A Prototype-based Approach to
Distributed Applications

Tom Van Cutsem Stijn Mostincx

‘ Promotor: Prof. Dr. Theo D’'Hondt
Advisors: Wolfgang De Meuter and Jessie Dedecker

December 11, 2004 A Prototype-based Approach to Distributed Applications

Overview

« Context

Prototype-based languages
= Pic%

Concurrent languages

= cPico

Distributed languages

= Advantages of prototypes
= dPico
* Future Work & Conclusions

December 11, 2004 A Prototype-based Approach to Distributed Applications 2

Context: Ambient Intelligence

« Evolution towards increasingly smaller mobile
devices embedded in the environment

« User is surrounded by a ‘processor cloud’ or
Personal Area Network

* Programs and objects are able to move

 We need...
= new design methodologies
= adequate hardware support
= runtime support, standards
= new programming languages

.
December 11, 2004 A Prototype-based Approach to Distributed Applications 3 g » E«&

Problem Statement

« Contemporary languages are not designed to
write programs inhabiting complex, dynamic,
flexible, open hardware constellations

* Need for a distributed (and concurrent)
programming language

* Design of a distributed programming language
based on the prototype-based OO paradigm

» Exploring the use of object-based inheritance
In a distributed context

December 11, 2004 A Prototype-based Approach to Distributed Applications 4

Language Overview

* Prototype-based extension of Pico (D’'Hondt, 1996)
« Small, minimal, exploratory object-oriented language
» Features parent sharing: two or more objects can
inherit from (delegate to) the same parental object

« Concurrent extension of Pic%
o[l - Features active objects and asynchronous communication

« Uses parent sharing to control mutable shared state

« Distributed extension of cPico
o|d[e0l - Uses active objects as the unit of distribution
« Uses parent sharing to control mutable distributed state

RSIT,
\&qe E/y @/9

g .2

A0S * VRy,
N e,

>

&
/ S
T incere <

December 11, 2004 A Prototype-based Approach to Distributed Applications 5

Prototype-based Languages

» Classless object-oriented languages
* EXx-nihilo object construction and cloning

* |Inheritance is either

= Delegation-based: objects delegate
incomprehensible messages to a ‘parent’

= Concatenation-based: objects directly copy
slots from a given ‘parent’ object

Self
Kevo Agora

Oblig Pic%

&
December 11, 2004 A Prototype-based Approach to Distributed Applications 6 ”*IV,NCERE@

Parent Sharing in Pic%

window (width, height) :: { w: window (320, 240);
borderW:
w.asBorderedWindow (blue) ;

minimized: false;
asScrollableWindow() ;

draw()|:: { .. };
asBorderedWindow (border)
draw() |:: {]|.draw() ;| drawBe
drawBorder() : { .. }; Create a view on an object,
capture () Object-based inheritance
\ 1/
rasScrollableWindow() {
draw() :: { .. };
capture ()
borderW ScrollW
};
@ Object creation
} 3 \A\\‘ERSITE/T@&
(/
3 \ b o
5, Y &
7 /'?V/NCERE'«/é

December 11, 2004 A Prototype-based Approach to Distributed Applications

Concurrent Programming Languages

« Languages able to cope with concurrent
program execution

« Concurrency creation: threads, active objects,
forking, ...

« Concurrency control: synchronization
= Conditional Synchronization

ABCL
Java PScheme

Oblig cpico

.
December 11, 2004 A Prototype-based Approach to Distributed Applications 8 * V,NCERE«&

Concurrent Programming Languages

« Concurrency Paradigm ‘design space’:

Actors cPico Threads

A4 A4

A4
I

» The functionakexBhared state The imperative extreme

* No shared state Controlled usin§ ipemrecthnshiztihg state
« Continuation-pasSggetigdaous aNdesyockookeisemaphores/...

