
Vrije Universiteit Brussel
Faculty of Sciences

Department of Computer Science
and Applied Computer Science

A Prototype-based Approach to Distributed Applications

Dissertation submitted in partial fulfillment of the requirements for the degree of
Licentiaat in de Informatica

Tom Van Cutsem
Stijn Mostinckx

Promotor:
Prof. Dr. Theo D’Hondt

Advisors:
Wolfgang De Meuter

Jessie Dedecker

June 2004

c© Vrije Universiteit Brussel, all rights reserved.

Abstract

With the advent of ever cheaper, more stable and more powerful mobile devices
and their integration via wireless networks, a new branch of applications is emerg-
ing. The construction of such mobile, flexible and distributed applications place
an enormous burden of complexity on the programmer’s shoulders. To keep such
software maintainable and robust, the programming language in which it is writ-
ten should introduce the necessary abstractions to master this complexity. Most
of the contemporary programming languages fail in providing the necessary lan-
guage constructs. These languages fall short in their task of making it feasible to
create such extensible applications that run in an open, dynamically determined
distributed topology.

This dissertation proposes an object-oriented distributed programming language
which allows objects to be structured in a flexible and distributed way. The lan-
guage is prototype-based yielding a more flexible programming medium than its
class-based alternatives. The proposed language, called dPico, allows for soft-
ware to be structured by applying the principle of inheritance in prototype-based
languages between distributed objects. Such object relations help us to restrict
a number of problems arising in concurrent and distributed environments. The
dissertation considers the domains of prototype-based, concurrent and distributed
languages. Subsequently, the proposed language is founded with a concurrency
and a distribution model. The models selectively inherit concepts from prior pro-
gramming languages and paradigms.

Acknowledgements

First of all, we would like to thank Prof. Dr. Theo D’Hondt for promoting our re-
search. Special thanks go to our advisors Wolfgang De Meuter and Jessie Dedecker
for the many ideas they have proposed, the many discussions that have led to the
improvement of this text and for proof-reading this lengthy dissertation. Without
them, this dissertation would not be what it is today. We would also like to thank
them for having given us the necessary space where we could spend our time dis-
cussing and writing this text.

Thanks also to all members of the Programming Technology Lab for the dis-
cussions and feedback during the various presentations. Our gratitude also goes
to the Department of Computer Science of theVrije Universiteit Brusselfor the
education and for exposing us to the many facets of computer science.

We would also like to thank our girlfriends Natalie and Sara for their love and
support throughout the year. Many thanks go to our parents for providing us with
an excellent education and environment to work in. Finally, we would like to thank
one another for the good understanding which has made it possible to achieve more
together than we could have achieved by ourselves.

Contents

1 Introduction 1
1.1 Designing a Distributed Programming Language 1
1.2 Prologue: An Ambient Intelligence Scenario 3
1.3 Required Language Characteristics 5
1.4 Language Engineering Approach 6
1.5 Dissertation Roadmap . 7

2 Prototype-based Languages 8
2.1 Introduction . 8
2.2 Modelling Our World . 8
2.3 Classes Versus Prototypes . 10

2.3.1 Prototype-based Languages: Advantages 12
2.3.2 Prototype-based Languages: Drawbacks 12

2.4 Prototype-based Language Features 13
2.4.1 Slots and Variables . 14
2.4.2 Object Creation . 14
2.4.3 Dynamic Modification 14
2.4.4 Delegation and Sharing Mechanisms 16
2.4.5 Split Objects . 18
2.4.6 Conclusion . 19

2.5 An Overview of Prototype-based Languages 20
2.5.1 Self: The Power of Simplicity 20
2.5.2 The Agora Language Family 29
2.5.3 A Prototype-based Extension of Pico: Pic% 37

2.6 Conclusion . 52

3 Object-Oriented Concurrent Languages 53
3.1 Introduction . 53
3.2 An Overview of Concurrency Models 53

3.2.1 The Actor Model . 54
3.2.2 Threads and Monitors 56

3.3 Concurrency Issues . 58
3.3.1 Race Conditions . 59

i

CONTENTS ii

3.3.2 The Inheritance Anomaly 61
3.4 Adding Concurrency to an Object-Oriented Language 63

3.4.1 Object-Based Concurrency Features 64
3.4.2 ABCL: an Integrative Object-based Approach 65

3.5 Conditional Synchronization . 69
3.5.1 Evaluation Criteria . 70
3.5.2 Conditional Synchronization Schemes 71
3.5.3 Summary . 78

3.6 Conclusions . 78

4 Distributed Programming Languages 80
4.1 Introduction . 80
4.2 Issues in Distributed Programming Languages 81

4.2.1 Administrative Domains and Mobile Computation 81
4.2.2 Safety . 82
4.2.3 Security . 83
4.2.4 Referencing Remote Objects 84
4.2.5 Remote Method Invocation 86
4.2.6 Object Mobility . 89
4.2.7 Persistence and Transaction Management 90
4.2.8 Partial Failure Handling 90
4.2.9 Distributed Garbage Collection 91

4.3 Code Mobility . 93
4.3.1 Weak Versus Strong Code Mobility 94
4.3.2 Advantages of Strong Code Mobility 94

4.4 Evaluation of Prototypes for Distribution 95
4.5 An Overview of Distributed Programming Languages 99

4.5.1 Emerald . 100
4.5.2 Argus . 104
4.5.3 dSelf . 106
4.5.4 Obliq . 108
4.5.5 Borg . 112
4.5.6 Summary . 115

4.6 Conclusion . 116

5 cPico: a Concurrent Pic% 118
5.1 Situating The Model . 119

5.1.1 A Case for Concurrent Models: Fibonacci 120
5.2 The Pic% Model Reconsidered 123
5.3 Concurrency Concepts . 124

5.3.1 Active Objects . 124
5.3.2 Serialized Objects . 126
5.3.3 Asynchronicity and Promises 130
5.3.4 A Uniform Active Object Model 133

CONTENTS iii

5.3.5 Concept Overview . 134
5.4 Parent Sharing . 134

5.4.1 Scope Functions . 134
5.4.2 Advantages of Parent Sharing 137
5.4.3 Deadlocks Using Parent Sharing 138

5.5 Mixed-Object Delegation Patterns 139
5.6 Conditional Synchronization . 141

5.6.1 Synchronization via Promise Chasing 142
5.6.2 Call-with-current-promise Synchronization 144

5.7 The Pic% Model Reconsidered, a Second Time Around 151
5.7.1 Automatic Locking . 151
5.7.2 Call Frames Versus Objects 153
5.7.3 Dynamic Scope . 154
5.7.4 Object Creation . 156
5.7.5 Natives . 157
5.7.6 Summary . 159

5.8 Implementation . 159
5.8.1 Promise Representation 159
5.8.2 Supporting Static Scope in Pic% 161
5.8.3 Garbage Collection of Active Objects 162

5.9 Epilogue: Delegation Versus Synchronization 164
5.10 Conclusion . 166

6 dPico: a Distributed Pic% 168
6.1 Objectives . 169

6.1.1 Targeted Applications 170
6.1.2 Extending The Concurrency Model 170
6.1.3 Object Extensions Revisited 172

6.2 Distributed Parameter Passing Semantics 178
6.2.1 Publishing Objects . 179
6.2.2 Parameter Passing and Return Values 180
6.2.3 Passing Delegation Links 181

6.3 Implications for Parent Sharing 181
6.3.1 Mixed Inheritance . 182
6.3.2 Parallel Inheritance . 183
6.3.3 Summary . 186

6.4 Distributed Object Inheritance 187
6.4.1 Active Object Extensions 187
6.4.2 Active Scope Functions 190

6.5 Active Object Method Invocation 192
6.5.1 Active Object Delegation 193
6.5.2 Applying an Active Closure 194
6.5.3 Minimizing Network Traffic 196

6.6 Service Discovery: First Contact 197

CONTENTS iv

6.7 An Example: a Distributed Chat Client 199
6.8 Promises in a Distributed Context 202

6.8.1 Remote Promises . 203
6.8.2 Automatic Continuations 203

6.9 Transmitting Environments: Basic Mobility 207
6.10 Security and Safety Issues . 208
6.11 Limitations . 210
6.12 Proof of Concept Implementation 212
6.13 Conclusions . 213

7 Conclusions 215
7.1 Reflections on cPico and dPico 216
7.2 Rough Edges to The Proposal . 216
7.3 Directions for Future Research 218

7.3.1 Split Objects . 218
7.3.2 Partial Failure Handling 219
7.3.3 Multivalues . 219
7.3.4 Mobility Abstractions 220
7.3.5 Distributed Garbage Collection 220

A Pic% Semantics 221
A.1 Basic Pic% Semantics . 221

A.1.1 Abstract Grammar Entities 221
A.1.2 Evaluation Rules . 223

A.2 Reintroducing Static Scope . 227
A.2.1 Scope Functions . 229

A.3 Concurrency Model Semantics 229
A.4 Distribution Model Semantics 230

A.4.1 Message Definition . 231
A.4.2 Representing Virtual Machines 231
A.4.3 Active Object Method Invocation 232
A.4.4 Active Object Extension 233

B Examples 235
B.1 The Same Fringe Problem . 235
B.2 A Distributed Chat Client . 239

C Natives 240

Bibliography 241

Index 249

List of Figures

2.1 Late binding of Self . 11
2.2 Split Objects . 19
2.3 Differential Copy Delegation . 20
2.4 Changing Object Behaviour via Parent slot assignment 27
2.5 Simple Layout of a Pic% Object 44
2.6 Interference of Lexical scope with cloning 46
2.7 Pic% Object Layout Revisited 47
2.8 Effect of a cloning operation on a Pic% Object 48

3.1 Behaviour Replacement in the Actor Model 55

4.1 Cyclic garbage distance increases unbounded 93

5.1 Example of using Scope functions 136
5.2 Deadlock between objects in a parent-child relationship 139
5.3 Promise Chasing for Conditional Synchronization 143
5.4 Incremental Parent Locking . 152
5.5 Pic% Object and Frame representation upon method invocation . . 154
5.6 Static versus dynamic functional mixins 158

6.1 Object extension usingcapture versus usingview 173
6.2 Applying a mixin method to an object 174
6.3 Applying a cloning method to an object 175
6.4 Restructuring Active Parent-Child relations with mixed inheritance 182
6.5 Restructuring Active Parent-Child relations with parallel inheritance 184
6.6 Identifying context parameters in parallel hierarchies 185
6.7 Super send problems with a unified view construct 188
6.8 Active view creation with location of context parameters 189
6.9 Active Mixin Method Application 191
6.10 Deadlock using Active Scope Functions 192
6.11 Active Object Method Evaluation Context 195
6.12 Applyingcopydown . 196
6.13 Broadcasting amembers request 199
6.14 Using Remote Promises to support Automatic Continuations . . . 204

v

LIST OF FIGURES vi

6.15 Using Promise forwarding to support Automatic Continuations . . 205
6.16 The Promise State Diagram . 206

7.1 Categorizing Languages According To Key Language Features . . 217

List of Tables

2.1 General comparison between class- and prototype-based languages 11
2.2 Basic Pico Syntax . 38
2.3 Definition and Declaration related to Visibility and Mutability . . 48

3.1 Comparison of Conditional Synchronization schemes 78

4.1 Illustration of the Borgsync primitive 114

6.1 Summary of Natives Supporting Parallel Hierarchies 187

A.1 The Pic% basic language values 222

vii

Chapter 1

Introduction

With the advent of increasingly smaller and mobile devices such as cellular phones
and PDAs, a growing demand for more flexible software is emerging. Contem-
porary devices tend to become increasingly more capable of running full-fledged
software applications. They have become cheaper, more stable and lots of these
devices are not isolated but rather collaborate in increasingly growing networks.
The networks themselves have also evolved. Especially with the breakthrough of
wireless networks, collaboration between mobile devices has become an affordable
reality. Because of the dynamicity involved, a new software engineering domain is
bound to emerge if one wants to stay in control of thesoftwarethat runs on these
devices and that regulates their collaborations. This will involve the development
of new design notations, programming languages, runtime support and so on.

One vision that incorporates software for such evolved computational environ-
ments is that ofAmbient Intelligence(AmI) (ISTAG, 2003). This vision observes
an evolution towards personalized small devices that interact with computers that
have become invisible and embedded in the environment. This part of the vision
is also called ubiquitous computing (Weiser, 1991). Such computing environments
surround the user like a “processor cloud”, termed a Personal Area Network (PAN).

In order to create such a digital habitat, many hardware-related problems re-
main yet to be solved. This is more commonly known as the branch ofmobile
computing. This dissertation will focus on the software aspect of Ambient Intelli-
gence. Our main interests encompass theprogramming languagesthat will be used
to develop programs that work in – and interact with – a dynamic, flexible, mobile
and open computing world. It is one of the basic hypotheses of this work that con-
temporary programming languages are not sufficient to cope with the dynamicity
engendered by the hardware constellation described above.

1.1 Designing a Distributed Programming Language

The main contribution of this dissertation is the construction of a programming
language – called dPico – that is specifically designed to deal withsomeof the

1

CHAPTER 1. INTRODUCTION 2

problems imposed by the vision of AmI. dPico is an object-oriented program-
ming language. Yet, it does not feature classes. Rather, it is a classless, so-called
prototype-basedlanguage, where objects are used both to build abstractions as well
as to execute programs. dPico is also adistributedprogramming language, where
objects running onmultiple virtual machines can communicate with one another.
The language is an offspring of an existing prototype-based language – Pic% –
which itself builds upon the programming language Pico (D’Hondt, 1996).

From the description of the vision of Ambient Intelligence, it should be clear
that the computing environment is both highlyconcurrentand highlydistributed,
due to multiple programs running on multiple devices. When considering class-
based languages in a distributed programming environment, a lot of technical is-
sues arise which render the usability of classes in our envisioned context ques-
tionable. We argue in favour of prototype-based languages because they appear to
suffer less from the increased complexity of flexible, distributed environments than
their class-based counterparts. Our reasons for abandoning classes and resolutely
favouring the prototype-based language paradigm will be extensively defended.

When multiple people are running applications on different devices, and these
applications are communicating with each other, concurrency naturally occurs.
Therefore, the programming language used to build these applications should be
equipped with a solidconcurrency modelthat brings some order in the chaos of
objects concurrently sending messages to each other. This is necessary as concur-
rent programs have to deal with problems that simply do not exist in sequential
languages. Typical concurrency issues arerace conditionsand thesynchroniza-
tion of multiple programs. We have devoted a considerable amount of effort to
studying existing concurrent programming languages. Since our choice was to
use a prototype-based language, we have particularly studied the domain of con-
current prototype-based languages. This domain appeared to be left largely unex-
plored, with the exclusion of a few notable exceptions, such as the language ABCL
(Yonezawa et al., 1986). This language proved to be an important source of in-
spiration for our own concurrent extension of Pic%, baptized cPico. It has never
been cPico’s goal to support concurrency to allow for writing efficient parallel al-
gorithms. Rather, it employs a concurrency model that was explicitly designed to
model collaborating processes.

The development of dPico has thus been an evolutionary process, going from
Pic% to cPico first, trying to conquer the concurrency issues. The additional dis-
tribution issues that had to be tackled were subsequently introduced, leading to the
language dPico. To be able to know precisely whatkind of problems one encoun-
ters in a distributed computing environment, the field of distributed programming
languages was also subject to inspection. We have analyzed several existing dis-
tributed languages to see how they cope with the problems at hand.

One of the original contributions of dPico is that it exploitsdistributed inher-
itance– the structural relationship ofinheritanceor delegationamong objects ap-
plied in a distributed context. As will be argued, the idea of having a “parent”
object that can be located on a different machine proves to be beneficial in a dis-

CHAPTER 1. INTRODUCTION 3

tributed context, especially when this parent object can besharedbetween mul-
tiple children. Such sharing mechanism is known asparent sharing(De Meuter
et al., 2003b), and is one of the distinguishing features of many prototype-based
languages. This type of sharing seems to offer innovative ways to tackle some of
the concurrency and distribution issues by encapsulatingshared statein a shared
parent.

This dissertation will describe the extension of a minimal prototype-based lan-
guage to a small distributed language. This language was specifically designed
to allow for expressive parent sharing between concurrent as well as a distributed
objects. In concrete, a dPico program consist of a set of plain objects that may
be scattered across multiple virtual machines. Shared state is encapsulated in ob-
jects that are modelled asshared parents. dPico will provide the necessary object
structuring mechanisms to facilitate such organizations.

Notice that our proposed language will not be able to cope with all of the
problems that arise in an Ambient context. It has never been our goal to create
a full-fledged programming language, since this is clearly out of the scope of this
dissertation. Issues such as mobility, distributed exception handling and partial
failures are not touched upon. Rather, the main driving force behind this research
is the exploration of how well prototypes and parent sharing structures perform in
a distributed setting. The overwhelming complexity of an Ambient environment
will only be tackled when research from many hardware- and software-oriented
fields can be combined consistently. Our contribution is a minimal yet executable
and expressive programming language that can serve as an initial model for further
research.

1.2 Prologue: An Ambient Intelligence Scenario

We will explore the vision of Ambient Intelligence in a bit more detail by describ-
ing a scenario that builds upon one of the scenarios stipulated in the visionary
document on Ambient Intelligence developed by the IST Advisory Group (ISTAG,
2003). From this scenario, we will subsequently distill some of the features we
deem necessary for a language capable of expressing programs in an AmI context
in section 1.3.

In the “Maria - Road Warrior” scenario we follow the interaction of Maria
with her P-Com (a hand-held device used to interact with other devices in an AmI-
enabled world). The ISTAG scenario sketches Maria’s path to a sales pitch she is
giving abroad. We see her preparing the meeting, and take the plane to get there,
but the meeting itself is largely skipped in the original scenario. This scenario
fills that gap and will give the reader a feeling of the type of software applications
inhabiting an Ambient world.

CHAPTER 1. INTRODUCTION 4

Maria enters the seminar room and her P-Com automatically detects and con-
nects to the projector, requesting and downloading a control object. The P-Com
adjusts the colour scheme just a bit to match Maria’s preferences. The control ob-
ject is added to her presentation software after which the output of the presentation
window is redirected to the projector screen. Maria’s other programs remain local
on her P-Com.

She opens her sales presentation and activates it. The document asks for her
password and begins decrypting itself, as the negotiators of AmbientSoft enter the
room. A few minutes later Maria closes the door, signalling that she wants to start.
The attending secretary activates her own P-Com and fires up the laser keyboard,
ready to take notes.

Maria starts the presentation by introducing her product – a Human Resource
Management software package – to the negotiators. Maria knows it won’t be easy
to convince her audience because of the many competitors on the market. Sud-
denly, she is disrupted by the secretary’s P-Com, suddenly beeping. Apparently a
phone call had come in that her software answer machine deemed urgent enough
to break the meeting communication barriers. The secretary beams her document
along with the running word processor to the negotiator on her left and rushes out
to answer the call. The man in turn activates his laser keyboard and signals that
Maria can continue.

As the meeting progresses, the situation seemed to deteriorate. Maria feels
that the interactive demo programs that were incorporated in her presentation to
compare her own package to the competitors’ did not have the impact she had
hoped for. She figured that her company would not even get the chance for a full
presentation for the board of AmbientSoft if she could not convince the negotiators.

She decides to take some risk and to go beyond the interactive demo in an
active document. She downloads the prototype of AmbientSoft’s customized front-
end for her company software. The front-end – designed to run on a workstation
– proves to be too heavy for her P-Com. Fortunately, her P-Com detects that the
hotel offers a secure deployment server. For safety, Maria adds her own encryption
to the program, then migrates it to the hotel server.

Having shown the customized prototype, Maria feels more confident. She
knows her product, and is able to highlight its strengths with the full-blown version.
Her P-Com had connected the real application with the back-end running on the
hotel server and the front-end using the projector control object. This demonstra-
tion allows Maria to refute most of the criticisms she receives on her presentation
demos.

When the presentation has come to an end, the negotiators start an anonymous
vote to evaluate Maria’s product. A voting agent is broadcast to every negotiator’s
P-Com. After all votes have been placed and the results collected, the sales meeting
is finished. Tired yet satisfied, Maria leaves the room. Her P-Com goes out of the
projector’s range, automatically relinquishing control over the projector.

CHAPTER 1. INTRODUCTION 5

1.3 Required Language Characteristics

Looking back on the scenario, chances are high that the language in which software
for AmI will be written will probably not be contemporary languages such as Java
or C++. Although it is known from Church’s Thesis that all Turing-complete pro-
gramming languages are equally powerful, we are concerned with theexpressivity
with which a certain problem can be solved in a language. AmI Softwarecanbe
written in contemporary languages but we argue that this will be an extremely dif-
ficult task. The complexity that is needed to program the scenario’s applications is
enormous due to the dynamism that is inherently present in the environment with
which the devices interact. More expressive languages are required to better fit
these requirements and to make the construction of complex interacting applica-
tions easier.

Some language features will now be highlighted that can be observed in the
scenario proposed above. A number of these features were already identified in
(De Meuter et al., 2003a).

Distributed Object Inheritance Traditionally, inheritance has been used in pro-
gramming languages to support code reuse. Inheritance in prototype-based lan-
guages can be used to support more interesting behaviour, however. The inheri-
tance relation could e.g. be used to “connect” distributed objects. This is illustrated
in the scenario via the control object for the projector. This object stays logically
connected to the projector. It offers Maria an interface to the projector. Such inter-
faces can be modelled as views or extensions of the object that represents the actual
projector. The parent link of such interface objects can refer to remote objects. Fol-
lowing De Meuter (2004), we believe such parent sharing to be a key ingredient of
distributed object systems. The key difference between parent sharing and sharing
through composition is the sharing relation itself: the composition link is replaced
by adelegationlink, allowing for safer, more encapsulated and bidirectional com-
munication. In (Dedecker and De Meuter, 2003) these ideas are further explored
in the context of mobile agents.

Strong Code Mobility The scenario also introducesstrong code mobilitywhich
implies that running programs can bemigratedor moved from one machine to
another. When the secretary beams her running word processor to another person,
the word processor itself continues to work as if nothing happened. This kind
of migration is not achieved with for example today’s applet technology, since
applets need to be restarted when they arrive at a new machine. In such models,
the programmer has to write his software in partitioned “states” depending on the
location where the code is executing. In an environment where objects and code
can be moved so freely, this would quickly lead to code which is hard to understand,
develop and maintain. Although Strong Mobility is an important language feature,
we will not consider it in detail in this dissertation.

CHAPTER 1. INTRODUCTION 6

Broadcast Communication The voting agent is concurrently broadcasted to the
P-Com of all negotiators. This sort of communication could be achieved expres-
sively by being able to send a message to some“collection” of objects, representing
the identity of all registered P-Coms. A reception system is needed to be able to
submit all votes safely upon completion. Multivalues (De Meuter et al., 2003a)
provide for a suitable representation of such dynamic collections of objects. Al-
though we have performed several gedankenexperiments regarding multivalues,
this dissertation will not consider them any further.

Autonomous Processes A language for AmI environments should cope with
concurrency: multiple programs will be running multiple tasks simultaneously.
Such languages need constructs to easily create and manipulate processes. Ide-
ally, these processes should be as autonomous as possible, being able to migrate
quickly to other Ambient devices. Communication between processes should be
made transparent (with respect to e.g. location of execution) to conquer the com-
plexity inherent in an Ambient world. Much of our work has revolved around the
creation of such a process model.

As already explained, not all of these language features have been investigated
in our work, but listing them explicitlydoesgive the reader a good feeling about
the type of language we envision. Our work has to be considered as a small, yet
essential, constituent of such a language. It investigates the interaction between
prototypes, delegation, concurrency and distribution.

1.4 Language Engineering Approach

The design of a concurrent and distributed programming language has lead us
to consider both languagefeaturedesign, which is concerned withinnovation,
and languagedesign, which is aboutintegration. The difference between both
is stressed in the classical paper by Hoare (1973). We wish to uncover some of
the key features that allow programmers to write elegant, readable, maintainable
and robust programs that can cope with a dynamic environment. Subsequently,
it should be ensured that the implemented features integrate well into an existing
prototype-based language. We have tried to combine both the activities of innova-
tion and integration.

Striving forminimalityin the language is important if one does not want to end
up with language features interacting in non-predictable ways. This vision towards
language engineering is defended in (Smith and Ungar, 1995), where the authors
extensively report on their experiences in designing the programming language
Self. Smith and Ungar (1995) coin the termthe language designer’s trapto denote
the temptation of language designers to add features because they merely allow
for appealing examples. Concepts should be added to a language sparingly, if the
language is to remain clear for the programmer. Moreover, “example programs”
that cannot be covered by existing language features should yield in a redesign of

CHAPTER 1. INTRODUCTION 7

those features, not in a reflex to add new features to cover them.
Throughout the dissertation, we have taken aniterative andexperimentalap-

proach to language engineering, where the final language is the product of a se-
quence of iterations. Each iteration is supported by a prototype implementation.
Such an iterative approach, augmented with experiments conducted in the proto-
type implementation, allows for inconsistencies to be detected earlier such that
language features can be refactored in subsequent iterations. A consequence of
this approach is the gradual extension of Pic% in two parts. First, the design and
implementation of cPico – a concurrency model for Pic% – is discussed. Only then
a distribution model is built on top of the constructed concurrency model.

1.5 Dissertation Roadmap

The dissertation starts out with an extensive overview of the fields of prototype-
based, concurrent and distributed programming languages. Having established the
necessary background, we will turn to our own research results, featuring the exten-
sion of the prototype-based language Pic% to a concurrent respectively distributed
programming language.

The field of prototype-based object-oriented programming is introduced in
chapter 2. Chapter 3 will then introduce some of the problems that arise when writ-
ing concurrent object-oriented programs. Subsequently, chapter 4 will introduce
relevant distributed programming languages. We will find that these languages in-
troduce problems of their own, leading to new issues in language engineering. We
will discuss where classes fail to solve these issues, while prototype-based lan-
guages are able to cope with some of them in section 4.4.

The creation of dPico is spread out over two chapters. First, the concurrency
model incarnated in cPico is discussed in chapter 5. The distribution aspects are
subsequently added in chapter 6. The result is the distributed programming lan-
guage dPico, incorporating distributed object inheritance through parent sharing.
The language’s design (and to a lesser extent, its implementation) are discussed, as
well as its limitations.

The dissertation is concluded in chapter 7, reflecting on the achievements and
proposing future work together with some perspectives for future research. In-
terested readers will find an informal specification of the Pic% language and our
extensions in appendix A. These semantics form the basis of our implementation
of an interpreter, written in Java. Finally, appendices B and C conclude the text
with a couple of programming examples in cPico and dPico and an overview of
both languages’ most important concepts.

Chapter 2

Prototype-based Languages

2.1 Introduction

In the previous chapter we have given the reader a basic idea of the problems we
wish to solve by means of a scenario. As we have already mentioned we will
use prototype-based languages to reach this goal. We believe delegation and shar-
ing to be key features of prototype-based languages. This chapter will introduce
prototype-based languages thoroughly but with respect to the way we have used
them to support our thesis.

In section 2.2 we will first introduce how the world is modelled from a prototype-
based perspective. We will then continue by comparing class-based and prototype-
based languages in section 2.3. This will introduce a more thorough discussion of
what constitutes a prototype-based language. We will devote section 2.4 to that
purpose, which concludes the abstract-theoretical introduction of prototype-based
languages. We will then provide an overview of the history of prototype-based
languages in section 2.5. In this overview we will have special attention for three
cases, which will be elaborated. Section 2.6 concludes our discussion on prototype-
based languages.

2.2 Modelling Our World

In the current-day modelling of applications, objects take a prominent place. More
and more programmers are starting to use object-oriented programming languages,
mostly due to the success of languages such as C++ (Stroustrup, 1986) and Java
(Gosling et al., 1996). It is also due to the fact that those languages are so popular
that the impression may exist that object-oriented programming should automati-
cally lead to the use of class-based languages such as the aforementioned Java or
C++ languages. This is far from true, when examining the space of object-oriented
languages with disregard of popularity, we can see that class-based languages form
only half of the spectrum of object-oriented languages (De Meuter, 2004).

This means that there is another, far more unknown sibling in the world of

8

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 9

object-oriented programming. This chapter will introduce the basic concepts of this
sibling, which is calledprototype-based programming. Programming and more
specifically designing applications with prototypes requires essentially different
techniques than the design techniques used in class-oriented design. This is why
we will first explain how the prototype-based view of the world differs from the
more traditional class-based view of the world. We will use a review in the PhD
dissertation of De Meuter (2004) as a starting point. This review in turn is based
on the outstanding article by Taivalsaari (1996).

The fact that the world has been – and still is – dominated by the class-based
view of the world is not surprising. It is in fact a reflection of a way of viewing
the world which has prevailed for over 2000 years. This view, which is the Aris-
totelian view of the world, stems from the ancient Greek philosophers Plato and
Aristotle. They categorized the world into objects which were in fact instances
of ideas. These ideas were abstract entities, which perfectly captured what is es-
sential to be for instance an elephant. And then any elephant was an instance of
this “genus” and since there are no ideal instances there was also some variation
which was denoted by the term “differentia” (corresponding to our current notion
of inheritance). We can easily observe that this way toclassifythe world is very
closely related with the class-based way to organize software. We try to describe
by means of a class, what we consider to be the abstract “genus” of the objects we
wish to describe.

However, some criticism to this approach seems justifiable. In (Taivalsaari,
1996) a lot of problems are presented concerning the view of the Greek school.
The interested reader will find a good overview in this article. We will illustrate
what is relevant in this context by a small experiment. We ask the reader to think
of an elephant, before reading on. Chances are high that most readers will not have
spontaneously thought about an abstract classifying description, such as “a large
grey mammal with a trunk”. Most people think about most concepts, in particular
the ones which are not mathematically formalized, in terms of a few “represen-
tative” instances. This theory of prototypes was amongst others defended by the
twentieth century philosopher Wittgenstein. This approach, based on resemblance
to a specificprototype, found its way to computer science initially through the
development of frame-based languages for knowledge representation in AI appli-
cations (mainly developed by Minsky).

An influential paper by Lieberman (1986) introduced this work into the class-
dominated research area of object-oriented programming. From that point on, the
language theoretical perspective took over in the history of prototype-based object-
oriented languages, in a continuing search for smaller, simpler and conceptually
cleaner languages (De Meuter, 2004). This search will be illustrated by the histor-
ical overview in section 2.5. Before we will present this overview we will provide
a more language-theoretical introduction to prototype-based languages. The next
section will do so by illustrating the differences with class-based languages. We
will continue then in section 2.4 by discussing the features that a prototype-based
language provides in order to allow the programmer to model the world.

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 10

2.3 Classes Versus Prototypes

To explain the basic properties of a platform that features prototypes instead of
classes, we deem it useful to allow the reader to discover the differences in the
paradigm by initially holding both paradigms next to each other. We will explore
the differences using the concepts that were introduced in the Treaty of Orlando
(Lieberman et al., 1987), a taxonomy paper that was written on the occasion of the
OOPSLA conference in Orlando, Atlanta. A similar summary of this treaty can
also be found in (De Meuter, 2004).

Two basic concepts were introduced by the Treaty:EmpathyandTemplates.
Empathy is used to describe how we express that an object “resembles” another
object, and thus reuses behaviour of this “parent entity”.Templatesgenerate ob-
jects from their own image. This concept will thus allow us to generate several
objects which are all very much alike each other, possibly with the exception of a
small amount of state.

The Treaty then describes several ways these concepts can be filled in. Empa-
thy is implemented by prototype- and class-based languages using respectively the
delegationand theinheritancerelation. We assume that the reader is familiar with
the concept of class inheritance.

Delegation was first introduced by Lieberman (1986), to describe the typical
behaviour of an object in a prototype-based system which does not understand a
message. This object will then delegate the message to its parent, while passing
a reference to itself along, such that the receiver of the message does not change.
It is as if the receiving object implicitly states: “I don’t know how to handle [this]
message. I’d like you answer it for me, if you can, but if you have any further
questions, [. . .] or need anything done, you should come back to me and ask”
(Lieberman, 1986). The object is passed along with the request, and due to the
“late binding of self”, it will serve as a callback for futureself sends. This
“late binding of self” is what makes delegation distinct from ordinary message
forwarding1 as is shown in figure 2.1.

Prototype-based languages, like class-based languages introduce aself pseudo-
variable which refers to the object that has received the message. This allows for
the objects to which a message is delegated to query the receiver, should they need
further assistance. We can envision the scenario as follows. An object receives a
messagem, but it has no definitions of it. This means that the receiver itself cannot
handle the request. Therefore it delegates the message to some other object usually
termed aproxy, and it supplies itsself as some sort of callback, should the parent
need additional information, such as instance variables. In our context, this proxy
object will alwaysbe a parent object. Delegating to “parent” objects is also termed
object inheritance.

The Treaty of Orlando defines several degrees of freedom for this empathy

1Unfortunately some confusion exists about delegation since the Delegation Design Pattern
(Gamma et al., 1995) actually explains message forwarding.

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 11

Figure 2.1: Late binding of Self

This figure illustrates the difference between delegation as proposed by Lieberman
(1986) and message forwarding also called delegation in (Gamma et al., 1995).
When delegating all subsequent self sends will thus be sent back to the original
message receiver.

relation, which we shall discuss when we will come back to the matter of delegation
and sharing in section 2.4.4.

