
1A Prototype-based Approach to Distributed ApplicationsDecember 11, 2004

A Prototype-based Approach to
Distributed Applications

Tom Van Cutsem

Promotor: Prof. Dr. Theo D’Hondt
Advisors: Wolfgang De Meuter and Jessie Dedecker

Stijn Mostincx

December 11, 2004 A Prototype-based Approach to Distributed Applications 2

Overview

• Context
• Prototype-based languages

 Pic%

• Concurrent languages
 cPico

• Distributed languages
 Advantages of prototypes
 dPico

• Future Work & Conclusions

December 11, 2004 A Prototype-based Approach to Distributed Applications 3

Context: Ambient Intelligence

• Evolution towards increasingly smaller mobile
devices embedded in the environment

• User is surrounded by a ‘processor cloud’ or
Personal Area Network

• Programs and objects are able to move
• We need…

 new design methodologies
 adequate hardware support
 runtime support, standards
 new programming languages

December 11, 2004 A Prototype-based Approach to Distributed Applications 4

Problem Statement

• Contemporary languages are not designed to
write programs inhabiting complex, dynamic,
flexible, open hardware constellations

• Need for a distributed (and concurrent)
programming language

• Design of a distributed programming language
based on the prototype-based OO paradigm

• Exploring the use of object-based inheritance
in a distributed context

December 11, 2004 A Prototype-based Approach to Distributed Applications 5

Language Overview

Pic%
• Prototype-based extension of Pico (D’Hondt, 1996)
• Small, minimal, exploratory object-oriented language
• Features parent sharing: two or more objects can

inherit from (delegate to) the same parental object

cPico
• Concurrent extension of Pic%
• Features active objects and asynchronous communication
• Uses parent sharing to control mutable shared state

dPico
• Distributed extension of cPico
• Uses active objects as the unit of distribution
• Uses parent sharing to control mutable distributed state

December 11, 2004 A Prototype-based Approach to Distributed Applications 6

Prototype-based Languages

• Classless object-oriented languages
• Ex-nihilo object construction and cloning
• Inheritance is either

 Delegation-based: objects delegate
incomprehensible messages to a ‘parent’

 Concatenation-based: objects directly copy
slots from a given ‘parent’ object

Self
Agora

Pic%

Kevo

Obliq

December 11, 2004 A Prototype-based Approach to Distributed Applications 7

Parent Sharing in Pic%

w: window(320, 240);

borderW:
w.asBorderedWindow(blue);

scrollW: w.asScrollableWindow();

w

borderW scrollW

window(width, height) :: {

 minimized: false;

 draw() :: { … };

 asBorderedWindow(border) :: {

 draw() :: { .draw(); drawBorder() };

 drawBorder() : { … };

 capture()

 };

 asScrollableWindow() :: {

 draw() :: { … };

 capture()

 };

 capture()

}

Object creation

Overriding and super-sends

Create a view on an object,
Object-based inheritance

December 11, 2004 A Prototype-based Approach to Distributed Applications 8

Concurrent Programming Languages

• Languages able to cope with concurrent
program execution

• Concurrency creation: threads, active objects,
forking, ...

• Concurrency control: synchronization
 Conditional Synchronization

ABCL
PScheme

cPico

Java

Obliq

December 11, 2004 A Prototype-based Approach to Distributed Applications 9

cPico

• Shared state
• Controlled using parent sharing
• Synchronous and asynchronous

communication
• Transparent synchronization

Concurrent Programming Languages

• Concurrency Paradigm ‘design space’:

• The imperative extreme
• Shared mutable state
• Need for locks/semaphores/...
• Communication through shared data

Threads

• The functional extreme
• No shared state
• Continuation-passing-style
• Asynchronous Communication

Actors

December 11, 2004 A Prototype-based Approach to Distributed Applications 10

cPico: a Concurrent Pic%

• An Integrative Approach (Briot et al., 1998):

• Messages sent to active objects …
 are handled asynchronously
 are processed autonomously by receiver
 are processed serially (‘‘one at a time’’)

Promises
Shared Data

+
Synchronization

Message
Active Object

+
Inter-process

communication

Object
Process

+
Active Object

December 11, 2004 A Prototype-based Approach to Distributed Applications 11

Promises: Inter-object Synchronization

• Placeholders for the return value of an
asynchronous message send

• Transparently become the return value
• Access to an ‘‘unfulfilled promise’’ blocks the

accessor (‘‘lazy synchronization’’)
• Conditional synchronization achieved using

‘‘call-with-current-promise’’
• Based upon futures:

 Multilisp (Halstead, 1985)
 ABCL/1 (Yonezawa et al., 1986)
 Eiffel// (Caromel, 1989)

December 11, 2004 A Prototype-based Approach to Distributed Applications 12

cPico: Design Issues

• Striving for simple consistent semantics
 No active objects in delegation chains

• Delegation versus synchronization problems
 Return to static scope
 Restricting visibility of variables
 Distributed state more susceptible to deadlocks

SynchronousNot ApplicableDelegation

SynchronousAsynchronousMessage Passing

… to Passive Objects… to Active Objects

December 11, 2004 A Prototype-based Approach to Distributed Applications 13

fibactor(n) :: {

 do() :: if (n<2,

 n,

 fibactor(n-1).do() + fibactor(n-2).do());

 activate()

}

fibactor(5).do()

Example: Fibonacci

n : 5

n : 3

n : 4

?

?3

2

?5

do()

do()

do()

++

Active Object creation

Asynchronous Message Passing

Implicit Synchronization

December 11, 2004 A Prototype-based Approach to Distributed Applications 14

Facilitating Parent Sharing

• Scope Functions allow controlled access to a
parent’s variables:

this(exp)

super(exp)

cloning(exp)

Dynamic receiver

Static parent

Clone of object

Evaluation in…

atomic
execution!

