When Peer-to-Peer Meets Money: an introduction to Bitcoin

Tom Van Cutsem

Vrije Universiteit Brussel

Disclaimer

- I'm a computer scientist
- I'm not a cryptographer
- I'm not an economist
- I own bitcoins

What is Bitcoin?

- A virtual currency
- Technically, a cryptocurrency
- Digital "money"
 - Digital gold

Talk outline

- What makes Bitcoin unique?
- Why Bitcoin?
- How are Bitcoins created?
- Under the Hood
- Bitcoin in practice

Tom Van Cutsem - When Peer-to-Peer Meets Money: an introduction to Bitcoin

Virtual currencies are not new

- Linden Dollars (Second Life), WoW Gold (World of Warcraft), Interstellar Kredits (EVE Online), ...
- Facebook Credits
- cryptographic "e-cash" systems since the '80s

. . .

What makes Bitcoin unique?

Fiat money and most virtual currencies are centralized

- Fiat money:
 - Central Bank
 - Central source of supply ("the mint")
 - Central "clearing house"
 - Makes it easy to verify double spending
- Single point of trust

Bitcoin is decentralized

Not issued or controlled by any single company or institution

BitMinter

• "Peer-to-peer"

- Deepbit 🔨
- Eligius

Slush

- All transactions are recorded in a single, distributed public ledger
- The network verifies transactions collectively
- To attack the network, must have more than 50% of total compute power

Other Known

BTC Guild

(4-day average hash distribution on 22-07-2013, source: blockchain.info)

50BTC

ASICMiner

BTC Strengths

- No central point of trust, no central authority
- Transactions are typically carried out within minutes (compare to banking transactions taking days)
- Transaction fees are low to non-existent. This makes BTC suitable for microtransactions.
- Transactions are **irreversible**
- Limited supply: controlled inflation
- No borders: works the same across the planet

BTC Weaknesses

- Technical Risks:
 - Relies on cryptographic algorithms not being broken
 - If a single party controls > 50% of compute power in the network, it can steal back its own spent coins
 - > 50% control does not allow attacker to generate Bitcoins out of thin air, or to stop or revert other people's transactions

BTC Weaknesses

- Non-technical Risks:
 - Not sure **who invented it**. Have to place trust in the network.
 - End-user is responsible for safe-keeping of his/her coins
 - blockchain.info slogan: "be your own bank"
 - Reliance on online wallets reintroduces third-party risk
 - Lack of a legal framework (taxation, ...)
 - Governments cannot manipulate the currency, but can coerce companies that serve as entry-point into the Bitcoin economy

Who is behind Bitcoin?

- 2008 white paper by "Satoshi Nakamoto"
- Doubtful this person really exists
- Today, Bitcoin codebase maintained as an open source project on GitHub

Why Bitcoin?

Why Bitcoin's increasing popularity is timely valuable.

- Growing distrust with Governments' monetary policy
 - e.g. FED's Quantitative Easing policy

Global instability in recent years has led to a

reduction in trust of

- EUR, USD, etc. are "floating" ourrencies, not redeemable for any commodity
- Growing financial unrest, capital controls FIGURE 1 2013 USD/BTC EXCHANGE RATE
 - E.g. Cyprus bail-in

(source: The Genesis Block, 2013 Mid-year review)

How are Bitcoins created?

Bitcoin mining

- · Computers that aid in processing transactions get a "reward"
 - Incentive to become part of the network and help transaction processing
 - Analogy with mining gold.
- New bitcoins born by solving a cryptographic puzzle
- Limit on inflation: the "reward" is halved every 4 years

Bitcoin mining: pre-determined issuance schedule

- Asymptotic limit of 21 Million bitcoins (to be hit around 2140)
- Approx. 12 Million mined so far

17

Mining Rigs

From CPU to ASIC Mining

Mining speed measured in (SHA-256) "hashes per second"

Tom Van Cutsem - When Peer-to-Peer Meets Money: an introduction to Bitcoin

Avalon who have op customers to wait 3-

ASICMiner sells two ASIC chips. The ASIC ar, Buile fore being s recently discontinue

ASICMiner sells USB

Friedcat, CEO of ASIC on February 14th, 20 ASICMiner has contin 40 TH/s. Despite the months, ASICMiner H network, which has weekly dividend. Tot been 0.386 BTC per s

ASIC Miners

- Companies exist that sell dedicated chips (ASICMiner, Butterforts before being selling)
- E.g. USB miner achieving 330 MH/s
- Cost: 0.89 BTC

Under The Hood

Bitcoin addresses

- To create a bitcoin address, generate a new public/private key pair
- (hash of) public key serves as an "address" or "account number"
- Access to public key allows you to query the account balance
- Access to private key allows you to spend

Public Key Crypto 101: Communication

• When Alice wants to send a confidential (encrypted) message to Bob:

Public Key Crypto 101: Digital Signatures

- Encrypting a message with a private key is the same as signing it!
- If Bob can decrypt the message with K_A, he knows it could only have been encrypted with K_a, i.e. that it was sent by Alice

Where are Bitcoins stored?