The second concept that was introduced in the Treaty is the concept of atem-
plate. We define as templates any structure that allows us to create objects with
a given desired structure. In class-based languages this is achieved through class
instantiation so there we use classes as templates. In prototype-based languages
we have abandoned the notion of classes, in favour of the simplicity we get when
we only have to deal with objects. Thus if we see a particularprototype which we
want to use as a template for a new object, this can be achieved bycloning that
particular object.

Finally Lieberman et al. (1987) also make a distinction between static and dy-
namic templates. This means whether an objects structure can be modified after
creation. In class-based languages a template is typically static. We will discuss
the consequences of taking either option for the case of prototype-base languages in
section 2.4.3. Table 2.1 summarizes the differences observed between class-based
and prototype-based languages.

Class-based languages Prototype-based languages
Empathy through inheritance through delegation

Templates by instantiating classes by cloning objects

Table 2.1: General comparison between class- and prototype-based languages

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 12

2.3.1 Prototype-based Languages: Advantages

We have introduced the general flavour of prototype-based programming, by in-
troducing the two core concepts, delegation and cloning. We will now present
the advantages that prototypes introduce through the use of these simple primi-
tives. Similar enumerations of the advantages of using prototypes are presented in
(Borning (1986), Ungar and Smith (1987), De Meuter (2004)). The most general
observation we can make is that programming with prototypes often simplifies the
problem.

Prototypes simplify the concepts that are present in the design of an application,
since we should only consider objects, and the only relations that exist are the
delegates-torelation and regular composition.

Prototypes allow per-object specification of behaviour. This is useful for ex-
pressing a singleton pattern, as unlike in class-based languages we do not need an
extra class, which is often useless apart from creating the one instance. Further-
more, we can also attribute different behaviour to one object, such as debug code.
In a class-based language this code for a specific faulty object would also affect all
other instances, which is often a huge disadvantage.

Due to cloning, we are able to avoid the case where we have fields in our
newly generated object that are not filled in. In class-based languages we perform
initialization through a constructor call. This call will then specify a plan to create
a new object. Prototypes offer a different metaphor, cloning, which automatically
ensures that no variable is left uninitialized.

One of the contributions of using prototypes, that is often overlooked is that
there is no longer need for an infinite meta-class regress. Most class-based pro-
grams do not suffer from this problem but that is because they do not offer full-
fledged meta-programming. In SmallTalk (Goldberg and Robson, 1989) we can
observe a sophisticated solution to avoid a potentially endless regress of meta-
classes. Whereas we consider this solution a pearl in language design, we nev-
ertheless want meta-programming to besimpler to understand. The main prob-
lem is that in class-based languages, objects are not self-sufficient as they also
require their class to be fully specified. Prototype-based programming offers us
self-sufficient objects to avoid that when a programmer starts to master the lan-
guage, he comes across hidden difficulties, such as a meta-class hierarchy. With
prototype-based languages, he can work with objects at every level.

2.3.2 Prototype-based Languages: Drawbacks

Prototypes are not the holy grail of programming languages, in fact they also have
significant shortcomings in their most primitive form. We will present here a set
of “features” that we find in class-based languages, but which seem to be miss-
ing in some prototype-based languages. These issues are addressed in the Agora-
language family, which will be introduced in section 2.5.2. The language we have
used to support the concepts we will introduce in this dissertation, Pic% is a heir

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 13

of the Agora family, and will be thoroughly introduced in section 2.5.3.
Classification of objects is a powerful tool which is offered by class-based lan-

guages in a very natural way. When writing programs it is often important to be
able to speak about a set of related objects, which share either representation or just
a common interface. In a simplistic prototype-based model that uses only delega-
tion and cloning it is nearly impossible to keep track of how objects are related, as
there is often no relation between an object and the object that it was cloned from.

Another important feature of class-based languages is that they allow us to rea-
son about concepts that are inherently abstract. This can often be impractical, since
in most cases representing concrete things in terms of abstract classes requires a
usually difficult and time-consuminganalysisphase2. Prototypes however enforce
that everything we describe is concrete, i.e. in terms of a concrete realization of
some prototype. When it comes to domains which are severely formalized this can
be a problem as well. Everybody knows what is a queue or a stack, but can we
say that stacks or queues are actually clones of a certain prototype? It seems a bit
awkward to reason about some ideal (prototypical) stack.

Finally, classes decouple an object’s representation from its behaviour. This
makes it possible to more easily protect the behaviour. Though this decoupling
can often be problematic (cfr. the problems mentioned in section 2.3.1), we can
equally foresee some problems if we declare a whole set of objects depending on
some prototype, and this prototype all of a sudden gets modified3. We require some
sort of protection on our prototypes, though we do not want to forbid all changes
to the shared parent, as we consider them to be essential to programming with
prototypes.

We have now introduced some of the problems that arise when programming
with prototypes. These problems have been dealt with by several prototype-based
languages over time. We will present those solutions in section 2.5 which describes
a short overview of the history prototype-based languages. To provide a set of
concepts to assess these different solutions with, we will describe a taxonomy of
language features, that characterize different forms of prototype-based languages.

2.4 Prototype-based Language Features

Over time a wide variety of prototype-based languages has been developed, with
different language features. This may lead to the discomforting feeling that we
can no longer see the global picture of what prototype-based languages are actu-
ally all about. Dony et al. (1992) have therefore tried to develop a taxonomy that
allows us to define in a well-formed way exactly where all these languages fit in.
We think their article provides an excellent basis to reason about prototype-based

2Prototypes lend themselves to a different model of software development where this phase can
be largely skipped, namely Rapid Prototyping Development (De Meuter, 2004)

3This problem was already observed in (Lieberman, 1986) and was dubbed theprototype corrup-
tion problemby Blashek (1994).

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 14

languages, and we will in this section summarize the core concepts introduced in
their taxonomy paper.

2.4.1 Slots and Variables

The first significant distinction we can make when we try to divide prototype-based
languages, is in how they handle variables and methods. Two approaches exist, the
first – classical – one treats variables and methods differently, just as most classical
class-based languages do. This allows for standard mechanisms for visibility to be
applicable in these languages to protect the encapsulation of objects.

Another approach unifies the treatment of variables and methods by unifying
them into one concept calledslots. This is the approach that is advocated by lan-
guages such as Self (Ungar and Smith, 1987) and Agora (Codenie et al., 1994),
which will both be discussed later on respectively in sections 2.5.1 and 2.5.2. When
using slots a variable is “expanded” to a couple of accessors methods. This solu-
tion is indeed a good one since it promotes simplicity, through both a reduction in
the number of available concepts, and by reducing variable accessing to a method
invocation. One problem that remains is that when we use slots we have to define
a new mechanism to restrict visibility of slots, to ensure that encapsulation of ob-
jects remains possible. In the following section we will talk aboutfieldsto denote
respectively slots, or a combination of variables and methods, to abstract from the
path taken in this first branching point.

2.4.2 Object Creation

Object creation is another important matter when designing an object-oriented lan-
guage. Two different approaches exist with respect to how objects are created. The
first one states that any object should have a “parent”. This means that we have
some sort of Root object in the system. We see this phenomenon in class-based
languages as well, for example theObject classes in Java (Gosling et al., 1996)
and Smalltalk (Goldberg and Robson, 1989).

The alternative is to allow ex-nihilo creation of objects. This means that defini-
tions of objects with no parent are allowed. In class-based languages we find that
C++ (Stroustrup, 1986) follows this approach. Should we allow ex-nihilo creation,
we also need to decide whether we only allow the creation of empty new objects, or
whether we allow new objects to have some initial behavior. It may seem strange
to consider the creation of empty objects, but this should be seen against the light
of the dynamic modification, which we will discuss in the next section.

2.4.3 Dynamic Modification

One of the most important issues to decide when defining the semantics of a
prototype-based language, is to decide whether or not we allow dynamic modifica-
tion of object structure, i.e. adding and removing fields at runtime. This decision

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 15

should be considered with great care as its repercussions on the final language are
huge. Therefore we will go into more detail here, to explore what solutions exist.
First of all, we will explain why this decision is so important.

2.4.3.1 Reasons for Dynamic Modification

When we decide on whether we allow dynamic modification in our language this
has repercussions on the aforementioned object creation. This is also why it is ac-
tually the second branching point in the hierarchical taxonomy (Dony et al., 1992).
If we do not allow dynamic modification we can rule out a set of trivial languages
that do not allow ex nihilo creation, or that only allow creation of empty objects.
Similarly if we allow dynamic modification we can reduce the case where we have
creation with initials to a shorthand for creation of empty objects with subsequent
modifications.

Adding dynamic modification to a prototype-based greatly enhances the flexi-
bility that is offered by the language. Since in most cases it is exactly this flexibility
that leads us to using prototypes in the first place, this is indeed a powerful feature.
Moreover it also has a few very concrete benefits for the practice of software en-
gineering itself. Consider a running program in which we spot some unexpected
behaviour. If dynamic modification is allowed in our language we can specify new
behaviour at runtime4 of some objects which gives us additional information about
for example the state of the objects etc.

2.4.3.2 Forms of Dynamic Modification

The most basic form of dynamic modification is the addition and deletion of fields,
on an object in a running system. More elaborate forms exist for example in Self,
which makes the parent slots first class entities. In Self we can thus assign new
objects to act as the parent to which we delegate our messages. We elaborate
further on this in section 2.5.1.3 to show how this facility allows the expressive
translation of the State Design Pattern described by Gamma et al. (1995).

2.4.3.3 Repercussions

Allowing dynamic modification in a prototype-based language offers a lot of power
to its users, but it is also one of the main sources to the justifiable criticism that most
prototype-based languages (especially those that allowwild modifications) are too
“flexible” to create realistic software with (De Meuter, 2004). This criticism will
be dealt with by the Agora-family of prototype-based languages which will be
discussed in detail in section 2.5.2.

4We can for example replace a method body by first removing the method and then re-adding a
method with behaviour that allows us to debug the object

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 16

2.4.4 Delegation and Sharing Mechanisms

Another very important decision is how we implementsharing relationsin the
language. Sharing is one of the key features of prototype-based languages, and
thus many variants exist on this theme. In our context sharing will prove to be an
essential part of our model as we will demonstrate in chapter 6. Because choosing
one specific solution has a considerable influence on the semantics of the language,
we will devote a considerable amount of space to this topic. First we will introduce
a taxonomy of sharing relations. Afterwards we will look at the ways these sharing
relations are achieved in different languages.

2.4.4.1 A Taxonomy of Sharing

We will divide the set of sharing relations based on five criteria, compiled from
several sources. The last three rules correspond to the degrees of freedom for
empathy, or sharing as we prefer to call it, identified in the Treaty of Orlando
(Lieberman et al., 1987). These concerns are presented last since they are only
relevant tolife-time sharingrelations, which are introduced below.

What The first criterion in the taxonomy is based the on the three different types
of sharing identified by (Bardou, 1996). These types of sharing are distin-
guished based onwhat is shared.

1. name sharingimplies that objects share an interface, this means that
objects have a field with the same name.

2. property sharingmeans that the objects effectively share the field, this
means that the parent object has the field, and the child accesses it
through a delegation link or a similar mechanism.

3. value sharingmeans that both objects each (conceptually) have a field,
which points to the same value. The difference between both will be-
come clear when we introduce Split Objects in section 2.4.5.

When The next criterion focusses onhow longthe sharing relation holds. In doing
so (Dony et al., 1992) can distinguish between two types of sharing

1. creation-time sharingcorresponds to thecloning metaphor in most
prototype-based languages. It is a sharing relation where the sharing
is only explicit at the creation time of the object. This means that any
subsequent change to the object that served as a prototype is not re-
flected in the new object. As such the only sharing relation of the ones
we have just introduced that allows this isvalue sharing.

2. life-time sharing. Life-time sharing means that the link between both
objects is not disconnected. Typically this type of sharing is achieved
by means ofdelegation, though this is not the only way as will be
illustrated shortly, when we introduce the non-delegating languages.

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 17

Dynamicity This concern expresses whether the sharing relation can be modified
at run-time. Self is an example is a language that allows such dynamic mod-
ifications of the delegation link of its objects.

Explicitness We wish to know whether the sharing needs to be expressed explic-
itly or whether it is an implicit feature. We will discuss the different alter-
natives with respect to this fourth property in the next sections, when we
discuss in detail the ways sharing can be achieved in prototype-based lan-
guages.

We will use the taxonomy we have just introduced to look at how prototype-based
languages can implement these sharing relations.

2.4.4.2 Non-delegating Languages

In our introduction we have explicitly not talked about a “delegation” relation,
though this is a sharing relation, as is noted in (Bardou, 1996). Delegation is with-
out a doubt the single most common one for prototype-based languages, but lan-
guages such as Kevo, which was developed in the PhD dissertation of Taivalsaari
(1993), do not delegate messages but use aconcatenationstrategy. This means that
when we specify a new object by extending an object with a set of new slots5, we
actually copy down all the slots of that object.

This implies that when changes are made to the object which was the target
of extension, the extended object will not see this. Kevo’s concatenation thus in-
troduces creation-time value sharing, not life-time sharing. Kevo in fact inverses
the roles attributed to cloning and extension by Dony et al. (1992) since Kevo’s
cloning operator causes life-time sharing, not through the extra indirection that the
taxonomy proposed, but via the use of first-classcloning families.

Cloning families allow us to maintain a reference to all objects that are simi-
lar to the object in question. This reflect the original ideas by Wittgenstein which
proposed a link between objects based onsimilarity. Properties can then be ma-
nipulated both on per-object level, and per-group level. By means of the per-group
level manipulations we create a form of explicit life-time value sharing.

Obliq (Cardelli, 1994) is another example of a non-delegating language, it uses
the termembeddinginstead of concatenation, but the concept is similar. Obliq
does not have cloning families, however, as the embedding strategy is employed
with distribution in mind. Obliq will be discussed in detail in section 4.5.4 as part
of the existing distributed languages presentation.

2.4.4.3 Explicitly Delegating Languages

Next to the concatenation strategy of Kevo and Obliq, there is also the alternative
of making delegation explicit. This necessitates a way to intercept the messages

5This is by all means equivalent to defining an object that delegates to a parent

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 18

that we want to delegate, as well as a way to express delegation without confusing
it with ordinary message sends (Dony et al., 1992). The difference between both is
important due to the different treatment ofself . At first it may seem cumbersome
to force the programmer to explicitly control which messages should be delegated,
but on the other hand it does add to the power of the language since we can specify
more difficult delegation schemes by delegating messages to different “parents”.

An example of such a language that offers a form of explicit delegation is
MOOSTRAP (Mulet and Cointe, 1993). The design goal behind MOOSTRAP is
to provide a reflective kernel for a prototype-based language. The language itself
does not have delegation, but its reflective capabilities can be used to introduce
delegation, through specification of a delegating meta-object. MOOSTRAP uses
an approach that is quite unique as it reifies a message send as a two phase process
of lookup and application which was first introduced in (Malenfant et al., 1992).

For lookup, a method in the meta-object is used6. Thus the user can introduce
seemingly implicit delegation by defining a delegating meta-object. However since
the lookup is reifyable, the programmer can implement any delegation scheme
he wishes, which makes this a form of explicit delegation. We will discuss the
sharing potential of delegation after having discussed implicit delegation, since
this is basically the one we will mimic using the meta-techniques of MOOSTRAP.

2.4.4.4 Implicitly Delegating Languages

Most prototype-based languages qualify for this category as they implement a vari-
ant of the implicit delegation scheme that is introduced in (Lieberman, 1986). This
means that messages that are not understood at the current level are automatically
delegated to the parent object. We have already introduced this form of delegation
in section 2.3, when we have compared it to class-based inheritance.

Delegation automatically introduces a “parent sharing” relation as is discussed
in (Bardou, 1996). How we fill in this life-time sharing relation will affect whether
we support Split Objects or not. This final step in the taxonomy is the topic of the
next section.

2.4.5 Split Objects

We will now turn our attention to the second choice in our taxonomy of sharing,
namelywhat is shared. This decision is also represented in the taxonomy, as the
choice of whether or not the language handles split objects.

A split object (Bardou and Dony, 1996) is a set of objects connected through
parent links. The typical example consists of a person object, that has for example
a name and some personal attributes. This person appears in different roles to the
outside world, to his employer he is an employee, to his wife, he is a husband,
etc. . . Each of these roles has specific attributes, but however there is but one
conceptual entity/identity. In this case we will support this by letting the roles

6which shortcuts its own lookup, to avoid infinite meta-regress

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 19

share the “properties” of their parent. This means that if changes are made through
one of the roles an object plays in the system, these changes are reflected in the
parent. Figure 2.2 shows how split objects interact, and shows their relation to the
single real identity, which is the person object.

Figure 2.2: Split Objects

Another option is to view the extension by delegation, which is known as the
differential copyapproach (Bardou, 1996). Consider we know an elephant named
Clyde and later we learn about another elephant Fred. We then create a hierarchy
in which we refer to Clyde for information we have no specific knowledge about
concerning Fred. This is illustrated in figure 2.3. Now consider Fred loses a leg,
we of course do not want all elephants to suddenly have three legs.7 In this case we
deal with two identities being Clyde and Fred, and we will actually let child objects
share the “values” of their parent. This means that conceptually we have a “lazy
copy-down” of slots when they are changed in the child. The prototype-based
language NewtonScript (Smith, 1995) for example uses such a “value sharing”
strategy (Bardou, 1996).

2.4.6 Conclusion

We have used the taxonomy of Dony et al. (1992) to introduce in this section the
concepts that need to be considered when designing a prototype-based language.
First of all we should decide whether we want to unify variables and methods in
slots. Furthermore we should also consider how objects are created, and whether it
should be possible to modify the structure of objects, after they have been created.
Another very important issue is what type of sharing relation we impose between
different objects. We have devoted a considerable amount of space to provide some
insight on the different solutions that exist, as this choice is from our point of view

7note that this example is the exact inverse of the one in (Lieberman, 1986) which deals with the
prototype corruption problem(Blashek, 1994)

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 20

Figure 2.3: Differential Copy Delegation

the most important choice to make. Finally we have also reviewed the support for
split objects, which is related to the aforementioned sharing relation chosen. The
concepts we have introduced may be a little abstract, which is why we will ground
them, by discussing a few prototype-based languages in the next section.

2.5 An Overview of Prototype-based Languages

In this section we will provide an overview of the rich history of prototype-based
languages. Throughout this text we have already briefly introduced languages such
as Kevo and MOOSTRAP which have guided us to important insights in the diver-
sity of prototype-base languages. Though there are many languages that deserve
a treatment of considerable length, such as JavaScript, NewtonScript, Garnet and
Exemplars, we will refrain from including them here, due to space restrictions.
Other object-based languages of interest, such as Obliq and ABCL will be intro-
duced when we review the state of the art of distributed, respectively concurrent
languages.

In section 2.5.1 we will focus on Self, which is one of the most complete and
powerful prototype-based languages available. We will continue in section 2.5.2
with a presentation of the Agora language family which introduced several con-
cepts that we consider to be extremely important, and which we will faithfully in-
tegrate in the language we will use as a starting point. This language, called Pic%
introduces the principles from Agora into the simple yet expressive Pico language.
We will introduce this language in section 2.5.3.

2.5.1 Self: The Power of Simplicity

2.5.1.1 Introduction

Self (Ungar and Smith, 1987), mainly developed by Sun Microsystems, is the most
evolved prototype-based language to date. It can in many ways be regarded as a

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 21

prototypical prototype-based language. Self can be regarded as a transposition of
Smalltalk into the prototype-based world. Yet, Self is significantly more minimal
and simpler than its class-based counterpart.

Self, mainly designed for exploratory programming strives foruniformityin all
of its language features. It is this devotion to uniformity that gives rise to Self’s
great expressive power (Ungar and Smith, 1987), and also one of the reasons this
language is considered to be a pearl of programming language design (De Meuter,
2004). Ungar and Smith (1987) believe that reducing the basic concepts in a lan-
guage can make the language easier to explain, understand and use.

In this section, we will try to give a concise overview of the core language
concepts, continuing with how method activation is unified with prototypes. Fur-
thermore, we discuss some interesting programming techniques (or idioms) which
first emerged through programming experience in Self. We will show that much of
these idioms give rise to more flexible or expressive object structures than can be
achieved in their class-based counterparts.

2.5.1.2 Concepts

This section outlines the core concepts of the Self language. Since Self strives
for minimalism, it is not surprising that there are only two fundamental entities:
objects and messages. Other language features, like the notion of a variable or
control structures like “if-then” statements have been repolished to fit the object-
centered paradigm smoothly.

Messages subsume variablesIn Self, computation proceeds by message passing
along objects. Message passing in Self isthe fundamental operation (Ungar and
Smith, 1987). The language does not contain variables. Instead, objects are stored
in so-calledslotswhich can be accessed or modified by message passing. When
one declares a slot in Self, the system will automatically generate the appropriate
accessor and mutator methods. Slots can be declared constant, in which case no
mutator is generated. Variable access is thus entirely replaced by message passing:
an object can just send the accessor message of the specific slot to oneself. An ob-
ject can access itself through the keywordself , but this keyword may be omitted
when performing self-sends, making this variable replacement scheme as concise
as in other languages.

By unifying variable access with message passing, Self eliminates the distinc-
tion between both, effectively making message passing and inheritance a more
powerful operation (Ungar and Smith, 1987). The reason is that children of a given
object canrefinethe accessor methods, thus, being able to provide those “variables”
with a totally different behaviour. This simple scheme realizes variable overriding,
simply because variables are replaced by methods. In many other object-oriented
languages, such as Java, variable overriding is impossible due to the different treat-
ment of variables and methods.

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 22

Yet another advantage of the message passing scheme is the treatment of scop-
ing rules. Since a variable access is replaced by an ordinary self-send, all method
lookup rules apply to “variable access”, which actually boils down to simple nested
scoping rules: if a slot is not found in the receiver, it is looked up in the parent. Note
that this also implies that objects can see their parents slots.

Objects and slots Three types of objects inhabit the Self world: ordinary objects,
method objects and block objects (De Meuter, 2004). Objects can be created ex-
nihilo by just listing a number of slots between bars, separated by dots (a so-called
slot list). A point object can thus be represented by|x. y| . If such a construct
is followed by an expression, the result is a method object. The declared slots will
then act as local “variables” for the method. Local slots can also be preceded with
a colon, making the slot a parameter of the method. Self provides proper syntactic
sugar to inline these parameters in the method name. This is similar in spirit to
Scheme’sdefine shorthand for lambda expressions (De Meuter, 2004). An ex-
ample will clarify the syntax:

method: arg = (|x <- 0 | arg dosomethingwith: x)

declares a slot namedmethod which contains a method object, having a parameter
arg and a local slotx .

Objects candelegatemessages to parent objects. Parents can be denoted by
annotating a slot with an asterisk. This will automatically forward messages not
found in the receiver to the parent, but with late binding of self: theself pseu-
dovariable will still point to the original receiver. Thus, Self implements delegation
as put forward by Lieberman (1986). Self implementsmultiple inheritance, which
means that multiple slots can be marked as parents, in which case method lookup
is governed by more complex rules to disambiguate slots in multiple parents8.

As a more complete example, consider the following stack implementation in
Self, taken from (Tolksdorf and Knubben, 2001):

aStack <- (|
stack = array clone.
top = 0.
push: obj = (top: (top+1). stack at: top Put: obj).
pop = (top: (top-1)).
getTop = (stack at: top)

|)

Closures A third type of object is theblock object, which is the equivalent of a so-
calledclosurewhich encapsulates a method together with a pointer to its enclosing

8Multiple inheritance has the reputation of being rather complex. In retrospect, Smith and Ungar
(1995) admit that multiple inheritance was a feature that had probably better been left out.

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 23

scope (Ungar and Smith, 1987). This scope is then used to resolve references to
free variables. Such a block object is useful for passing around code together with
its environment of definition (thelexical environment) (De Meuter, 2004). Blocks
are created just like methods, but are surrounded by brackets instead of parentheses.

Blocks are also found in the Smalltalk language, where they are used to define
control structures (since blocks allow forlazy evaluation, which bypasses the de-
fault eager evaluationof arguments). Self follows this approach and implements
selection (“if”) and iteration control structures in terms of messages taking block
objects as arguments. One can for example define the selection control structure
by implementing the following method in the boolean objecttrue :

ifTrue: t ifFalse: f = (t value)

Blocks can be evaluated by sending them thevalue message. This is similar to
performing theapply operation on a function in e.g. Scheme. To use the de-
scribed control structures, the caller must pass its arguments wrapped in a block:

q empty ifTrue: [0] ifFalse: [q dequeue]

Self is more powerful than Smalltalk with respect to this use of closures. As in
Smalltalk, the user can define his own useful control structures via blocks. How-
ever, unlike Smalltalk, Self allows the user tooverride the built-in control struc-
tures and observe the effects. Smalltalk shortcircuits the primitive control struc-
tures in the implementation (Smith and Ungar, 1995).

Method Activation A particularly intriguing language concept in Self is the way
method activation is unified with prototypes. Recall that methods are regarded as
a special type ofobject. In fact, methods are prototypes for so-calledactivation
records: they are copied and invoked to run the code they encapsulate. This in con-
trast to class-based languages like Smalltalk where the method is said todescribe
the activation record (Ungar and Smith, 1987).

Whenever a slot containing a method object is queried for its contents, the
activation record prototype is cloned and its code invoked. Before this code can be
interpreted, the activation record’s internals have to be adjusted to handle lexical
scoping rules. First of all, the parent link of the clone must point to the receiver of
the message. This will embed the method’s scope in the receiver’s. As mentioned
before, this allows the method to access the slots of its surrounding (parent) objects.
Second, the meaning of theself receiver has to be adjusted to incorporate local
variables: messages sent toself are looked up in the method object first (as to
access local variables), but thereceiverof such messages is still the actual receiving
object, not the method object. One can regard this semantics as the dual of the
super keyword in most object-oriented languages, which starts method lookup
in the parent, but keeps the receiver bound to the forwarding object (Ungar and

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 24

Smith, 1987).
Using these special semantics forself within an activation record, Self allows

local “variables”, instance “variables” and method lookup to be unified. They all
follow the same ordinary method lookup semantics since they are all self sends. By
making the activation record a child of the receiving object, one can interpret ac-
tivation records as short-lived extensions of the receiver (Ungar and Smith, 1987).
Note that Self has managed to unify variables and methods via slot access as fol-
lows: data objects merely return themselves upon slot access, while method objects
run their enclosed code. However, this unification hinders the use of method ob-
jects as first-class entities: one cannot grab them directly (since grabbing a method
would automatically run it) so we must resort to primitive objects, calledmirrors
which encapsulate some reflective operations on objects (Smith and Ungar, 1995).

2.5.1.3 Prototype-based Programming Techniques in Self

This section reports on a number of techniques or idioms on how to structure soft-
ware in a prototype-based language such as Self. These idioms can be used to
incorporate sharing between objects, to handle inheritance and to structure objects
in a classless world. They show that we can organize our programs just as well
without classes in a prototype-based language such as Self (Ungar et al., 1991).

Intra-Type sharing: traits To accomplish structured and reusable software, we
require the ability tosharestate and behaviour among instances of the same type
(or clones of the same prototype). Sharing enables you to change the behaviour of
an entire set of objects with just a few strokes (Ungar and Smith, 1987). Without
sharing, code would be duplicated, possibly leading to inconsistent objects whose
code is not adjusted upon changes. Self solves this problem is throughparent
sharing: code is factored out by placing it in a separate object, which becomes
the parent of all objects wishing to share the code (typically all clones of the same
prototype). Such shared parents, usually containing the behaviour common to all
its children, is called atraits object. It plays a role similar to a class in class-based
languages (Ungar and Smith, 1987).

One might argue that introducing traits in prototype-based programs actually
boils down to the reintroduction of classes. Thus, proponents of class-based lan-
guages have often argued that classes are necessary to structure programs. It can
also be interpreted the other way around: prototype-based languages can readily
express class-like features, yet they do not impose this structure and leave the pro-
grammer free to choose (De Meuter, 2004).

The reason why traits work in Self is because of late binding of self: behaviour
(i.e. methods) that are not found in an object are searched for in its parent (the traits
object). When the method of the traits object is then invoked, theself receiver
variable is still pointing to the original (child) object. Thus, the traits method will
access the correct “instance variables” of the original receiver. Let us rework the
stack example from above using the traits technique:

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 25

stackTraits <- (|
push: obj = (top: top+1. stack at: top Put: obj).
pop = (top: top-1).
getTop = (stack at: top)

|)

stackPrototype <- (|
parent* = stackTraits.
stack = array clone.
top = 0

|)

We have factored out all behaviour into the traits object, which will be shared by
all concrete stacks by means of a parent pointer. The advantage of this decomposi-
tion is twofold. First, stack behaviour is specified only once, leading to improved
reusability, consistency and saved memory space. Second, by explicitly defining
a prototypical stack, we can always use this prototype to clone new stacks. If the
stack would have been coded without traits, it would quickly become confusing
which stack would be a good (i.e. empty) stack to clone from. However, even with
the traits technique, there is nothing that prevents users from changing the proto-
typical stack: this stack is in no way different from any of its subsequent clones.
This scheme is thus sensitive to the prototype corruption problem (Blashek, 1994).

Traits are more flexible than classes regarding sharing. Traits are plain ob-
jects, which means they can contain both method objects (to support sharing of
behaviour) and ordinary data objects, which then play a role similar to class vari-
ables in Smalltalk or Java. Traits objects generally do not contain information
about the representation (state) of objects. This representation is embodied in a
prototype, which is just an ordinary object, inheriting from the traits object. By
cloning this prototype, we also shallow-clone its parent, which effectively makes
the clone share the prototype’s parent. The definition of a new data type in Self is
thus spread over two objects: the “prototypical instance” of the type (containing
state) and the shared traits object (containing behaviour) (Ungar et al., 1991).

Traits are thus more flexible since they make explicit what is usually implicit in
class-based languages: objects instantiated from a class share their methods with
siblings and contain their own data fields. By modelling such relation explicitly
via traits, we can alter the scheme in a number of ways. We can for instance
easily allow for just one object to override its shared behaviour (i.e. a method
tied to only one object), singleton objects become extremely easy to implement:
just fold the prototype and the traits into one single object. Abstract concepts
can be implemented by providing traits but no prototypical instance: providing a
representation is left to users of the traits object. The following paragraph will give
even more evidence of the power of such explicit inheritance scheme.

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 26

Inter-Type sharing: refinement through delegation Since traits are just ob-
jects, there is no reason to disallow them from inheriting some behaviour them-
selves from other objects. Traits inheriting some functionality from other traits can
be regarded as the equivalent of code sharing via subclassing in class-based lan-
guages. Generally, a new data type in a classless language can easily be derived
from an existing data type by refining the corresponding traits objects (Ungar et al.,
1991).

Some problems occur however, when we want to inherit both representation
information (state) as well as behaviour. Since these concepts are explicitly kept in
separate objects in Self, an object that wants to inherit both must do so by inheriting
from two different objects. This poses no real problems in Self, since the language
supports multiple inheritance. An object can thus declare a “data parent” and a
“traits parent” (Ungar et al., 1991). Without multiple inheritance, this problem
would manifest itself grievously. The explicit separation of both concepts would
lead to the duplication of state description in the prototype of a new (refined) traits
object: this prototype would have to explicitly incorporate all slots also present in
the prototype of the original traits object9. We will come back to this problem
when discussing the Pic% object model in section 2.5.3.3.

Using refinement through delegation, in combination with the traits technique
again shows the gain in flexibility over class-based schemes. Class-based lan-
guages automatically extend the representation of subclass objects to also include
the representation of the superclass objects. Using the above technique, it becomes
possible to avoid such automatic extension and shun the representation of parental
objects (Ungar et al., 1991). Consider for example a hierarchy ofPolygon ob-
jects. APolygon can be represented by including a list of its vertices. Thus, we
have a traits object containing all operations defined over polygons, and a proto-
typical polygon object containing a list of vertices.

Imagine aRectangle refinement of a polygon. We would like to represent
rectangles by explicitly listing the four coordinates. In a class-based language, this
is possible, but when makingRectangle a subclass ofPolygon , we will auto-
matically inherit the vertices instance variable. Using the traits technique, we can
create a refinement of the polygon traits object, the rectangle traits. Furthermore,
we can define a new prototype for rectangles, described using the four coordinates.
This prototype inherits from the rectangle traits, butnot from the prototypical poly-
gon, thus, not inheriting the vertices. In class-based languages, avoiding automatic
extensions can only be accomplished by factoring out common behaviour into an
abstract superclass, which does not confine itself to a specific representation, but
instead uses abstract methods to be filled in by the children. The key point in using
the traits technique is that it is entirely transparent (i.e. visible and modifiable) to
the programmer, which thus has complete control over his data type’s representa-
tion (Ungar et al., 1991). All this is achieved in Self with a minimal number of

9In the Self 4.0 programming environment, a “copydown” mechanism can be used to achieve
such incorporation. This circumvents the need for a data parent.

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 27

concepts.

