
1A Prototype-based Approach to Distributed ApplicationsDecember 11, 2004

A Prototype-based Approach to
Distributed Applications

Tom Van Cutsem

Promotor: Prof. Dr. Theo D’Hondt
Advisors: Wolfgang De Meuter and Jessie Dedecker

Stijn Mostincx



December 11, 2004 A Prototype-based Approach to Distributed Applications 2

Overview

• Context
• Prototype-based languages

 Pic%

• Concurrent languages
 cPico

• Distributed languages
 Advantages of prototypes
 dPico

• Future Work & Conclusions



December 11, 2004 A Prototype-based Approach to Distributed Applications 3

Context: Ambient Intelligence

• Evolution towards increasingly smaller mobile
devices embedded in the environment

• User is surrounded by a ‘processor cloud’ or
Personal Area Network

• Programs and objects are able to move
• We need…

 new design methodologies
 adequate hardware support
 runtime support, standards
 new programming languages



December 11, 2004 A Prototype-based Approach to Distributed Applications 4

Problem Statement

• Contemporary languages are not designed to
write programs inhabiting complex, dynamic,
flexible, open hardware constellations

• Need for a distributed (and concurrent)
programming language

• Design of a distributed programming language
based on the prototype-based OO paradigm

• Exploring the use of object-based inheritance
in a distributed context



December 11, 2004 A Prototype-based Approach to Distributed Applications 5

Language Overview

Pic%
• Prototype-based extension of Pico (D’Hondt, 1996)
• Small, minimal, exploratory object-oriented language
• Features parent sharing: two or more objects can

inherit from (delegate to) the same parental object

cPico
• Concurrent extension of Pic%
• Features active objects and asynchronous communication
• Uses parent sharing to control mutable shared state

dPico
• Distributed extension of cPico
• Uses active objects as the unit of distribution
• Uses parent sharing to control mutable distributed state



December 11, 2004 A Prototype-based Approach to Distributed Applications 6

Prototype-based Languages

• Classless object-oriented languages
• Ex-nihilo object construction and cloning
• Inheritance is either

 Delegation-based: objects delegate
incomprehensible messages to a ‘parent’

 Concatenation-based: objects directly copy
slots from a given ‘parent’ object

Self
Agora

Pic%

Kevo

Obliq



December 11, 2004 A Prototype-based Approach to Distributed Applications 7

Parent Sharing in Pic%

w: window(320, 240);

borderW:
w.asBorderedWindow(blue);

scrollW: w.asScrollableWindow();

w

borderW scrollW

window(width, height) :: {

  minimized: false;

  draw() :: { … };

  asBorderedWindow(border) :: {

    draw() :: { .draw(); drawBorder() };

    drawBorder() : { … };

    capture()

  };

  asScrollableWindow() :: {

    draw() :: { … };

    capture()

  };

  capture()

}

Object creation

Overriding and super-sends

Create a view on an object,
Object-based inheritance



December 11, 2004 A Prototype-based Approach to Distributed Applications 8

Concurrent Programming Languages

• Languages able to cope with concurrent
program execution

• Concurrency creation: threads, active objects,
forking, ...

• Concurrency control: synchronization
 Conditional Synchronization

ABCL
PScheme

cPico

Java

Obliq



December 11, 2004 A Prototype-based Approach to Distributed Applications 9

cPico

• Shared state
• Controlled using parent sharing
• Synchronous and asynchronous

communication
• Transparent synchronization

Concurrent Programming Languages

• Concurrency Paradigm ‘design space’:

• The imperative extreme
• Shared mutable state
• Need for locks/semaphores/...
• Communication through shared data

Threads

• The functional extreme
• No shared state
• Continuation-passing-style
• Asynchronous Communication

Actors



December 11, 2004 A Prototype-based Approach to Distributed Applications 10

cPico: a Concurrent Pic%

• An Integrative Approach (Briot et al., 1998):

• Messages sent to active objects …
 are handled asynchronously
 are processed autonomously by receiver
 are processed serially (‘‘one at a time’’)

Promises
Shared Data

+                       
Synchronization

Message
Active Object

+                       
Inter-process

communication

Object
Process

+                     
Active Object



December 11, 2004 A Prototype-based Approach to Distributed Applications 11

Promises: Inter-object Synchronization

• Placeholders for the return value of an
asynchronous message send

• Transparently become the return value
• Access to an ‘‘unfulfilled promise’’ blocks the

accessor (‘‘lazy synchronization’’)
• Conditional synchronization achieved using

‘‘call-with-current-promise’’
• Based upon futures:

 Multilisp (Halstead, 1985)
 ABCL/1 (Yonezawa et al., 1986)
 Eiffel// (Caromel, 1989)



December 11, 2004 A Prototype-based Approach to Distributed Applications 12

cPico: Design Issues

• Striving for simple consistent semantics
 No active objects in delegation chains

• Delegation versus synchronization problems
 Return to static scope
 Restricting visibility of variables
 Distributed state more susceptible to deadlocks

SynchronousNot ApplicableDelegation

SynchronousAsynchronousMessage Passing

… to Passive Objects… to Active Objects



December 11, 2004 A Prototype-based Approach to Distributed Applications 13

fibactor(n) :: {

  do() :: if (n<2,

              n,

              fibactor(n-1).do() + fibactor(n-2).do());

  activate()

}

fibactor(5).do()

Example: Fibonacci

n : 5

n : 3

n : 4

?

?3

2

?5

do()

do()

do()

++

Active Object creation

Asynchronous Message Passing

Implicit Synchronization



December 11, 2004 A Prototype-based Approach to Distributed Applications 14

Facilitating Parent Sharing

• Scope Functions allow controlled access to a
parent’s variables:

this(exp)

super(exp)

cloning(exp)

Dynamic receiver

Static parent

Clone of object

Evaluation in…

atomic
execution!



