
Architecting Robust JavaScript Applications

Tom Van Cutsem

@tvcutsem

About me

• Computer scientist with broad experience in academia and industry

• Past TC39 member and active contributor to ECMAScript standards

• Passionate user and advocate of JavaScript

A software architecture view of security

OAuth
principals

cookies

objects
functions

visibility

dataflow

dependencies

modules

mutation

iframe sandbox

same-origin policy

CORS

content security policy

html sanitization

A software architecture view of security

“Security is just the extreme of Modularity”
- Mark S. Miller

Modularity: avoid needless dependencies (to prevent bugs)
Security: avoid needless vulnerabilities (to prevent exploits)
Vulnerability is a form of dependency!

This Talk

• Part I: why it’s becoming important to write more robust / secure applications

• Part II: patterns that let you write more robust / secure applications

Part I 
The need for more robust JavaScript apps

JavaScript & the importance of standards

• As a website author, you don’t get to choose the execution platform!

• Remember the Browser Wars of the early 1990s

ServerClient

?
HTTP GET /index.html

<html><script>…</script>

ECMAScript: “Standard” JavaScript

V8

Spidermonkey

JavaScriptCore

Carakan

ChakraCore

V8 V8

A Tale of Two Standards Bodies

"Any organization that designs a system […] will produce a design whose
structure is a copy of the organization's communication structure."

-- Melvyn Conway, 1967

• Standardizes JavaScript
• Core language + small standard library
• Math, JSON, String, RegExp, Array, …
• “User mode”

• Standardizes browser APIs
• Large set of system APIs
• DOM, LocalStorage, XHR, Media Capture, …
• “System mode”

“User mode” separation makes JS an embeddable compute engine

JS (User mode)

Embedding environment (System mode)

Well-defined boundary

As a result, JavaScript used widely across tiers

MobileEmbedded Desktop/Native Server Database

JavaScript applications are now built from thousands of modules

• Node package manager (NPM) is the world’s largest package manager

(source: modulecounts.com, Sept. 2019)

http://modulecounts.com

It’s all about trust

• It is exceedingly common to run code you don’t know/trust in a common
environment

Webpage

Browser env (e.g. Firefox)

Web server app

Server env (e.g. node)

Module Module Module Module

Requests FilesDOM Cookies

It’s all about trust

• It is exceedingly common to run code you don’t know/trust in a common
environment

Webpage

Browser env (e.g. Firefox)

Web server app

Server env (e.g. node)

Module Module Module Module

<script	src=“http://evil.com/ad.js”> npm	install	evil-logger

Requests FilesDOM Cookies

It’s all about trust

• It is exceedingly common to run code you don’t know/trust in a common
environment

Webpage

Browser env (e.g. Firefox)

Module Module

DOM Cookies

<script	src=“http://evil.com/ad.js”>

It’s all about trust

• It is exceedingly common to run code you don’t know/trust in a common
environment

Web server app

Server env (e.g. node)

Module Module

Requests Files

npm	install	evil-logger

(source: theregister.co.uk)

http://theregister.co.uk

Avoiding interference is the name of the game

• Shield important resources/APIs from modules that don’t need access

• Apply Principle of Least Authority (POLA) to application design

Webpage

Browser env (e.g. Firefox)

Web server app

Server env (e.g. node)

Module Module Module Module

Requests FilesDOM Cookies

Prerequisite: isolating JavaScript modules

• Up to today, JavaScript offers no “User mode” 
 way of isolating code into its own environment

• Lots of “System mode” isolation mechanisms exist, 
 but non-portable. Examples:

• Web Workers: forced async communication, 
no shared memory

• iframes: mutable primordials (*), “identity discontinuity”

• node vm module: easy to break isolation. Use vm2 module instead
<npmjs.com/package/vm2>

JS app
Environment

Module Module

Shared resources

(*) primordials = built-in objects like Object, Array, Function, Math, JSON, etc.

https://www.npmjs.com/package/vm2

Realms: “User mode” isolation

• Realms are a TC39 Stage 2 proposal

• Intuitions: “iframe without DOM”, “principled version of node’s `vm` module”

•Shim library available at github.com/Agoric/realms-shim

let	g	=	window;	//	outer	global	
let	r	=	new	Realm();	//	root	realm	

let	f	=	r.evaluate("(function()	{	return	17	})");	

f()	===	17	//	true	

Reflect.getPrototypeOf(f)	===	g.Function.prototype	//	false	
Reflect.getPrototypeOf(f)	===	r.global.Function.prototype	//	true
(source: https://github.com/tc39/proposal-realms/)

https://github.com/Agoric/realms-shim
https://github.com/tc39/proposal-realms/

Secure ECMAScript (SES) (aka “Frozen Realms”)

• Another TC39 Proposal (stage 1)

• Adds “frozen realm”: realm whose primordials are all immutable. Immutable
primordials can be efficiently shared across child realms.