Changing object behaviour Yet another example of Self’s dynamic object model
is the implementation of dynamic or changing behaviour. It occurs frequently that
objects have to respond to messages differently, according to the state that they are
in. Such behaviour is readily expressed by defining each state as a special subtype
of the type under consideration. A prototypical object of this type would then in-
herit from one of the states. To change its state, it suffices to change its parent. This
is possible in Self as a parent slot can be assigned to. Changing the traits object
from which we inherit can be regarded as the equivalent of changing an object’s
class in a class-based language (Ungar et al., 1991). To illustrate the usefulness of
such changing behaviour, consider figure 2.4. The figure depicts two traits objects:
anOpenedWindow andaMinimizedWindow . When the objectmyWindow is
minimized, all it has to do to change its behaviour with respect to future messages
is to change its parent.

Figure 2.4: Changing Object Behaviour via Parent slot assignment

This is actually a very expressive implementation of the State Design Pattern
described by Gamma et al. (1995) as a preferred way of structuring class-based
programs in dealing with state changes. The State Design Pattern achieves such
flexibility by promoting states to first-class objects. However, Self’s solution is
more expressive, since states are frequently singletons, trivially implemented in
Self. Also, state objects usually require close coupling with their containing ob-
ject. Some class-based languages cannot cope with this unless encapsulation is
explicitly breached (i.e. having to provide accessor and mutator methods for the
states to alter the object). Self avoids this problem since the state objects are par-
ents, who are privileged to see their children’s slots through late binding of self.
Furthermore, state objects are usually shared. This is easily accomplished in Self,
but requires more elaborate patterns such as Flyweight (Gamma et al., 1995) in a
class-based setting.

Naming and categorizing objects If one does not want to get lost in the myriad
of objects inhabiting a large Self application, some naming and categorization in-
frastructure must be created for the programmer to easily browse the program. For

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 28

example, it should be possible to refer to well known objects (such asnil , true
andfalse) or user-defined data types, and to categorize name spaces as to avoid
name clashes. The beauty of Self is that these features are incorporated without
any extralingual support, it can be incorporated using only delegation and slots.

In class-based languages, programmers can typically refer to any class name
from anywhere within the program (modulo import statements or visibility restric-
tions). In prototype-based languages, we are stuck with nameless objects. How-
ever, wecan give them names by putting them into slots. The object’s name is
the name of the slot. Objects that exist solely as name providers for other objects
are calledname space objects(Ungar et al., 1991). Furthermore, if we can make
the objects in our programinherit from such name space objects, then any named
object can be retrieved just by sending a message to itself: the delegation-based
scheme will find the named slot in the parent and retrieve the corresponding ob-
ject. By putting name space objects in other name space objects’ slots, we automat-
ically get a name space hierarchy. In Self, the predefined variablelobby points to
a global name space object containing references to objects made available by the
system.

2.5.1.4 The Self Programming Environment

Programming in Self, just as in Smalltalk, is usually done via a sophisticated pro-
gramming environment, providing the programmer with tools to efficiently struc-
ture his application. The environment also serves to hide the low-level object pro-
tocol from the user. For instance, subclassing in Smalltalk is usually accomplished
visually with a few mouse clicks, but internally, a subclass is created by sending
thesubclass: message to the superclass.

The implementors of Self wanted to augment the interaction between the pro-
grammer and the Self world by creating a sense ofdirect manipulation. This is
accomplished using two principles:structural reificationand live editing (Smith
and Ungar, 1995). The Self user interface is entirely built up of graphical objects
calledmorphs. Structural reification implies that every graphical object is visible.
There are no invisible “layout” objects. Furthermore, morphs can be arranged into
a parent-child hierarchy. The semantics is that a child morph always “sticks” to
a parent morph. This simple hierarchy thus provides ways to compose objects,
without resorting to special container objects.

Structural reification also implies that any of these morphs can be grabbed and
dissected by the programmer. The programmer can actually dissect his user inter-
face, can clone parts of it, refine them, and reassemble them in his own application.
This results in a very tangible and direct user interface (Smith and Ungar, 1995).
The principle of live editing states that, at any time, an object can be modified by
the user. Self providesmeta menusto access any morph. Furthermore, the morph
itself can be inspected and modified at the language level as a plain Self object.

Smith and Ungar (1995) regard the implementation of Self as the challenge
to fool the user into believing in the reality of the language. They want to give

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 29

the programmer the impression that his machine is actually capable of containing
a Self world. To this extent, they incorporate adaptive compilation techniques to
improve response times (methods are first compiled fast and unoptimized, and are
optimized adaptively if they are frequently used). They even de-optimize the code
to allow the programmer to debug his program at the source code level, without
noticing the use of advanced compilation techniques.

2.5.1.5 Conclusion

Self is a very pure object-oriented language, much in the spirit of Smalltalk. Its
simplicity arises from its minimality: nearly everything, such as flow control, vari-
able scoping, method invocation and primitive data types consists of just objects
and messages (Smith and Ungar, 1995). To augment this simplicity, classes are
abandoned for prototypes, which are simpler and allow for a more direct interac-
tion. Self is probably one of the most mature prototype-based languages to date
and has been used to prove that it is possible to organize programs without classes
(Ungar et al., 1991).

2.5.2 The Agora Language Family

2.5.2.1 Introduction

Agora is a language developed at the Programming Technology Lab (PROG) of
theVrije Universiteit Brusselin the early nineties (Steyaert, 1994). It was initially
designed as a very minimal object-oriented programming language. The idea was
to start from objects and messages alone, gradually extending the language with
new features on top of the basic model to study the semantic relations between the
added features and the model (De Meuter, 1998). However, quite to their surprise,
the language conceivers were able to add such featureswithout having to change
the basic model of objects and messages. Thus, Agora has shown that it is possible
to add such features as inheritance, cloning and reflection without extending the
language with concepts other than objects and messages (De Meuter, 2004).

Another goal of Agora was to combine the advantages of both class- and
prototype-based languages, but to shun both their disadvantages. Thus, while some
languages, such as Hybrid, try to take theunionof the features included in both lan-
guages, Agora tries to strive toward anintersectionof both paradigms (Steyaert and
De Meuter, 1995). The reason why such an approach is needed is that in general,
it is felt that prototype-based languages are too flexible, whereas class-based lan-
guages are too rigid. We want to capture some of the structuring mechanisms of
classes in a prototype-based language, without sacrificing the flexibility of proto-
types, which we have illustrated using the traits technique in Self.

This section will cover the most important concepts of the Agora language,
with a particular coverage of the featured extension mechanisms. Next to that,
we also discuss some problems solved by Agora’s features and in what ways the

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 30

language has been a basis for our main prototype-based language under study:
Pic%.

2.5.2.2 The Agora Language

We start our study of Agora by briefly summarizing its most important features,
starting with the basic language values: messages and objects.

Messages Agora uses a syntax very similar to Smalltalk with respect to message
sending. It distinguishes between two kinds of messages: ordinary messages and
reifier messages (De Meuter, 1998). The main difference between the two lies in
the evaluation order of the message arguments. Arguments passed to a method us-
ing reifier messages are not evaluated. This gives the same flexibility as the usage
of blocks in Smalltalk and Self, as discussed previously. However, reifier mes-
sages are more expressive, since the sender of such messages does not manually
have to “wrap” arguments in blocks. On the syntactic level, the distinction between
ordinary and reifier messages is made by representing reifier messages using capi-
talized identifiers. On the semantic level, reifier messages can be compared to the
so-calledspecial formsof Lisp or Scheme (De Meuter, 1998).

Another distinction is made betweenreceiverlessand receiverfulmessages.
Receiverless messages have a syntactically missing receiver object. Their seman-
tic differences will be explained later on, when discussing public and private vari-
ables. As in Smalltalk, a final distinction is made between unary, operator and
keyword messages. Operator messages include for example the message3 + 4 ,
which sends the operator message+ to the object3. Keyword messages are used to
pass arguments to methods. Agora features no less than twelve different types of
messages, being ordinary or reifier, receiverless or receiverful and unary, operator
or keyword (De Meuter, 1998). A few examples will clarify matters. The message:

x VARIABLE: 3

denotes a reifier, receiverful keyword message. It is used to declare a variable “x”
in the object evaluating the message send. Methods are declared in a similar man-
ner:

at:position put:value METHOD: (...)

A METHOD:message is sent to the receiverless ordinary keyword message ex-
pressionat:position put:value , thereby creating a new method with the
receiver as a formal pattern.

Objects There are two ways to create objects in Agora: either denote the ob-
ject directly using a literal (such as a number, a string, . . .), or create user-defined

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 31

objectsex-nihiloby listing a number of message expressions between square brack-
ets, separated by semicolons. If one uses theVARIABLE: or METHOD:messages
in such an expression, the object gets filled with either variable or method slots
(Codenie et al., 1994).

Reifier!Messages Reifiers, just like special forms in Scheme, form the actual
core of the language. Their evaluation entails very specific semantics. In Scheme,
the language can be extended by “defining” new special forms using macro’s. Like-
wise, Agora can be extended or adapted by implementing new reifier messages.
Thus, Agora can be regarded as a languagefamily, rather than just a single lan-
guage (De Meuter, 1998). One important property of reifier methods is that they
are dynamicallyscoped, in contrast with ordinary methods, which are lexically
scoped. The context (or environment) in which a reifier is called is passed as a
first argument to the reifier itself. This dynamic scoping makes sense, considering
the fact that we will usually want to evaluate arguments in the context in which
theywere defined, not in the context in which the reifier is defined. In Scheme, the
arguments to theif special form are also evaluated in the context where theif is
used, not where theif construct is defined. In the rest of this section we will give
a brief overview of Agora’s more important reifiers.

As already mentioned, theVARIABLE: reifier installs slots into objects. More
specifically, it installs two slots: a reader and a writer slot. TheMETHOD:reifier
takes a formal pattern and a body and creates a new method in the object. The
CLONING: reifier is more interesting: it takes an expression which will be evalu-
ated within the context of acloneof the receiver. Thus, theSELF receiver variable
used in the argument of aCLONING: message actually points to a clone and no
longer to the original receiver.

Perhaps the most important reifiers introduced in Agora areVIEW: andMIXIN: .
They allow for object extension and are in a sense Agora’s surrogate for the addi-
tion or removal of slots. A view is also dubbed afunctional mixin-method, while
a mixin is actually animperative mixin-method. A VIEW: message sent to an at-
tribute with an expression creates a special type of method, whose body (the given
expression) will be evaluated in anextensionof the receiver upon invocation. This
extension object is an independent object whose parent points to the original re-
ceiver (De Meuter, 1998). Consider the example:

point VARIABLE:
[x VARIABLE:0;

y VARIABLE:0;
circle:r VIEW:
{ radius VARIABLE:r;

inCircle:p METHOD:
{((p x) sqr + (p y) sqr) sqrt <= (SELF radius)}

}
]

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 32

This example declares a simplepoint object, on which a circle view can
be created by sending acircle message to the point. In response to such a
message, a new object will be created, whose parent is the point. This object
contains a variableradius and a methodinCircle . Notice that the original
point is in no way altered, hence the namefunctional mixin method. Consider
what would happen if we had usedMIXIN: instead ofVIEW: in the previous
example. In response to thecircle message, the receiver woulddestructivelybe
modified to include new variables and methods. Any other object (including any
view!) pointing to the point will nowseea circle. Mixins are thus very powerful
abstractions that allow to change an entire object hierarchy in just a few strokes
(De Meuter, 1998).

Just as in Smalltalk and Self, Agora defines its control structures in terms of
message passing, rather than as a built-in language feature. Frequently used reifiers
includeIFTRUE:IFFALSE: andWHILETRUE:.

Local and public attributes Up until now, we have not yet mentioned ways to
protect slots from external access. It is here that the distinction between receiverful
and receiverless messages comes into play. Agora objects consist of a public and a
private part. The private or local part can only be accessed by the object itself. This
is accomplished through the use of receiverless message sends. Hence, messages
sent to a receiver are always looked up in the public part of the receiver. Receiver-
less messages are looked up in the local part of the sender. Hence, sending an
explicit message toSELF also implies lookup only in the public part of the object.

To distinguish between local and public slots, the unary reifier messageLOCAL
is used.PUBLIC can be used to explicitly make a slot public. If nothing is spec-
ified, PUBLIC is assumed. The difference between receiverful and receiverless
message sends is analogous to the difference between message sends and function
calls: receiverless message sends should be seen as function calls to functions in
the lexical scope of the source code (De Meuter, 2004). Unfortunately, the inter-
actions between local or public and receiverless or receiverfull messages together
with nesting are far from trivial and render Agora very complicated.

2.5.2.3 The Scheme of Object-Orientation

Agora can in many ways be viewed as the Scheme of Object-Orientation (De
Meuter, 1998). Just as everything is a first-class value in Scheme, everything is an
object in Agora. Moreover, Scheme programsare Scheme data structures (lists).
The same holds true for Agora: the parse-tree of a program is entirely represented
by objects. We have already made the analogy between special forms in Scheme
and reifier messages in Agora, which serve the same purposes. Furthermore,ap-
ply can be regarded as the fundamental operation in Scheme, whereassend(the
sending of messages) can be regarded as fundamental to Agora.

This close resemblance with Scheme is also witnessed when we inspect the
various components of both language interpreters. The Scheme interpreter needs

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 33

a memory of cons cells to store both data and programs and aneval procedure,
parameterized by an environment parameter containing variable bindings. Further-
more, there is the fundamentalapplyprocedure, which is theonlyoperation defined
on functions. It applies a function to a set of arguments, leading to the evaluation
of its body in the appropriate environment.

The Agora interpreter is built up very similarly. It needs access to a memory
of objects to store data and programs (parse trees). It also needs anevalprocedure.
In Agora, this procedure is replaced by a method, which is implemented by every
parse tree object. Finally, there is one fundamental operation defined on each Agora
object:send. This is where the difference between Agora and most other prototype-
based languages can be observed: whereas Agora implements butoneoperation on
its objects (send), other languages usually augment this interface (called themeta
object protocol) with methods to add or remove slots, clone the object, etc.

2.5.2.4 Extreme Encapsulation

Agora has been claimed to “reintroduce safety in prototype-based languages” (De
Meuter et al., 1996). Where then, was this safety lost in the first place? Prototype-
based languages often suffer from what is called theencapsulation problem. Most
prototype-based languages introduce a very small number of language values (e.g.
only objects), but then introduce a myriad of “language operations” on those val-
ues, such as cloning, inheritance, adding slots to objects, etc. When objects are
subject to change by such operators, they usually play no active role in the process:
they are forced to undergo the changes enforced by the operator.

A typical example of this problem can be seen in Self, where – as noted previ-
ously – children can access their parent’s slots. Since parent assignment is allowed
in Self, any object can target any other object to become his parent, thereby gaining
access to that object’s data, without the parent object being actively involved. Simi-
larly, if cloning in a prototype-based language is achieved via someclone(obj)
operator, the object being cloned has no way of resisting the operator’s effects. In
such a language, it would be hard to express eg. a singleton object. If, however,
cloning is achieved by sending aclone() message to an object, this can be seen
as a “polite” request, which can either be accepted (default behaviour) or refused
(by overriding the method) by the receiver.

Encapsulation problems involving inheritance or delegation are rather inherent
in prototype-based languages, because of the late binding of self. By passing a
different “self” to an object (for example during delegation), it becomes easy to
fool an object (De Meuter, 2004). But even then so, the fact that any object (or
class) can extend (subclass) any other object (class) can always lead to encapsu-
lation breaches. Consider the following example, adapted from (Steyaert and De
Meuter, 1995):

circleWithExpensiveGoldenWindow IS OBJECT
private variable expensiveGoldenWindow;

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 34

method drawInWindow(aWindow) : ...;
method draw() : self.drawInWindow(expensiveGoldenWindow);

windowThief IS OBJECT
method stealGoldenWindow(aCircle):

return (aCircle extended with
override method drawInWindow(aWindow):

return aWindow;
).draw();

Although this may seem a bit of a contrived example, it clearly shows that
encapsulation breaches can be created even when children cannot access their par-
ent’s variables directly. In languages offering such modifiers as “protected”, the
situation is even worse if a class or object cannot control its own inheritors. The
example illustrates that no object is safe if it can be exposed to uncontrolled inheri-
tance. This is a serious issue in the context of distributed languages, where all code
is not to be trusted equally. The breaching of encapsulation can lead to security
leaks (De Meuter, 2004).

Agora’s highly controlled inheritance mechanism through views and mixins
solves such issues. Recall that the Agora computational model is completely based
on objects and message passing alone. All other features, such as object extension,
cloning and reflection are based on message passing. It is this simple message
passing paradigm that validates Agora’s safety claims. It allows forcontrolled
inheritance,controlledcloning andcontrolledreflection. The inheritance scheme
through views and mixins is calledencapsulated inheritance on objects(De Meuter
et al., 1996) and alsomodular inheritance(Lucas and Steyaert, 1994).

The main advantage of using views and mixins to define inheritance relations
is the fact that the parent object is in control of everything. It is the receiver object
that can allow or deny extension. Even better: it is the receiver object itself that can
precisely determine how much it gets extended, since the extension code is entirely
encapsulated within the object itself. There is no way to explicitly manipulate
parent pointers. Likewise, cloning is supported in Agora only when the receiver
has foreseen aCLONING: method. It is the receiver itself that decides whether and
how it should be cloned. This is a solution to the prototype-corruption problem (De
Meuter et al., 1996). The receiver is able to initialize the clone in the body of the
cloning method, which allows us to modelconstructor functionsfrom class-based
languages.

This strong encapsulation and autonomy of objects has been coinedextreme
encapsulationby De Meuter (2004): objects should be subject to message passing
and message passing alone. Any model in which one can circumvent message
passing is potentially dangerous. Using only message passing, one has no choice
but to actively involve the receiver in the process. Any Agora object knowsitself
unencapsulated (De Meuter et al., 1996), and has full power of extending or cloning
itself, but a message passing client can only politely request the subject to adapt

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 35

itself.

2.5.2.5 Extension from the Outside

A frequently heard critique on the encapsulated inheritance technique outlined
above is the fact that every possible extension to an object must be known in ad-
vance. Thus, we can only modelanticipatedextensions. If we want complete
safety, this is probably the only satisfactory solution, any third party codemightbe
malicious and destroy the object’s encapsulation. There is, however, a technique
to allow extensions “from the outside”. The beauty of this scheme is that even this
technique requires full cooperation of the subject.

Extension from the outside is achieved through a concept commonly known as
quoting. In Scheme or Lisp, quoting is used frequently to represent programs as
lists. This can be simply achieved by prepending a list with a quote. Agora allows
for a similar mechanism through theQUOTEreifier message. SendingQUOTEto
an expression evaluates to the parse tree of objects representing that expression.
In other words, sendingQUOTEreifies the underlying parse tree of Agora expres-
sions (De Meuter, 1998). One can imagine quoting asfreezinga given expression
(i.e. capturing it without evaluating it). The expression can then later on be eval-
uated (possibly in a different environment). This correspondingmeltingprocess is
achieved through theUNQUOTEreifier message, which evaluates the parse tree in
the environment it was called in.

Where does this quoting mechanism lead us? Using parse trees as first-class
objects gives us the ability to declare methodsoutsideof an object, move them
insideand then evaluating the parse tree within the object. Note that this scheme is
safefrom the point of view of the subject (the object under extension): to move the
parse tree inside and to evaluate it requires itsactivecooperation. The following
example will extend an object from the outside with a new slot:

colourSlot VARIABLE: (colour VARIABLE) QUOTE;
myCar VARIABLE:

[type VARIABLE: ...;
wheels VARIABLE: ...;
forward METHOD: ...;
extend:slots VIEW: (slots UNQUOTE);

]

myColouredCar VARIABLE: (myCar extend: colourSlot);

The important point is again to notice that objects are still subject to extreme
encapsulation. However, theycanbe extended iftheyallow to do so (De Meuter,
1998).

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 36

2.5.2.6 Reflection Protection

Many languages define strict access rights on objects, but allow these encapsu-
lation barriers imposed on the base object to be circumvented on the meta level.
By going to the meta level, one usually gains access to a very rich Meta Ob-
ject Protocol (MOP) where multiple operations are defined on meta objects. Us-
ing these operations, it becomes possible to e.g. extend objects with new slots,
although this would have never been possible at the base level. Particular ex-
amples of the liberal modification of objects can be witnessed in Self with its
AddSlots: message, in Smalltalk with itsat:put: message and in Java with

thejava.lang.Reflect API. De Meuter (2004) coins the termreflection pro-
tection, which means that one should not be able to access more on the meta level
than one is able to access on the base level.

Since many languages use reflectionoperators, we are stuck again with the
same problems already mentioned when introducing extreme encapsulation (p.
33). How does Agora guarantee reflection protection? Recall that the interface
of an object on the meta level consists of justonemethod, namelysend . That
is, a meta object does not contain anything more than a base level object. Since
thesend is the hallmark of extreme encapsulation, objects know themselves pro-
tected at all times,also at the meta level. Even users at the meta level can only
send messages to the object, albeit now using thesend message.

One might argue that it is worthless of providing a meta level where one can-
not do anything more than at the base level. Agora consistently maps every base
level message onto a meta level message and the other way around. As such, every
message sent by the evaluator itself (implementation messages) can be intercepted
and reprogrammed by the Agora programmer (De Meuter, 1998). It also facili-
tates the symbiosis between Agora and its implementation language: objects in the
implementation language can be reified into Agora. The Agora interpreter cannot
distinguish between objects created in Agora and reified implementation level ob-
jects: all objects understand but one message:send , and this is enough to support
the entire meta object protocol.

Going to the meta level often allows one to write more flexible programs. A
nice parallel of Agora’s meta levelsend message is Scheme’sapply special
form. Usingapply , it is often possible to write more flexible function calls, espe-
cially since function arguments are reduced to regular data structures (lists). Still,
flexible as it may be, Scheme’sapply operator doesnot allow the programmer to
all of a sudden “dissect” functions. Thus, the meta level abilities acquired by using
apply do not allow the Scheme programmer to break any encapsulation barriers
on functions.

2.5.2.7 Conclusion

Agora can indeed be regarded as an intersection of class- and prototype-based lan-
guages. The mechanism of encapsulated inheritance on objects is a marriage be-

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 37

tween the object model employed by class-based languages and the inheritance
model used in existing object-based inheritance (De Meuter, 2004). Safety is re-
gained by adhering to the concept of extreme encapsulation,also when it comes
to building inheritance (delegation) hierarchies, andalsoat the meta level (dubbed
reflection protection).

The next section will introduce Pic%, which builds upon the features estab-
lished by Agora. In fact, it addresses some of the issues not directly solved by
Agora, such as the fact that it cannot directly cope with abstract entities. More
importantly, Agora suffers from a re-entrancy problem. It cannot share methods
the way Self can through traits, since Agora does not support multiple inheritance.
This stems from the fact that the hierarchy for code-reuse is often perpendicular to
the hierarchy to be modelled (De Meuter, 2004).

2.5.3 A Prototype-based Extension of Pico: Pic%

2.5.3.1 Introduction

The language we will be using for our experiments is called Pic%10. It is a di-
rect descendant of the language Pico, designed just like Agora at the Programming
Technology Lab of theVrije Universiteit Brussel(D’Hondt, 1996). Although Pic%
relies heavily on the concepts introduced in Pico, it borrows some fundamental
ideas from Agora as well. In this section, we will first introduce the core language
Pico. We will then proceed and discuss the extensions made to Pico to arrive at
Pic%. This basically comes down to discussing Pic%’s “object model”: how ob-
jects are represented and how they are affected by the language constructs. Finally,
we will show that Pic% preserves Agora’s claim to be an intersection between a
prototype-based and a class-based language. It will also be shown that Pic% solves
some problems that Agora could not.

2.5.3.2 The Pico Programming Language

Pico is a language that was originally designed to teach computer science to non-
computer science students, such as mathematicians, biologists, physicists and chem-
ists. As such, it was designed to be extremely small andsimple, both from a con-
ceptual point of view as well as from a syntactic point of view. To ensure con-
ceptual simplicity, Pico’s concepts resemble those found in Scheme (Abelson and
Sussman, 1985). Although Scheme is extremely simple and expressive, its syntax
is rather cumbersome to read, because of the consistent representation of programs
as lists. To adhere to the second principle (easy-to-read syntax), Pico has mainly
relied on syntax from calculus and algebra.

Pico Syntax Pico does not feature a syntax as regular as Scheme’s. It also does
not incorporate what is called “special forms”: special “function names” that have

10% = o/o = object-oriented

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 38

a special status inside the evaluator. Yet, the language designers wanted Pico to
be an extensible language, like Scheme, which can be extended through the use of
macros and quoting (essentially adding one’s own special forms). This problem
was solved in Pico in an extremely simple way, without giving up the language’s
readable syntax (De Meuter et al., 1999).

Central to Pico is the notion of a dictionary (anenvironmentin Scheme ter-
minology). Dictionaries define a mapping from names to values. Pico’s syntax is
built around the manipulation of dictionaries, in combination with the values used
during manipulation. Table 2.2 gives an overview of the basic syntax rules.

Invocation Table Function Variable
Reference t[exp1] f(exp1,..., expn) x
Definition t[exp1]: exp2 f(exp1,..., expn): expn+1 x: exp2

Assignment t[exp1]:= exp2 f(exp1,..., expn):= expn+1 x:= exp2

Table 2.2: Basic Pico Syntax

Names can be added (definition), modified (assignment) or retrieved (refer-
ence) from a dictionary. Moreover, invocations consist of tables (array), functions
and variables. Pico stays close to Scheme in thateverythingis a first-class value:
basic values, tables and functions can be passed as arguments to other functions,
can be bound to variables and returned from functions. A notable difference with
scheme is the lack of anonymous functions: Pico functions always carry a name
(De Meuter et al., 1999).

Tables also extend the Scheme model of lists of cons-cells. Whereas cons-
cells have a fixed size of 2, Pico’s memory model is based upon variable-sized
tables. Table indices range from 1 up to their declared size. When defining a
table, the right-hand expression is evaluated foreachentry in the table, allowing
for expressive creation of e.g. upper-triangular matrices. Tables can also be created
using thetab native, which takes any number of arguments and returns their values
stored in a table. To give a general flavour of the Pico language, what follows is a
standard definition of the Quicksort algorithm in Pico:

QuickSort(V,Low,High):
{ Left: Low;

Right: High;
Pivot: V[(Left + Right) // 2];
Save: 0;
until(Left > Right,

{ while(V[Left] < Pivot, Left:= Left+1);
while(V[Right] > Pivot, Right:= Right-1);
if(Left <= Right,

{ Save:= V[Left];
V[Left]:= V[Right];
V[Right]:= Save;

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 39

Left:= Left+1;
Right:= Right-1 }) });

if(Low < Right, QuickSort(V, Low, Right));
if(High > Left, QuickSort(V, Left, High)) }

This example is built up entirely out of constructs explained in table 2.2, except
for the curly braces. These braces are actually just syntactic sugar, translating
{exp1; . . . ; expn} into a call tobegin(exp1, . . . , expn) . begin is a function
which evaluates its arguments and returns the value ofexpn. In Pico, argument
evaluation is always left-to-right, in contrast to Scheme, which leaves the order
unspecified. There are, however, some important extensions to the above table.

Beyond the basic syntax A first extension is the apply-operator@. Apply is used
in conjunction with function definition to define functions that can take an arbitrary
number of arguments. Consider the definition of a functionsum taking an arbitrary
number of arguments and returning their sum.

sum@args : {
res: 0;
for(i:1, i<=size(args), i:=i+1,

res := res + args[i]);
res

}

Using@, it becomes possible to represent the formal argument list of a function
as afirst-classvalue in the form of a table. The identifier following@will simply
be bound to a table containing all actual arguments. The function can subsequently
use the arguments simply by manipulating the table. Notice the strong similarity
of @with Scheme’s ability to represent arguments as plain lists. In Scheme,sum
could be written as follows:

(define sum
(lambda args

(begin
(define res 0)
(map (lambda (arg)

(set! res (+ res arg)))
args)

res)))

Armed with such a construct, it becomes possible to definebegin in Pico
itself:

begin@args : args[size(args)]

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 40

args will again be bound to the table of actual arguments. This definition is cor-
rect due to three reasons. First, call-by-value parameter passing is used, so that
all arguments tobegin are evaluated. Second, the value ofbegin is always the
value of the last expression. This definition ensures these semantics by returning
the last argument stored in the table. Finally, and equally important,begin evalu-
ates its arguments in the order they are specified. Since Picoensuresthat argument
evaluation happens from left to right, we can be confident that the above function
behaves as expected.

A second native function that can be defined using@is tab . Recall thattab
takes any number of arguments and returns a table of these argument’s values. Yet
this is exactly what@does internally, makingtab breathtakingly simple to define:

tab@args : args

Completely analogous to Scheme,@can also be used symmetrically at a call-
site. In such situations, its purpose is to make theactual arguments of a func-
tion application first-class. This is again accomplished by making them accessible
as a table. Instead of using the canonical application notationsum(1,2) , the
sum function can also be applied to a table of values usingsum@tab(1,2) . In
Scheme(sum 1 2) can be rewritten using a first-class argument list as(apply
sum (list 1 2)) .

Having to write tables using the native functiontab can be cumbersome.
Therefore, Pico also defines syntactic sugar fortab . The syntax[exp1, . . . , expn]
is translated by the parser to the applicationtab(exp1, . . . , expn) . This allows
for an expressive in-line construction of tables. A similar trick is applied to op-
erators. The Pico parser will parse1+2 as the application+(1,2) . All these
syntactic translations allow for simplifying the evaluation rules of the interpreter
itself. Programmers can also define their own operators, and use them with an infix
notation, which makes Pico programs very readable. All this can be achieved with
enormous simplicity:

a # b : [a,b]
x << y: x * 2ˆy
!n : fac(n)

Lazy Argument Evaluation A second extension to Pico involves special param-
eter passing semantics. This is an extremely important part of the language, since it
allows for the definition of control structures in Pico itself, thereby eliminating the
need for special forms. When the formal parameters of a function are defined as
variable references, the semantics iscall-by-value, as in Scheme. However, when
the formal parameter of a function takes the form of a function application, the re-
sulting semantics are what is calledcall-by-expressionin (De Meuter et al., 1999),
reminiscent to Algol’scall-by-name. Consider the following function definition:

f(g(x,y),z): g(1,2)+z

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 41

This defines a functionf with two arguments:g andz. Whereasz is a normal
variable reference,g is a function parameter. Whenf is called, its first parameter
will be treated as thebody of a function, which will be bound tog. Thus, the
first argument willnot be evaluated which results inlazy evaluationof arguments.
When callingf(x+y,3) , a new functiong(x,y):x+y is defined locally in the
scope off . The result of the call will be6.

One should notice that the scope ofg is the scope off ’s caller. Tof it looks
like g is dynamicallyscoped. However, strictly speaking, all functions in Pico are
lexically scopedand store their environment of definition. The environment of call-
by-name functions is simply created at call-time. Their body will thus be evaluated
in the environment of the caller. The resulting semantics are intuitive, considering
the fact that the caller can then use variables visible in his scope and use them as
“free variables” in the call-by-name function.

Armed with call-by-name parameter passing semantics, Pico can be turned into
an extensible language, just like Scheme, Smalltalk and Self. the latter two employ
blocksto achieve this. Pico is more expressive in this regard, since in Smalltalk or
Self it is the caller of a function that must explicitly “thunkify” its arguments by
wrapping them in a block, whereas in Pico it is the function itself that can enforce
delayed evaluation (De Meuter et al., 1999). To prove the expressiveness of this
parameter passing scheme, note that Pico’s entire boolean system, together with
its control structures are defined in Pico themselves. Booleans can be incorporated
usingchurch booleans, as featured in theλ-calculus:

true(t(), f()) : t()
false(t(), f()) : f()
if(cond, then(), else()) : cond(then(), else())

Without the() to delay the arguments to theif , such a definition ofif would
not be expressible in Pico, unless we make the client responsible for passing the
arguments as function bodies.

Continuations In Pico, the run-time state of a program is a first-class entity.
This means that it can be injected into the language value space. Pico inherits
this powerful feature from Scheme, where such a value is known as acontinuation
(Abelson and Sussman, 1985). We will briefly explore continuations here, since we
will be needing them later on in chapter 5. More details can be found in (Abelson
and Sussman, 1985; Feeley, 1993).

A continuation actually denotes “all that remains to be computed” at the point
where the continuation is captured. Continuations are best understood when look-
ing at programs as nested expressions, each of which “returns its value” to the
surrounding expression, when it gets evaluated. This “expression surrounding the
value” is then the continuation of the expression yielding that value. In Scheme,
a continuation is represented as a function taking the value as a single argument.

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 42

Capturing a continuation is accomplished using the function
call-with-current-continuation , usually abbreviatedcall/cc :

(call-with-current-continuation
(lambda (my-continuation)

(... use my-continuation ...)))

call/cc takes a function with one argument as a parameter and immediately
invokes this function, passing along its implicit continuation. The function can
then explicitly apply this continuation to perform non-local jumps.