December 11, 2004 A Prototype-based Approach to Distributed Applications 15

Distributed Programming Languages

• An application can be distributed across
several machines linked by a network

• Introduces several issues:
 Remote Method Invocation
 Serialization of RMI parameters
 Representation of Remote Objects
 Partial Failure Handling
 Object Lookup

Emerald
Argus

dSelf

Borg

Obliq
dPico

December 11, 2004 A Prototype-based Approach to Distributed Applications 16

Why prototypes for distribution?

• Moving objects is more problematic in class-
based languages:
 Moving an object requires its class to ‘move

along’
 The transitive closure of the class’

superclasses must move along too
 ‘moving along’ classes implies class replication

• What about class consistency? Requires class
versioning

• What about static class variables? Requires replication
management

December 11, 2004 A Prototype-based Approach to Distributed Applications 17

Why prototypes for distribution?

• Concatenation-based objects are dependency-
free (no class or parent pointers)

• Delegation-based objects can share parents
across virtual machine boundaries
 This relation is explicit and thus transparent to

the programmer, who remains in control
 Shared parents can encapsulate distributed

state and allow for broadcast communication
(Dedecker et al., 2003; De Meuter et al., 2003a)

• Prototype-based languages have no trouble
defining new ‘types’ of objects at run-time

December 11, 2004 A Prototype-based Approach to Distributed Applications 18

dPico: a Distributed Pic%

• Transparent Remote Active Objects
• Extension mechanism based on Agora

(Introducing several types of methods)
• Active objects can ‘publish’ themselves in

‘channels’ accessible by remote VM’s
• Very simple RMI parameter passing rules:

 Active objects are always passed by reference
 Any other dPico value is passed by copy
 Remote references always point to active

objects

December 11, 2004 A Prototype-based Approach to Distributed Applications 19

RMI Problem: distributed parent sharing?

chatServer

chatClientA

chatClientB chatClientB

Parent is not shared
but duplicated!

December 11, 2004 A Prototype-based Approach to Distributed Applications 20

Solution: restructuring active hierarchies

passive hierarchy

active hierarchy

this()

asuper()

athis() super()person

scientist

comp. scientist

cs.think()

think():: {…}

Implementor

Initial Receiver

December 11, 2004 A Prototype-based Approach to Distributed Applications 21

Solution: restructuring active hierarchies

chatServer

chatClientA

chatClientB chatClientB

True distributed
parent sharing!

December 11, 2004 A Prototype-based Approach to Distributed Applications 22

Active Scope Functions

• Active counterpart of passive scope functions
• Operate asynchronously and immediately

return a promise

athis(exp)

asuper(exp)
Dynamic active

receiver

Static active
parent

Evaluation in…

atomic
execution!

December 11, 2004 A Prototype-based Approach to Distributed Applications 23

aChatServer
@ machineA

chatClientA
@ machineA

chatClientB
@ machineB

chatClientC
@ machineC

clients
[]

code executed in an active
extension of the receiver

Example: a Distributed Chat Client
transforms a regular

method in a mixin method

registers receiver in a channel

aview.chatServer(channel, maxClients) :: {

 clients[maxClients] : void;

 occupancy: 0;

 aview.registerClient(nam) :: {

 `create a new chat client`

 };

 sendMsg(msg) :: {

 `send msg to all clients`

 };

 athis().register(channel)

};

December 11, 2004 A Prototype-based Approach to Distributed Applications 24

Example: a Distributed Chat Client

aview.chatServer(channel, maxClients) :: {

 ...

 aview.registerClient(nam) :: {

 receiveMsg(from,msg) :: display(from,": ",msg,eoln);

 asuper(

 if (occupancy = maxClients,

 error("Sorry, channel is full"),

 clients[occupancy := occupancy+1] := athis()))

 };

sendMsg(msg) :: {

 from: athis(nam);

 for(i:1, i <= occupancy, i:=i+1,

 clients[i].receiveMsg(from, msg));

};

asynchronous broadcast

executed atomically and
asynchronously in parent

athis

asuper

aChatServer

aChatClient

December 11, 2004 A Prototype-based Approach to Distributed Applications 25

dPico: Strengths & Limitations

• Separation of active and passive entities leads to
simple semantics

• Allows for true distributed object inheritance
• Primitive strong mobility due to first-class

continuations
• RMI is expensive due to object graph serialization
• Message passing semantics are not totally

location-independent

hotelObject.book(reservationObject)

December 11, 2004 A Prototype-based Approach to Distributed Applications 26

Situating cPico and dPico

Prototype-based languages

Languages with parent sharing

Distributed languages
Concurrent languages

Obliq

Pic%

dPico

cPicodSelf

ABCL/1Borg

Java
PScheme

Kevo

December 11, 2004 A Prototype-based Approach to Distributed Applications 27

Future Work

• Using active objects to represent split objects
• Partial Failure Handling

 Dealing with asynchronicity and promises
 Modelling devices going ‘‘out of range’’

• Incorporating multivalues
 Cloning family abstractions
 Classification abstractions
 Broadcast mechanisms

• Distributed Garbage Collection

December 11, 2004 A Prototype-based Approach to Distributed Applications 28

Conclusions

• Design and implementation of
 prototype-based concurrent language cPico
 prototype-based distributed language dPico

• Parent sharing in a distributed setting
 Scope functions allow controlled access to

shared distributed state
 Sharing of state without sacrificing encapsulation
 Separation of active and passive hierarchies

ensures clean semantics
• Basis for future language engineering research in

the field of AmI