• Your coins "reside" implicitly in prior transactions that designate your public key as a beneficiary

Example

- Alice wants to pay Bob 3 BTC
- She "owns" 4 BTC by proving that she previously received 2 BTC from Carol and 2 BTC from Dave

Example

- To transfer ownership, Alice includes in T3 the hashes of input transactions and the public key of the next owner
- Alice digitally signs the transaction

Example

• Bob (or anyone else) can verify T3 by verifying Alice's signature, based on the public key found in the input transactions T1 and T2

The double spending problem

- How does Bob know the received coin has not been spent before?
- Bob must be able to check that previous owners did not sign any earlier transactions.
- Solution: make all transactions **public** so that everyone can verify what transactions happened first and detect double spending.
- All participants must **agree on a single history** of the order in which transactions were made
 - This is a hard problem in distributed systems, also known as **consensus**!

Solution: timestamp server

- Timestamp server hashes a block of transactions to be timestamped and widely publishes the hash
- The timestamp proves that the data must have existed at the time, in order to get into the hash
- Each timestamp includes the previous timestamp in its hash, forming a chain
 - This is called the **blockchain**

The Blockchain

- The blockchain is Bitcoin's transaction ledger, publicly recording all transactions
- Benefit of chaining: changing a single block would require changing all blocks after it as well

Distributing the timestamp server: proof-of-work

- Problem: if anyone can easily produce a valid block, there is little hope that the network will end up working on a *single* blockchain
- More likely, would end up with a quickly growing tree of blocks
- Solution: use "proof-of-work"
 - Make it really hard to produce a valid block (as in: need a lot of compute time)
 - Once a valid block is found, it is trivial prove that it is indeed valid
 - The generated block is its own proof of the work invested to generate it

Distributing the timestamp server: proof-of-work

- The proof-of-work involves scanning for a value *v* such that hash(*v*) begins with a number of zero bits *n*.
- Average work required is $O(2^n)$
- Done by incrementing a number in the block until a value is found that gives the block's hash the required zero bits.
- Difficulty is adjusted dynamically such that on average, only one block is generated every 10 minutes

Proof-of-work: example

- Transaction in block: transfer 10 BTC from address a1 to address a2.
- Target difficulty: at least 3 zeroes.
- hash("a1->a2:10_0") = 1312af178c253f84028d480a6adc1e25e81caa44c749ec81976192e2ec934c64
- hash("a1->a2:10_1") = e9afc424b79e4f6ab42d99c81156d3a17228d6e1eef4139be78e948a9332a7d8
- hash("a1->a2:10_2") = ae37343a357a8297591625e7134cbea22f5928be8ca2a32aa475cf05fd4266b7

• ...

• hash("a1->a2:10_**5142**") = **0000**c3af42fc31103f1fdc0151fa747ff87349a4714df7cc52ea464e12dcd4e9

Proof-of-work

- Proof-of-work solves the problem of deciding the *majority vote*
 - One IP address one vote? Problem: attacker may issue multiple IPs
 - Bitcoin: roughly "one CPU, one vote":
- The majority decision is represented by the **longest chain**, which has the greatest proof-of-work effort invested in it.
- If a majority of CPU power is controlled by honest nodes, the honest chain will grow the fastest and outpace any competing chains.

1. New transactions are broadcast to all nodes.

From	То	BTC
192c7a	31ec31	1.2
Block A		

From	То	BTC	
18af321	321a4c	0.4	
Block A			

-				1
	From	То	BTC	
Γ				
Ī				
	Block A			

Universiteit

Irussel

1. New transactions are broadcast to all nodes.

Software-Languages.Lab

Tom Van Cutsem - When Peer-to-Peer Meets Money: an introduction to Bitcoin

Vrije Universiteit

Brussel

2. Each node collects new transactions into a block.

From	То	BTC	
18af321	321a4c	0.4	
192c7a	31ec31	1.2	
102010	010001111		
Block A			

Vrije Universiteit

Brussel

3. Each node works on finding a difficult proof-of-work for its block.

4. When a node finds a proof-of-work, it broadcasts the block to all nodes.

Vrije Universiteit

Brussel

5. Nodes accept the block only if all transactions in it are valid and not already spent.

From	То	BTC	Block B
18af321	321a4c	0.4	2ac31
192c7a	31ec31	1.2	│ •

6. Nodes express their acceptance of the block by working on creating the next block in the chain, using the hash of the accepted block as the previous hash.

How Bitcoin solves the consensus problem

- Nodes vote with their CPU power
- Nodes accept a block by working on extending the block
- Nodes reject a block by refusing to work on it

Mining

- The first transaction in a block is a special transaction that **transfers new bitcoins** to the creator of the block.
- This is the only way new Bitcoins enter circulation.