In Pico, the story is very analogous to Scheme. Pico defines a functioncall ,
having one parameter. This parameter is actually a call-by-name parameter for
a function with one argument namedcont . call will immediately evaluate its
function argument, thereby passing the captured continuation (also called anen-
vironmentin Pico11) to the function. An intuitive but incomplete definition could
be:

call(exp(cont)) :: exp(<captured environment>)

The captured continuation can then later on be restored (“jumped to”) via the
continue native. Notice the major difference inrepresentationof continuations
between Scheme and Pico. Whereas Scheme represents continuations as functions
taking one argument, Pico represents them as a separateenvironment data type.
The consequence is that function application in Scheme becomes more obfuscated:
if a continuation is applied, control doesnot return as in a regular function applica-
tion. Pico’s approach is more clear since it provides a separate nativecontinue ,
explicitly denoting the program’s jump.call/cc has many uses, among others
the implementation of coroutines and the ability to define exceptions and exception
handling mechanisms.

Meta-programming in Pico The craft of meta-programming consists of writing
programs that areaboutprograms. Compilers, interpreters, parsers and editors are
all examples of meta-programs. To this extent, Pico offers a number of powerful
features for the programmer to manipulate his language values. First of all, Pico
introduces the three core evaluator functionsread , eval andprint for usage
from within the language itself. Usingread , one can convert a Pico program
denoted as a string into a Pico parse tree, which is entirely first-class. Moreover,
Pico has primitives (nativesin Pico nomenclature) that can explicitly construct and
decompose parse trees.

Perhaps the most beautiful meta-programming technique is the unification of
Pico programs (values) with Pico data structures (tables). This is reminiscent of
Scheme’s ability to represent Scheme programs as Scheme data-structures (lists).
Any compound Pico value, such as a table, a parse tree, a dictionary and even a

11not to be confused with Schemeenvironments, which are Picodictionaries.

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 43

function can be decomposed by treating the value as a table. In fact, a first-class
functioncanbe treated as a table of size 4, consisting of a name, an argument list,
a body and a lexical environment (dictionary). This opens up an enormous poten-
tial for meta-programs, since the treatment of functions as tables allows for access
to the environment, which is impossible in Scheme. Dictionaries (Pico environ-
ments) can in turn be regarded as plain tables of size 3, consisting of a name, a
corresponding value, and a “pointer” to the next dictionary.

Pico thus allows forreflection: the ability of programs to reason about them-
selves (De Meuter et al., 1999). Pico goes even further when combining its meta-
programming facilities with its first-class continuations: it becomes possible to
access the continuation, thereby being able to access the runtime stack of the pro-
gram. Hence, a program can modify its own run-time state from within itself.
This is an extremely powerful feature which is quite rare among programming lan-
guages.

Pico’s reflection mechanism does not adhere to the reflection protection prin-
ciple as introduced in section 2.5.2.6. The principle states that objects (values in
this case, since Pico does not feature objects) find themselves encapsulated even at
the meta level. This is clearly not so in Pico, as most values can be “dissected” as
tables. Thus, the price that is payed for the reflection mechanism’s flexibility is the
lack of encapsulation.

2.5.3.3 The Pic% Object Model

In this section, we will gradually extend Pico with features necessary to transform
it into the prototype-based language Pic%. This dissertation will be largely based
on (D’Hondt and De Meuter, 2003).

Objects and messages The construction of the Pic% language starts by noting
that environments are made first-class as dictionaries in Pico. Hence, they can
act as objects containing simple slots: bindings with a slot name and a slot value
(D’Hondt and De Meuter, 2003). In order to easily grab the environment of eval-
uation, a native functioncapture is added that captures the current environment
andreifiesit as a first-class value. Consider the following object:

counter(n): {
incr(): n:=n+1;
decr(): n:=n-1;
capture()

}

Evaluation of an expression likec:counter(10) will bind c to an object,
which is nothing more than thecall frame of the counter function. In Pico,
just as in Scheme, each function application creates a local extension of the lexical
scope of that function. In this scope, parameters (n in this case) will be bound.

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 44

Any definition in the function body will be local to the function invocation and
thus added to this call frame.capture will return this frame as the value of
the entire expression. This kind of object-generating functions has been termed
constructor functions(De Meuter et al., 2003b). Figure 2.5 depicts the object as
seen by the evaluator.

Figure 2.5: Simple Layout of a Pic% Object

Notice that such objects based on environments can also be created in Scheme,
according to the same principles. However, since Scheme does not provide a
capture native or first-class environments, the environment will have to be man-
ually programmed, usually in the disguise of a “dispatch” function. This dis-
patcher, since it is defined local to an object, captures the “instance variables”
of the “object” in its lexical scope. The mapping between names and values usu-
ally maintained by the environment must now also be programmed manually in the
dispatcher. Thecounter object could then be written in Scheme as follows:

(define (counter n)
(define (incr) (set! n (+ n 1)) n)
(define (decr) (set! n (- n 1)) n)
(define dispatch

(lambda (msg)
(cond ((eq? msg ’incr) (incr))

((eq? msg ’decr) (decr))
(else (error msg " not found")))))

dispatch)

To be able to access functions or variables within a particular object, name
qualification is introduced (through the use of a dot-operator). The semantics
thereof are to start the lookup in the qualified environment, instead of the current
environment (D’Hondt and De Meuter, 2003).

Inheritance in Pic% Inheritance is added to Pic% by applying Agora’s model
of nested mixin methods as follows:

counter(n): {
incr(): n:=n+1;
decr(): n:=n-1;

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 45

protect(limit): {
incr(): if(n=limit,

error("overflow"),
.incr());

decr(): if(n=-limit,
error("underflow"),
.decr());

capture() };
capture() }

Evaluatingp: c.protect(20) will return an extension or view on the counter.
This is similar to Agora’sVIEW: reifier messages. In this regard, we can also view
thecounter method as a mixin-method on a global root object. Note the use of
the “receiverless message send” (i.e. the dot without a left-hand expression) in the
overriddenincr anddecr methods. They signify a simple super-send: messages
are looked up in the parent.

It is clear that ordinary Pico functions are actually “promoted” to Pic% meth-
ods. The receiver of the message that will invoke these methods is simply the lex-
ical environment in which that method exists. As for now, we will not distinguish
between methods and functions. This implies that Pic% has first-class methods, a
feature that is again very uncommon for a programming language. In languages
like Smalltalk, Java or C++, methods are purely syntactic, they are not a language
value.

Semantics have yet to be defined for function application as opposed to mes-
sage sending. To this end, a native functionthis() is introduced which always
returns the current receiver. This is reminiscent of Smalltalk’sself and Java’s
this keyword. Function applications can then be interpreted as implicit mes-
sages sent to the dictionary denoted by the current scope. Late binding of self is
introduced when performing super-sends:this() keeps pointing to the original
receiver, even when executing a parent method via a super send.

Cloning Objects Another important operation in prototype-based languages is
the cloning of objects. Here, the straightforward object model of unifying func-
tions and methods runs into some difficulties. Recall that Pico is lexically scoped.
Therefore, all methods of an object will have a link to their environment of defini-
tion, which is the object itself. This can readily be seen in figure 2.5.

Imagine cloning thecounter object by sending it theclone() message. To
achieve sharing of methods betweenc and its clone, they would need to beshallow
copied, allowing theincr anddecr functions to be used by both objects. How-
ever, since a function is always paired with a lexical environment in which to look
up “free variables”, methods will always only “see” the instance variables of their
original object. In the case of theincr method, the free variablen will be lexically
bound to the variable of the originalcounter . All clones of thecounter would
have their own variablen, but the methodsincr anddecr would only affect the

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 46

original prototype, as the lexical environment hard-wires variable lookup to take
place in that object only. On the other hand, duplicating each method and adjusting
the environment link would nullify sharing. The problem is shown graphically in
figure 2.6.

Figure 2.6: Interference of Lexical scope with cloning

The surprising fact about this problem is that there is a very elegant solution
to the problem: abandoning static scope (D’Hondt and De Meuter, 2003). The
alternative to static scoping,dynamic scopingimplies that free variables will be
looked up in the environment ofexecutionrather than in the environment ofdefini-
tion. Consider the implications to the object model: methods will not carry a static
environment. Hence, when they aresharedbetween objects, their free variables
(n in the case ofincr) will be looked up in the environment in which they are
executed, which is the correct object. It is this change in the semantics of functions
that introduces the most fundamental differences between Pico and Pic%.

This elegant solution also immediately allows for variable overriding. Vari-
able overriding is again a feature missing in most widespread object-oriented lan-
guages. It should not be confused with variableshadowing(D’Hondt and De
Meuter, 2003). The main difference is that, when overriding a variable in a child,
the method of a parent will see and use the child’s variable, because of late binding
of self. Variable overriding is possible since no identifier is hard-wired statically:
all lookup is deferred until run-time. This is also the drawback of the scheme:
method lookup (crucial to any interpreter) is less efficient when introducing dy-
namic scope.

Returning to our clone operation, how should it be implemented? Deep copy-
ing has already been ruled out since reentrancy is an absolute must: methods
should be shared between clones. Therefore, methods were detached from their
static scope. Yet entirely shallow copies of objects cannot be made either. This
would result in the sharing ofn for the counter object and the clones would not
have their own state. Notice that this problem is similar to the one the Self group
has solved via traits. There, behaviour and state are organized in different hierar-

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 47

Figure 2.7: Pic% Object Layout Revisited

chies, and variable access is subsumed by message passing. Recall that the traits
technique requires multiple inheritance to work when trying to build inheritance
hierarchies with reentrancy. Agora also suffered from the reentrancy problem, and
it was shown in (De Meuter, 2004) that the language offered no direct solution. So
how does Pic% cope with the reentrancy problem?

The solution lies in the extension of the simple list environment model. To
this end, note that shared code should be immutable. It is therefore necessary to
introduce immutable variables – constants – into the environment (D’Hondt and De
Meuter, 2003). Constants are subject to sharing upon cloning. Syntactically, there
will be a distinction betweendefiningvariables anddeclaringconstants. Constant
declaration is the same as variable definition, except that double colons (::) are
used instead of a single one. Figure 2.7 updates the view on a counter object, given
that incr anddecr are declared as constants.

The effect of aclone message on an object can now be defined.clone()
will construct a new object, initialized with adeepcopy of the variable part of
this() , and ashallowcopy of the constant part ofthis() . Figure 2.8 shows the
counter and its relation with a clone. The constant part of an object can be regarded
as a hidden traits object that does not interfere with the modelling hierarchy (De
Meuter et al., 2003b). Notice that it is also possible to achieve sharing of other
(constant) values, next to methods alone.

In Pic%, the semantics of: and :: are overloaded. That is, they “mean
more than one thing”. We have already mentioned that: defines mutable vari-
ables and that:: declares immutable constants. Furthermore, they also define
encapsulation boundaries. Variables arealwaysprotected, while constants areal-
wayspublic. The rationale behind this is that variables usually constitute the rep-
resentation, while constants are for the most part methods which export the pub-
lic interface of an object. Message lookup always implies a lookup in thecon-
stant part of an object. Compare this with Agora where, as mentioned earlier,
receiverful messages are also only looked up in the public part of an object. Ta-
ble 2.3 summarizes the semantics of: and:: . Summarized, one could state that
visibility = not(mutability).

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 48

Figure 2.8: Effect of a cloning operation on a Pic% Object

Mutability Visibility
Definition : Mutable Not Visible
Declaration :: Not Mutable Visible

Table 2.3: Definition and Declaration related to Visibility and Mutability

First-class methods and closures Although the reentrancy problem has been
solved by adapting dynamic scoping rules for Pic%, there are still provisions re-
quired to handle first-class methods. That is, we must specify what happens when a
method is “pulled out” of its object context as a first-class entity. This can happen,
for example, in the following way (we assumec to be thecounter object from
previous examples):

{ method: c.incr;
...
method();
... }

Notice that we do notcall the increment method, but rather capture it and bind
it outside of its initial context. Further on, the method is invoked. If we do not take
precautions, then the method will probably fail because it cannot findn anymore.
To solve this problem, a function being used in a first-class manner is automatically
wrapped into a closure by the evaluator. That is, whenever the evaluator evaluates
an expression to a function, it constructs a closure consisting of the function and
the environment at that point in the execution. When a closure is later on applied
as a regular function, first the enclosed environment is restored, and only then is
the underlying function applied (D’Hondt and De Meuter, 2003).

One should note that the approach taken in Pic% to achieve first-class methods
doesnot involve reflection, as is the case in Self where wecannot“grab” a method
as we can in Pic%, since grabbing it would automatically apply it. To grab a method
in Self, one has to ask the meta object (a so-called “mirror”) of the object for the

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 49

method. Avoiding the meta-level to incorporate first-class methods keeps the Pic%
object model simple.

2.5.3.4 Method Activation in Pic%

A particularly beautiful analogy can be drawn between Pic% and Self regarding
Method Activation. In section 2.5.1, we have elaborated on Self’s simple Method
Activation scheme. There, we have shown that calling methods in Self has an el-
egant object-oriented interpretation. When closely studying (and implementing)
Pic%’s call mechanism, we were struck by its resemblance with Self’s mecha-
nisms.

When a method (or a function) is applied, it will create a new call frame in
which the method or function’s arguments will be bound. This is also the frame in
which local function variables will be defined. The frame’s parent will point to the
currently activeenvironment. This is the key difference with Pico where the scope
of a function application was an extension of the function’slexical environment
instead of the currentdynamicenvironment.

In Pic%, the call frame can be used to createviewson objects: it is the return
value of thecapture() native. Since Pic%’s object model was unified with its
environment model, this frameis an object! Thus, just as activation records in Self
are first-class objects, so are Pic% frames. Because a message send causes the
“current environment” to change to the receiver, the call frame will be an exten-
sion of this receiver. This is ideal for the scoping semantics: the variables of the
receiver will be visible inside the method, which is exactly what the Self group has
implemented by making the receiver a parent slot of the activation record.

Notice also that the Self group had to provide a special semantics for their
self receiver within a method activation: message lookup started from within the
method object, but the receiver still “points to” the original receiver. In Pic%, this
is modelled byalwaysmaking receiverless variable or function lookup start from
within the environment denoted bycapture() , but by makingthis() always
point to the original receiver. Thus, the following method:

m(x) :: { ...x...; n(); ... };

can actually be interpreted as:

m(x) :: { ...capture().x...; capture.n(); ... };

except that the send tocapture will leave this() unchanged. These semantics
ensure that variables such asx are always found in the call frame (as a formal
parameter) whenever this same variable would also occur as an instance variable of
the receiver. The receiver variable itself could then be accessed usingthis().x .
This close resemblance in unifying such complex operations as method invocation
with object-oriented concepts between Self and Pic% shows that both languages
strive for simple semantics.

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 50

We refer to appendix A.1 for a more formal treatment of method invocation
and the entire Pic% object model.

2.5.3.5 An Intersection Between Classes and Prototypes

It has already been mentioned that Agora was designed to be an intersection be-
tween class- and prototype-based languages (Steyaert and De Meuter, 1995). Pic%
has upheld this claim (De Meuter et al., 2003b). It can cope well with most of the
disadvantages usually attributed to prototype-based languages. An overview:

• The fact that prototype-based programming languages could not ensure freshly
initialized objects through a construction plan can be solved in Pic% by us-
ing the technique of the constructor functions. Each call to a constructor
function creates a freshly initialized object. Beware that there isno sharing
between objects successively created using constructor functions. Sharing is
only accomplished when a clone is created of an existing objects that con-
tains constant fields.

• The prototype-corruption problem states that a prototype, used by other ob-
jects to create a new prototypical instance, can be corrupted by accidental
state changes. Subsequent clones will therefore also be corrupted. Pic%
solves this problem in the same way Agora did: by turningclone from an
operator into a message, extreme encapsulation is upheld: simple overriding
of clone suffices to ensure correctly initialized objects.

• The fact that some concepts are inherently abstract, like a “stack” (one can
only write code for “all” stacks, i.e. one has to code such a concept at the
class-level of abstraction (De Meuter et al., 2003b)), forms no problems for
Pic%. These concepts can easily be described using constructor functions.

• Perhaps the greatest problem was the lack of reentrance of methods. Code
sharing is problematic since it can only be factored out into separate objects
if we have multiple inheritance. Pic% offers a solution through the use of
dynamic scoping and a clever object structure. The traits object is “hidden”
and does not interfere with the hierarchy to be modelled.

Moreover, Pic% does not reintroduce the problems associated with class-based
languages (such as per-object changes, ad-hoc singletons, lack of parent sharing
and a more complex meta object protocol (De Meuter et al., 2003b)). Particularly
interesting is the ease with which to enforce singletons in Pic%:

constructor(args): {
...;
clone() :: this();
constructor := capture()

}

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 51

Subsequent clone requests will be denied because we simply return the singleton,
while the constructor function will only be able to run once: it overwrites itself
with its created singleton object. This simple solution is only possible thanks to
extreme encapsulation, an idea Pic% inherited from Agora. In short, Pic% has
inherited cloning from prototype-based languages and constructor functions from
the class-based world, and is thus a clean intersection between prototype-based and
class-based languages (De Meuter et al., 2003b).

Parent Sharing Pic%’s inheritance model is a direct transposition of Agora’s
model, and it offers powerful abstractions, such as the fact that a parent can keep
track of his own children. Likewise, because of extreme encapsulation, an object
can keep track of its own clones. This feature can be used to simulate a simplified
version of Kevo’scloning families(Taivalsaari, 1993):

object :: {
myFamily :: prototypicalFamily.clone();
clone() :: {

myClone : .clone();
myFamily.add(myClone);
myClone

}
...
capture()

}

SincemyFamily is a constant, it is shared between all clones. Moreover,any
clone of the original object cannot escape being added to the family. Even if we
sendclone() to a clone of the object, the implementation will add the clone to
the correct cloning family.

Reflection in Pic% The reflection model of Pico has been somewhat revised in
Pic%. Instead of being able to “dissect” language values through tabulation (i.e.
by interpreting them as tables), two native functionsget andset are provided for
exactly the same purposes. Using these native functions, any language value can
still be inspected or modified. This means that Pic%, like Pico, does not feature
reflection protection, as explained in 2.5.2.6. This can lead to nefarious security
breaches in a distributed setup, where it is obviously not wanted that an untrusted
remote object can freely inspect a bank account object. Building a safe reflection
model for a distributed language is not considered any further in this dissertation.

2.5.3.6 Conclusion

Pic%, being an object-oriented extension of Pico, is a full-fledged prototype-based
language. Yet its object model is extremely simple, thanks to the unification of

CHAPTER 2. PROTOTYPE-BASED LANGUAGES 52

objects with the simple environment model. Pic% has also proven the existence
of a stable object model with first-class methods (D’Hondt and De Meuter, 2003).
Even more surprising is the fact that Pic% can cope with some severe problems
usually associated with prototypes. No doubt, Agora’s influence (extreme encap-
sulation and modular inheritance) has helped the language keep it simplicityand
its expressivity.

2.6 Conclusion

In this chapter we have introduced prototype-based languages, both from a philo-
sophical point of view and from a language-theoretic point of view. We have briefly
explained the essential differences between prototype- and class-based languages,
with respect to their mechanisms for empathy and templates. These differences all
originate from the way the world is modelled. When we recognize that the world is
indeed filled with distinct objects, which are subject to a similarity relation, proto-
types emerge. These prototypes introduce their very own (programming) idioms.
We have explained key concepts regarding these idioms, using the well-known
Taxonomy of Prototype-based languages by Dony et al. (1992). When presenting
this taxonomy we have devoted additional attention to the sharing mechanisms that
prototype-based languages house, since this sharing will become an essential part
of our dissertation.

We have also discussed three examples of prototype-based languages which
have had a great influence on our own work, discussed in chapters 5 and 6. First
of all we have introduced Self (Ungar and Smith, 1987), one of the most mature
prototype-based languages available today. This language has a great influence
since we also believe in Self’s vision of simplicity through minimalism, which au-
tomatically leads to a strong affinity for classless systems. The second language
introduced was Agora. The Agora language family, laying a number of important
foundations for Pic%, addresses security concerns throughExtreme Encapsulation
andReflection Protection(De Meuter, 2004). Finally we have introduced the lan-
guage we will adapt in later chapters – Pic% – a minimal extension of Pico with
prototype-based features.

In the following chapter we will focus on distribution, where we will among
other things illustrate the role that prototype-based languages can play in such a
context.

Chapter 3

Object-Oriented Concurrent
Languages

3.1 Introduction

In the previous chapter we have introduced the realm of prototype-based languages.
In this chapter we will discuss some issues related to the introduction of concur-
rency in a programming language, and more specifically how to introduce it in a
language with only objects. These issues can be divided in two categories. The
first category contains the somewhat more technical issues such as for example
avoiding the pitfalls of shared data, whereas the other category is more oriented
towards language design. Here we will for example need to choose how to support
concurrency in our language.

We will begin our discussion by introducing both the actor model and the
thread paradigm, which can be regarded as two extremes in the design space of
concurrency models. Subsequently, in section 3.3, it is discussed what tools can be
provided to guarantee that the data that is read and written concurrently is kept con-
sistent. Furthermore this section will also devote some attention to the infamous
“inheritance anomaly” (Matsuoka and Yonezawa, 1993).

Continuing, the difficulties of introducing concurrency in object-oriented lan-
guages will be discussed in section 3.4. These issues will be illustrated using the
object-based concurrent language ABCL/1 (Yonezawa et al., 1986). Section 3.5
will then review a number of ways in which concurrency is tamed in various pro-
gramming languages. Finally section 3.6 concludes our discussion on concurrency
and links these concerns to distribution.

3.2 An Overview of Concurrency Models

This section addresses two “concurrency models” which we deem important enough
to discuss because they present much of the foundations for our own concurrency

53

CHAPTER 3. OBJECT-ORIENTED CONCURRENT LANGUAGES 54

model of cPico, explained in chapter 5. The first is the actor model of compu-
tation, a veryfunctionalapproach to concurrent programming. The other is the
basic thread model, taking the stance of a moreimperativeview on concurrency.
The “thread paradigm” will be explained using Java’s concurrency model. Both
models are introduced to expose the reader to two extremes on how to introduce
concurrency into a programming language.

3.2.1 The Actor Model

The Actor model of computation (Agha, 1986, 1990) is a functional approach to
concurrency. It is based on three main concepts: active objects, asynchronous mes-
sage passing between such objects and behaviour replacement (Briot et al., 1998).
For more details regarding the first two concepts, we refer to section 5.3. An ac-
tor is a self-contained independent component, having its own “thread of control”.
This means that an actor will autonomously react to messages by executing the
“method body” itself. An actor consists of:

• An address and an associatedmail queue, which will buffer incoming mes-
sages.

• A thread of control executing the methods of the actor.

• A behaviour or a script which denotes the set of methods and state variables
of an actor.

Furthermore, the actor model is built upon three main primitives (Agha, 1990):

• A create-actor primitive which can dynamically spawn a new actor
with a specified behaviour and a new mail queue.

• A send primitive whichasynchronouslysends a message from one actor to
another. Asynchronous messages never return a (direct) result.

• A become primitive which allows forbehaviour replacementas already
noted in section 3.5.2.2. This primitive is very powerful and allows for an
actor to change its state and methods. Note that abecome only influences
behaviour: it does not change the address or mail queue of the actor.

Agha (1990) draws the parallel between the actor primitivescreate-actor
and send and the functional primitiveslambda and apply . Functional lan-
guages do not incorporate an operation similar tobecome. This is to be expected
asbecome is inherently an imperative operation and functional languages have no
notion of mutable state. It is therefore thisbecome operation that distinguishes
the actor model from typical functional models.

Having introduced the context and constituent parts of the actor model, we can
now describe the behaviour of an actor in response to a message. Whenever an

CHAPTER 3. OBJECT-ORIENTED CONCURRENT LANGUAGES 55

actor receives a message, the method in its behaviour should specify a replacement
behaviour. This replacement behaviour will be used to process thenextmessage
in the queue. Since behaviours do not share state, processing of the next message
may beginas soon as the replacement behaviour is specified. This allows for very
elegant pipelined concurrency: processing of messagen + 1 may begin while still
processing messagen. Figure 3.1 visualizes the notion of behaviour replacement.
Note that an actor that always replaces its behaviour with its current behaviour is a
purely functional actor: it never needs to “change state” (Agha, 1990).

Figure 3.1: Behaviour Replacement in the Actor Model (Agha, 1990)

Because message passing is purely asynchronous, actors are unable to explic-
itly return results. Instead, a frequently used idiom in actor-based languages is
to pass other actors as an extra argument to a message which is meant to “con-
sume” the result of the message. Such actors are also calledcontinuation actors
(Lieberman, 1987) orcustomers. The problem with this idiom is that it forces the
programmer to write his code in acontinuation-passing-style, as explained in sec-
tion 2.5.3.2. This causes code to quickly become scattered and unreadable and is
perhaps one of the reasons why actor languages are not widely used in practice.

The use of customer actors is also used tosynchronizeactors. To express condi-
tional synchronization, actors must resort to the techniques that will be outlined in
section 3.5.2.5. Put briefly, an actor always returns the value of a method to some
reply actor, usually called ajoin continuation. Such an actor will “consume” the
returned value such that computation can proceed. This requires actor programs to
be written in continuation-passing-style, however. By delaying the reply to such an
actor, the “process” it represents is implicitly blocked, allowing for synchroniza-
tion to be expressed. For a detailed example of an actor program making use of
continuation actors, we refer to section 5.1.1.

To conclude, the actor model of computation is a clean, functional concurrent
model. Actors are autonomous active objects, which process their own messages.
They communicate asynchronously and therefore introduce a vast amount of po-

CHAPTER 3. OBJECT-ORIENTED CONCURRENT LANGUAGES 56

tential concurrency. Concurrency is controlled by explicitly specifying “contin-
uations”. Note that at no point have we mentioned classes, but neither have we
mentioned delegation or cloning. Actors provide a low-level concurrency model
on top of which abstractions can be built. Because of its object-centred nature,
it seems only natural to try and use it as the basis for a concurrency model for a
prototype-based language. The combination of the fundamental ideas from the ac-
tor model with the concepts of assignment and delegation is therefore interesting
to study. Chapter 5 describes our reflections on the subject.

3.2.2 Threads and Monitors

This section will highlight a radically different approach to concurrency, one that is
often found in class-based languages. Unlike the actor model, we cannot talk about
the thread model. We refer to this model as a general term for any concurrency
model in which computational entities called threads or processes are explicitly
under the programmer’s control, and where such entities communicate through
shared mutable data. Whereas objects play a key role in actor systems, they are
usually subordinate to threads in a thread model, where a thread “controls” multiple
objects. Because there is no unified thread model, most programming languages
employing threads have their own idiosyncracies. Rather than discussing threads
at a more abstract level, we prefer to ground the discussion and will review the
concurrency model of the highly popular Java programming language. First, we
will introduce monitors as an early attempt of synchronization in a class-based
context, on which the Java model is partly founded.

3.2.2.1 Monitors

Monitors were first introduced in (Hoare, 1974). The idea behind a monitor is to
encapsulate mutable data that is shared between multiple threads by a data structure
that mediates access to it. A monitor is thus a special kind of data type consisting
of some private data and someprocedures operating on this data. It is thus not
surprising that Hoare immediately drew the parallel with Simula classes having
private instance variables and methods operating on this data. The idea then, is
to allow any thread to call a procedure on a monitor at any time, but at mostone
procedure can be executed simultaneously.

Hoare (1974) also introduces the concept ofcondition variables, as a method
of achieving conditional synchronization (see section 3.5.2.1). Condition variables
do not have an associated value. They can only be used in conjunction with two
operations:wait andsignal . Monitors can be efficiently implemented using
Dijkstra’s semaphores. To ensure that all procedures are mutually exclusive, a
special semaphore called amutexis associated with each monitor. Each procedure
body must then be bracketed with corresponding P (“probeer”) and V (“verhoog”)
semaphore operations on this mutex. In (Hoare, 1974) it is shown how monitors
and condition variables can be implemented in terms of semaphores. Although

CHAPTER 3. OBJECT-ORIENTED CONCURRENT LANGUAGES 57

monitors allow for only rather low-level synchronization, it is one of the few basic
concurrency constructs that has found widespread acceptance and is still used today
in modern programming languages.

3.2.2.2 Concurrency in Java

The Java Concurrency model is based on three main concepts: threads, synchro-
nization and monitors (Lea, 1999). Threads are a Java library class that encapsulate
the well-known concept of a thread of control or autonomous process. Threads can
share underlying file resources and objects constructed within the same program.
They can be created dynamically by the JVM. A thread has to be explicitlystarted
when created. A started thread will execute a specialrun() method that has to be
either implemented by a subclass or by an aggregatedRunnable object. A thread
automatically stops executing whenever therun method returns.

Concerning synchronization, Java employs a lock-based scheme. Any object
of classObject or its subclasses has an implicit lock associated with it. This lock
can be acquired usingsynchronized blocks. The syntax is as follows:

synchronized (object) {
...

}

where the lock onobject is acquired before the code in the block is executed.
The lock isautomaticallyreleased when returning (normally or through an excep-
tion) from the block. Methods can also be declared assynchronized , but this
is considered equivalent to:

ReturnType method(args) {
synchronized (this) {

... // method body
}

}

Methods declaredsynchronized within the same class or superclass will
thus always executemutually exclusivewithin the object. Note that this exclusive-
ness doesnotguarantee atomicity: a method invocation on an object is only atomic
if all methods are synchronized, since a non-synchronized method will not try to
acquire the lock. Java locks are reentrant: recursive calls of asynchronized
method do not lead to deadlock.

The final concurrency concept in Java are monitors based on the ideas by Hoare
introduced above. Just as every object has an associated lock, it also has an associ-
ated queue or “wait set” which is entirely managed by the JVM. Programmers can
manipulate this wait set using the methodsObject.wait , Object.notify
andObject.notifyAll . These methods are used to support conditional syn-
chronization.

CHAPTER 3. OBJECT-ORIENTED CONCURRENT LANGUAGES 58

When a thread invokes await method on an object, it is automatically sus-
pended and added in the object’s wait set. A thread can only invokewait on an
object if it has previously acquired the object’s lock. Upon executingwait , the
lock is automatically released so that other threads can use the object again. Note
that other locks held by the thread arenot released. This might lead to hard-to-
detect deadlocks, but is essential to guarantee correct semantics.

If a thread invokesnotify on an object, an arbitrary suspended thread is
selected from that object’s wait set (if it is not empty) and awoken. This thread
must then first acquire the lock on its object again. Since this lock will always still
be held by the notifier, an awoken thread will always have to wait for the notifier
to release the lock. This implies that, after a call towait , the waiting thread
should recheck its waiting conditions since other threads might have been using
the object while it was trying to re-acquire the object lock. If the programmer
does not take these subtle semantics into account, concurrency problems might
arise. ThenotifyAll method has semantics similar tonotify but awakesall
waiting threads in the wait set of the receiver.

An example using Java threads is given in section 5.1.1. In conclusion, we
can state that Java’s concurrency model is based upon established and well-known
concurrency abstractions (monitors), but is quite low-level in nature. Taking into
account that Java is quite young a language, we find it surprising that Java has not
employed more high-level schemes that integrate much better with the concepts of
object-orientation. A similar remark is made by Briot et al. (1998) who state that
Java favours a low degree of concurrency integration in the language itself.

3.3 Concurrency Issues

In this section we will elaborate on some important issues that pop up when de-
signing concurrent programs. We will divide such issues in two broad categories.

First of all some issues address the problems of concurrent access on shared
data, which are also calledrace conditions. The problems we therefore need to
solve are also observed in the planning of database transactions, where data con-
sistency is equally important. Whereas the problem space is identical (we need
to maintain shared data correctly) the solution is not. In a programming language
one does not have a specialized scheduler available. A set of low-level constructs
should be offered to the programmer, which allow him to work out a solution that
is best suited to his application needs. Especially in our context of distribution with
lots of small clients other approaches might be too heavyweight.

The second aspect is more related to the fact that we are dealing with an object-
oriented language for concurrency. As such we must take into account that a user
will organize his programs using objects. In the object-oriented paradigm (possibly
object-based) inheritance is important. Ideally we want to inherit the synchroniza-
tion constructs as well. This is unfortunately not possible in the general case due
to a phenomenon called theinheritance anomaly(Matsuoka and Yonezawa, 1993).

CHAPTER 3. OBJECT-ORIENTED CONCURRENT LANGUAGES 59

3.3.1 Race Conditions

Any concurrent programming language will at least offer a way to start concurrent
computation. However this is far from sufficient in almost any context. If we
are concerned with the actual correctness of a program’s execution then a set of
conditions must be observed. These conditions are closely tied to the correctness of
data that may be accessed concurrently. This is why the problems that are discussed
here are also observed when writing a realistic database management system which
should feature transactional support. Traditional transactions should satisfy the
ACID properties (Connolly and Begg, 1999a). We will first introduce the data
consistency problems by means of two simple examples. Then we will evaluate
how the ACID properties can be transposed in a programming language.

