
A language-oriented approach to
teaching concurrency

Tom Van Cutsem
Stefan Marr
Wolfgang De Meuter

zondag 17 oktober 2010



Context

• Organizing new graduate-level 
course on Concurrency at 
University of Brussels, Belgium

• Existing course focuses on 
high-performance computing

• Background:

zondag 17 oktober 2010



State of the art

• Pthreads, OpenMP & MPI

• All are based on a C/C++ substrate

• Low-level models: explicit shared-state or low-level send/receive

• Low-level environments: fighting the compiler

• Primary goal = HPC

zondag 17 oktober 2010



Concurrency vs HPC

• It’s not because we have multicore machines that every programmer 
suddenly needs to be skilled in high-performance computing

• From an article in ACM Queue (Oct. 2008): “Real-World Concurrency” by 
Bryan Cantrill and Jeff Bonwick:

• “[T]he proliferation of concurrent hardware has awakened an anxiety that all 
software must use all available physical resources. Just as no programmer 
felt a moral obligation to eliminate pipeline stalls on a superscalar 
microprocessor, no software engineer should feel responsible for using 
concurrency simply because the hardware supports it.”

zondag 17 oktober 2010



• Concurrent programming is difficult. Until mastered, don’t make it harder than 
strictly necessary

• Use a language designed for the task

• Changes the “path of least resistance”

• Language should encourage use of good
patterns, inhibit use of bad practices

• Easier to unlearn/avoid existing habits
that conflict with concurrency goals

• Synergy between functional and concurrent programming

Why use a concurrent language?

zondag 17 oktober 2010



Functional programming

• Overloaded term:

• referential transparency

• deterministic functions

• higher-order abstractions

• parametric type systems

• lazy computation

• immutable data

zondag 17 oktober 2010



Immutability

• Because side-effects are at the root of most problems in 
concurrent programming

• “Side effects prevent concurrency”
[Joe Armstrong, Programming Erlang]

• “By emphasizing pure functions that take and return 
immutable values, [functional programming] makes side 
effects the exception rather than the norm. This is only 
going to become more important as we face increasing 
concurrency in multicore architectures”
[Rich Hickey, from foreword of Programming Clojure]

• Key message to students: “embrace immutability”

zondag 17 oktober 2010



What functional language to choose?

• Loose criteria:

• Promulgate functional programming style (w/ focus on immutable data)

• Sufficiently practical (reliable implementation, sufficient documentation)

• “A language that doesn't affect the way you think about programming, is 
not worth knowing.” [Alan Perlis, Epigrams in Programming]

zondag 17 oktober 2010



Many choices

zondag 17 oktober 2010



Many choices

zondag 17 oktober 2010



We chose Erlang + Clojure. Why?

• Cultural bias: SICP, dynamic typing, experience with actor-based 
languages => YMMV

• Choices encompass complementary hardware architectures, 
concurrency models:

• Erlang: distributed memory architectures, message passing 
model

• Clojure: shared memory architectures, shared state model

zondag 17 oktober 2010



Conclusion

• Concurrency control is essential to any software engineer, not just HPC 
programmers. It’s not { just | all } about performance.

• C + library is not the most efficient medium to teach concurrency

• Get at the core of the problem: side effects => embrace immutability

• Choose a language that makes this the natural thing to do

• We settled on Erlang + Clojure.

• Feedback / Thoughts?

zondag 17 oktober 2010