« Asynchronous CHHAMTHEERR#PNCommunication through shared data
« Transparent synchronization

RSIT
\A\\lE E/T@

A0S * VRy,
N 3
: (\‘b

SRas . 125°

>

December 11, 2004 A Prototype-based Approach to Distributed Applications 9

cPico: a Concurrent Pic%

* An Integrative Approach (Briot et al., 1998):

Object Message Promises
Process Active Object Shared Data

+ + +
Active Object Inter-process Synchronization

communication

* Messages sent to active objects ...
= are handled asynchronously
= are processed autonomously by receiver
= are processed serially ((one at a time”)

December 11, 2004 A Prototype-based Approach to Distributed Applications 10

Promises: Inter-object Synchronization

* Placeholders for the return value of an
asynchronous message send

* Transparently become the return value

* Access to an “unfulfilled promise” blocks the
accessor (“lazy synchronization™)

« Conditional synchronization achieved using
“call-with-current-promise”™

« Based upon futures:
= Multilisp (Halstead, 1985)
= ABCL/1 (Yonezawa et al., 1986)
= Eiffel// (Caromel, 1989)

December 11, 2004 A Prototype-based Approach to Distributed Applications 11

cPico: Design Issues

« Striving for simple consistent semantics
= No active objects in delegation chains

... to Active Objects | ... to Passive Objects

Message Passing Asynchronous

Delegation Not Applicable

» Delegation versus synchronization problems
» Return to static scope
= Restricting visibility of variables
" Distributed state more susceptible to deadlocks.,

SRag .2

7 &

a
)
December 11, 2004 A Prototype-based Approach to Distributed Applications 12)/"V//vcgae@

Example: Fibonacci

fibactor(n) :: {
do() :: if (n<2,

N Implicit Synchronization
fibactor (n-1) .do ()| +

fibactor (n-2) .do ()

activate ()

fibactor (5) .do ()

Active Object creation

do ()

do ()

do ()

(F

A Prototype-based Approach to Distributed Applications

December 11, 2004

O QW

RSIT,
\A\\lE E/T@

N g

N G
g °
0 (2]

e} <

5, B &

13 4

KN
Vingere <@

Facilitating Parent Sharing

Scope Functions allow controlled access to a
parent’s variables:

-
this (exp)

atomic
ion!
super (exp) execution!

Static parent

cloning (exp)

Clone of object

December 11, 2004 A Prototype-based Approach to Distributed Applications 14

Distributed Programming Languages

* An application can be distributed across
several machines linked by a network

* |Introduces several issues:
= Remote Method Invocation
= Serialization of RMI parameters
= Representation of Remote Objects
= Partial Failure Handling
= Object Lookup

Emerald
Borg dPico Argus

1 (ERSITE/»
Obliq dSelf
N k)
sley

December 11, 2004 A Prototype-based Approach to Distributed Applications 15

Why prototypes for distribution?

* Moving objects is more problematic in class-
based languages:

= Moving an object requires its class to ‘move
along’

= The transitive closure of the class’
superclasses must move along too

= ‘moving along’ classes implies class replication

« What about class consistency? Requires class
versioning

« What about static class variables? Requires replication
management

\)\A\\‘ERSITE/

a
— m— %
December 11, 2004 A Prototype-based Approach to Distributed Applications 16 %,NCERE«@

”
s,

& QS
SRas . 125°

Why prototypes for distribution?

« Concatenation-based objects are dependency-
free (no class or parent pointers)

* Delegation-based objects can share parents
across virtual machine boundaries

= This relation is explicit and thus transparent to
the programmer, who remains in control

= Shared parents can encapsulate distributed

state and allow for broadcast communication
(Dedecker et al., 2003; De Meuter et al., 2003a)

* Prototype-based languages have no trouble
defining new ‘types’ of objects at run-time

&
December 11, 2004 A Prototype-based Approach to Distributed Applications 17 /"’//Ncgae@

dPico: a Distributed Pic%

 Transparent Remote Active Objects

« Extension mechanism based on Agora
(Introducing several types of methods)

* Active objects can ‘publish’ themselves in
‘channels’ accessible by remote VM's

* Very simple RMI parameter passing rules:
= Active objects are always passed by reference
= Any other dPico value is passed by copy

= Remote references always point to active
objects

December 11, 2004 A Prototype-based Approach to Distributed Applications 18

RMI Problem: distributed parent sharing?

chatClientA

December 11, 2004

| Parent is not shared
| but duplicated!