• Code can be evaluated in a frozen child realm with its own global
environment:

• Shim library available at https://github.com/Agoric/SES

let val = SES.confine("x + y", {x:1,y:2}); // returns 3

https://github.com/Agoric/SES

Secure ECMAScript is a subset of ES-strict

(source: Agoric, https://github.com/Agoric/Jessie)

• All code in strict mode
(“sane” JavaScript)

• Immutable primordials

• Own whitelisted global
environment

• No “powerful” non-
standard globals (e.g.
process, window, …) by
default

https://github.com/Agoric/Jessie

End of Part I: recap

• Modern JS apps are composed from many
modules. You can’t trust them all.

• Traditional security boundaries don’t exist
between modules. SES adds basic isolation.

• Isolated modules must still interact!

• Design patterns exist to compose modules in
ways that minimize unwanted interactions.

• Going forward: assume all code running in Secure
ECMAScript environment

JS app
Environment

Module Module

Shared resources

Part II 
Robust Application Design Patterns

Design Patterns

Observer

Factory

State
Singleton

Visitor

Design Patterns for secure cooperation

Reliable branding

Sealer/unsealer pair

API Taming
Membrane

Defensible object

#1: make private state truly private

class Counter {
 constructor() {
 this.count_ = 0;
 }
 incr() { return ++this.count_; }
 decr() { return --this.count_; }
}

let ctr = new Counter();
ctr.count_ // 0

What Crockford has to say about this

“a beginning or ending _ is sometimes intended to indicate a public property
[…] that would have been private if the program had been written correctly.
So, a dangling _ is a flag indicating that the coder is incompetent” 
(How JavaScript Works, Chapter 1)

Douglas Crockford,
Inventor of JSON

#1: hide mutable state through closure

• A record of closures hiding state is a fine representation of an object of
methods hiding instance vars

• Pattern long advocated by Crockford in lieu of using classes or prototypes

function makeCounter() {
 let count = 0;
 return {
 incr() { return ++count; },
 decr() { return --count; }
 }
}

let ctr = makeCounter();
ctr.count // undefined

makeCounter

incr

decr
count

(source: Mark S. Miller, “bringing object-orientation to security programming”)

#2: make objects tamper-proof by freezing them

• Javascript objects are mutable records: any field can be overwritten by any
of its clients (intentionally or unintentionally)

• Note: freezing an object does not transitively freeze any objects/functions
reachable from the object. Full immutability requires a ‘deep-freeze’

makeCounter

incr

decr
count

(source: Mark S. Miller, “bringing object-orientation to security programming”)

function makeCounter() {
 let count = 0;
 return Object.freeze({
 incr() { return ++count; },
 decr() { return --count; }
 })
}

let ctr = makeCounter();
ctr.incr = ctr.decr; // error

#3: safely extend objects with new properties using WeakMaps

• It is common for one module to want to “expand” the objects of another
module with new properties. Common practice today: monkey-patching

• WeakMaps can store new properties without mutating the original objects

• Also works for frozen objects

makeCounter

incr
count

decr

const ctr = makeCounter();
const color = new WeakMap();
color.set(ctr, “red”);
color.get(ctr); // “red”

ctr color

“red”

#3: safely extend objects with new properties using WeakMaps

• It is common for one module to want to “expand” the objects of another
module with new properties. Common practice today: monkey-patching

• WeakMaps can store new properties without mutating the original objects

• Bonus: only code that has access to both the WeakMap and the original
object can access the value

makeCounter

incr
count

decr

const ctr = makeCounter();
const color = new WeakMap();
color.set(ctr, “red”);
color.get(ctr); // “red”

ctr color

“red”

#4: use WeakSets to do reliable “instance of” tests (“brands checks”)

• It is common for functions to want to verify whether the arguments they
receive are “genuine” objects of a certain type

• Common practice today: duck-testing

class Duck {
 constructor() {
 this.__isADuck__ = true;
 }
 quack() { … }
}

function f(arg) {
 if (arg.__isADuck__) {
 arg.quack();
 }
}

const isADuck = new WeakSet();
function makeDuck() {
 const duck = Object.freeze({
 quack() { … }
 });
 isADuck.add(duck);
 return duck;
}

function f(arg) {
 if (isADuck.has(arg)) {
 arg.quack();
 }
}

#5: use sealer/unsealer pairs to “encrypt” objects with no crypto

• Consider the following (common) setup:

• How can code inside Alice safely pass objects to Bob through Eve while preventing Eve
from inspecting or tampering with her objects?

• How can code inside Bob verify that the objects passed to it from Eve originated from Alice?