3.3.1.1 Incorrect Analysis and Ghost Writes

Incorrect Analysis and Ghost Write are two problems that are caused by unencap-
sulated access to shared data. To illustrate exactly the cases in which they occur
we will illustrate their effect with the example of a simplistic Stock. We keep the
set of operations as minimal as possible. First of all products can be bought, which
reduces the number of products, and a new shipment can arrive which increases the
number of products. Furthermore the stock manager can request for an inventory,
to estimate based on the numbers of sold items and the available stock to order a
shipment or not. The example is given in Pic%.

stock() :: {
sold : 0;
available : 0;
bought : 0;

buy(amount) :: {
sold := sold + amount;
available := available - amount};

report() :: display("Available : " , available, eoln,
"Sold : ", sold, eoln,
"Bought : ", bought, eoln);

shipment(items) :: {
available := available + items;
bought := bought + items};

capture() }

Though this code is quite simple, it can lead to unexpected results in a con-
current context, if the proper precautions are forgotten. Imagine that two threads

CHAPTER 3. OBJECT-ORIENTED CONCURRENT LANGUAGES 60

A and B make a customer buy a product concurrently. Both threads can then per-
form a lookup ofavailable immediately after each other and thus find the same
value, for example5. This means that after this operation our number of available
products is4, instead of3 which is what the user will expect. This is the tradi-
tional lost update problem(Connolly and Begg, 1999b) that is also encountered in
database systems. The assignment of thread A is called aghost writebecause the
value it writes will never be read.

A similar problem exists with respect to reading where inconsistent informa-
tion may be used due to the fact that some other method is executing at the same
time. Consider the following scenario in our example:

1. The stock manager requests a report and at the same time a cashier registers
that a customer has bought all100 items in our stock.

2. The report function called by the stock manager performs a lookup of
available and finds100. The thread is then interrupted temporarily for
some reason.

3. The cashiers thread registers the customers order of100 products and fin-
ishes.

4. The report now continues and reports the number of items sold. However
the sum of both will be more than what was bought.

This problem is also observed in databases and is named theincorrect analysis
problem in (Connolly and Begg, 1999b). In the next section we will introduce the
concept ofserializability which will place restrictions on the sharing of data, in
order to achieve correctness.

3.3.1.2 Atomicity and Serializability in Programming Languages

Serializability is another concept that is introduced in the context of database man-
agement. In such a context it is important to allow a maximal degree of concur-
rency, thus transactions must be able to work concurrently. Initially transactions
can be separated based on the data that they access. However, this is not always
enough. Through several techniques transactions can be scheduled such that their
result is the same as what could have been obtained through serial execution of
somepermutation of the transactions. A serial execution means that all transac-
tions are scheduled one after the other. Such a schedule which does interleave
execution but only in an unobservable way is called aserializable schedule.

In the context of a programming language we can assume a more conservative
stance. First of all the corpus of data that is encapsulated inside an object is usually
a lot smaller than the data accessed by a typical transaction on a database. As
such we can enforce the atomicity of an invocation in a much stronger way, by not
allowing concurrent invocations on objects at all. Thus the notion of a transaction

CHAPTER 3. OBJECT-ORIENTED CONCURRENT LANGUAGES 61

and that of a method invocation can be merged into anatomic invocation(Briot
et al., 1998).

The cPico model that will be introduced in chapter 5, will feature atomic invo-
cations. Since transactions should satisfy the ACID properties, it may be of interest
to see how these properties can be transposed to the context of atomic invocations.
Any atomic invocation should be:

• Atomic: as the nameatomic invocation already clearly indicates, this can
be enforced in a programming language by only allowing a single method
invocation to be active per object. In other words, intra-object concurrency
is forbidden.

• Consistent: atomic invocations do not leave the object in an inconsistent
state. In a language which does not feature rules specifying pre- and post-
conditions and invariants, this needs to be done by appealing to the respon-
sibility of the programmer.

• Isolated: atomic invocations are not impacted by other invocations that run
concurrently. Since we explicitly forbid intra-object concurrency this prop-
erty comes for free.

• Durable: which means that the result of an atomic invocation is not lost.
However in our context we have left persistency concerns as a topic for future
work.

The analogy between transactions and method invocation may seem a little far-
fetched, because obviously differences exist. However, in section 4.5.2 we will
discuss the language Argus (Liskov, 1988) which incorporates transactions as a
language concept. In our own languages we will not support full-fledged trans-
actions, yet we think that these rules can be used as a guideline to specify the
characteristics of an atomic invocation.

3.3.2 The Inheritance Anomaly

When mixing concurrency with the object-oriented programming, we initially seem
to gain quite a lot. Objects provide a good form of encapsulation, which is a good
thing to have in a concurrent setting. Moreover, objects themselves can serve as a
natural boundary to regulate concurrency by forbidding intra-object concurrency,
meaning that multiple processes cannot be simultaneously active “inside” the same
object. However, other synchronization concerns need to be addressed in the code
of 1 object itself. The most typical example is that of a bounded buffer, which
cannot execute aget command when it is empty. In a sequential context an error
could be thrown since the fact that aget is performed on an empty queue is of-
ten a programming error. In a parallel context this in no longer true since we the
state of a buffer that can be accessed by several processes cannot be predetermined.

CHAPTER 3. OBJECT-ORIENTED CONCURRENT LANGUAGES 62

This consistency must be maintained by the buffer itself, which shoulddelay the
evaluation ofget until aput message arrives (Milicia and Sassone, 2004).

If synchronization code is tangled with functional code, all synchronization
constraints will have to be completely rewritten when a method is overridden in
a child object. This problem is termed theinheritance anomalyby Matsuoka and
Yonezawa (1993). This problem has been studied extensively in the nineties, cul-
minating in several proposals to reduce the problem. An overview of these solu-
tions is given in (Matsuoka, 1993). We will first discuss two important criteria that
should be taken into account when opting for a specific conditional synchronization
construct, namely modularity and incremental modification.

Modularity is one of the essential features of such a construct if it aims to
avoid the inheritance anomaly, since synchronization code that cannot be specified
separately prevents us from reasoning about it in a consistent way. Thus without
modularity, synchronization code for a given method will nearly always have to
be rewritten. Two techniques that allow such modular specifications are discussed,
beingguards(Dijkstra, 1975) andbehaviour sets(Kafura and Lee, 1989). Guards
are boolean conditions that are evaluated to determine whether a method can be
executed, whereas behaviour sets specify a set of methods that are applicable in
the current state. They are discussed in more detail in sections 3.5.2.3 and 3.5.2.2.

Some consideration should be given to the fact that the inheritance anomaly it-
self is sometimes caused by the fact that behaviour is incrementally specified (e.g.
a method invoking its overridden method using a super send). Thus, one should be
able to do the same for the synchronization constraints. A set of operators should
need to be defined that allow refining the guards or behaviour sets. Incremental
modification is particularly interesting since it allows to reuse the synchronization
for the parent which is still correct in case of a super-send, and allows to put addi-
tional constraints for the method on the child.

Frolund (1992) uses guards to specify when topreventa method from being ex-
ecuted, because of the aforementioned observation that we usually want to impose
additional constraints. When guards are used to specify when a method should
be available, most likely this condition will be partially invalidated by new con-
straints. This would require a rewrite of the synchronization code altogether. How-
ever, if the guardrestrictsthe use of a method, this guard can be reused in a sub-
class by imposing extra conditions using a simple conjunction of the guard of the
superclass with new constraints.

Another approach is taken by Matsuoka (1993), who introduces among other
constructs the notion ofaccepted sets. These sets specify which methods can be ex-
ecuted and thus in their most primitive form they are prone to inheritance anomaly.
However in the model of Matsuoka (1993) they can be extended in a child, us-
ing a union construct. As such methods that are added can be made available for
a child as well. However behaviour sets are not sufficient. Imagine we have a
buffer with 3 states,empty , intermediate andfull . Now if we introduce a
get2 function that gets2 elements at a time. This would require us to split up the
intermediate state and take into account the case where we have only1 item

CHAPTER 3. OBJECT-ORIENTED CONCURRENT LANGUAGES 63

left1.
Summarizing we must recognize that intertwining synchronization and func-

tional code gives rise to the inheritance anomaly. In order to solve this important
issue a construct is needed that is both modular and subject to incremental modifi-
cation. Another important issue to consider is whether a conditional synchroniza-
tion construct should state when a method is available or when it isnot available.
It seems that “disabling guards” are a good choice, though some problems are left
unresolved (Frolund, 1992).

3.4 Adding Concurrency to an Object-Oriented Language

In the previous sections we have focussed on some of the more technical issues
associated with programming concurrent programs. Some more high-level ap-
proaches to effectively designing proper concurrency constructs for object-oriented
languages are now considered. This is not at all trivial, and different languages take
different approaches. A good overview paper by Briot et al. (1998) categorizes
these different approaches into three different but complementary categories. We
will first briefly explain thelibrary and thereflectiveapproach, which we did not
pursue. Later on we will present theintegrativeapproach we adhered to. We will
also use a set of guidelines set forward by Caromel (1990) which are concerned
with minimizing the required changes for going from a sequential to a concurrent
program.

The Library approach reuses the existing sequential idioms to structure con-
current programs. Thus the concepts in which the programmer expresses his al-
gorithm are the same as before. However, a new set of classes or prototypes
is provided to deal with concurrency. The objects that are offered range from
threadsoversemaphoresto possibly more higher level constructions such as shared
queues which can be used to synchronize communication between two processes
andpromisesor futures.

The Reflective approach strives for transparency, by bringing the concurrency
issues to a meta-level. Thus the user can build abstractions for concurrent objects
by supplying them with a specialized meta-object that can for example act as a
monitor.

Our approach is called the Integrative approach. The goal here is to find a uni-
fication or coexistence for object-oriented concepts on one hand and concurrency
concepts on the other hand. For example we can unify the notion of an object and
that of a process into anactive object. Furthermore there is also a parallel between
a transaction and a method invocation, which can be merged into anatomic invoca-
tion which has the characteristics we have explored in section 3.3.1.2. Briot et al.
(1998) identify one problem with this approach in a concurrent setting, namely the
problem ofinheritance anomalywhich we have already discussed in section 3.3.2.

1This requires us to rewrite ourget as well, since we should perform an additional check to see
if we have one item left, and then become the new behaviour set.

CHAPTER 3. OBJECT-ORIENTED CONCURRENT LANGUAGES 64

3.4.1 Object-Based Concurrency Features

Caromel and Rebuffel (1993) specifies a set of language features considered essen-
tial when designing a concurrent object oriented language. Though they explore
these features in the context of a class-based language, Eiffel//, at least some of
these concerns will need to be taken into account in our model as well. We will
summarize the features they discuss.

1. Active objectsare a first concept that should be added since it provides a
clean unification of processes and objects, as we have mentioned above. An
active object is a good way to model a process, due to the inherently good
encapsulation an object offers. Yet not every object should be treated as
active. In Eiffel// this is done by only treating objects whose class inherits
from a given class as active objects.

2. Consistentasynchronous communicationbetween active objects is important
to maximize the available parallelism in the system.

3. Wait-by-necessityis a technique which introduces return values for asyn-
chronous objects. These objects are filled in when the value is available and
processes block (wait) when they need the value. This construct allows one
to introduce asynchronous communication in a language without need for
adapting existing well-written software, i.e. there is no dependency on what
a function does apart from the value that is returned. Moreover a return value
allows for concurrent programs to be programmed in a much more natural
way.

4. Centralized controlmeans that rather than attaching synchronization control
to a method directly, or even worse to weave it in the function code, we have
a separate module where all concurrency control is expressed. The problem
with explicit concurrency control remains that subclasses need to adapt the
separate module.

5. Automatic continuationssignify that if one method that needs to fulfill a
promisep1 calls another method asynchronouslyand tail-recursively that
we should ensure that the intermediate method is not blocked and can already
return. In our language this will be achieved through promise forwarding,
which we will discuss in section 6.8.2.

6. Furthermore Caromel and Rebuffel (1993) strongly favoursexplicit concur-
rency controlfacilities which can be used to construct more declarative forms
of implicit control. This topic is further elaborated in (Caromel, 1993). To
support this decision he introducesfirst-class methods, first-class requests,
and access to the message queue. Our investigation is currently centred
around forms of implicit control.

CHAPTER 3. OBJECT-ORIENTED CONCURRENT LANGUAGES 65

7. Sequential processessignal that inside one active object only one thread is
active. We believe that this choice is the most natural to make since there
is no compelling reason to allow multi-threading inside one active object.
Moreover single-threading avoids extra locking constructs and intellectual
effort from the programmer.

To further illustrate how a concurrency model can be integrated in a language
we will take the case of ABCL. Though we have similar opinions on a lot of es-
sential issues, we refrain from using Eiffel//. In our context we think it is better
to immediately look at an object-based language rather than sticking with a more
traditional class-based language. The goal of this dissertation is to focus on concur-
rency and distribution issues in a prototype-based language. Furthermore ABCL
also has a lot in common with our approach.

3.4.2 ABCL: an Integrative Object-based Approach

ABCL, the Actor Based Concurrent Language (Yonezawa et al., 1986) is an object-
based concurrent programming language. It is heavily based on the actor paradigm,
but introduces the important notion of state. It also introduces an additional “wait-
ing state” for actors. It is never explicitly mentioned whether ABCL supports dele-
gation with late binding of self. It does support cloning and class-like abstractions
through constructor functions. Apart from that, ABCL is a true object-based lan-
guage which has heavily influenced our own model explained in detail in chapter
5. We will now discuss the particular language variant ABCL/1, in particular how
objects are modelled and how they communicate.

3.4.2.1 The ABCL/1 Object Model

In ABCL/1, all objects areactive. That is, each object has an associated thread of
computation and executes its own methods. See section 5.3.1 for a more elaborate
discussion on active objects in our concurrency model for Pic%. An object can
be in one of three states: dormant, active or waiting. It is initially dormant and
becomes active whenever it receives a message. Whenever there are no more mes-
sages in its message queue, an object becomes dormant again. An object which
is active can also block and wait for a certain message to arrive. It then tran-
scends into waiting mode as long as the specified message does not arrive. This
is very convenient for modelling conditional synchronization. Awaiting a message
is achieved through a specialselect construct. This is calledselective message
receipt(Yonezawa et al., 1986) and is similar to Ada’sselect statement (Ichbiah
et al., 1986). It is implemented without resorting to busy wait.

As already mentioned, ABCL is special in that it is an actor-based system intro-
ducing the notion of state into the otherwise functional actor paradigm. To protect
this state from the concurrency problems previously introduced, objects with state
cannot process more than one message at a time. ABCL/1 also allows for addi-
tional “constraints” to be attached to method patterns. The same method pattern

CHAPTER 3. OBJECT-ORIENTED CONCURRENT LANGUAGES 66

can occur with multiple different constraints. If multiple pattern-constraint pairs
match an incoming message, the first one is selected. A typical bounded buffer is
written down in ABCL as follows:

[object Buffer
(state ...)
(script

(=> [:put obj]
(if full?

then (select
(=> [:get] <execute get>)))

<store obj>)
(=> [:get]

(if empty?
then (select

(=> [:put obj] <return obj>))
else

<remove obj from storage and return>)))]

Text between< and> is merely a summary of the source to focus on the more
important concepts. An object consists of (optional) state and a script, which is a
set of methods. Each method has a pattern (much like in Smalltalk). Conditional
synchronization is achieved simply by waiting for a certain message to arrive that
will add or remove elements from the queue, so that the blocked message can
continue. This is an elegant synchronization scheme, yet hard to reuse since the
select construct is embedded within the method body. This does not appear to
be a problem in ABCL since it does not introduce any inheritance mechanisms to
the best of our knowledge.

3.4.2.2 Message Passing Semantics

Messages sent to active objects are properly serialized by enqueuing them in a
message queue (see section 5.3.2 for an analogy with our model). However, ABCL
distinguishes between two kinds of “priorities” between messages: ordinary mode
message passing and express mode message passing. In ordinary mode message
passing, a message is simply enqueued in the message queue if the receiver is
active. If the object is in waiting mode, waiting for some specific message to
arrive, then a message is discarded if it does not match one of the required patterns.

Express mode messages can be acceptedevenwhen the receiver is active. It
will then interrupt the current evaluation. This evaluation will be continued when
the express message finishes, unless the latter explicitly aborts the computation.
This type of message mode makes it possible to easily monitor an object’s state or
interrupt an object. Multiple express mode messages are enqueued in a separate
expressmessage queue. Allowing for such express messages introduces problems

CHAPTER 3. OBJECT-ORIENTED CONCURRENT LANGUAGES 67

with atomicity: no method invocation is guaranteed to be atomic anymore. The
language designers have therefore added a primitive calledatomic which will
evaluate its expression without interruption.

ABCL is unique in the way message delivery between the caller and the callee
is accomplished. The language provides no less than three types of messages.
The rationale is to provide anatural means of synchronization between objects
(Yonezawa et al., 1986), all easily expressible by the programmer. The three mes-
sage types are explained in more detail below.

Past Type Message PassingThis message type implies that the senderdoes not
wait for any result to be returned. It just carries on its computation. This is
a pure actor-like asynchronous method invocation. It is called “past type”
because the call already finishes even before any action has taken place.

Now Type Message PassingThe now type is largely equivalent to a simple syn-
chronous method invocation. That is, the sender will wait for a result to be
returned. The main difference with a pure synchronous method or function
call is that the result is not necessarily the “return value” of the method. That
is, the callee may respond to the caller explicitly and may still carry out some
computation after having sent back the result. Recursively calling a method
through now type message passing causes deadlock.

Future Type Message PassingThis type of message passing allows for asynchron-
ous method calls that still return a result. They are the basis for our own
model of “promises”, discussed more extensively in section 5.3.3. The ma-
jor difference with the approach presented in this dissertation is that futures
are not transparent in ABCL. Future type messages are particularly handy
whenever the caller expects a result but does not need it right away. It can
then go on and perform some other useful computations before truly access-
ing the result. This special return value is what is called afuture object. It
can be queried for the “result to be computed”.

In ABCL/1, futures are rather special when compared to futures in Multilisp
(Halstead, Jr., 1985), promises in Argus (Liskov and Shrira, 1988) or promises in
our own model (section 5.3.3). They act as queues in which a callee can enqueue
multiple return values. The queue’s contents can only be queried by the object
that has performed the future type message send. Yonezawa et al. (1986) note that
a program’s concurrency is increased by the use of such futures, since caller and
callee can both perform useful work and synchronize onlywhen necessary. This
concept has been termed “wait-by-necessity” by Caromel (1989). The language
designers also note that futures allow for a more expressive alternative in dealing
with return values than callbacks or customers as was necessary in the actor model.
Such callbacks or customers break down the method of an object into several pieces
which then become scattered throughout the code (Yonezawa et al., 1986). Futures
keep the code together in one method body.

CHAPTER 3. OBJECT-ORIENTED CONCURRENT LANGUAGES 68

One final peculiarity of ABCL is that the “return address” is first-class. It is
called thereply destination. Such a reply destination is always implicitly present
in now type and future type message passing. It is also possible for the caller of a
message to explicitly provide a reply destination (object) different than itself. The
syntaxreceiver <= message @ replydestination is used to provide
such reply destinations.

By making the return address explicit, it becomes possible to program in a
continuation-based style. It also allows for the reduction of past, now and future
type message sends to only past type. Details on this reduction can be found in
(Yonezawa et al., 1986). Put briefly, a now type message can easily be reduced to
a past type message immediately followed by aselect construct that will make
the caller block until a result message arrives. The callee will then explicitly send
the result back to the caller, thereby reactivating it. Future type message passing
can be expressed in terms of past type message passing, where the reply destination
is modelled by a special queue object representing the future.

3.4.2.3 ABCL/f

ABCL/f (Taura et al., 1994) is a statically typed heir of ABCL/1 which allows for
ordinary functions next to objects, in contrast to ABCL having only active objects.
In ABCL/f, mutable shared objects must be encapsulated in so-called “concurrent
objects”. Just like in ABCL/1, method invocations on such objects are serialized
and atomic. The language is termed ABCL/f because its basic invocation mecha-
nism is based upon future type message passing. The other types are still available
though. Taura et al. (1994) argue that futures allow for an ideal transition from a
sequential call/return paradigm to a highly asynchronous one. Again, the remark
is made that asynchronicity without futures is much harder to deal with. Futures
are even more explicit in ABCL/f than they are in ABCL/1. One has to specify
their static type, clearly distinguishing them from normal values. The language
designers have explicitly chosen to do so for efficiency reasons. The language is
clearly designed to allow for efficient parallel computing. The programmer can for
example specify the “processor” where a computation has to take place. ABCL/f is
less interesting for us to study. It also breaks with ABCL/1 by introducing classes,
thereby no longer being purely object-based.

3.4.2.4 Conclusions

ABCL tries to model the world in terms of active objects communicating (and
synchronizing) through various forms of message passing. It is thus only nor-
mal that it stresses message passing and defines a number of features normally
lacking in an object-oriented language, such as first-class reply destination and ex-
press messages. The latter were intended for natural modelling of objects. It is
natural that an object can be “interrupted” to make it do something more impor-
tant. The drawback is that interruption gives up atomicity of method invocations.

CHAPTER 3. OBJECT-ORIENTED CONCURRENT LANGUAGES 69

Yonezawa et al. (1986) present two alternatives: a mail priority model and an
explicit check-express primitive that checks whether new express messages
have arrived and executes them if this is the case.

To conclude, let us review the two most important aspects of concurrency in
ABCL: how it is created and how it is controlled. Concurrency is created by having
multiple active objects being able to execute their methods autonomously. Past and
future type message sends also cause subsequent parallelism. Synchronization is
achieved by making method activation serialized using a FIFO message queue.
An important synchronization mechanism is theselect construct, allowing for
conditional synchronization. Finally, now and future type message passing allow
synchronization at a higher level, conceptually through the use of theselect
construct.

ABCL was important enough to review it in-depth because of its large influence
on our own design of cPico, presented in chapter 5. We have built upon the very
“actor like” active objects and the future type message send. One feature lacking
in ABCL is inheritance or delegation, in contrast to our own approach, where this
relation between objects will be exploited in a concurrent setting.

3.5 Conditional Synchronization

Conditional Synchronization allows for two processes to synchronize based on
some arbitrary condition. It is usually distinguished from other types of synchro-
nization that determine the synchronization points in advance. For example, when
performing a synchronous method invocation, the calling process will automati-
cally await the return value. The “condition” is fixed in this case. In (Briot et al.,
1998), conditional synchronization is termedbehavioural synchronization. This
term is often used in the context of conditional synchronization at the method level
in an object-oriented language. There, conditional synchronization can be seen as
the fact that a certain “request” (an incoming message) cannot be processed at the
moment. An example of such requests could be adequeue message sent to an
empty queue. Rather than throwing an error, it would make more sense to make
the requesting process block until the request can be processed. This makes syn-
chronization of method invocation between objects fully transparent (Briot et al.,
1998).

In this section the necessity for conditional synchronization is first explained.
We will also specify a number of criteria to which a good synchronization scheme
should adhere. Next, an overview of several existing conditional synchronization
schemes is given. Each approach is checked against the postulated criteria. The
last subsection concludes on all approaches.

CHAPTER 3. OBJECT-ORIENTED CONCURRENT LANGUAGES 70

3.5.1 Evaluation Criteria

We will introduce conditional synchronization using the running example of a
bounded buffer. The example is quite representative as it is often the case that con-
current processes communicate using a bounded buffer data structure. Moreover,
a lot of conditional synchronization situations are often slightly modified versions
of the basic bounded buffer problem. The idea of a bounded buffer is that it pro-
vides some finite storage in the form of a fixed size queue. There are processes
which can store elements in the queue (theproducers) and processes which will
retrieve them (theconsumers). The idea is to make producers wait whenever the
buffer is full and to make consumers wait whenever it is empty. Throughout the
following section, where we provide an overview of various ways of coding con-
ditional synchronization, we will work with a slightly more simplified version of
this problem. We will use a bounded buffer of size one, also sometimes termed
a cubbyhole. The cubbyhole can be modelled as an object having two methods:
get() andput(item) . get() retrieves the item but should block whenever
the cubbyhole is empty.put(item) stores an item and blocks if the cubbyhole
is full.

We have evaluated each language construct supporting conditional synchro-
nization according to the following three criteria.

Expressivity The language construct should allow for an expressive notation for
the problem. Although expressivity lies in the eye of the beholder, one
should always try and minimize the cognitive load on the programmer when
dealing with synchronization. Expressivity can range from a very expressive
declarative style to a more low-level operational style.

Reusability This criterion is nothing more than the demand that the language con-
cept can gracefully handle the inheritance anomaly introduced in section
3.3.2. The conditional synchronization should be made as reusable as possi-
ble. Ideally, children of an object can reuse the conditional synchronization
when they want to, but can modify it independently of non-synchronization
behaviour if necessary.

Efficiency As always in programming language design, we should not addinher-
entlyinefficient language features. In the context of conditional synchroniza-
tion, we can usually distinguish between efficient and inefficient schemes
depending on whether or not synchronization is achieved throughbusy wait.
Busy waiting implies that the synchronee is continually polling some condi-
tion until it evaluates to true. That is, the processes involved in synchroniza-
tion waste precious processing cycles evaluating the condition over and over
again. A conditional synchronization scheme avoiding busy wait is highly
preferable.

CHAPTER 3. OBJECT-ORIENTED CONCURRENT LANGUAGES 71

3.5.2 Conditional Synchronization Schemes

This section will try and give the reader a general feeling of what different syn-
chronization schemes have been used in the past to support conditional synchro-
nization. Approaches vary in the above criteria and are usually coupled to certain
concurrency models. We will illustrate each scheme with the cubbyhole example
as explained above. We will also try to evaluate each scheme to the best of our
knowledge.

3.5.2.1 Schemes Using Condition Variables

The notion of a condition variable is strongly related to the concept of asemaphore.
That is, a process canwait on a certain condition variable until some other process
notifiesit. A condition variable has an associated implicit queue of suspended pro-
cesses. Condition variables are found in many thread-based concurrent languages,
among others Java (see section 3.2.2.2) and Obliq (Cardelli, 1994), introduced in
section 4.5.4. Obliq incorporates explicit condition variables. The cubbyhole ex-
ample is programmed in that language as follows:

let cubbyhole =
(let notEmpty = condition();

notFull = condition();
var item = nil;
{ serialized,

write =>
meth(self, elem)

watch notFull until item=nil end;
item := elem;
signal(notEmpty);

end,
read =>

meth(self)
watch notEmpty until item!=nil end;
let hold = item;
item := nil;
signal(notFull);
hold;

end; });

Two condition variables,notEmpty andnotFull are created, on which a
method can be suspended throughwatch and resumed throughsignal . The
write method will block whenever it finds the cubbyhole full. After having per-
formed a write, thewrite method explicitly wakes up any blocked readers. The
read method exhibits symmetrical behaviour.

CHAPTER 3. OBJECT-ORIENTED CONCURRENT LANGUAGES 72

Concerning expressivity, we think of this synchronization scheme as rather
low-level. This is because it requires the programmer to think operationally. The
programmer has to explicitly suspend processes and resume the ones it has sus-
pended at appropriate times. Because of this operational approach, the necessary
statements are often tangled with the normal code of the method. Thus, the method
is also not reusable for inheritors. If the cubbyhole class or object would be ex-
tended, one would not be able to deal with synchronization in a modular way.
Unsurprisingly, this synchronization scheme is extremely efficient. It suspends
and resumes processes only when necessary. Moreover, condition variables can be
readily implemented by semaphores or low-level test-and-set operations.

3.5.2.2 Behaviour Sets

Behaviour sets are based on the notion of behaviour replacement from the actor
model (Agha, 1986, 1990). We will defer the discussion of this concurrent object-
oriented model to section 3.2.1. For our purposes here, it is important to note that
an actor has a behaviour, comprised of a number of methods. Actors can explicitly
change their behaviour, thereby changing the amount and type of methods they
offer to their clients. This can be used for purposes of intra-object concurrency and
synchronization (Briot et al., 1998). One can also adapt this notion of behaviour
replacement for the purposes of conditional synchronization, through what is called
interface controlin (Kafura and Lee, 1989). Indeed, the idea is that an object
can be in a set of abstractstates. Each state specifies a subset of the interface of
the object as being “enabled”. When an object is in a certain state, it canonly
process messages which are in this “enabled set”. Other messages must wait for
the behaviour to change in order to be processed.

The language ACT++ (Kafura, 1990; Kafura et al., 1993) is an actor-based
extension of C++. ACT++ explicitly introduces Behaviour Sets for the purposes
of conditional synchronization. The following is an example of the Cubbyhole in
ACT++:

class Cubbyhole: Actor {
int item;
behavior:

empty = {put};
full = {get};

public:
Cubbyhole() {

become(empty);
}
void put(int elt) {

item := elt;
become(full);

}

CHAPTER 3. OBJECT-ORIENTED CONCURRENT LANGUAGES 73

int get() {
reply(item);
become(empty);

}
};

Note how the synchronization code has become almost completely transparent.
This conditional synchronization approach is clearly very expressive, as long as the
number of “abstract states” remain acceptable and the transitions between them
are clear. Considering the inheritance anomaly, this synchronization scheme is
much more amenable to reuse than using condition variables, especially if it is
possible to override behaviour sets from within subclasses, such that new methods
can be properly added. Sometimes, however, adding new methods will partition
existing states into more fine-grained states. At that point, we are forced to override
methods in the superclass merely for the sake of updating the arguments to the
become statements, which is clearly an inheritance anomaly. An example is given
in (Matsuoka and Yonezawa, 1993). Regarding efficiency, it is noted that behaviour
sets can be implemented without resorting to busy waiting. Messages not eligible
for execution can suspend their sender on a condition variable, such that they can
be signalled whenever the behaviour is updated.

3.5.2.3 Guards

The concept of guarding statements with a boolean expression have been intro-
duced to construct nondeterministic programs (Dijkstra, 1975). In such programs,
one statement is chosen nondeterministically from a set of applicable statements
for which the guard is true. They have been subsequently used in the context of
concurrent programs by Hoare (1978). Guards allow for an extremely elegant syn-
chronization mechanism. Of all considered synchronization schemes, they are the
most expressive. In the context of object-oriented languages, a guard is almost al-
ways a boolean activation condition associated with a method. Example languages
include Guide (Balter et al., 1994), having aCONTROLclause to group activation
conditions, Eiffel’s SCOOP extension (Meyer, 1993) where Eiffel’s preconditions
are turned into guards and cC++ (Surribas et al., 1996) having both precondition
guards as well as “post-guards” which may block a method upon return. In a typi-
cal language employing guards, the cubbyhole could be written as follows:

class Cubbyhole {
int item;
public:

int get() when (item!=null) {
return item;

}
void put(int i) when (item==null) {

CHAPTER 3. OBJECT-ORIENTED CONCURRENT LANGUAGES 74

item = i;
}

};

Guards are extremely expressive because they are inherentlydeclarative. It
is plainly specified under what conditions (i.e.when) a method may be invoked,
not how the different methods should interact in order to ensure these conditions.
Considering reusability, guards are also extremely good in supporting reuse. The
synchronization implicitly defined by the guard is completely separated from the
functionality of the method. Thus, if guards can be updated separately from their
methods, they allow for a good alleviation of the inheritance anomaly. This is con-
firmed in (Frolund, 1992), where it is argued that guards should beincrementally
modifiablein subclasses, as is already possible with methods (see section 3.3.2).

Guards are usually defined as boolean functions of the instance variables of
the object and the actual arguments of the method to which they are attached.
Yet, their richness also forms their greatest disadvantage: they are hard to imple-
ment efficiently (Briot et al., 1998). A naive implementation that continually re-
evaluates the boolean expression is not a viable option since this would imply busy
wait. Most implementations will associate a condition variable with each guarded
method. When a message has to wait because of an unsatisfied guard, messages
can suspend themselves on this variable. At the end ofeachmethod in the class, the
condition variables are signalled and all guards will have to be re-evaluated. This
is still less efficient than previously mentioned techniques, but avoids busy waiting.
This approach is taken in Guide, where the compiler will automatically generate
these condition variables and “guard re-evaluation code” (Decouchant et al., 1988).

When looking at existing work in the context of guards, we find almost all
approaches “attach” guards to methods, at the class-level. In a prototype-based
language, we have the advantage of attaching guards on a per-object basis, just like
we have the advantage of changing method behaviour on a per-object basis.

3.5.2.4 Chords

Chords are a relatively new type of conditional synchronization construct. They are
derived from the Join Calculus (Fournet and Gonthier, 2002), and an implementa-
tion exists for an extension of the language C#, dubbed Polyphonic C# (Benton
et al., 2002). Polyphonic C# adds two new concepts to theveryJava-like concur-
rency model of C#: asynchronous methods and chords. An asynchronous method
is defined asasync methodName(arguments) . Such methods never re-
turn results or throw exceptions, and are executed by a separate thread, spawned
upon message reception. The caller immediately returns from such asynchronous
method calls.

A chord or “synchronization pattern” is a method whose header consists of a
set of method declarations, separated by ampersands. The method body of a chord
is only executed whenall methods in the header have been called. “Partial calls”

CHAPTER 3. OBJECT-ORIENTED CONCURRENT LANGUAGES 75

to chords are implicitly enqueued until a matching chord becomes active. There
can be at mostonemethod which is not asynchronous in a chord. It is the caller
of this unique synchronous method which will execute the method body when the
chord becomes applicable. If there is no such synchronous method, the body will
be executed in a new, separate thread. Continuing with the cubbyhole example, it
can be expressed readily in Polyphonic C# as follows:

public class Cubbyhole {
public Cubbyhole () {

empty();
}
public void put(object o) & private async empty() {

contains(o);
}
public object get() & private async contains(object o) {

empty();
return o;

}
}

A put message will block if there is no correspondingempty message en-
queued. If there is,put will send acontains message to the cubbyhole itself.
Thanks to this message, another chord is activated which allows aget to proceed
with exactly the value passed via thecontains message. Notice that storage for
the cubbyhole is allocated entirely implicitly by the “invisible” synchronization
buffers.

