
© 2006 Tom Van Cutsem - Programming Technology Lab

Event-driven
Architectures

Tom Van Cutsem

1

Programming
Technology Lab

Vrije Universiteit
Brussel

© 2006 Tom Van Cutsem - Programming Technology Lab

Overview

Event-driven Programming Model

Event-driven Programming Techniques

Event-driven Architectures

2

© 2006 Tom Van Cutsem - Programming Technology Lab

Call versus Event

Programming without a call stack

Much more flexible interactions

But... free synchronization & context are gone

3

call

return

call

return

fire event

fire event

fire event

© 2006 Tom Van Cutsem - Programming Technology Lab

Event-driven Model

4

© 2006 Tom Van Cutsem - Programming Technology Lab

Event-driven Model

4

Events

© 2006 Tom Van Cutsem - Programming Technology Lab

Event-driven Model

4

Events Event Queue

© 2006 Tom Van Cutsem - Programming Technology Lab

Event-driven Model

4

Events Event Queue

Event Loop
while (true) {
 Event e = eventQueue.next();
 switch (e.type) {
 ...
 }
}

© 2006 Tom Van Cutsem - Programming Technology Lab

Event-driven Model

4

Events Event Queue

Event Loop Event handlers

void onKeyPressed(KeyEvent e) {
 // process the event
}

© 2006 Tom Van Cutsem - Programming Technology Lab

Examples

GUI Frameworks (e.g. Java AWT)

Highly interactive applications (e.g. games)

Operating Systems

Discrete Event Modelling (e.g. simulations)

5

© 2006 Tom Van Cutsem - Programming Technology Lab

Event-loop Concurrency

6

© 2006 Tom Van Cutsem - Programming Technology Lab

Event-loop Concurrency

6

© 2006 Tom Van Cutsem - Programming Technology Lab

Event-loop Concurrency

6

© 2006 Tom Van Cutsem - Programming Technology Lab

Event-loop Concurrency

6

© 2006 Tom Van Cutsem - Programming Technology Lab

No locks, no deadlocks

No shared state, no race conditions

Event-loop Concurrency

6

© 2006 Tom Van Cutsem - Programming Technology Lab

Event-driven
Programming

© 2006 Tom Van Cutsem - Programming Technology Lab

Return values

8

void processDelivery(Order o) {
 // request customer’s address
 Address a = customerService.requestAddress(o.customerId));
 courier.shipToRequest(o, a);
}

requestAddress

DeliveryService CustomerService

shipToRequest

© 2006 Tom Van Cutsem - Programming Technology Lab

Callbacks

Dealing with asynchronous ‘return values’

9

void processDelivery(Order o) {
 // store order to retrieve it later
 orders.add(o);
 // request customer’s address
 customerService.receive(
 new RequestAddress(o.orderId, o.customerId));
}

requestAddress

replyAddress

DeliveryService CustomerService

shipToRequest

© 2006 Tom Van Cutsem - Programming Technology Lab

Callbacks

Dealing with asynchronous ‘return values’

9

void processDelivery(Order o) {
 // store order to retrieve it later
 orders.add(o);
 // request customer’s address
 customerService.receive(
 new RequestAddress(o.orderId, o.customerId));
}

void replyAddress(AddressReply reply) {
 // retrieve order again
 Order o = orders.get(reply.orderId);
 Address a = reply.address;
 courier.receive(new ShipToRequest(o, a));
}

requestAddress

replyAddress

DeliveryService CustomerService

shipToRequest

© 2006 Tom Van Cutsem - Programming Technology Lab

Issues with Callbacks

Fragmented Code

Callback is out of context:

what is its originating call?

what was the state (e.g.
local variables) when call
was made?

requestAddress

replyAddress

DeliveryService CustomerService

requestAddress

replyAddress

?

10

© 2006 Tom Van Cutsem - Programming Technology Lab

Futures

Placeholders for asynchronous return values

Typically synchronize when used

11

void processDelivery(Order o) {
 Future addressFuture = customerService.receive(
 new RequestAddress(o.customerId));
 // do things that don’t require address
 Address adr = (Address) addressFuture.get();
 courier.receive(new ShipToRequest(o, adr));
}

f := requestAddress

f.resolve(address)

DeliveryService CustomerService

f.get()

shipToRequest

© 2006 Tom Van Cutsem - Programming Technology Lab

Asynchronous Futures

Subscription of listeners that are executed
when return value is available

12

void processDelivery(Order o) {
 Future addressFuture = customerService.receive(
 new RequestAddress(o.customerId));
 addressFuture.addListener(new FutureListener() {
 void whenComputed(Result r) {
 Address adr = (Address) r;
 courier.receive(new ShipToRequest(o, adr));
 }
 });
}

f := requestAddress

f.resolve(address)

