

A Prototype-based Approach to Distributed Applications

Tom Van Cutsem

Stijn Mostincx

Overview

- Context
- Prototype-based languages
 - Pic%
- Concurrent languages
 - CPico
- Distributed languages
 - Advantages of prototypes
 - dPico
- Future Work & Conclusions

Context: Ambient Intelligence

- Evolution towards increasingly smaller mobile devices embedded in the environment
- User is surrounded by a 'processor cloud' or Personal Area Network
- Programs and objects are able to move
- We need...
 - new design methodologies
 - adequate hardware support
 - runtime support, standards
 - new programming languages

Problem Statement

- Contemporary languages are not designed to write programs inhabiting complex, dynamic, flexible, open hardware constellations
- Need for a distributed (and concurrent) programming language
- Design of a distributed programming language based on the prototype-based OO paradigm
- Exploring the use of object-based inheritance in a distributed context

Language Overview

dPico

- Distributed extension of cPico
- Uses active objects as the unit of distribution
- Uses parent sharing to control mutable distributed state

Prototype-based Languages

- Classless object-oriented languages
- Ex-nihilo object construction and cloning
- Inheritance is either
 - Delegation-based: objects delegate incomprehensible messages to a `parent'
 - Concatenation-based: objects directly copy slots from a given 'parent' object

Parent Sharing in Pic%

7

WCFRE

Concurrent Programming Languages

- Languages able to cope with concurrent program execution
- Concurrency creation: threads, active objects, forking, ...
- Concurrency control: synchronization
 - Conditional Synchronization

Concurrent Programming Languages

• Concurrency Paradigm 'design space':

- The functional extermed state The imperative extreme
- No shared state Controlled using parent hsubtartisher state
- Continuation-passingestrydeous and edyfochooks/semaphores/...
- Asynchronous Communication through shared data
 - Transparent synchronization

cPico: a Concurrent Pic%

• An Integrative Approach (Briot et al., 1998):

- Messages sent to active objects ...
 - are handled asynchronously
 - are processed autonomously by receiver
 - are processed serially (``one at a time'')

Promises: Inter-object Synchronization

- Placeholders for the return value of an asynchronous message send
- Transparently become the return value
- Access to an "unfulfilled promise" blocks the accessor ("lazy synchronization")
- Conditional synchronization achieved using "call-with-current-promise"
- Based upon futures:
 - Multilisp (Halstead, 1985)
 - ABCL/1 (Yonezawa et al., 1986)
 - Eiffel// (Caromel, 1989)

cPico: Design Issues

- Striving for simple consistent semantics
 - No active objects in delegation chains

	to Active Objects	to Passive Objects
Message Passing	Asynchronous	Synchronous
Delegation	Not Applicable	Synchronous

- Delegation versus synchronization problems
 - Return to static scope
 - Restricting visibility of variables
 - Distributed state more susceptible to deadlocks

Example: Fibonacci

SCIENTING PROSPECTOR

Facilitating Parent Sharing

• Scope Functions allow controlled access to a parent's variables:

Distributed Programming Languages

- An application can be distributed across several machines linked by a network
- Introduces several issues:
 - Remote Method Invocation
 - Serialization of RMI parameters
 - Representation of Remote Objects
 - Partial Failure Handling

Why prototypes for distribution?

- Moving objects is more problematic in classbased languages:
 - Moving an object requires its class to 'move along'
 - The transitive closure of the class' superclasses must move along too
 - `moving along' classes implies class replication
 - What about class consistency? Requires class versioning
 - What about static class variables? Requires replication management

Why prototypes for distribution?

- Concatenation-based objects are dependencyfree (no class or parent pointers)
- Delegation-based objects can share parents across virtual machine boundaries
 - This relation is explicit and thus transparent to the programmer, who remains in control
 - Shared parents can encapsulate distributed state and allow for broadcast communication (Dedecker et al., 2003; De Meuter et al., 2003a)
- Prototype-based languages have no trouble defining new 'types' of objects at run-time

dPico: a Distributed Pic%

- Transparent Remote Active Objects
- Extension mechanism based on Agora (Introducing several *types* of methods)
- Active objects can 'publish' themselves in 'channels' accessible by remote VM's
- Very simple RMI parameter passing rules:
 - Active objects are always passed by reference
 - Any other dPico value is passed by copy
 - Remote references always point to active objects

RMI Problem: distributed parent sharing?

NERSITE

UNCERE

Solution: restructuring active hierarchies

Solution: restructuring active hierarchies

Active Scope Functions

- Active counterpart of passive scope functions
- Operate asynchronously and immediately return a promise

Example: a Distributed Chat Client

Example: a Distributed Chat Client

24

dPico: Strengths & Limitations

- Separation of active and passive entities leads to simple semantics
- Allows for true distributed object inheritance
- Primitive strong mobility due to first-class continuations
- RMI is expensive due to object graph serialization
- Message passing semantics are not totally location-independent

hotelObject.book(reservationObject)

Situating cPico and dPico

Future Work

- Using active objects to represent split objects
- Partial Failure Handling
 - Dealing with asynchronicity and promises
 - Modelling devices going "out of range"
- Incorporating multivalues
 - Cloning family abstractions
 - Classification abstractions
 - Broadcast mechanisms
- Distributed Garbage Collection

Conclusions

- Design and implementation of
 - prototype-based concurrent language cPico
 - prototype-based distributed language dPico
- Parent sharing in a distributed setting
 - Scope functions allow controlled access to shared distributed state
 - Sharing of state without sacrificing encapsulation
 - Separation of active and passive hierarchies ensures clean semantics
- Basis for future language engineering research in the field of AmI