We regard this method of conditional synchronization as being high-level and
quite expressive. In (Benton et al., 2002) other examples are given of such con-
currency abstractions as Rendez-Vous and Reader-Writer locks which remain ex-
pressive to formulate. This scheme has some problems with reusability however.
Currently, Polyphonic C# takes a conservative approach: whenever a method is
overridden,all methods associated with the overridden method through a chord
must also be overridden. Why this is necessary is explained in (Benton et al.,
2002), but it suffices to notice that by overriding methods defined in a chord, we
could “break” the chord in the superclass. Because of the substitutability princi-
ple, clients of the original superclass could then deadlock. Considering efficiency,
it is shown in (Benton et al., 2002) how the Polyphonic C# compiler translates
Polyphonic C# classes into ordinary C# classes in terms of condition variables and
queues.

3.5.2.5 Continuation-based Schemes

The final approach to conditional synchronization we will discuss is a less familiar
and rather eccentric scheme. The idea is to represent processes by continuations

CHAPTER 3. OBJECT-ORIENTED CONCURRENT LANGUAGES 76

and having the ability to explicitly manipulate these continuations. If one can ex-
plicitly “tell” a continuation that it can “proceed” with a certain return value, then
conditional synchronization can be performed simply by waiting for the appropri-
ate moment to give the “go ahead” signal to (read: continue) some waiting process.
We will illustrate how this is achieved in PScheme, a parallel dialect of Scheme and
ACT1, an actor-based language.

PScheme PScheme (Yao and Goldberg, 1994) introduces parallelism in Scheme
through six new special forms. Parallelism, synchronization and communication
are all expressed through an extension of Scheme’scontinuations(see section
2.5.3.2) calledports. First of all, concurrency is easily created through a simple
fork-join construct called apcall . Consider a functionf with three argument
expressionsa, b andc. Evaluating(pcall f a b c) , results in the evaluation
of f , a, b andc in parallel. Whenall of the arguments are evaluated,f is applied
to the evaluated arguments. Concurrency is thus introduced by forking over mul-
tiple arguments and synchronization is introduced by implicitlyjoining all parallel
evaluationsbeforecallingf .

One can think of thepcall as creating three “links” between the function
parameterf and the three argumentsa, b andc. The evaluator then sends the values
of a, b andc across these “links” tof when they are evaluated.f can only proceed
when all three values have travelled over the links. Exactly these “links” are made
first-class in PScheme. They are called “ports”. Getting hold of a port is done
exactly as is done with continuations usingcall/cc . PScheme introduces the
special formcall/mp (call-with-current-multi-port) to grab the “link” to which
this computation’s value should be sent. The value itself can then be explicitly
“thrown” through the port tof using thethrow special form (Yao and Goldberg,
1994).

The beauty of multi-ports in PScheme is that one can throw more than one
result through a port. For example, the code evaluatinga might send both values
v1 andv2 through the port. The functionf will then be applied foreachtriple of
values fora, b andc sent through its incoming ports, allowing for elegant stream-
based programming. Ports then act as queues separating consumers and producers
implicitly. Next to a multi-port, PScheme also has single ports which only accept
onevalue and discard any subsequent values thrown into them.

A small programming example in PScheme is shown below, adapted from (Yao
and Goldberg, 1994). The example defines a simple recursive algorithm which
traverses a binary tree in parallel, returning the first value found corresponding to
a given key or#f if the element could not be found. Concurrency is created by
passing the recursive calls as arguments to apcall ’ed function. The port through
which the value should be sent is passed along, so that a found value can be thrown
through the port usingthrow . The port itself is made available in the last line
usingcall/sp . Notice that the port used here is a “single port”, thus, only the
value of the firstthrow will be used.

CHAPTER 3. OBJECT-ORIENTED CONCURRENT LANGUAGES 77

(define (find// elt tree port)
(cond ((null? tree) #f)

((eq? elt (key tree))
(throw port (value tree)) (die))

(else (pcall (lambda (e1 e2) #f)
(find// elt (left tree) port)
(find// elt (right tree) port)))))

(define (find elt tree)
(call/sp (lambda (port) (find// elt tree port))))

In (Yao and Goldberg, 1994) it is illustrated how the new special forms can
be used to implement semaphores, rendez-vous synchronization and even futures.
The key idea in using them for conditional synchronization is that apcall ’ed
function will not execute until it receives all the necessary values from all input
ports. A certain thread that must evaluate one of those arguments can “suspend”
itself by capturing its port, passing the port to another port and then die. The other
thread is then responsible to generate some appropriate value and to send it through
the port of the lost thread. This way, the function that is still waiting to be executed
can continue since the value it has been waiting for finally arrives. Although ports
are a very powerful concurrency mechanism, Yao and Goldberg (1994) themselves
admit that it is quite low-level and only meant to be used to build more high-
level abstractions. Since port captures and throws are not modularly separated
from other code, this synchronization scheme will also not be very reusable. Ports
themselves can be implemented without suffering from busy wait.

Guardians in ACT1 The object-oriented concurrent language ACT1 (Lieber-
man, 1987) defines specialguardian actorsto incorporate conditional synchro-
nization. Recall from section 3.2.1 that an actor continually receives messages and
executes the associated methods itself. Sometimes, as we have noticed in the cub-
byhole example, a message must be processed the result of which can not directly
be returned. That is, when processing theget message on an empty cubbyhole,
what useful result can be returned? Lieberman (1987) makes a similar remark: a
reply might sometimes have to be delayed until a message sent by another actor
arrives. Thus, it is sometimes desirable to delay replying to a message and allow
other messages to be processed first.

ACT1 definesguardian actorsto deal with this kind of behaviour. Actors are
fully serialized: they can only process one message at a time. When a message
arrives that cannot be replied to directly, a guardian actor can save “all means
necessary to reply”, continue receiving other messages and reply later on whenever
he sees fit (Lieberman, 1987). “all means necessary to reply” is simply the object
to which the reply should be sent, usually called acontinuation actor, because it
will “consume” the value of the method and uses it to evaluate “all that remains to
be computed”. An example of the use of such continuation actors is provided in

CHAPTER 3. OBJECT-ORIENTED CONCURRENT LANGUAGES 78

section 5.1.1. Guardian actors are merely special in ACT1 because they can grab
this continuation actor explicitly. In normal actor methods, the continuation actor is
implicit and the method return value is implicitly sent to this actor. Guardian actors
have to explicitly perform a reply and therefore are capable of delaying this reply
until the conditions are met. Regarding expressivity, reusability and efficiency, this
continuation-based synchronization scheme is comparable to PScheme’s ports.

3.5.3 Summary

We now summarize the various conditional synchronization schemes discussed
briefly in this section. Table 3.1 lists all conditional synchronization schemes, to-
gether with remarks on expressiveness, reusability and efficiency. By providing
a thorough overview of possible synchronization schemes, several approaches to
synchronization have become visible. It is also important to note that there is not
the oneconditional synchronization scheme. Each scheme has some advantage of
its own, but usually lacks some other qualities to be considered ideal in all cases.
When trying to incorporate a conditional synchronization scheme into a language,
choosing the right synchronization mechanism is not trivial.

Scheme Expressiveness Reusability Efficiency
Condition Vars Explicit sync Tangled in code Least overhead
Behaviour Sets Implicit sync Tangled in code Efficiently implementable
Guards Implicit sync Modular Most overhead
Chords Implicit sync Difficult to override Efficiently implementable
Ports Explicit sync Tangled in code Efficiently implementable

Table 3.1: Comparison of Conditional Synchronization schemes

3.6 Conclusions

In this chapter we have tried to provide an overview on several important issues in
concurrency that are related to our approach of concurrency in a prototype-based
language, discussed in chapter 5. We have started out with the study of the two
most extreme approaches to deal with concurrent programming. The first – func-
tional – approach was the actor paradigm (Agha, 1986), which will be an important
inspiration for our own concurrent language cPico. However the imperative thread
paradigm will prove to be equally important when we try to relax the stringent
constraints that actors impose on programs.

In section 3.3, some of the traditional problems of concurrent programs such as
race conditionswere pointed out. In a more object-oriented context, the problems
of writing reusable synchronization code due to theinheritance anomaly(Mat-
suoka and Yonezawa, 1993) were discussed. Subsequently, in section 3.4, we have
provided both a methodology and a set of intentional guidelines to keep in mind

CHAPTER 3. OBJECT-ORIENTED CONCURRENT LANGUAGES 79

how concurrency should be introduced in an object-oriented language, and have
taken the language ABCL as a specific case. We have concluded the chapter with
an extensive overview of different conditional synchronization mechanisms. Each
of these synchronization mechanisms was evaluated with respect to expressivity,
reusability and efficiency.

It must be kept in mind that building a concurrent language is not the only goal
of this dissertation. The concurrency model introduced in cPico should serve as
a basis for a decent distribution model for prototype-based languages. Therefore,
in the next chapter we will first indulge ourselves in the field of distributed pro-
gramming languages, before returning to concurrency in the context of our own
model.

Chapter 4

Distributed Programming
Languages

4.1 Introduction

In the previous chapter we have already addressed the issues associated with con-
current languages. However, our scenario sketched in chapter 1, shows that our
vision imposes other difficulties, that are currently dealt with in an ad-hoc way.
A prototype-based distributed language might offer the programmer the tools to
express these concerns more simply. We therefore set out to discover precisely
these tools. This chapter will be dedicated to identifying what problems are related
to the concept of distribution. Moreover, we will explore the world of distributed
languages and discuss the ones we deem most interesting.

Difficulties regarding distribution are mostly associated with the fact that a pro-
gram may span multiplelocationsor nodes. Referenced objects can then be either
local or remote. A programming language should provide a set of concise rules
that state what the proper semantics are for accessing and modifying such local or
remote objects. Also, objects may potentiallymovefrom one location to another.
This may happen, for example, when an object is passed as a parameter to a method
invoked on a remote object. The unit of movement is questionable. It can range
from a sole object to an entire program. A program may move in its entirety, in or-
der to find more computing power, or to follow its user physically. Sole objects can
be moved in order to query a remote database, for example. The language designer
has to solve various problems. What is the granularity of movement? When do we
move entities to another part of the network? How do we keep movement safe for
both the entity that is moved and for the host that chooses to accept the traveller?

This chapter is organized as follows. In section 4.2, we will elaborate on some
issues that arise when trying to incorporate a distribution model in a programming
language. Section 4.3 continues with a discussion on the aspects ofStrong Mo-
bility, which will become one of the more important features of our distributed
language. Section 4.4 validates our choice for prototypes by evaluating prototype-

80

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 81

based languages in a distributed setting. There, we will argue that prototype-based
languages have some flexible mechanisms whose power should not be underesti-
mated in a complex distributed environment. Section 4.5 is dedicated to the ex-
planation of what we believe to be a number of interesting distributed languages.
Finally, section 4.6 summarizes our discussion on distributed programming lan-
guages and opens the road to the introduction of our own model.

4.2 Issues in Distributed Programming Languages

This section presents a number of problems that sneak into programming languages
the moment that they are extended to cope with distributed environments. Each
problem requires solutions that usually need to be incorporated within the language
itself. Some issues are rather high-level, while others are more technical in nature.
We will highlight the most important ones, describe the problems involved and
propose a number of solutions.

4.2.1 Administrative Domains and Mobile Computation

A major issue in the development of distributed languages intended for use across
Wide Area Networks (WAN’s) are what Cardelli callsAdministrative Domains
(Cardelli, 1998). In a typical Local Area Network (LAN), the network is gov-
erned by a single administrator, who usually protects his network from the outside
world usingfirewalls, which are able to block incoming and outgoing network traf-
fic. Such encapsulation barriers pose problems for distributed applications trying
to communicate for example via Remote Method Invocation mechanisms. A dis-
tributed programming language is not the only type of application suffering from
such firewall protection. Middleware solutions such as CORBA are known to have
trouble with firewalls. One of the advantages of text-based protocols, like SOAP
(Simple Object Access Protocol) (World Wide Web Consortium, 2003) is that they
can circumvent the strong access policies of firewalls by using standard HTTP
ports.

Cardelli argues that languages which want to deal explicitly with computations
that span a WAN (and possible the entire world using the World Wide Web) will
have to explicitly introduce the notion of such barriers. In (Cardelli, 1998), the
analogy is made with political boundaries and tourists which must be able to ascer-
tain their access rights through passports, visa and airplane tickets when wanting
to cross such boundaries. Cardelli (1998) starts by stressing theobservable dif-
ferencesbetween WANs and LANs. The first is of course the notion of mutually
distrustful administrative domains, of which a program will need to be aware. Sec-
ond, a WAN is more susceptible to bandwidth fluctuations and network partition-
ing. This may have a detrimental effect on performance, but more importantly, it
will blur the distinction between afailure and longdelays.

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 82

Cardelli (1998) argues that to cope with these fundamental changes, our com-
putational model should change as well:

In moving from local-area networks to wide-area networks, the set of
observables changes, and so does the computational model, the pro-
gramming constructs, and the kind of programs one can write. The
question of how to “program the Web” reduces to the question of how
to program with the new set of observables provided by the Web.

To this end, Cardelli (1998) stresses that a possible solution might be the field
of mobile computation, in which a computation need not be bound to the same
(physical or virtual) machine. Using mobile computations, it is possible to cir-
cumvent some of the problems introduced by WAN’s. By annotating computations
with several access rights, these rights could be checked upon migration, as such
being able to move across administrative domains. Once the barrier is crossed, the
computation can continue freely in its new domain. Furthermore, by being able to
move computations, bandwidth fluctuation can be minimized by moving to better
suited machines. Also, if a failure can be anticipated, it is possible to escape it by
migrating elsewhere.

4.2.2 Safety

When developing distributed programs, safety is of paramount importance. This
should not be confused withsecurity, discussed in the next section. Safety is more
related to fault-tolerance and tries to minimize the risks that an entire system breaks
down because a small part of it fails. Safe languages try to “contain” the impact
of an error or a programming bug. Safety can be addressed at severallevelsof a
distributed application (Schougaard, 2003):

• At the communication level, a safe protocol that can perform eg. error cor-
rection and detection makes the overall application safer.

• At the level of a “computational environment”, safety can be ensured by the
use of hardware memory protection (eg. memory segmentation). A “compu-
tational environment” can either denote the Operating System, or a Virtual
Machine, such as a language interpreter.

• At the language level, we can allow for safer applications by buildingstrongly
typed languages1, restricting pointers (eg. by not making them first-class),
by performing automatic garbage collection, thereby alleviating the need for
manual (de)allocation of resources and array bounds checking. Thus, Java
or Smalltalk can be regarded as much safer languages than eg.C.

1This does not necessarily implystaticallytyped languages!

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 83

4.2.3 Security

Safety is necessary, but not sufficient, to ensuresecureapplications (Schougaard,
2003). Using distributed applications and especially in combination with mobility,
it becomes possible to run arbitrary code on other machines. This obviously raises
some security concerns. From the point of view of the host (a “computational
environment”), it should be questioned to what extent it can lend its resources
to an immigrated computation. Also, to what extent can the host influence the
immigrated code? The host should stay in control at all times. There will also be
data private to the host that should not be accessible to visiting programs. From the
point of view of an immigrating computation, equally important security questions
arise: is it possible to entrust the new host with its valuable computations? There
will also be data private to a program that the host should not be able to access
(Vitek et al., 1997).

Thorn (1997) introduces four basic properties to which secure applications
should adhere:

• Confidentiality implies that there is no leakage of private information.

• Integrity implies that private data shouldnot be modifiable directly by unau-
thorized parties.

• Availability should be maximized, eg. through the use of replication of ob-
jects. In order to promote availability, a system should also ensure that it is
not prone toDenial of Service(DOS) attacks. In such attacks, a system is
severely flooded or overloaded with data or computation, such that it slows
down or possibly even crashes. Schougaard (2003) stresses the necessity
of robust applications: the invisible computers in everyday devices become
visible when they break down, shattering all illusions upheld by its function-
ality. In the context of Ambient Intelligence, this is even more important
since part of the vision states that the devices are seeminglymergedin the
environment of the user.

• Authenticity implies that one should be able to trust the identity of a com-
munication partner.

In (Vitek et al., 1997), a similar treatment on security is given, but at a slightly
more concrete level. A Threat Model is presented of the various threats that should
be avoided when dealing with a distributed or mobile object system:

• A Breach of Secrecyimplies that there can be direct access to the private
state of some process or object.

• A Breach of Integrityimplies that one computation can change the state of
another by sending state changing messages to the other computation’s ob-
jects. These state changing messages can be used to wreak havoc by mali-
cious computations.

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 84

• Masqueradingis what breaks the aforementioned Authenticity property: a
computation presumes the identity of another computation, thereby tricking
another computation into performing some service for it (eg. executing some
code).

• Denial of Service, as explained above.

Vitek et al. (1997) propose some solutions in dealing with these problems.
They also show by means of examples that languages like Java are susceptible to
the above threats. One problem inherent in object-orientation is that Masquerading
can be easily accomplished using polymorphism. Using subclassing and overrid-
ing, it is possible to adhere to the superclass’ interface, yet implement radically
different behaviour. Using the substitutability principle, this may lead to serious
security threats, also in Java. This is for example the reason that critical Java classes
(like String) are declaredfinal : they cannot be subclassed and as such elimi-
nate polymorphism.

(Schougaard, 2003) again considers solutions to these security problems at sev-
eral levels:

• At the communication level, asecureprotocol is of paramount importance
to ensure the Confidentiality and Authenticity properties.

• The “computational environment” (eg. Operating System) can partly en-
sure Confidentiality by controlling access of computations, by controlling
the locks they hold on data, by controlling which system resources they may
use and to what extent, etc. . .

• At the language level, scope and access rules should be used to protect the
interface of data items or objects.

Note that it isexactlythis language level security policy that we have stressed
so much in chapter 2. There, we have advocated that Extreme Encapsulation and
Reflection Protection are just the kinds of mechanisms necessary to make proto-
types more secure, for exactly the reasons of security in mobile object systems.

Vitek et al. (1997) take the stance that a secure programming system isnot a
system in which one can write secure applications, but rather a system in which
onecannotwrite insecureapplications. This is an even stronger claim regarding
security. Extreme Encapsulation partly follows this idea, in the sense that one
cannotaccess objects in any other way than to send them a message.

4.2.4 Referencing Remote Objects

A first concrete problem when trying to write secure distributed applications is how
to be able to find and communicate with other processes. In other words, how can
applications get a reference to objects living in a separate process space? One way
is to use a centralized name server, in which any process can publish or register

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 85

an object under a given name. Other processes can then query such remote object
references by their published name,provided they know the name server. The
major flaw in this setup is the inherently centralized nature of name servers. The
advantage is that, once an object reference or process reference is retrieved, the
name server usually no longer plays any part in the communication. To minimize
failures, the name server should be replicated on a number of different machines.
Another drawback of the name server is that the name of an object is globally
unique, and must be known to any other process that wants to use it in advance.

A different setup is used by JXTA2, which is a set of open protocols that allow
any device connected to a (wired or wireless) to communicate in a peer-to-peer
manner. JXTA – mainly developed at Sun Microsystems – explicitly promotes de-
centralized communication and favours peer-to-peer over client-server setups. One
of the protocols offered by JXTA is a discovery protocol (thePeer Discovery Proto-
col), which allows for broadcasting XML-described service data over the network.
Other services (or processes) get to know about the existence of the broadcasting
service in this way. Other protocols allow for opening communication channels
between services and synchronizing multiple services.

In our vision of using distributed languages in the context of Ambient Intel-
ligence, a decentralized approach is highly favourable, since we are targetting a
dynamic network. Thinking back of the mental image of a person surrounded
by a “processor cloud”, communication between personal mobile devices will
most likely happen through a wireless broadcasting mechanism. In that view,
M2MI (Many-to-Many Invocation) (Kaminsky and Bischof, 2002) can be seen as
a promising paradigm for programming distributed systems. The main idea behind
M2MI is that objects can communicate through multicasts: a message is broadcast
to a set of interested listeners. Currently, M2MI has been designed as an extension
for Java, where objects can implement a certain interface. An M2MI invocation of
a method on that interface will then broadcast the message to every object imple-
menting the interface. This paradigm is designed to be used in wireless networks,
in which broadcasting a signal is inherent anyway.

M2MI allows for messages to be sent viahandles. A handle denotes an abstract
set of objects to which a message will be broadcast. Objects wanting to be ex-
posed to external M2MI messages are exported to the M2MI layer (Kaminsky and
Bischof, 2002). The M2MI layer will automatically create dynamic proxies which
will handle M2MI messages. In short, M2MI is a language interface on top of Java.
M2MI messages are routed to other “M2MI-aware” objects using M2MP (Many-
To-Many Protocol) which broadcasts the message via the wireless network. M2MI
avoids the need for central servers, which are certainly unwanted when considering
small portable devices, which should not be tied to some centralized server.

2http://www.jxta.org

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 86

4.2.5 Remote Method Invocation

Remote Method Invocation (RMI) is usually referred to as the object-oriented
counterpart ofRemote Procedure Call(RPC). RPC involves the invocation of a pro-
cedure in another program (possibly on another machine). RMI is usually thought
of as “sending a message to a remote object”.

Levy and Tempero (1991) give an overview of the basic differences between
procedural RPC systems and object-oriented RMI systems, through the use of an
example application. One of the main differences is the time at which thebinding
is made between caller and callee: in most procedural RPC systems, binding is
resolved statically and does not change, while RMI binding is often done at run-
time, to improve on flexibility (the caller or callee objects may move around freely
to other nodes). Another notable distinction with classical RPC systems is that it
is often applied in a client-server setup, where clients invoke the exported methods
of some server object. This often leads to a setup where the server is rather “fat”.
It is as such less amenable to movement since it is referenced by many clients,
expecting to find the server object at a certain location. In object-based schemes,
every object can communicate with every other object through RMI, thus, every
object can be seen as a lightweight server. As such, an object-based scheme can
more readily describe true peer-to-peer communication (Levy and Tempero, 1991).

Two issues regarding RMI are highlighted in this section: how to represent such
“remote objects”, and what are the semantics of parameter passing when perform-
ing such a Remote Method Invocation? (Schougaard, 2003) identifies the following
main steps during a RMI:

1. Get a reference to the remote object (as outlined in section 4.2.4).

2. Invoke a method on the remote object.

3. Transfer the arguments to the node of the receiver.

4. Receive and initiate the call and arguments at the receiver node. This also in-
volves resolving the remote object handle to a real local object. Information
about where to send a result (some abstract return address) – if any – must
also be specified.

5. Invoke the method with the given arguments on the local object.

6. Return the method return value to the specified return address.

The following sections will go into some more detail about the object repre-
sentation and the parameter passing semantics.

4.2.5.1 Representing Remote Objects

The usual method of representing remote objects is throughproxies. A proxy is a
surrogate or placeholder for the remote object. The use of proxies here is actually

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 87

just an instance of the more general proxy design pattern described in (Gamma
et al., 1995). Proxies allow for intercepting any message that would otherwise
be sent to the underlying remote objects. They give the language implementor a
hook in which they can “fake” the message send by sending a request over the
network, waiting for the result, and then returning this result as the return value of
the proxy skeleton. The proxy is just used as a wrapper that forwards the message
in a different format.

There are some problems in using proxies as surrogates for objects, however.
The most prominent one is the loss of what is usually calledobject identity. Every
object has an associated identity, which is usually used for operations like equality
tests (== in Java). The problem of introducing proxies is that the proxy’s identity
is not equal to the original object. One solution to this is to use message sends to
test for equality (e.g. Java’sequal method, or overriding C++’soperator==).
Yet, such practice no longer makes the use of proxies transparent and can intro-
duce subtle bugs if the difference is overlooked by the programmer. If proxies are
not made entirely transparent by the virtual machine, bugs are bound to be made.
For example, downcasting a proxy would fail, whereas the downcast may have
worked if it would have been performed on the real object. In general, any op-
erator defined over objects, in which the object itself does not play a part, poses
problems for proxies, since they cannot intervene. In a language that conforms
to the Extreme Encapsulation principle, introduced in section 2.5.2.4, these prob-
lems can be avoided more easily. If operators are replaced by message sends, the
programmer can allow proxies to intervene by allowing them to override certain
methods, either by delegating to the original object or by implementing specialized
behaviour.

In (Pratikakis et al., 2003), a static dependence analysis is incorporated into
Java to follow the flow of proxies throughout the program, as to replace certain
operations (such as equality testing) by code that correctly handles proxies. For
example, if static analysis would show thato might contain a proxy at run-time,
then upon encountering

(o == otherObject)

the following code could be generated instead:

((o instanceof Proxy) ?
o.equals(otherObject) : (o == otherObject))

To be more precise, the analysis of proxies in (Pratikakis et al., 2003) is used
to incorporatetransparent futuresin Java. Even though a proxy and its real object
could implement the same interface, thereby making them interchangeable in any
Java program that only uses the interface, operations like the ones outlined above
impose serious problems when trying to incorporate proxies.

Not all distributed languages use proxies (Schougaard, 2003). The language
Emerald (section 4.5.1) uses globally unique identifiers for its movable objects.

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 88

All objects that can possibly be referenced remotely have a name that serves as
a unique identifier. Guaranteeing that an identifier is unique is not always trivial.
Furthermore, the identifier should contain enough information to extract the loca-
tion of the object (such remote object information is usually stored in the proxy
object itself in proxy designs). In Emerald, this is solved by employing a proto-
col where processes talk to each other to find out where the object is located. A
caching mechanism is used to minimize process communication (Levy and Tem-
pero, 1991).

4.2.5.2 Parameter Passing Semantics

When calling a remote method, the arguments to this method have to be passed
to the callee, which can reside on a different machine. Hence, the objects that are
passed must somehow be transported over the network ifcall-by-valuesemantics
are used. This usually means that we will have toserializethe object (also called
pickling or marshallingthe object). Serializing an object means flattening it, so
that it can be sent over the network as a stream of bits. On the receiver side,
this bitstream must be interpreted, and an object must be reconstructed from it by
deserializingit. Such conversions arenot trivial because objects can be composed
in a graph structure (an object graph). There is nothing that prevents this graph
from having cycles. As such, we must encode a cyclic graph into a bytestream.

When deserializing such a stream, care must be taken to preserve object iden-
tity: if two objects both point to an object before serialization and all three objects
are serialized, then upon deserialization the two should still point to the same ob-
ject, it should not have been duplicated. Serialization is often seen as a costly
process. Philippsen and Haumacher (1999) report that in Java RMI, about 25% to
50% of the time of an RMI call is spent (de)serializing. Note that call-by-value
implies the duplication of an object, as such, the callee may not have the most re-
cent version of the object. For immutable objects, call-by-value is ideal, since no
subsequent state changes can occur anyway (Levy and Tempero, 1991).

One way of avoiding these problems is usingcall-by-referencesemantics. Us-
ing call-by-reference, a remote object handle is passed to the callee, pointing back
to an object at the caller’s site. Note that this handle isnot a pointer as is done
in the non-distributed variant of call-by-reference. Pointers are in general invalid
across machine boundaries. Call-by-reference circumvents serialization of object
graphs, but introduces another problem: whenever the argument is used in the re-
mote method, it will give rise to subsequent Remote Method Invocations because
the object stayed on the caller’s site. This raises obvious performance penalties.
The programming language Emerald (section 4.5.1) allows for more sophisticated
parameter passing semantics:call-by-movein which an object ismovedto the
callee’s site (as opposed to call-by-value which moves only a copy) andcall-by-
visit which moves the object to the callee’s site only for the duration of the method
call: the argument is moved back to the caller together with the result. Using
call-by-value or call-by-move semantics is one of the ways to introduce Object

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 89

Mobility, which will be discussed separately in section 4.2.6.
A last issue in RMI is exception handling, which is complicated if RMI is made

transparent. In languages such as Emerald, the distinction between local and re-
mote method invocation is invisible. However, RMI calls can time out, their target
object may become unavailable and their target host can crash independently of
the calling host. All this is complicated when invoking remote methods transpar-
ently, because one cannot write failure handlers foreverymethod call (Levy and
Tempero, 1991). Section 4.2.8 will come back to this.

4.2.6 Object Mobility

One important issue in mobile object systems is how, when and which objects have
to be moved throughout the system. Thehow is concerned with how the program-
mer can express object movement in the language. Thewhenstates that object
movement may happen explicitly, triggered at the programmer’s will or implicitly,
eg. instructed by the run-time environment. Finally, thewhich is concerned with
what typesof objects can be moved: all objects or only some “exported” objects,
made available by the user.

An equally important question is the granularity of movement:how manyob-
jects get to be moved from one node to another. Typically, objects are intertwined
in a so-calledobject graph. Naively moving every object reachable from a given
target object may lead to the movement of the entire object space! Conservative
movement algorithms can eg. only move a single target object, and perhaps some
“attached” objects next to it. This is the approach taken by Emerald. Other ap-
proaches might move a transitive closure of the object graph, which can then be
pruned at a number of points. This is for instance possible in Java serialization us-
ing thetransient modifier. Variable references declared astransient will
not be followed during serialization. When reconstructing an object, such “cut-off”
references are replaced bynull pointers.

There are a number of reasons why one might want mobile objects:

• Mobile objects allow for optimized distributed computing. One can move an
object to another node in the system, so that communication with that object
now becomes local at the remote node (Schougaard, 2003).

• Mobile objects can avoid anticipated failures (Cardelli, 1998), and can move
to other machines when it is known that the current host will be shutting
down.

• Some mobile devices have limited storage space, by moving objects, one
could perform some sort of load-balancing.

• Combined with Code mobility, an application together with its living objects
can wholly migrate to another machine, thereby being able to follow the user
around physically.

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 90

The question whether one should opt for explicit or implicit object movement,
depends on the application at hand. One could figure out where objects best belong
through design(i.e. it is known beforehand which objects are mobile and to what
extent). Alternatively, mobility issues could be left to the run-time system, which
can detect certainpatternsin the interactions between objects. The virtual machine
could then move objects automatically to minimize communication overhead. A
combination of both might be most effective: applications should be designed with
the mobility of certain parts kept in mind, yet, at run-time, local communication
patterns may be optimized automatically (Schougaard, 2003). Object mobility is
an important issue that will reappear later on when discussing a number of contem-
porary distributed languages (section 4.5).

4.2.7 Persistence and Transaction Management

An important subset of the typical applications that lend themselves naturally to
distributed solutions (such as banking systems, reservation systems, . . .) has a high
need for persistence. Persistence means that object state is maintained throughout
system crashes. Persistence and Transaction Management are thoroughly studied
in the field of (distributed) Database Management Systems. Incorporating such
features in a programming language is not trivial. Most contemporary languages
do not incorporate persistence, rather, developers have to use an external DBMS to
store their objects. A full treatment of these concepts is beyond the scope of this
dissertation. It is, however, important to note that matters get more complicated in
a distributed setting.

Distributed persistence can be problematic when the network becomes unavail-
able. Imagine a program is performing a computation, while suddenly being dis-
connected from the network. Later on, the network becomes available again (such
a scenario is realistic in the case of small mobile devices using wireless commu-
nication). At this point, the results of the offline computation should be propa-
gated to the user, instead of being thrown away because of some network failure
(Schougaard, 2003). This implies a need for concepts that allow forgracefulhan-
dling of disconnecting objects. In the context of this dissertation we have not more
thoroughly explored these ideas. This was in part delegated as future work. We
will present some of our ideas based on the use ofpromisesin section 7.3.2.

Possible solutions and approaches to persistence are both covered in our dis-
cussion on both Emerald (section 4.5.1) and Argus (section 4.5.2).

4.2.8 Partial Failure Handling

Handling partial failures is essential to obtain reliable software. First of all it is
important to note that a distributed program is in fact being handled by several
processors. This greatly decreases the dependency on a single processor, yet it also
introduces the problem of partial failure. What should happen if a processor that
holds part of the program suddenly goes off-line or crashes. In this context it is

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 91

also important to remember that Cardelli (1998) already noted that in a WAN there
is no observable difference between a failure and a long delay where the latter may
occur very frequently.

One traditional way to deal with this type of errors is to work with timeouts
or by providing alternate code in case of a network failure3. However this proves
to be counterintuitive when striving for transparency as these types of constructs
reveal which objects are local and which ones are not.

There are other viewpoints on failure handling. There is for example the
transaction-based point of view where the “effects” of a method invocation remain
invisible to other components until the method has finished successfully. We will
illustrate such an approach, closely related to database management techniques,
in section 4.5.2 in the discussion of the distributed language Argus. Another ap-
proach to reduce the vulnerability to system crashes or devices going out of range
is to employ a replication strategy for critical objects. Maintaining such replicas,
especially when they need to be kept consistent, requires a complex and distributed
management system. The issues of failure handling are important in a distributed
context. They fall outside the scope of this dissertation, however.

