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Overview

Event-driven Programming Model

Event-driven Programming Techniques

Event-driven Architectures
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Call versus Event

Programming without a call stack

Much more flexible interactions

But... free synchronization & context are gone
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Event-driven Model
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Event-driven Model
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Event-driven Model
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Events Event Queue
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Event-driven Model
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Events Event Queue

Event Loop
while (true) {
  Event e = eventQueue.next();
  switch (e.type) {
    ...
  }
}
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Event-driven Model
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Events Event Queue

Event Loop Event handlers

void onKeyPressed(KeyEvent e) {
  // process the event
}
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Examples

GUI Frameworks (e.g. Java AWT)

Highly interactive applications (e.g. games)

Operating Systems

Discrete Event Modelling (e.g. simulations)
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Event-loop Concurrency
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No locks, no deadlocks

No shared state, no race conditions

Event-loop Concurrency
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Event-driven 
Programming
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Return values

8

void processDelivery(Order o) {
  // request customer’s address
  Address a = customerService.requestAddress(o.customerId));
  courier.shipToRequest(o, a);
}

requestAddress

DeliveryService CustomerService

shipToRequest
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Callbacks

Dealing with asynchronous ‘return values’
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void processDelivery(Order o) {
  // store order to retrieve it later
  orders.add(o);
  // request customer’s address
  customerService.receive(
    new RequestAddress(o.orderId, o.customerId));
}

requestAddress

replyAddress

DeliveryService CustomerService

shipToRequest
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Callbacks

Dealing with asynchronous ‘return values’
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void processDelivery(Order o) {
  // store order to retrieve it later
  orders.add(o);
  // request customer’s address
  customerService.receive(
    new RequestAddress(o.orderId, o.customerId));
}

void replyAddress(AddressReply reply) {
  // retrieve order again
  Order o = orders.get(reply.orderId);
  Address a = reply.address;
  courier.receive(new ShipToRequest(o, a));
}

requestAddress

replyAddress

DeliveryService CustomerService

shipToRequest
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Issues with Callbacks

Fragmented Code

Callback is out of context:

what is its originating call?

what was the state (e.g. 
local variables) when call 
was made?

requestAddress

replyAddress

DeliveryService CustomerService

requestAddress

replyAddress

?
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Futures

Placeholders for asynchronous return values

Typically synchronize when used
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void processDelivery(Order o) {
  Future addressFuture = customerService.receive(
      new RequestAddress(o.customerId));
  // do things that don’t require address
  Address adr = (Address) addressFuture.get();
  courier.receive(new ShipToRequest(o, adr));
}

f := requestAddress

f.resolve(address)

DeliveryService CustomerService

f.get()

shipToRequest
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Asynchronous Futures

Subscription of listeners that are executed 
when return value is available
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void processDelivery(Order o) {
  Future addressFuture = customerService.receive(
    new RequestAddress(o.customerId));
  addressFuture.addListener(new FutureListener() {
    void whenComputed(Result r) {
      Address adr = (Address) r;
      courier.receive(new ShipToRequest(o, adr));
    }
  });
}

f := requestAddress

f.resolve(address)

DeliveryService CustomerService

shipToRequest
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Event-driven 
Architecture
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A program is composed of services

Services communicate via channels

Event-driven Architecture
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Delivery 
Service

Stock 
Service

Billing 
Service

Order 
Service

Shopping 
Service

orderPlaced

orderPayedorderProcessed

checkout orderProcessed
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Channels
Point-to-point: fixed endpoints

Publish-subscribe: very loose coupling

Example: Model-View-Controller

15
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Channels
Point-to-point: fixed endpoints

Publish-subscribe: very loose coupling

Example: Model-View-Controller
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Composing Services

Service Repository

Topic hierarchy:

Wildcard subscriptions

Additional level of 
abstraction

Service 
Repository

Client 
Service

Provider 
Service

publish subscribe

Root

Orders

Updates New

Online Fax

Payment

Credit 
Card
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EDA: Benefits

Services are highly reusable

Highly reconfigurable (e.g. upgrades)
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Old 
Service

Service

Replacement 
Service

retire

cancel subscription

synchronize

subscribe
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EDA: Benefits

Unit Testing: testing services in isolation
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Service 
under test

Client 
Service

Provider 
Service

Test Driver Mock-up 
service

 Provides test data Verifies outgoing events
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EDA: Benefits

Temporal decoupling:

services cannot block one another

more responsive applications
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Adaptor services easily introduced:

logging events

authenticating events

matching events to an updated interface

...

EDA: Benefits
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Service A Service BAdaptor
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EDA: Drawbacks

Loose coupling: implicit control flow

makes source code harder to understand

less compile-time checks, unit testing even 
more critical

tool support required for easy 
visualization and composition validation
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EDA: Drawbacks

Temporal decoupling: non-determinism

Events may arrive in arbitrary order

make as little assumptions as possible on 
ordering
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Failure Handling

Pessimistic synchronization (e.g. 2PC protocol)

strong guarantees but...

kills asynchrony in the system

Optimistic synchronization (e.g. compensating 
actions)

works entirely asynchronously but...

system (temporarily) in inconsistent state
23
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Conclusions

Event-driven programming = programming 
without a call stack

With flexibility comes more responsibility: 
return values, local state, ordering, ...

EDA: emphasis on loose coupling

Services easily reused

Concurrency becomes manageable
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