped monkey-patching. E.g. extending java.lang.Object, but only for your
application

• Safe backtracking in a logic language with side-effects (think Prolog assert)

• Or in any kind of backtracking search in general...

4. undo
side-effects

1. choice

2. try 1st alternative
(causes side-effects)

5. try 2nd alternative

3. stuck

Future steps

• Experiment with concurrent Worlds

• How to merge concurrent updates to parallel worlds?

Conclusion

• Clojure: Lisp on the JVM

• Functional, but not pure

• Unified update model: refs, atoms, agents

• Experiments with extending the unified update model:

• MC-STM: implementing meta-circular refs

• clj-worlds: adding “world-refs” for scoped side-effects