December 11, 2004 A Prototype-based Approach to Distributed Applications 15

Distributed Programming Languages

• An application can be distributed across
several machines linked by a network

• Introduces several issues:
 Remote Method Invocation
 Serialization of RMI parameters
 Representation of Remote Objects
 Partial Failure Handling
 Object Lookup

Emerald
Argus

dSelf

Borg

Obliq
dPico



December 11, 2004 A Prototype-based Approach to Distributed Applications 16

Why prototypes for distribution?

• Moving objects is more problematic in class-
based languages:
 Moving an object requires its class to ‘move

along’
 The transitive closure of the class’

superclasses must move along too
 ‘moving along’ classes implies class replication

• What about class consistency? Requires class
versioning

• What about static class variables? Requires replication
management



December 11, 2004 A Prototype-based Approach to Distributed Applications 17

Why prototypes for distribution?

• Concatenation-based objects are dependency-
free (no class or parent pointers)

• Delegation-based objects can share parents
across virtual machine boundaries
 This relation is explicit and thus transparent to

the programmer, who remains in control
 Shared parents can encapsulate distributed

state and allow for broadcast communication
(Dedecker et al., 2003; De Meuter et al., 2003a)

• Prototype-based languages have no trouble
defining new ‘types’ of objects at run-time



December 11, 2004 A Prototype-based Approach to Distributed Applications 18

dPico: a Distributed Pic%

• Transparent Remote Active Objects
• Extension mechanism based on Agora

(Introducing several types of methods)
• Active objects can ‘publish’ themselves in

‘channels’ accessible by remote VM’s
• Very simple RMI parameter passing rules:

 Active objects are always passed by reference
 Any other dPico value is passed by copy
 Remote references always point to active

objects



December 11, 2004 A Prototype-based Approach to Distributed Applications 19

RMI Problem: distributed parent sharing?

chatServer

chatClientA

chatClientB chatClientB

Parent is not shared
but duplicated!



December 11, 2004 A Prototype-based Approach to Distributed Applications 20

Solution: restructuring active hierarchies

passive hierarchy

active hierarchy

this()

asuper()

athis() super()person

scientist

comp. scientist

cs.think()

think():: {…}

Implementor

Initial Receiver



December 11, 2004 A Prototype-based Approach to Distributed Applications 21

Solution: restructuring active hierarchies

chatServer

chatClientA

chatClientB chatClientB

True distributed
parent sharing!



December 11, 2004 A Prototype-based Approach to Distributed Applications 22

Active Scope Functions

• Active counterpart of passive scope functions
• Operate asynchronously and immediately

return a promise

athis(exp)

asuper(exp)
Dynamic active

receiver

Static active
parent

Evaluation in…

atomic
execution!



December 11, 2004 A Prototype-based Approach to Distributed Applications 23

aChatServer
@ machineA

chatClientA
@ machineA

chatClientB
@ machineB

chatClientC
@ machineC

clients
[             ]

code executed in an active
extension of the receiver

Example: a Distributed Chat Client
transforms a regular

method in a mixin method

registers receiver in a channel

aview.chatServer(channel, maxClients) :: {

   clients[maxClients] : void;

   occupancy: 0;

   aview.registerClient(nam) :: {

      `create a new chat client`

   };

   sendMsg(msg) :: {

      `send msg to all clients`

   };

   athis().register(channel)

};



December 11, 2004 A Prototype-based Approach to Distributed Applications 24

Example: a Distributed Chat Client

aview.chatServer(channel, maxClients) :: {

   ...

   aview.registerClient(nam) :: {

      receiveMsg(from,msg) :: display(from,": ",msg,eoln);

      asuper(

        if (occupancy = maxClients,

            error("Sorry, channel is full"),

            clients[occupancy := occupancy+1] := athis()) )

   };

sendMsg(msg) :: {

    from: athis(nam);

    for(i:1, i <= occupancy, i:=i+1,

        clients[i].receiveMsg(from, msg));

};

asynchronous broadcast

executed atomically and
asynchronously in parent

athis

asuper

aChatServer

aChatClient



December 11, 2004 A Prototype-based Approach to Distributed Applications 25

dPico: Strengths & Limitations

• Separation of active and passive entities leads to
simple semantics

• Allows for true distributed object inheritance
• Primitive strong mobility due to first-class

continuations
• RMI is expensive due to object graph serialization
• Message passing semantics are not totally

location-independent

hotelObject.book(reservationObject)



December 11, 2004 A Prototype-based Approach to Distributed Applications 26

Situating cPico and dPico

Prototype-based languages

Languages with parent sharing

Distributed languages
Concurrent languages

Obliq

Pic%

dPico

cPicodSelf

ABCL/1Borg

Java
PScheme

Kevo



December 11, 2004 A Prototype-based Approach to Distributed Applications 27

Future Work

• Using active objects to represent split objects
• Partial Failure Handling

 Dealing with asynchronicity and promises
 Modelling devices going ‘‘out of range’’

• Incorporating multivalues
 Cloning family abstractions
 Classification abstractions
 Broadcast mechanisms

• Distributed Garbage Collection



December 11, 2004 A Prototype-based Approach to Distributed Applications 28

Conclusions

• Design and implementation of
 prototype-based concurrent language cPico
 prototype-based distributed language dPico

• Parent sharing in a distributed setting
 Scope functions allow controlled access to

shared distributed state
 Sharing of state without sacrificing encapsulation
 Separation of active and passive hierarchies

ensures clean semantics
• Basis for future language engineering research in

the field of AmI