I

| Q)

chatClientB
\)\A\paasms/r 5,
A Prototype-based Approach to Distributed Applications 19 % V,NCERE«*

Solution: restructuring active hierarchies

active hierarchy
I asuper (

: {..}
think ()
. Implementor this () (ERSITE
. N
O Initial Receiver S
5 \Lar/
3
December 11, 2004 A Prototype-based Approach to Distributed Applications 20 %

Solution: restructuring active hierarchies

chatServer

True distributed
| parent sharing!

-

* 'dﬂat,C!ientB :
I

December 11, 2004 A Prototype-based Approach to Distributed Applications 21

chatChlentB

(55

ERSITE
o S 3

"oy |
!:‘&:!

N2
o ’NCERE«’

208 * VR,
\ﬁ 8, 49,
“as .2

Active Scope Functions

» Active counterpart of passive scope functions

* Operate asynchronously and immediately
return a promise

Evaluation in...

athis (exp)

receiver
asuper (exp)
Static active
parent

December 11, 2004 A Prototype-based Approach to Distributed Applications 22

atomic
execution!

Example: a Distributed Chat Client

transforms a regular

-

method in a mixin method

aview.thatServer (channel, maxClients)

clients[maxClients] oid;
code executed in an active
extension of the receiver

occupancy: 0;

aview.registerClient (nam)

‘create a new chat client®

o

sendMsg (msg) :: { chatClientA

\ @ machineA
send msg to all clients"

o

athis () .register (channel)

registers receiver in a channel

December 11, 2004 A Prototype-based Approach to Distributed Applications

aChatServer
@ machineA

clients

o ~
’0 L
. .

chatClientC

@ machineC
chatClientB

@ machineB

RSIT,
0\&“2 E/p S

23

Example: a Distributed Chat Client

aview.chatServer (channel,

maxClients)

executed atomically and

aview.registerClient (nam) :: { asynchronously in parent aChatServer
receiveMsg (from,msqg) display (from,": ",msg,eoln);
asuper
(asuper() P
if (occupancy = maxClients,
error ("Sorry, channel is full"),
clients[occupancy := occupancy+l] := athis()))
. J
i
athis
sendMsg (msg) :: | aChatClient
from: athis (nam) : asynchronous broadcast
for(i:1l, i1 <= occupancy,|i:=i+1,
clients[i] .receiveMsqg (from, msqg));

} : \)\A\‘ERSITE/T@@(/
2 \Lad/ e
< &

December 11, 2004 A Prototype-based Approach to Distributed Applications 24 % ,,,NCERE@Q)

dPico: Strengths & Limitations

« Separation of active and passive entities leads to
simple semantics

 Allows for true distributed object inheritance

* Primitive strong mobility due to first-class
continuations

 RMI is expensive due to object graph serialization
* Message passing semantics are not totally
location-independent

hotelObject.book(reservationObject)

December 11, 2004 A Prototype-based Approach to Distributed Applications 25

Situating cPico and dPico

~
ﬁistributed languages / \ Concurrent languacg
Java

PScheme

Borg Obliq ABCL/M
dPico

K dSelf \\ / cPico /

Kevo Pic%
\ Languages with parent sharing/

JERSITE/
S S 3

December 11, 2004

A0S * VRy,
N 3
SRas . 125°

>

A Prototype-based Approach to Distributed Applications %,NCERE@“

26

Future Work

Using active objects to represent split objects

Partial Failure Handling

= Dealing with asynchronicity and promises
= Modelling devices going "“out of range”
Incorporating multivalues

= Cloning family abstractions

= Classification abstractions

= Broadcast mechanisms

Distributed Garbage Collection

December 11, 2004 A Prototype-based Approach to Distributed Applications 27

Conclusions

* Design and implementation of
= prototype-based concurrent language cPico
= prototype-based distributed language dPico

» Parent sharing in a distributed setting

= Scope functions allow controlled access to
shared distributed state

= Sharing of state without sacrificing encapsulation

= Separation of active and passive hierarchies
ensures clean semantics

« Basis for future language engineering research in
the field of Aml

&
December 11, 2004 A Prototype-based Approach to Distributed Applications 28 /"’//Ncgae@