4.2.9 Distributed Garbage Collection

Distributed garbage collection is a serious issue in distributed programs. The prob-
lem statement remains basically the same as in a sequential language: how can one
free the memory occupied by objects that are no longer referenced by the program
(“garbage”). The problem itself, however, becomes a lot more difficult to solve in
a distributed setting. This is because any node, be it conceptual or physical, can
have an arbitrary amount of references to objects on any other node. With mo-
bile objects and mobile computation this scattering of the data graph becomes even
more problematic. It is essential for the correct semantics of a distributed program
that no “dangling pointers” across the network are created. This means that a node
should not reclaim objects that were no longer referencedlocally, but were still ref-
erencedremotelyby other nodes. Garbage collection removes a heavy burden from
the programmer, even in non-distributed programs, by automating memory man-
agement on the heap. In a distributed context, where the “heap” can be accessed
in parallel by distributed nodes in a non-deterministic way, manual management
becomes practically unfeasible.

Several different schemes exist for garbage collection on a single processor.
These schemes can be divided in two big families: thereference countingand the
tracing approaches. Both schemes exist in distributed garbage collection as well.
Norcross (2003) states that the open challenge in this field is to define a distributed
garbage collector that satisfies following properties. A distributed garbage collec-
tor should be:

3One example of this approach are Emerald failure handlers which will be discussed in section
4.5.1.4

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 92

safe which means that no object is collected before it is released by all nodes.

complete meaning that all garbage will be reclaimed eventually.

scalable which means that the collector does not impose restrictions on the dis-
tributed system.

independent meaning that every node can perform a partial local collection.

The latter two properties are considered desirable, rather than essential in (Nor-
cross, 2003, p. 5). Nevertheless scalability is really important in a language design
context where the environment on which the programs are to be deployed can vary
largely. In order to achieve scalability the collection process will need to be in-
cremental and non-blocking. This means that the algorithm can proceed without
global knowledge of the system, and that it does not require all nodes to be synchro-
nized at some point. Furthermore it is difficult to underestimate the importance of
independence: if no progress whatsoever can be made in garbage collection with-
out cooperation of other nodes a large memory leak is the inevitable result if a
process is suddenly disconnected, due to a system failure for example.

We will now very briefly introduce an example of both reference counting ap-
proaches and tracing approaches in a distributed context. Note that the garbage col-
lectors are supported by a local collector which does the collection for all objects
to which there are no remote references (i.e. these schemes reuse non-distributed
garbage collectors at every node, and in addition define a suitable communication
scheme between them to handle remote references).

Reference Counting schemes maintain, for every object that is referenced from
the outside, how many pointers are currently pointing towards this object. This
can be accomplished using indirect reference counting Piquer (1991). Such an
approach will create a hierarchical tree of counts instead of maintaining a single
reference count4. Each node in the tree contains two counts, the local reference
count and thechildren count, which is the number of other processes it has provided
with a reference. When both counts reach zero, a message is sent to this node’s
parent in the hierarchy, to signal that it may decrease its children count. Whereas
this solution is certainly promising in a distributed context, it still suffers from
reference counting’s inherent inability to collect cyclic garbage.

Tracing approaches will clean the memory by follow pointers from a given
root. Some examples of tracing collectors on a single processor are treated in
the survey of Wilson (1992). One example of an incremental tracing collector in a
distributed context is the distance based scheme of (Maheshwari and Liskov, 1995).
This system keeps track of the number of network links that have to be followed
to find an object starting from a persistent root. This distance becomes infinite
once the last link to that object is cut, signalling that the object can be reclaimed.
Nodes in an unreachable cycle will always remain pointed at but since the distance

4The interested reader can find a clear example of why maintaining only one count is prone to
errors in (Norcross, 2003, p. 9)

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 93

is periodically reevaluated, this distance will increase without bound. Figure 4.1
illustrates the initial state of a reachable cycle, as well as how the distance increases
over time. a’s distance becomesm + 2 since it presumes to be still reachable
throughb. Through successive distance updates the distance of the cycles will be
larger than a given threshold. If this occurs the system can decide to move the cycle
to one node, where it can be collected by the local garbage collector.

Figure 4.1: Cyclic garbage distance increases unbounded

4.3 Code Mobility

In our scenario in chapter 1 we have stressed the importance of movement. We
have introduced Object Mobility in section 4.2.6 but if we look back at the scenario
we can see that mere Object Mobility is insufficient to fulfill all the requirements
we have put forward. The most obvious example is the running word processor
moving to someone else’s P-Com.

Here we can observe a need for Strong code mobility. This is related to Mobile
Computation5 which is concerned with how to write programs that are “aware”
of their environment. This awareness can be observed by the user, as programs
will sometimes move for several reasons. A compilation of reasons is presented in
(Devalez, 2003). We will illustrate those that are related to the scenario we have
presented in section 1.2.

Handheld computingis the most obvious reason to have strong code mobility.
It is clear from our scenario that it is often useful to allow pieces of code to be
sent to a handheld device, such as when the negotiator receives the running word
processor of the secretary. The inverse is also interesting, as we see in the scenario
when the P-Com of Maria beams the software demo to one of the secure hotel
servers. This type of migration will often occur as handheld computing devices
(especially if we consider cellular phones as part of the network) will often ben-
efit from a delegation of their tasks to devices with more computing power. The
language Borg, discussed in section 4.5.5, targets exactly this type of applications.

5which is concerned with software as opposed to the more hardware-oriented problems of mobile
computing.

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 94

Other concerns are also reflected to a lesser extent in the scenario. The pre-
sentation that is given by Maria is obviously anactive document. It contains much
more information than present-day presentations. The decryption of the document
is one of the things that is encoded in the presentation itself, as well as the inter-
active examples.Remote device controlis observed when Maria requests the data
projector to send her a controller process, to allow her to adjust the settings to her
preferences. Finally alsoWorkflow management and cooperationcan be observed
when the voting agent is sent to every negotiators P-Com, which allows him to vote
anonymously, and yet only once.

4.3.1 Weak Versus Strong Code Mobility

The distinction between weak and strong mobility is made in (Fuggetta et al.,
1998). Weak Mobilityis code mobility in its most strict form, the code of an ob-
ject is moved literally, and the object containing the code is regenerated on the
other process. To be able to restore some state of computation, the object that is
performing the computation should bring itself in some intermediate state which
can be regenerated on the other node. This is the kind of mobility we currently
see in for example Java applets (Devalez, 2003) and a lot of Java Mobile Agent
frameworks, such as Aglets (Lange and Oshima, 1998). Here, the programmer is
responsible to make sure that the Applet or Agent is in a consistent state, with all
data that is relevant to its computation written out in instance variables. In doing
so the reconstructed object will then be able to continue from a given point deter-
mined by the programmer. This is strictly less powerful thanStrong Mobilityin
terms of expressiveness.

Strong mobility allows for migration of both code and the current execution
state for an object. This means that the object can be frozen, along with the run-
time stack at any point, without explicit coding by the programmer. The object
is then shipped across the network, and re-activated there. Once this activation
is complete the object can resume its computation without even noticing that it
has moved. This type of movement is completely transparent, and avoids doing
work twice. Especially when dealing with operations that may have side-effects
this is an important advantage, since the (de)activation code of an agent is often
error-prone. Weak mobility makes the programmer responsible for safeguarding
variable consistency upon movement.

4.3.2 Advantages of Strong Code Mobility

Strong Code Mobility has several advantages on the implementation level, which
are also described in (Thorn, 1997). First of all it increases the global efficiency.
Network calls are most of the time very expensive, especially on low-bandwidth
networks such as the ones that are used nowadays to connect PDA’s. In such cases
it is usually better to batch a whole set of calls, together with the computation that
needs to be done between the calls in some sort of agent that will perform the

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 95

requested behaviour. The agent can be sent to the other node using only one call,
so that it can perform its batched calls locally. This saves processing time since the
cost of a remote call in comparison with a local call is not to be underestimated.

Furthermore strong code mobility also offers a benefit in simplicity and flex-
ibility. Imagine an application server from which the employees of the company
“download” their programs when they start to work. Updating and maintaining the
programs is then easy, since a change on the server will automatically be propa-
gated to all workstations. This may seem a bit odd, with the current day trends of
not having workstations connected to a server, but instead independent computers
connected by a network. However even in this setup Strong Code Mobility can
simplify the maintenance problem. One could simply write an agent which per-
forms the update and then allows it to traverse the intranet and perform the update
locally (Devalez, 2003).

In the context of lightweight nodes in our network, Strong Code Mobility helps
to alleviate the lack of storage space and computing power. If a process is too
demanding to be executed on a small node, using Strong Code Mobility it can be
moved to a more potent processing device without the penalty of having to restart
some computation, which may have been going on for a long time. Also, running
space-consuming applications can be temporarily moved to the application server,
freeing space for other applications which the user needs more urgently.

Strong Code Mobility also helps to achieve Mobile Computing, when hard-
ware is moving through some pervasive6 and ubiquitous7 network, it is useful that
the software we write is also mobile, to follow the user on his walk through this
processor cloud. Note that Strong Mobility is not inherently more powerful than
Weak Mobility. That is, we can use Weak Mobility to solve any problem that can be
solved using Strong Mobility. When considering expressiveness however, Strong
Mobility outperforms Weak Mobility and allows the programmer to think at a more
abstract level.

4.4 Evaluation of Prototypes for Distribution

This section evaluates the use of prototype-based languages in a distributed envi-
ronment. The previous section has already addressed several issues in distributed
computing in general. Here, the relevant differences between classes and proto-
types will be highlighted in that context. These differences will illustrate the prob-
lems encountered with classes and will be an indication that prototypes with their
simpler yet more flexible delegation scheme are better suited to structure large,
dynamic and evolving distributed applications. This position is also advocated in
(Dedecker and De Meuter, 2003; Dedecker et al., 2003).

• Object mobility is arguably a lot easier to accomplish in prototype-based

6This means that the network remains hidden to the user
7This means that the network is around us everywhere

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 96

languages than in their class-based counterparts. The main issue here is
that the object’s class will have to move along with the object. The reason
is that an object simplycannotexist without its class. The class defines
its behaviour and its interface. The situation is even aggravated because
the object’s class depends on its superclass, which in turn depends on its
own superclass and so on. Moving an object therefore implies moving the
transitive closureof its class as well! Each time an object visits a node that
does not know about its class, the class (or classes) needs to be duplicated at
the new node. This results in a time overhead because the class needs to be
moved as well, and a space overhead, since a class definition is now stored
twice.

Although objects in prototype-based languages “know their own methods”,
they will have to drag those methods along too. To ensure that an object’s
methods are co-located with the object itself, the methods should move when
the object does. Thus, considering efficiency, prototypes will not always
offer cheaperobject movement but they will offersimplerobject movement.

• A problem emerging from duplicating classes at different nodes is class in-
consistency: if the original class is modified after it has been duplicated,
these changes should be propagated to all nodes that have a copy of the
class. Even for methods which are usually immutable in class-based lan-
guages, this can be problematic as updated versions of a class can be coded
and recompiled. Class consistency becomes entirely problematic when con-
sidering static or class variables that are mutable: when replicating classes,
the consistency of the class variable must be maintained. This necessitates a
replication managementsystem that can cope with the presence of concur-
rency often found in distributed systems.

• A related issue regarding class consistency is class version management,
where the same class is updated and therefore possibly becomes inconsis-
tent with objects instantiated from a previous version. During the execution
of a distributed program a class will be replicated across different nodes. The
versions of these classes will have to be kept consistent. If one of the nodes
is equipped with an updated class, and an object of this class is moved from
such a node to a node storing the old class version, what should be done
with the object? Using an obsolete version of a class is not always possi-
ble as it could lead to erroneous interactions between state (the object) and
behaviour (the class). The detection of “similar” or updated classes is not
straightforward either. Class names may not be globally unique, and bitwise
comparisons may not always give correct results.

• Embedding- or concatenation-based languages like Obliq are extremely well-
suited to distributed applications (Cardelli, 1994). In Obliq, an object is en-
tirely self-contained and has neither parent object nor class. Because of this
self-contained nature of objects, Obliq readily lends itself towards network

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 97

applications. Cardelli (1994) argues that a delegation-based model of pro-
totypes poses more problems, since it is more difficult to obtain complete
relocation of an object and its methods. To a certain extent, this is true,
and related to the difficulties of representing split objects. Delegation-based
schemes have their own advantages, however:

1. They allow for better sharing, since objects can share their parents even
if they move. Parent sharing thus allows for a very natural inter-node
sharing and – equally important – communication mechanism, avoid-
ing the intricate replication management schemes introduced by dupli-
cation of state. Moreover, even delegation-based prototypes allow for
code to be local to a given object. For example, the language dSelf in-
troduceslocal methodsto minimize network traffic (see section 4.5.3).

2. Delegation-based languages like Self and dSelf can easily change their
own behaviour by changing their parent slots. This is generally not pos-
sible in concatenation-based languages like Obliq. In dSelf, this is par-
ticularly useful as it introduces this flexibility of change in a distributed
setting (Tolksdorf and Knubben, 2001). Objects can then themselves
decide whether their parent (such as their traits) should remain remote,
or whether a local object can take its place. Some precaution is needed
here, since the safety and security of programs, extremely important
in a distributed setup, are not taken into account in (Tolksdorf and
Knubben, 2001).

Therefore, delegation-based prototype-based languages should not be ruled
out a priori.

• Adding newkinds of objects (i.e. adding new datatypes) at run-time –
without stopping the program – can be problematic in some class-based lan-
guages. In prototype-based languages, dynamically modifying or extending
an object (even with new methods) is no problem. New kinds of data ab-
stractions can easily be introduced at run-time. In Java, extension of classes
at run-time is possible through the use of class loaders (Schougaard, 2003).
Such extensions remain very restricted, however, due to Java’s sandbox secu-
rity model. In general, extensions through such abstractions as class loaders
are certainly less expressive and much more tedious than simply extending
objects from within a flexible prototype-based language.

• One may argue that using flexible, dynamically typed prototypes will dete-
riorate security. It is indeed impossible to find out what kinds of objects are
accepted from remote devices and what they will be doing. There is no type
or class to verify an object’s behaviour. On the other hand, if the principle of
Extreme Encapsulation is applied, objects can protect themselves. It should
be the responsibility of the programmer to encapsulate his objects and to
distrust any other object in the system. So, secure prototypesarepossible.

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 98

Conversely, statically typed classes are themselves not a guarantee for safety
either. As already mentioned in section 4.2.3, static typing can be partially
circumvented by polymorphism. One can argue whether static typing is
therefore necessary at all. When looking at a lot of contemporary Java code,
one often finds code that bulks of downcasts andinstanceof tests, very
often because one loses all type information using methods that manipulate
Object s. This nullifies all benefits of static typing. Thus, the static type-
lessness of prototypes can be certainly regarded as a blessing rather than a
curse. Very often, static types interfere with distributed programs (because
they are for example unknown by the receiving process). Also, in distributed
systems making use of generated stubs and skeletons (like Java-RMI), static
types often interfere with dynamic “proxy classes”. Program code expects
an object of a certain typeT while the object being returned is actually of
some typeTProxy. To a certain extent, these problems are related to the
ones outlined in section 4.2.5.1. These problems demonstrate that static typ-
ing and classes are not ade factonecessity in distributed systems. Objects
can easily live without them.

• A fundamental property of parent sharing is that it isexplicit. The program-
mer perceives the parent as being shared (possibly across the network) by
multiple objects. It is thus his task to keep this parent consistent. This makes
parent sharing a scalable sharing and communication mechanism, of which
the programmer has total control. On the other hand, the automatic man-
agement of duplicated classes, class variables and class versions in class-
based languages should be, but is not, transparent to the programmer and
extremely hard to maintain for the language environment. In giving the pro-
grammer control of the sharing mechanisms, he can decide what properties
it must adhere to. This will allow for moretransparentprograms, in which
what is going on at runtime is visible in the source code, yet without hav-
ing to deal with low-level concepts. Explicit parent sharing might give the
rise to the impression that it would be a more low-level approach, since part
of the responsibilities are delegated to the programmer. However, as will be
demonstrated in chapters 5 and 6, the key to explicit parent sharing is provid-
ing just the right language features that allow for a convenient control over
an object and its data by its children.

Note that we do not advocate the use of parent sharing to support code reuse
or code sharing across a network. Such a structure would lead to unaccept-
ably high network traffic, since method lookup would involve network calls
and increased network traffic. Rather, parent sharing should be used to sup-
port an expressive communication mechanism, in which changes appear to
be automatically broadcast to all children. It should not be used to simply
reuse parent methods in possibly remote children. If such a reuseis wanted,
controlled mechanisms like Self’s “copydown” can be used to avoid the need
for manual duplication of code. We will explore such locality-promoting

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 99

mechanisms in section 6.5.3.

• Regarding performance, one cannot possibly argue that distributed commu-
nication using parent sharing would be of inferior performance than dis-
tributed communication occurring in class-based languages. After all, at the
implementation level, remote objects become proxies that forward method
calls. Whether these proxies point to a remote class-instantiated object or to
a remote prototype-parent object is irrelevant to the communication at hand.

As can be witnessed from the above arguments, opting for prototypes is not
a panacea that will suddenly eliminate all problems associated with classes in a
distributed context. We have merely argued that they provide a moreflexibleal-
ternative with less problems. They are conceptually simpler (for programmers as
well as for language implementors) and better subject to change (able to cope with
new object types at run-time in anexpressiveway). Breaking the dependency be-
tween object and class appears to be beneficial when one starts to move objects
around. The dependency otherwise adds the burden of having to “drag along”
classes, which can become inconsistent across virtual machines. Prototypes are
more robust: methods are associated with objects and if updated prototypes are
created, clones of an older prototype will not break down all of a sudden.

4.5 An Overview of Distributed Programming Languages

The discussion on the issues in distributed programming language design will now
be grounded by reviewing some existing distributed programming languages. A
small overview follows in which we motivate the choice for discussing each lan-
guage.

Emerald (Hutchinson et al., 1991) is an object-based language with a strong em-
phasis onobject mobility.

Argus (Liskov, 1988) addresses important concerns such astransaction manage-
mentandfault tolerance.

dSelf (Tolksdorf and Knubben, 2001) is a true prototype-based language which
featuresdistributed inheritance.

Obliq (Cardelli, 1994) is a prototype-based language based on embedding cen-
tered around robustself-sufficient objects.

Borg (Van Belle et al., 2000) illustrates the concept of mobile interacting agents,
supported bystrong mobility.

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 100

4.5.1 Emerald

Emerald (Hutchinson et al., 1991) is a highly flexible and efficiently implemented
distributed language. It is interesting in the context of our study because it isobject-
based: Emerald programs are inhabited by objects and by objects alone. The lan-
guage was explicitly designed to simplify the construction of distributed programs
(Jul et al., 1988). One important design concept that has added towards this sim-
plification is the support offine-grained object mobility: even the smallest possible
objects can be moved to another node.

The other design dimension adding to the simplicity of developing distributed
programs is Emerald’s location-independent object invocation. That is, whenever
a message to an object is sent, it does not matterwhere the receiving object is
currently located. It is up to the Emerald runtime environment (thekernel) to locate
the target of an invocation request (Jul et al., 1988). This simplifies distributed
programs as the programmer does not have to distinguish between local and remote
objects.

One of the reasons why the designers of Emerald have chosen an object-centred
approach is that objects provide an excellent abstraction mechanism for building
distributed applications because they provide the units of processing and distribu-
tion (Black et al., 1986). Objects are self-contained entities that provide excellent
encapsulation barriers in a distributed environment. To give a general flavour of
the language’s look and feel, consider the following example that prints the squares
from 1 to 10:

const Test ==
object Test

process
var i : Integer
i <- 1
loop exit when (i>10)

stdout.putint[i*i]
stdout.putstring[" "]

end loop
stdout.close

end process
end Test

Emerald strives for language concepts similar to the ones we seek to explore,
described in chapter 6. These concepts try to simplify the complex object manage-
ment often left to the programmer, which is a large burden in distributed programs.
What is also interesting is that Emerald features both private, local, passive objects
and shared, remote, active objects (Hutchinson et al., 1991). This section will start
with an overview of Emerald’s language concepts. Next, we zoom in on the con-
cepts specifically related to distribution support and partial failure handling. It is

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 101

not our intention to explain the language in detail. Rather, we give an overview of
how distributed programs become more expressible in Emerald.

4.5.1.1 A Statically Typed Object-Based Language

Emerald is a strongly typed language. Moreover, it isstatically typed. One im-
portant distinction with most statically typed languages is that Emerald’s types are
first-class. Types are modelled by objects and every object has a corresponding
type. The language was designed to support explicit data abstraction: all typing is
done at an abstract level, independent of the implementation. A type thus speci-
fies aninterfacewhich can be used with different implementations. The relation
between implementations and types is actually many-to-many: a single object can
conformto many abstract types (interfaces), while an abstract type may be imple-
mented by many different kinds of objects (Black et al., 1986).

Notice the difference between Emerald’s type system and those of eg. Java or
C++. In Emerald, there is a richer form of polymorphism since any object can be
replaced by any other object, as long as it has aconsistenttype. TypeS conforms
to typeT if S defines at least all operations defined onT 8. There is a subtle
difference between allowing subtyping based on type conformity and subtyping
based on subclassing. Type conformity relates two objects through their interface,
that is, two objects conform if they share part of their interface (their operations).
However, classes related through inheritance also share their implementation: sub-
classes can override operations, yet they also inherit all instance variables (Black
et al., 1986). Like Self, Emerald can avoid this enforced “implementation inheri-
tance” by separating interface from implementation.

Emerald featuresno classes, which again shows that languages oriented to-
wards flexible distributed programs try to avoid the concept of a class as much as
possible. Emeralddoessupport a syntacticclass construct, which is mere syn-
tactic sugar. Class declarations are automatically transformed to a generator object
which can “instantiate objects” and a type object denoting the type of the gener-
ated objects. Emerald does not feature object inheritance, i.e. it does not have
any notion of delegation. It does allow single inheritance through the syntactic
class construct. However, such syntactic inheritance is only used at compile-time
to reuse superclass methods in child objects. At run-time, objects resulting from
inheritance do not keep any record of their inheritance relationships (Hutchinson
et al., 1991).

Raj et al. (1991) regard the absence of code sharing as an advantage in a dis-
tributed setting, since objects are not dependent on other (repository-like) objects.
Although Emerald objects do not depend on aclass, they do depend on atype,
which will have to be moved together with the object. Therefore, types do reintro-
duce some of the problems regarding classes sketched in section 4.4. Types remain

8Type conformity is explained in more detail in the Emerald Language Report (Hutchinson et al.,
1991).

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 102

less problematic than classes, however, since they don’t contain class variables or
implementation specifications.

Objects in Emerald are highly self-contained. In fact, their internal data fields
can only be manipulated through invocations. No external access to an object’s data
is permitted. Access to an object’s data fields is mere syntactic sugar for accessor
and mutator methods (Black et al., 1986). However, as will be noted later, Emerald
does not adhere to the Extreme Encapsulation principle as we stated it in chapter
2: Emerald defines a multitude of operators that manipulate objects without their
participation (i.e. by circumventing message passing).

4.5.1.2 Concurrency Via Active Objects

Emerald introduces concurrency by means of the notion of an “active object” by
allowing a process (commonly called a thread) to be attached to an object. An
object can implement aprocess blockwhose code will be executed autonomously
by a new process until the end of the block is reached. Objects can be declared
as beingmonitors, in which case they guarantee mutual exclusion of all of their
operations. This means that those objects can only be used by processes “one at
a time”. Explicit synchronization can be accomplished usingwait andsignal
operations, reminiscent of Java’swait andnotify messages. These concepts
were explained in-depth in section 3.2.2.2, as part of the Java model so we will not
go into more detail here.

4.5.1.3 Object Mobility and Distribution Support

We have already mentioned that object location is kept as transparently as possible
in Emerald. Yet, it is notentirelytransparent: there are several language operations
that allow the programmer to explicitly change the location of an object, or to query
for an object’s current location. A statement of the formmove exp1 to exp2
moves the object denoted byexp1 to the location denoted byexp2 . To be more
precise, this statement is merely ahint to the language kernel to move the object.
The kernel is not enforced to perform the move. Objects can be made immobile
by fixing them at a given location. Thefix , unfix andrefix statements serve
these purposes. Trying to move fixed objects results in failures.

Remote method invocation closely resembles RPC models. Emerald uses syn-
chronous semantics (Black et al., 1986). Arguments are passed using call-by-
object-reference, as is common in most object-oriented languages. When perform-
ing a remote method invocation, this implies that aremote referenceto the object
is passed. This has potential performance penalties, since every usage of this ob-
ject by the called method will result in more network traffic (Jul et al., 1988). As
mentioned earlier, Emerald provides two rather sophisticated (more high-level) pa-
rameter passing semantics, namelycall-by-moveandcall-by-visit.

Call-by-move implies that the parameter ismovedto the call site (that is, the
node on which the target object resides). Call-by-visit is essentially the same, but

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 103

will move the parameter back to the call site when the method invocation returns.
The advantages of call-by-move are that it is more expressive and that the param-
eter can be transported together with the call. The obvious disadvantage is that it
increases the cost of the call, but also that it may create more remote references at
the caller’s site (Black et al., 1986).

When moving objects, the questions posed earlier regarding object mobility
are raised anew: how much of the object graph has to be transmitted? Emerald
solves this problem by allowing objects to beattachedto other objects. Whenever
an object moves, it also moves its attached objects. Attachment is transitive, so any
attached objects to attached objects also move (Jul et al., 1988). It is a unidirec-
tional bond however: ifa is attached tob but not the other way around, thenb will
not move whenevera is moved. By default, objects are not attached, so nothing is
moved together with the object.

Note that the use of statements such asmove, fix andattach breach ex-
treme encapsulation: they allow for an object to be moved or fixed without that
object’s cooperation. Of course, the object’s state remains encapsulated and can
still only be accessed through message passing.

4.5.1.4 Partial Failure Handling

Although method invocation is location transparent, the location of an object can
still be retrieved by the programmer. There are two reasons for allowing this. One
is performance, which is obvious in that one might want to store collaborating
objects on the same node. The other is reliability and availability, two important
factors in a distributed system.

To obtain reliable software, objects should not be stored on only one node,
but they should be kept distributed by the system to keep the program resilient to
crashes: whenever a node crashes, the program may still continue to work using
objects on the remaining nodes. To facilitate this reliability, Emerald introduces a
checkpoint statement, which allows an object to save all of its state to stable
storage. This allows for object reconstruction in case of a node crash.

Emerald also supports exception or failure handling through the use offailure
handlers(Hutchinson et al., 1991). These handlers can be compared with a “catch
clause” commonly used in languages like Java and C++. However, sinceanycall
can generate failures (since it is possibly remote and the remote node may have
crashed), it would become impractical to wrap each call in a so-called “try-catch”
block. Handlers allow for the decoupling of the try-blocks and their corresponding
catch failure handling statements. A special kind of failure is the unavailability
of objects. To this end, Emerald allows forunavailable handlerswhich are used
whenever an object is needed that can no longer be found. This is handy to deal
with partial failures, yet the programmer has to explicitly provide such handlers.

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 104

4.5.1.5 Conclusion

Emerald is a high-level language, specifically designed to aid in the development
of distributed programs. It introduces a single object model for small, local objects
as well as for large mobile objects. Its type system is special in that types are first-
class and allow for a total decoupling of interface and implementation. This relaxes
the use of typing in a distributed setting, since it becomes less problematic to move
types together with moving objects. Emerald adheres to the vision that distributed
aspects should be transparent for method invocation, but that distribution cannot
entirely be kept secret from the programmer. It is still his responsibility to structure
his system in an efficient way, and to deal with inherent problems in distributed
computing, such as partial failures.

4.5.2 Argus

Argus (Liskov, 1988), an extension of the CLU language, was designed to deal
explicitly with long-lived distributed programs. In such programs, online data is
maintained for long periods of time, and reliability is a major concern. Examples of
such systems are file systems, mail systems and inventory control systems (Liskov,
1988). The language tries to ease the burden of partial failures on programmers.
A distributed system is fundamentally different from a common sequential appli-
cation. A sequential program is either runningor it has crashed. Distributed pro-
grams may be partly runningand partly have crashed. Thus, part of the program
has to respond to such partial failures. Argus introducesguardiansandactionsto
aid the programmer in structuring his distributed applications, both of which will
be explained in more detail.

Argus is a statically typed language. To acquaint the reader with Argus’ look
and feel, consider the following example, which defines a procedure that will trans-
fer an amount of money from an account on one node (a bank branch), to another,
possibly remote node. The withdraw operation might signal that there are insuffi-
cient funds to withdraw, in which case the exception is propagated:

transfer = proc(from,to: account_nr, amnt: int)
signals (insufficient_funds)

f: branch := get_branch(from)
t: branch := get_branch(to)
f.withdraw(from, amnt)

except when insufficient_funds:
signal insufficient_funds

end
t.deposit(to, amnt)

end transfer

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 105

4.5.2.1 Guardians

Guardians are a special kind of object with the purpose of encapsulating a num-
ber of resources (Liskov, 1988). Its resources may only be manipulated through
special procedures calledhandlers. A guardian itself may contain a number of ac-
tive processes. Whenever a handler is called by another guardian, a new process
is created to process the call. A guardian always resides at a single node, but may
be moved. It may also create other guardians, which it may place at a given node.
Finally, just like in Emerald, handler calls are location-independent, which means
that one guardian may use another without knowing its exact location.

A Guardian’s state is extremely important, since it may not be entirely lost
upon a system crash. That is why a Guardian contains two kinds of objects:stable
objects which will survive a crash (i.e. their data is written to stable storage) and
volatile objects, which will not. Upon a system crash, all running processes and
volatile objects are lost. A special recovery process will be spawned when the
Guardian recovers. This process can be used by the programmer to restore as
much of the volatile objects as possible from the surviving stable objects (Liskov,
1988).

4.5.2.2 Actions

Since there are multiple processes running within a Guardian, one needs tosyn-
chronizethem. Synchronization and failure handling are handled by Argus’ac-
tions. An action can best be described as anatomic transaction, that is: a piece of
code that runs as if no other processes are active and which is either entirely exe-
cuted or not executed at all. To be more precise, actions areserializable9, meaning
that executing a number of actions concurrently (i.e. interleaved) will have the
same meaning as executing them all sequentially in some order. Serializability al-
lows for concurrency without the processes interfering with one another. Actions
are alsototal: they either complete entirely (i.e. they cancommit) or are guaranteed
not to have any visible effect (they canabort) (Liskov, 1988). It is this property
that allows for the graceful handling of failures, since partially finished computa-
tions will not leave the system in an inconsistent state, but will revert the system to
the last known consistent point.

Actions are only created when dealing withatomic objects. Operations invoked
on such objects will be synchronized and can be made undone using actions. Syn-
chronization is implemented via locks. Every operation on an atomic object is
classified as a reader or a writer, depending on whether the operation modifies the
object. Argus follows the usual semantics in allowing multiple readers, but only
one writer to manipulate the object at the same time. Recovery in case of failure
is implemented using versions. Whenever an object is about to be locked, its state
is tagged as a “base version”. The operation then proceeds and performs modifica-
tions only on acopyof the receiver. If the action commits, the copybecomesthe

9Not to be confused with serialization as a synonym for object marshaling.

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 106

base version. Otherwise, the copy is just discarded (Liskov, 1988).
Argus is unique in that it provides atomic actions as being built-in into the

programming language. This allows for an expressive way to handle transaction
management. Combined with Guardians, which provide encapsulation and recov-
ery facilities, Argus is again an example of a language offering tools to deal with
the complex problems that often arise within a distributed application.

4.5.3 dSelf

dSelf (Tolksdorf and Knubben, 2001) is a distributed extension to Self (explained
in section 2.5.1). It is a language with concepts that closely resembles those of our
own language under extension: Pic%. Both are delegation-based object-oriented
languages. Thus, studying the concepts used in dSelf can give us some insight in
the use of delegation in a distributed context.

Tolksdorf and Knubben (2002) argue why they prefer a prototype-based lan-
guage such as Self over other (class-based) languages in a distributed setup. They
note that the class hierarchy defines several dependencies between language con-
cepts. First, a subclass depends on its superclass, usually via the inheritance rela-
tion. Second, any object depends on its class since its behaviour is defined there.
These dependencies hamper the mobility of objects in a distributed program.

A direct consequence of having to move classes along with objects (as already
noted in section 4.4) is the need for version control over classes, as is witnessed
in Java-RMI (Tolksdorf and Knubben, 2002). In Self, behaviour objects can be
factored out (traits) which do not distribute the code as in class-based languages.
Because there is no duplication, there is no need to propagate changes to replicas.
Keeping the code shared and centralized also has the advantage of changing an en-
tire distributed object hierarchy in a single stroke (Tolksdorf and Knubben, 2001).
Of course, the downside is increased communication overhead.

One can argue that this kind of sharing can easily be achieved in class-based
languages by sharing the class over the network. In implementation terms, an
object’s “pointer to the class” would then be a remote reference. The major differ-
ence is that such class pointers are usuallyimplicit in class-based languages (i.e.
the pointer is usually not accessible or mutable). In Self and dSelf, a parent pointer
to a traits object fulfills this task. This pointer is mutable, and thus objects can eas-
ily switch from a remote traits object to a local object whenevertheysee fit. The
advantage over class-based languages is again one of increased flexibility.

4.5.3.1 Distributed Instantiation and Inheritance

The two main contributions of dSelf regarding the addition of distribution to Self
are (Tolksdorf and Knubben, 2002):

Distributed Instantiation A traits object describing the behaviour of an object,
and the object itself containing the representation do not have to be co-

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 107

located. Also, any clone of a prototypical object can reside anywhere, in-
dependent of the location of the prototype or its traits.