App

Embedding environment

Module
Alice

Module
Eve

Sensitive resources

Module
Bob

#5: use sealer/unsealer pairs to “encrypt” objects with no crypto

• Alice creates sealer/unsealer pair and gives unsealer to Bob

• Alice seals her objects using sealer before exposing to Eve

• Bob unseals the objects received from Eve using unsealer

App

Embedding environment

Module
Alice

Module
Eve

Sensitive resources

Module
Bob

// Alice says:
const [seal, unseal] =
 makeSealerUnsealerPair();
bob.setup(unseal);

const box = seal(value);
eve.give(box);

// Bob says:
function setup(unseal) {
 eve.register((box) => {
 const value = unseal(box);
 // use value from Alice
 })
}

#5: use sealer/unsealer pairs to “encrypt” objects with no crypto

function makeSealerUnsealerPair() {
 const boxes = new WeakMap();
 function seal(value) {
 const box = Object.freeze({});
 boxes.set(box, value);
 return box;
 }
 function unseal(box) {
 if (boxes.has(box)) {
 return boxes.get(box);
 } else {
 throw new Error("invalid box");
 }
 }
 return [seal, unseal];
}

(code adapted from Google Caja reference implementation. Based on ideas from James Morris, 1973)

#6: use the Proxy pattern to attenuate APIs (taming)

• Expose powerful objects through restrictive proxies to third-party code

• For example, a proxy object may expose only a subset of the API

trusted code

untrusted code

powerful resource

taming proxy

#6: use the Proxy pattern to attenuate APIs (taming)

• Example: attenuating read-write access to read-only access:

function makeReadOnly(file) {
 return Object.freeze({
 read() { return file.read(); }
 getLength() { return file.getLength(); }
 });
}

// Alice says:
const roFile = makeReadOnly(file);
eve.give(roFile);

trusted code

untrusted code

file

roFile

#7: generalizing the Proxy pattern to isolate object graphs

• A membrane injects a layer of proxy objects between two or more object
graphs, which can be used to intercept all communication

• Membrane grows/shrinks as needed based on dynamic interaction patterns

Full article at tvcutsem.github.io/membranes

http://tvcutsem.github.io/membranes

#7: generalizing the Proxy pattern to isolate object graphs

• A membrane injects a layer of proxy objects between two or more object
graphs, which can be used to intercept all communication

• Membrane grows/shrinks as needed based on dynamic interaction patterns

Full article at tvcutsem.github.io/membranes

http://tvcutsem.github.io/membranes

• Membranes can be built from Proxy objects and WeakMaps

• The proxies of a membrane can share state

#7: generalizing the Proxy pattern to isolate object graphs

function	makeMembrane(initDryTarget)	{	
		let	enabled	=	true;	
		let	wetProxies	=	new	WeakMap();	
		let	dryProxies	=	new	WeakMap();	
		...	
		function	wet2dry(wetTarget)	{	…	}	
		function	dry2wet(dryTarget)	{	…	}	
 ...
 return	{	
				proxy:	dry2wet(initDryTarget),	
				revoke:	function()	{	enabled	=	false;	}	
		};	
}

Full article at tvcutsem.github.io/js-membranes

http://tvcutsem.github.io/js-membranes

These patterns are used in industry

• Embedding third-party content on web
properties: Google Caja uses taming.

• Application components / plug-ins:

•Mozilla uses membranes in Firefox to
implement security boundaries between
different site origins and privileged JS code

• Salesforce uses Secure ECMAScript and
membranes in its Lightning UI platform for
mobile and desktop

• Smart contracts: Cosmos blockchain
project builds on Secure ECMAScript

(source: Google, developers.google.com/caja)

(source: Mozilla, developer.mozilla.org)

http://developers.google.com/caja
http://developer.mozilla.org

Conclusion

Summary

• View security as extreme modularity.

• Modern JS apps are composed from many
modules. You can’t trust them all.

• Traditional security boundaries don’t exist
between modules. SES adds basic isolation.

• Isolated modules must still interact.

• Design patterns exist to compose modules in
ways that minimize unwanted interactions.

•Understanding these patterns is important in a
world of > 1,000,000 NPM modules

JS app
Environment

Module Module

Shared resources

@tvcutsem

Acknowledgements
• Mark S. Miller (for the inspiring work on Object-capabilities, Robust Composition, E, Caja, JavaScript and Secure

ECMAScript)

• Marc Stiegler’s “PictureBook of secure cooperation” (2004) was a great source of inspiration for this talk

• Doug Crockford’s Good Parts and How JS Works books were an eye-opener and provide a highly opinionated take on
how to write clean, good, robust JavaScript code

• The Cap-talk and Friam community for inspiration on capability-security and capability-secure design patterns

• TC39 and the es-discuss community, for the interactions during the design of ECMAScript 2015, and in particular all the
feedback on the Proxy API

References
• Caja: https://developers.google.com/caja

• Sealer/Unsealer pairs: <http://erights.org/elib/capability/ode/ode-capabilities.html> and <http://www.erights.org/history/
morris73.pdf>

• SES: https://github.com/tc39/proposal-ses and https://github.com/Agoric/SES (past incarnation at https://github.com/
google/caja/wiki/SES)

• Realms: https://github.com/tc39/proposal-realms (original at https://github.com/FUDCo/ses-realm)

• Subsetting ECMAScript: https://github.com/Agoric/Jessie

https://developers.google.com/caja
http://erights.org/elib/capability/ode/ode-capabilities.html
http://www.erights.org/history/morris73.pdf
http://www.erights.org/history/morris73.pdf
https://github.com/tc39/proposal-ses
https://github.com/Agoric/SES
https://github.com/google/caja/wiki/SES
https://github.com/google/caja/wiki/SES
https://github.com/tc39/proposal-realms
https://github.com/FUDCo/ses-realm
https://github.com/Agoric/Jessie