Mining

• If output value of a transaction is less than input value, the difference is treated as a **transaction fee** added to the first transaction in the block

Exploring the Blockchain

• E.g. <u>blockexplorer.com</u> or <u>blockchain.info</u>

Latest blocks²

Number ²	Hash ²	Time [?]	Transactions ²	Total BTC ²	Size (kB) ²
247902	39cd5c1f60	2013-07-22 08:06:40	311	7908.09182124	124.35
<u>247901</u>	40b45b983b	2013-07-22 07:58:35	507	58666.0650201	248.839
<u>247900</u>	6e675df13c	2013-07-22 07:33:05	257	26001.41201723	116.06
<u>247899</u>	4c1e98b6ff	2013-07-22 07:24:25	157	24240.94784428	74.324
<u>247898</u>	4dc81d7079	2013-07-22 07:16:02	75	11619.72898059	32.481
<u>247897</u>	1e8fa582af	2013-07-22 07:13:44	84	8313.75228293	40.778
<u>247896</u>	2d3449a5ea	2013-07-22 07:11:21	322	7891.41153896	115.002
<u>247895</u>	<u>1828a01a31</u>	2013-07-22 06:57:58	46	1965.25524938	23.973
<u>247894</u>	8935c3b152	2013-07-22 06:56:51	229	4305.08899635	95.022
<u>247893</u>	68fea32837	2013-07-22 06:47:55	1	25	0.228
<u>247892</u>	41fd27a5fd	2013-07-22 06:47:48	17	1539.28106937	21.237
<u>247891</u>	<u>40445f745a</u>	2013-07-22 06:43:46	158	3343.27911845	65.118
247890	fc2e8272d0	2013-07-22 06:33:30	34	261.103206	13.961

The actual Blockchain

- First block known as the "Genesis block" (Jan 3rd, 2009)
- The current longest blockchain: 8+ GB

Confirmations

- To verify whether a transaction was successful: client queries network to find out about longest chain
- Lookup block in which transaction occurred
- Every block added *after* this block is a confirmation that the network has accepted the block

- **Transactions are** entirely **public**: anyone can see how much Bitcoins are transferred between any 2 addresses
- Necessary to verify double-spending
- But: there is no a priori relationship between a Bitcoin address (a public key) and a user's "identity"
- Keeping your public key anonymous keeps the transactions anonymous
- In practice, not that easy to remain truly anonymous

Bitcoin Scripts

- Bitcoin transactions may contain *scripts*
- Written in a Forth-like stack-based language. No loops (not turing-complete)
- Script = instructions that describe how BTC in a transaction can be spent
 - Normal transactions have a very simple list of instructions
- Goal: allow complex financial contracts
 - E.g. a transaction whose BTC can only be spent when signed by 10 different keys

Bitcoin in practice

What can you buy with it?

- Initially used for anonymously buying questionable / illegal goods
- More and more websites are accepting BTC
 - Reddit Gold, Wordpress.com store
- Some websites are proxies for other websites
- E.g. BTCBuy allows you to buy Amazon gift cards and pay in BTC
- See <u>https://www.spendbitcoins.com/</u> and <u>https://en.bitcoin.it/wiki/Trade</u> for a more complete list

Adoption

• Number of transactions per day since inception in 2009:

How much is a BTC worth?

"Bitcoin rose 722% in the first six months of 2013" (source: The Genesis Block, 2013 Mid-year review)

How much is a BTC worth?

FIGURE 4 - LOGARITHMIC VIEW OF BITCOIN EXCHANGE RATE

(source: The Genesis Block, 2013 Mid-year review)

Exchanges

- Market places where BTC is bought/sold for EUR, USD, ...
- Typical "entry point" into the Bitcoin market
- Examples:

Merchant Processors

- Aim to make it easy for merchants to accept BTC
- Merchant processor accepts BTC and transfers USD/EUR to the merchant
- The merchant never has to deal with BTC
- Examples:

Software Wallets

- Download a piece of software known as a "bitcoin client"
- "Fat" clients: your computer becomes part of the Bitcoin network, requires downloading the blockchain.

• Example:

• "Thin" clients: only stores your wallet (public/private keys) and allows you to send/receive BTC. Does not download the blockchain.

Electrum

Online web-based Wallets

- Store your wallet for you
- Convenient but introduces third-party risk!
- Examples: blockchain.info
 - Wallet stored encrypted on server
 - Decrypts using JavaScript on the client

Paper Wallets

- Offline wallet. To put your bitcoins in a physical safe.
- Basically a private key printed as a QR-code

(source: bitcointalk.org)

Concluding remarks

A word of warning

- Bitcoin is a young technology
- Highly volatile price
- High risk
- Storing money in online wallet: security issues
- Don't turn your savings money into BTC (just yet?)

A glimpse at Money of the 21st Century?

- Bitcoin is money at the speed of the internet
- Rapidly growing list of financial services:
 - Currency exchanges
 - Offer or make loans in bitcoin
 - Buy stock in bitcoin

. . .