DeliveryService CustomerService

shipToRequest

© 2006 Tom Van Cutsem - Programming Technology Lab

Event-driven
Architecture

© 2006 Tom Van Cutsem - Programming Technology Lab

A program is composed of services

Services communicate via channels

Event-driven Architecture

14

Delivery
Service

Stock
Service

Billing
Service

Order
Service

Shopping
Service

orderPlaced

orderPayedorderProcessed

checkout orderProcessed

© 2006 Tom Van Cutsem - Programming Technology Lab

Channels
Point-to-point: fixed endpoints

Publish-subscribe: very loose coupling

Example: Model-View-Controller

15

© 2006 Tom Van Cutsem - Programming Technology Lab

Channels
Point-to-point: fixed endpoints

Publish-subscribe: very loose coupling

Example: Model-View-Controller

15

yes 41
no 44

abstain 15

Model

Votes

© 2006 Tom Van Cutsem - Programming Technology Lab

Channels
Point-to-point: fixed endpoints

Publish-subscribe: very loose coupling

Example: Model-View-Controller

15

0
15
30
45

15%

44%
41%

0 33 67100

Views

yes 41
no 44

abstain 15

Model

Votes

© 2006 Tom Van Cutsem - Programming Technology Lab

Channels
Point-to-point: fixed endpoints

Publish-subscribe: very loose coupling

Example: Model-View-Controller

15

0
15
30
45

15%

44%
41%

0 33 67100

Views

yes 41
no 44

abstain 15

Model

Votes
subscribe

© 2006 Tom Van Cutsem - Programming Technology Lab

Channels
Point-to-point: fixed endpoints

Publish-subscribe: very loose coupling

Example: Model-View-Controller

15

0
15
30
45

15%

44%
41%

0 33 67100

Views

yes 41
no 44

abstain 15

Model

Votes

publish events

© 2006 Tom Van Cutsem - Programming Technology Lab

Composing Services

Service Repository

Topic hierarchy:

Wildcard subscriptions

Additional level of
abstraction

Service
Repository

Client
Service

Provider
Service

publish subscribe

Root

Orders

Updates New

Online Fax

Payment

Credit
Card

16

© 2006 Tom Van Cutsem - Programming Technology Lab

EDA: Benefits

Services are highly reusable

Highly reconfigurable (e.g. upgrades)

17

Old
Service

Service

Replacement
Service

retire

cancel subscription

synchronize

subscribe

© 2006 Tom Van Cutsem - Programming Technology Lab

EDA: Benefits

Unit Testing: testing services in isolation

18

Service
under test

Client
Service

Provider
Service

Test Driver Mock-up
service

 Provides test data Verifies outgoing events

© 2006 Tom Van Cutsem - Programming Technology Lab

EDA: Benefits

Temporal decoupling:

services cannot block one another

more responsive applications

19

© 2006 Tom Van Cutsem - Programming Technology Lab

Adaptor services easily introduced:

logging events

authenticating events

matching events to an updated interface

...

EDA: Benefits

20

Service A Service BAdaptor

© 2006 Tom Van Cutsem - Programming Technology Lab

EDA: Drawbacks

Loose coupling: implicit control flow

makes source code harder to understand

less compile-time checks, unit testing even
more critical

tool support required for easy
visualization and composition validation

21

© 2006 Tom Van Cutsem - Programming Technology Lab

EDA: Drawbacks

Temporal decoupling: non-determinism

Events may arrive in arbitrary order

make as little assumptions as possible on
ordering

22

© 2006 Tom Van Cutsem - Programming Technology Lab

Failure Handling

Pessimistic synchronization (e.g. 2PC protocol)

strong guarantees but...

kills asynchrony in the system

Optimistic synchronization (e.g. compensating
actions)

works entirely asynchronously but...

system (temporarily) in inconsistent state
23

© 2006 Tom Van Cutsem - Programming Technology Lab

Conclusions

Event-driven programming = programming
without a call stack

With flexibility comes more responsibility:
return values, local state, ordering, ...

EDA: emphasis on loose coupling

Services easily reused

Concurrency becomes manageable

24

© 2006 Tom Van Cutsem - Programming Technology Lab

Concurrency among Strangers
Miller, Tribble and Shapiro
In Symposium on Trustworthy global computing, LNCS Vol 3705, pp. 195-229, 2005

Enterprise Integration Patterns
Gregor Hohpe and Bobby Woolf
Addison-Wesley

References

25

The Power of Events
David Luckham
Addison-Wesley

Programming without a call stack
Gregor Hohpe
Available online: www.enterpriseintegrationpatterns.com

Concurrent Object-oriented Programming
Gul Agha
In Communications of the ACM, Vol 33 (9), p. 125, 1990

http://www.enterpriseintegrationpatterns.com
http://www.enterpriseintegrationpatterns.com