Distributed Inheritance An object and its parent do not have to be co-located
either. This means that there is delegation over the network.

Both concepts lead to more flexibility in a distributed program (Tolksdorf and
Knubben, 2002). Objects do not have to be co-located, which decreases commu-
nication overhead when an object is moved (that is, only that object needs to be
moved, and not some class-like object as in eg. Java-RMI). Since the traits object
remains shared on one node, changes are easily made. However, this flexibility
comes at the price of decreased efficiency.

4.5.3.2 Local Methods

The two distribution properties mentioned above have the disadvantage that they
raise the global communication overhead because messages may need to be looked
up in remote parents. To this end, dSelf provideslocal methods. Local methods
are ordinary methods, nested inside other methods. They are only accessible in
the body of the method in which they are nested. Such methods minimize network
traffic, since they can be transported along with the object. That way, local method
invocation never leads to invocation across the network and allows at least some
more control over the network traffic (Tolksdorf and Knubben, 2001).

4.5.3.3 Referring to Remote Objects

Distribution in dSelf implies that slots can refer to objects that are either located on
the local or on some remote virtual machine. To be able to gain access the objects
of another virtual machine, a special type of slot can be installed in a Self object.
This slot can then point to thelobbyof the remote VM. The Lobby, being the main
access point for all reachable Self objects (see section 2.5.1.3) provides an access
point for all objects residing on the remote VM.

As an example of distributed inheritance, lets extend theStack example intro-
duced in section 2.5.1.3. The first thing that needs to be done to create a reference
to a remote VM. This can be done as follows (Tolksdorf and Knubben, 2001):

lobby _AddSlot: "remoteVM" ConnectedTo: "URL to remote VM"

This gives us a possibility to use the remotely definedstackTraits object. Note
that distributed inheritance is gained by making the parent of the object point to a
remoteobject.

localStackPrototype <- (|
parent* = remoteVM stackTraits.
stack = array clone.
top = 0

|)

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 108

dSelf, like Self, distinguishes between ordinary and primitive objects. dSelf
stretches the distinction further, since it attributes different semantics to these kinds
of objects when referring to them across the network. In the case of referencing an
ordinary object, a remote reference is created. Primitive objects (like integers and
strings) get copied, so no references will be introduced for them (Tolksdorf and
Knubben, 2001). This is reminiscent to our own approach, discussed in chapter 6.

4.5.3.4 Conclusion

It is noted in (Tolksdorf and Knubben, 2001) that dSelf introduces concurrency
implicitly with the mere existence of multiple virtual machines, which do not even
allow threads within one VM. dSelf thus needs to cope with concurrency and syn-
chronization issues, as any distributed language. dSelf’s support for this is quite
rudimentary, providing only a simple locking mechanism. A more sophisticated
concurrency model is expected in future versions.

As for the implementation, dSelf was implemented in Java, using Java-RMI for
communication between dSelf objects. This resembles our experiment setup as we
will also use Java as the host language of our interpreter. The dSelf implementation
consists of a compiler, which compiles dSelf objects into Java objects. These Java
objects are then manipulated by the dSelf Virtual Machine. The dSelf language
shows thatit is plausible to extend a delegation-based language with distribution
support.

4.5.4 Obliq

Obliq (Cardelli, 1994) is a distributed language which we deem to be interesting
as it is in a way an antipode of the language we developed, and yet in another
way strongly related to it. Like our language, it is a distributed language which is
object-based, it has no classes. Objects can be written just as simply as in Self by
listing a set of slots between curly braces. However, unlike our offspring, Obliq
is not adelegation-basedlanguage, since delegation between objects is missing.
For the composition of objects, it uses anembeddingstrategy similar to the one
that was introduced in section 2.4.4.2 when discussing non-delegating languages.
Obliq does this by defining ageneralized cloneoperator that can take more than
one object as an argument. The result is then an embedding of all object arguments
into one autonomous object, which has (copies of) the slots from all objects. The
example below shows how to extend an object with extra fields.

let unidirectional =
{ x => 3,

inc => meth(self,y) self.x := self.x+y; s end,
next => meth(self) self.inc(1).x end };

let bidirectional =

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 109

clone(unidirectional,
{dec => meth(self,y) self.x := self.x-y; s end,

prev => meth(self) self.dec(1).x end });

Obliq featurescreation-time value sharing, which promotes theautonomyof
objects. This approach avoids constructing a class-like hierarchy10 and also ensures
that operators applied to an object are necessarily local unless the programmer
explicitly chooses otherwise. This facilitates efficient management of distributed
objects, which is one of the main goals of Obliq.

4.5.4.1 Obliq Operators

Obliq specifies four additional basic operations, next to object creation, that can
be used to express more complex operations such as for example atomic object
movement (Cardelli, 1994). First, there is the operation ofselectionor invocation,
which performs a lookup in an object, followed by either a selection or an invo-
cation based on the contents of the slot. If the content is a variable, it is returned
to the caller. If this caller resides on a remote node the value will be copied. If
the slot is a method slot, the contained method will be executed. In a distributed
setting this means that the method is executed locally and that the result is returned
to the invoker across the network.

Next, anupdatingoperator is introduced which – when applied on method slots
– can be seen as a limited method overriding mechanism. The mechanism does not
offer full-fledged overriding since the overridden method is no longer accessible.
The operator also allows for methods to be replaced by other values and vice versa.
The third operation, the generalized clone, was already introduced above.

Finally Obliq also has analiasingoperation. Aliasing allows for an object to
automatically forward a message to another object. Note that this mechanism is
truly a message forwarder and not a delegation mechanism, since aliasing features
no late binding of self. Aliasing actually behaves like an indirect method invoker,
with the difference that it also forwards update operations and that it works for both
methods and values.

4.5.4.2 Security

In a distributed setting security is an important issue (see section 4.2.3). Obliq fea-
tures operators which may be invoked on objects who can in principle not defend
themselves against their effects. This is a dangerous situation in distributed settings
where a malicious host may freely perform operations on all objects. To address
this, two concepts are introduced. First of all operators are calledself-inflictedif
they are applied by one object to its own self11. This can in general only be de-

10which proves to be an obstacle to transparent and simple distribution as we have discussed in
section 4.4

11Note that there is never confusion about self since Obliq does not feature delegation with late
binding of self.

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 110

termined at run-time. Imagine the expressionself.q.x , it is easy to verify that
the selectionself.q is self-inflicted as it is literally a selection on self. However,
to see whether the selection ofx is self-inflicted we must know thatq returns self,
which cannot be checked statically.

The concept of operators being self-inflicted is used to provide some secu-
rity. Since Obliq features several operations which are implemented by statements
rather than by messages sent to an object, avoiding abreach of integritycould be
hard to accomplish. Especially the update operator is problematic, since it allows
for update operations to take place outside of an object. Cloning and aliasing allow
for similar uncontrolled access to an object’s fields. Obliq tries to solve this defi-
ciency by adding the possibility to declare an object to beprotected. One can only
perform selection and invocation on a protected object. This means that a protected
object can have full control on whether it is being updated or not. Put briefly, if the
object does not implement a method that performs an update on itself, it will be im-
mutable by other objects. However, an “all or nothing” principle applies here, as an
object is either protected or it is not. Using a message-based approach with respect
to the Extreme Encapsulation principle explained in section 2.5.2.4, an object can
specify whatever form of protection it wants by simply overriding the messages
that should be rejected.

4.5.4.3 Introducing Concurrency

Concurrency is introduced in Obliq through explicit thread creation using afork
operator, which can be supplied with a procedure that will be evaluated in par-
allel with the caller. Results may be accessed byjoin ing a thread. Two forms
of synchronization exist. The first one is used to prevent race conditions that
may arise in a multi-threaded program. Obliq allows an object to specify that it
is serialized , thereby associating a Mutex with that object. Operators must
first acquire the lock on a serialized object before they can perform their normal
operation. This type of system may easily provoke deadlock by common program-
ming patterns such as for example recursive functions. Usually reentrant locks
are used to solve this type of problems , but Cardelli (1994) argues that they are
both too general and too restrictive to be useful. This is why in Obliq uses the
self-inflictedconcept to determine what operations should acquire the Mutex. Self-
inflicted operators should never acquire a lock, as they are always the consequence
of a previous external call, which awaits the completion of this call to be able to
return.

Another level of synchronization is semantic or conditional synchronization,
which has no relation to technical problems such as race conditions. Semantic syn-
chronization is concerned with the meaning of the program. For example, when
performing adequeue operation on an empty shared buffer, the calling process
(typically called aconsumer) should wait. To express these concerns Obliq offers
thewatchstatement:watch c until guard , where c is acondition variable
and guard is a boolean constraint. If this constraint succeeds the procedure just

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 111

continues. If the condition fails the lock is released, allowing other operations to
be invoked. These other operations maysignal the condition variables that are
watched. If such a change is observed the guard is reevaluated after the opera-
tion finishes. If the reevaluation succeeds the lock is acquired and the interrupted
computation is continued.

4.5.4.4 Distributed Objects

Obliq is more than a concurrent language, its main goal is to provide a solid object-
based model for distribution. To this end we need to establish what Cardelli (1994)
calls communication channels. Such channels allow for the exchange of values.
An initial channel is created using the mediation of a name server. On this name
server a process A can publish one of its objects and then another process B can re-
trieve a reference to the published object. From then on both processes can directly
exchange information though method invocation arguments and results.

In Obliq objects are really tied to the location on which they were created.
When objects are passed as a parameter actually object references are being passed
around. These object references are copied when supplied as arguments just like
other basic values such as strings and numbers. The binding of objects to their site
is, however, not a strong constraint as the user can clone an object to his site or
pass around procedures that spawn new objects for him on other sites. Also, the
way to move objects in Obliq is to consistently (i.e. in one atomic operation) clone
the object on the remote site and then forward all operations of the local object to
the remote object through aliasing.

Procedures that spawn objects on remote sites provide the main workload to-
wards distributed programming in Obliq. They are sent to the so-calledexecution
engineswhich evaluate them on their site. The procedures can thus be seen as
some form of agents, yet they are mereclosures. This means that they are lexi-
cally bound to the environment of definition: any free variables in the procedure
are looked up at their site of definition. Thus, the use of free variables can im-
ply distributed lookup. If an agent does not use free variables, it allows him to
be completely independent, sharing no data with its original site. Conversely, it
is sometimes useful to maintain a few free variables to allow communication with
the originator. Furthermore thenetwork-wide scope(Cardelli, 1994) also prevents
the unpredictable effects of the dynamic scoping alternative where free variables
of a procedure would be looked up in the context of the receiver. This would be a
serious breach of the encapsulation of that site.

4.5.4.5 Conclusion

We have specified that Obliq is in a way the antipode of our own approach, which
we will thoroughly explain in chapters 5 and 6. Obliq, like our own language,
features an object-based approach. Yet, Obliq allows external operators to work on
an object, without giving the object the choice to allow this type of interaction or

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 112

not. In the light of the security essential to distributed systems this is a bad idea,
hence the possibility toprotectand object. We will solve these issues by adhering
to Extreme Encapsulation: the object itself decides which operations are allowed
and which are prohibited.

Obliq keeps objects autonomous self-contained entities. The programmer can
use an aliasing mechanism to “reroute” references to objects. However, the alias
doesnot have late binding of self, to avoid that a call, which may have to travel
over the network, comes back to the original receiver. These schemes are devised
to make an object as robust as possible, and to limit the usage of network resources
to perform a selection or an invocation. Our approach is the exact opposite, as we
will devise a language featuring shared parents over the network, to explore the
dynamism that such a distributed sharing can introduce in distributed applications.
In this perspective split objects (and the possibility forthis to refer to a remote
object) are intentional since they allow expressing certain communication patterns
in a more natural way (Dedecker and De Meuter, 2003).

4.5.5 Borg

Borg (Van Belle et al., 2000) is a research artifact, developed at the Programming
Technology Lab of theVrije Universiteit Brusselin the late nineties. It is an out-
growth of the Pico language (see section 2.5.3). Borg was particularly designed to
support the notion ofmobile agents, which are autonomous entities able to travel
around and which can interact with one another. It was mainly used as a framework
to study such concepts as Agents, Strong Mobility and synchronization primitives.
Borg has lead to the study of two major issues (Van Belle and Fabry, 2001):

• How to develop and provide a robust mobile component architecture.

• How to write code in these kinds of systems.

Both are important in the context of our study on distributed language concepts.
Particularly the first issue is helpful, as we will build our own distributed language
in chapter 6. The design of an agent system like Borg is not trivial, as it should pro-
vide transparent interconnection between agents, route messages, migrate agents,
serialize messages and schedule computations (Van Belle and D’Hondt, 2000).
Borg’s application domains can be situated in both large distributed application
(such as e-commerce), as well as in true mobile computing, using handheld de-
vices. When using such devices, application migration becomes necessary to mini-
mize storage, as well as to deal with the lack of computing power. Programs could
then be migrated to faster machines.

4.5.5.1 The CBorg Mobile Multi-Agent System

In Borg, agents run concurrently on one or more machines. They carry their own
data space and computational state (i.e. their own runtime stack). Agents can be

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 113

moved between different machines (Van Belle and D’Hondt, 2000). Other features
include (Van Belle and Fabry, 2001):

• Strong Mobility allowing agents to migrate without explicitly starting or
stopping.

• an Agent Communication Layer supporting transparent message sends be-
tween agents. This also implies the need for automatic serialization, as noted
in section 4.2.5.2.

• a Location-transparent distribution layer supporting the automatic routing of
messages between different machines.

• Synchronization primitives allow agents to wait for one another.

A particularly sophisticated part of Borg is its distribution layer. This layer
is necessary to address a problem left untouched so far. When objects can move
freely in a distributed system, this inevitably opens up the problem of keeping track
of their location. A virtual machine should know the location of a remote object
when one of its local objects sends it a message. It becomes necessary toroute
messages between several virtual machines. In Borg, this problem is tackled by
using special nodes, acting as bothname serversand routers. These nodes are
composed in a hierarchical manner. When agents migrate, the appropriate routing
tables are updated as the object moves between nodes (Van Belle and Fabry, 2001).

4.5.5.2 Strong Mobility in Borg

We will briefly explain how Borg has achieved Strong Mobility. The details regard-
ing this concept were already explained in section 4.3. In essence, Strong Mobility
is achieved in Borg by migrating agents. An agent encapsulates a computational
state (a runtime stack), which is transmitted with the agent upon migration. Thus,
agent migration enables Strong Migration. Three actions are required to prepare,
guide and complete this migration (Van Belle and Fabry, 2001):

• The agent’scompletestate needs to be encapsulated (serialized). This in-
cludes its state, its behaviourand its computational state.

• This capsule is sent across the network. This part poses less and less prob-
lems with the increased availability and reliability of communication net-
works (Van Belle and D’Hondt, 2000).

• The agent must be restored and re-actived in his new environment.

Strong mobility is a direct consequence of the transmission of the computa-
tional state of the agent. The fact that this computational state can be transmitted
(or even grabbed!) follows directly from its first-class representation in the Borg

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 114

(or Pico) interpreter. Recall from section 2.5.3.2 that the Pico interpreter is able
to represent the computation “that still has to be done” as a first-class entity be-
cause it is implemented with explicit continuations. Moreover, this computation
is even first-class within Borg or Pico itself, but this is irrelevant for the purposes
of strong mobility: the important thing is that one can grab and thus transmit the
computation at the implementation-level.

It remains to be said how an agent’s behaviour is migrated. In section 4.2.5.2
we mentioned the problem of specifyinghow muchof the object graph to serialize.
When an agent migrates, its data graph – including local objects – is transmitted
(and thus serialized). The root environment is always cut off and replaced by the
root environment of the new host. This achieves a decoupling from the agent and
the underlying resources made available by the VM through the root environment
(Van Belle and Fabry, 2001).

4.5.5.3 Agent Communication and Synchronization

Agents communicate through message passing. More specifically, message pass-
ing isasynchronous, so the sending agent does not need to wait for an answer. The
call immediately returnsvoid . This asynchronicity is deemed extremely impor-
tant when using agent systems in Wide Area Networks, since the agent does not
have to waste time waiting for results. To make two agents communicate in a re-
quest/response collaboration, the first agent can give a reference to himself as an
argument, denoting “where to send the result”. The other agent can thencall back
on the first using this parameter.

Sometimes, agents need to synchronize at a given point in time. This cannot be
done using the asynchronicity introduced by message passing. Therefore, an extra
synchronization primitive, calledsync , was introduced. Its behaviour is most
simply understood by an example, illustrated in Table 4.1 (Van Belle and Fabry,
2001).

Agent1 Agent2
sync("Agent2",[a,10]) . . .

waiting . . .
waiting sync("Agent1",[20,b])

continuewith a=20 continuewith b=10

Table 4.1: Illustration of the Borgsync primitive

Synchronization is accomplished usingunificationof a certain pattern (the sec-
ond argument tosync). The pattern can be a table, strings, numbers, variables or a
wildcard. While unifying the pattern, variables get bound, which result in two-way
communication, as illustrated in the example. The first argument can be a named
agent, a table of agents (thus, more than two agents can be simultaneously syn-
chronized), or a wildcard. In case of a wildcard, the agent will only synchronize
with any agent whose pattern unifies with its own pattern (Van Belle and Fabry,

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 115

2001). The synchronization primitive works even with agents that reside on differ-
ent machines (i.e. it is location-independent). This results in a very expressive syn-
chronization scheme between agents, provided that agents know each others name.
This is reminiscent to the requirements of CSP’s rendez-vous (Hoare, 1978).

There have been some thought experiments in extending Borg with new syn-
chronization primitives (Verelst and Van Belle, 2000; Van Belle et al., 2001). One
of the issues that is discussed is that Object-Oriented programs are unbalanced
with respect to send and receive: sends can usually be scattered throughout the
code, while a receive is only possible at the method level. An asynchronous (i.e.
non-blocking)recv primitive is added that checks whether a certain message has
arrived. Furthermore, this model using asynchronous message send, message re-
ceive and explicit sync is compared to other communication models such as Actors
(Agha, 1986), theπ-calculus (Milner, 1993) and CSP (Hoare, 1978). The main is-
sue with these models is their inadequacy to express communication in large scale
agent applications operating in a WAN.

4.5.5.4 Conclusions

Borg, being an extension of Pico supporting strong mobility, is an important prece-
dent of our attempt to extend Pico with both a concurrency model, as well as a
minimal yet flexible distribution model. In Borg, the focus lies onagent mobility.
Our model will focus more on distributed inheritance relations.

4.5.6 Summary

The purpose of this section was to introduce a number of existing object-oriented
distributed languages. This is relevant for a number of reasons. First, it shows
how the issues introduced in section 4.2 are handled in different languages. Sec-
ond, it shows that most languages have their own way in dealing with these issues,
depending on what kind of applications they target. Argus, for example, stresses
long-lived collaborations between objects (transactions) using rather heavyweight
objects called Guardians. Borg on the other hand, uses smaller, more flexible
agents that do not have any protection against system crashes. Also, languages like
Emerald and Obliq stress object autonomy usingconcatenation-based schemes,
while dSelf stressesdelegationacross network links.

The reader will have noticed that next to introducing the tools these languages
offer for distribution we have also briefly recapitulated the notions of concurrency
in the languages discussed: Emerald’s monitors, Argus’ atomic objects, dSelf’s
locks, Borg’ssync , . . . This way we have introduced additional concepts and
solutions to problems with concurrent programming. These solutions will be syn-
thesized in our own approach to concurrency in our prototype-based language (dis-
cussed in chapter 5).

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 116

4.6 Conclusion

In this chapter we have introduced several concerns that need to be addressed when
writing distributed programs. These concerns range from pseudo-political obser-
vations which divide the distributed world in administrative domains, to very tech-
nical such as security regarding object transmission. Most of these problems boil
down to the question whether we cantrust an object. If the firewall of a certain
domain can verify that a received object is secure, and in return the object has a
similar guarantee that its host cannot do anything without the objects consent, there
is no problem. A lot of attention was devoted to such safety and security issues.
Extreme Encapsulation has been put forward as a good step towards such security
guarantees, regarded from a language designer’s point of view.

Trustworthiness, however, is not the only problem to be dealt with. We need
to consider how to deal with distributed objects. This encompasses how we get a
reference to such an object (section 4.2.4) and how we can invoke methods on it
(section 4.2.5). Related to this concern is object mobility since one of the ways
objects may move across a system is by parameter passing. These concerns will be
brought back to light when we explain our model in the following chapters. Other
issues that are equally important are left unaddressed, to narrow the field under
investigation. Examples of such broad subdomains left unexplored are distributed
garbage collection (section 4.2.9) and partial failure handling (section 4.2.8).

Subsequently another important issue in modern distributed programming lan-
guages –strong mobility– was introduced in section 4.3. Since we strive for
simplicity and transparency wherever possible, we refuse to accept weak mobil-
ity which forces the programmer to foresee what a computation should do when it
is about to be moved. Therefore we believe strong mobility to be a better choice as
any running thread of computation can be automatically transported without any
noticeable effect.

After introducing these issues as general problems and goals we have evaluated
the choice of prototype-based languages in a distributed context in section 4.4. This
led to the observation that prototype-based languages are more flexible compared
to class-based schemes since they do not impose for example copying of classes
across the network with the associated problems of keeping these copied classes
consistent. At the same time we have introduced the benefits of delegation in a dis-
tributed inheritance scheme. Though good arguments exist for concatenation-based
schemes, we argue in favour of delegation, since it allows a sharing that can never
be done using concatenation. As we introduce our model, we will demonstrate that
the distributed object inheritance we introduce serves to express communication
patterns with a remarkable ease.

We subsequently grounded the discussion on distributed issues by a review of
a careful selection of object-based distributed languages in section 4.5. None of
these languages shares our view on distribution, however. Obliq and Emerald lack
delegation and dSelf has a poor and very simple concurrency control and security
mechanism. Our goal is to introduce delegation combined with synchronization

CHAPTER 4. DISTRIBUTED PROGRAMMING LANGUAGES 117

and encapsulation and to explore where it can help to expressively deal with con-
currency and distribution issues. This exploration is the topic of the next chapter
which introduces our delegation-based view on concurrency.

Chapter 5

cPico: a Concurrent Pic%

This chapter introduces cPico, a language providing a concurrency model for Pic%.
A concurrency model is the combined set of features and concepts introduced into
a programming language to support the management of concurrent programs. By
management, we usually mean the creation, destruction, synchronization and struc-
turing of concurrent computations. Taking into account the vision outlined in chap-
ter 1, it might seem strange why we would want to introduce a concurrency model
in Pic%, since our primary goal was to create a distributed language targeted to
evolve towards a real language aimed at Ambient Intelligence.

We believe that by creating a concurrent language first, we narrow the gap
between a sequential and a distributed language. This is because in many cases,
distributed languages have to deal with concurrency issues. Thus, distribution often
implies concurrency. To see why distributed programs are usually concurrent, note
that we can represent each virtual machine as some sort of process or thread. Since
objects collaborate across several VM’s, there is the need for synchronizing these
processes. Of course, the “process abstraction” for a VM can be encapsulated at
the implementation level, yet somehow it will have to be reflected in the underlying
language that there are multiple “computation engines” present at the same time.

In our context, our distributed programs are always implicitly concurrent pro-
grams. It therefore seems only natural to go from a sequential Pic% to a concurrent
Pic% – cPico – first, without already taking on the burden of distributed problems.
The concepts introduced to sustain concurrency can then be reused to support the
concurrency implied by our distribution model. dSelf is an example of a distributed
language that has seemingly skipped this step, since the language offers only very
poor and minimal concurrency constructs. The approach taken in dSelf was to
first add distribution to the language, while the concurrency model will have to be
extended in the future (Tolksdorf and Knubben, 2001).

Note that it isnot our intention to support concurrency for allowing the im-
plementation of efficient parallel algorithms. Rather, support for concurrency is
essential due to multiple interacting programs as witnessed in the vision of Ambi-
ent Intelligence. This is an important design choice which has enabled the use of

118

CHAPTER 5. CPICO: A CONCURRENT PIC% 119

more “high level” concurrency concepts, often not considered when the language
is meant to support fast data processing.

We begin our discussion of cPico by situating the proposed concurrency model
in the design continuum delimited by the actors and threads extremes, introduced in
section 3.2. Next, in section 5.2, we introduce some preliminary modifications we
have made to cPico compared to the original Pic% model. Section 5.3 introduces
the necessary language concepts that allow us to write and manage concurrent pro-
grams. These concepts are then further elaborated upon in sections 5.4, 5.5 and 5.6.
The former presents the concept of parent sharing in a concurrent context, which is
one of the compelling reasons to investigate prototype-based concurrent languages
with delegation. Section 5.5 then presents a more grounded discussion on the reper-
cussions of introducing active objects in object delegation relationships. In section
5.6 we will illustrates several ways to achieve conditional synchronization in our
language. Section 5.7 provides a more technically founded argumentation for the
differences introduced between Pic%’s and cPico’s object model. Before conclud-
ing the discussion of cPico in section 5.10 we discuss a number of issues on the
implementation in section 5.8.

5.1 Situating The Model

It is interesting to situate our concurrency model in the “design space” of possible
concurrency models. This clarifies what kind of model we have constructed for
cPico. We start by sketching the edges of this “concurrency model space”. We can
delimit the space by two “extreme” paradigms or models. On the one hand, there
is thefunctionalextreme, being the actor model conceived by Agha (1986). On the
other hand, there is theimperativeextreme, the thread model as found for example
in the Java programming language (Gosling et al., 1996).

The actor model has been discussed in section 3.2.1. Recapitulating briefly, this
model promotes a clean, functional programming style based entirely upon mes-
sage passing. The pure model forbids sharing of state (i.e. no shared mutable data).
An actor resembles an active object (as explained later), meaning that actors can
process messages autonomously. Actors use asynchronous message passing and
asynchronous message passing alone to communicate. The advantage of the actor
model is that it has no problems with race conditions or similar concurrency prob-
lems as it is largely functional. The disadvantage is expressiveness: by continually
having to specify customer actors, computations quickly become cumbersome to
manage and hard to understand.

The other end of the spectrum is covered by threads, discussed in section 3.2.2.
This is a rather low-level model, frequently used to structure operating system
programs. Although the basic thread model is very simple to understand, it is
quite error-prone when actually using it to write concurrent software. In thread
models such concepts as locks, semaphores and critical sections are introduced to
guard certain pieces of code or certain variables in the program against concurrent

CHAPTER 5. CPICO: A CONCURRENT PIC% 120

access. Subtle bugs are introduced when the programmer forgets a lock or unlock
operation, and programs are prone to deadlock.

There are of course concurrency models for languages that do not fit in ei-
ther of these two categories. Most concurrent languages inheriting from the actor
model, like ABCL (Yonezawa et al., 1986) and ACT-1 (Lieberman, 1987) have
loosened the sharing policies and have introduced other types of message passing
besides asynchronous message passing alone. On the other hand, there are lan-
guages inheriting from the thread model but who have introduced some specialized
constructs in dealing with them. The language Obliq (Cardelli, 1994) discussed in
section 4.5.4 is one such language. It uses explicitforking and joining of threads
and condition variables to provide for synchronization.

cPico will build upon concepts from both concurrency models. More specifi-
cally, our active entities will be heavily based on actors. Message passing will also
have an “actor-like flavour” yet we will introduce special constructs to incorpo-
rate return values as well. We relax the demands of actors that there is no sharing
of state. However, when allowing shared variables one automatically introduces
the problems mentioned in chapter 3. To control and deal with them, we intro-
duce some well-known concepts from the thread model. More specifically, we will
sometimes associate locks with objects so that they are guaranteed to be used by
only one “thread” at a time.

5.1.1 A Case for Concurrent Models: Fibonacci

To clearly distinguish between the two models outlined above and our own, an
informal feelingis created of how programming concurrent programs in our model
is done. We do this by illustrating how a simple recursive fibonacci function can be
written, which computes the fibonacci number for a given numbern. A standard
textbook recursive definition of this function in Scheme can be defined as follows:

(define (fib n)
(if (< n 2)

n
(+ (fib (- n 1))

(fib (- n 2)))))

A very straightforward and naive concurrent implementation of this function
will just spawn two new processes at each level to handle each recursive call. Al-
though this is really a contrived example, it does illustrate how concurrency is
createdor spawned in a language. Moreover, since the two subcomputations have
to return a result to be combined in an addition, it also illustratessynchronization
in the language.

Using The Actor Paradigm We start out by writing this example in an imagi-
nary actor language that stays close to the original actor model with a Scheme-like

CHAPTER 5. CPICO: A CONCURRENT PIC% 121

syntax. The code is adapted from an example written in an actor language imple-
mented in Scheme by Theo D’Hondt for didactic purposes (D’Hondt, 2004).

(define-actor (fibonacci)
(define-method fib n customer)

(become fibonacci)
(if (< n 2)

(send customer (result n))
(let ((newcust (fibcustomer customer)))

(send self (fib (- n 1) newcust))
(send self (fib (- n 2) newcust)))))

(define-actor (fibcustomer customer)
(define-method (result num1)

(become (fibcustomer2 customer num1))))

(define-actor (fibcustomer2 cust num1)
(define-method (result num2)

(send cust (result (+ num1 num2)))
(become (fibcustomer2 cust num1))))

The example defines three actors, each having its own thread of computation.
The first actor defines afib method, the other two define aresult method.
The three primitivescreate-actor , send andbecome have semantics as ex-
plained in section 3.2.1. Recall thatbecome states the behaviour that an actor will
use to respond tosubsequentmessages. Thefib method of thefibonacci ac-
tor starts out as expected, by testing the stop condition and sendingn as the result
to a certain “customer” actor if it is met. In the recursive case, the fibonacci actor
will call its own method “recursively”, yet this time with a new kind of customer.
This new kind of customer is either afibcustomer or a fibcustomer2 .
Whenever afibcustomer receives a result it willturn into (i.e. become) a
fibcustomer2 , which has a reference to the result of one of the recursive calls.
When the second value arrives some time later, the actor has enough information
to carry out the addition and send the result back to the original customer of the
fib method. fibcustomer2 is also called ajoin continuationbecause it syn-
chronizes the evaluation of different arguments (Agha, 1990).

In short, concurrency is created by sending messages to (other) actors because
message passing is asynchronous and actors will compute messages autonomously.
This is a high level approach and it is entirely implicit in the code. Synchronization
happens by providing customer actors that will plainly consume the result “once it
is computed”: the processing actor will explicitly inform another actor (a customer)
of the completion of an operation. Writing a program using such customers has the
same complexity of writing programs in continuation-passing-style. This is the
main reason why actor programs tend to become unreadable and hard to program.

CHAPTER 5. CPICO: A CONCURRENT PIC% 122

Using the Thread paradigm To express the fibonacci function in a threaded
concurrency model, we use the Java programming language, whose concurrency
features were detailed in section 3.2.2.2. The solution is given below.

public class Fibonacci extends Thread {
private int n;
private int result;

public Fibonacci(int n) {
this .n = n;
start(); // start a new thread

}
public void run() {

if (n<2)
result = n;

else {
Fibonacci f1 = new Fibonacci(n-1);
Fibonacci f2 = new Fibonacci(n-2);
result = f1.fib()+f2.fib();

}
}
public int fib() {

try {
join(); // wait for this thread to die
return result; // then read out the result variable

} catch (InterruptedException e) { }
}

}

The Fibonacci class is declared to be a subclass ofThread which will
make the code of therun method run in a separate thread of control. Starting a
thread is done in the constructor through a call to thestart method. Synchroniza-
tion happens by explicitly “waiting for the thread to die” using thejoin method
defined on threads. Note that if this method were not provided in theThread
API, threads would have to be synchronized explicitly usingwait andnotify
methods, as explained in section 3.2.2.2. Data is passed by sharing (reading and
modifying) variables (theresult variable in this case). In a thread model, the
programmer must create, kill and join threads explicitly. He has complete control
over these computational objects, but this comes at the cost of increased program-
ming effort. Threads are synchronized using joins or locks. Although itmayseem
that the thread solution is more “easy to program” than the actor solution, the for-
mer is much more unsafe, while the actor program also has some implicit guaran-
tees such as the absence of race conditions or similar problems. Threads do not
scale up as well as actors when dealing with these synchronization issues.

CHAPTER 5. CPICO: A CONCURRENT PIC% 123

Using cPico In the model we present, grafted on Pic%, the fibonacci function
can be readily expressed as:

fib(n) :: {
do() :: if(n<2,

n,
fib(n-1).do()+fib(n-2).do());

activate()
}

This function actually defines the behaviour of what is called an active object.
Such active objects behave very similar to actors, as they compute their own mes-
sages in their own thread of control. Message passing between such active objects
is alsoasynchronous, but our messagesdo return a result. What exactly happens
is that the new active object is equipped with a method that either returns its argu-
ment or invokes the same method again on two new active objects. Concurrency is
created in this program by spawning (constructing) new active objects (by calling
the fib function). By sending a message to these objects, new concurrent evalu-
ations are started as the body ofdo calls fib again. Notice the completelack of
synchronization code. Synchronization is entirely transparent: the+ operation will
implicitly “wait” for the subcomputations to return a result.

This section was meant to situate our model in the realm of possible approaches
to support concurrency in programming languages. By using the extremely simple
fibonacci “expressivity benchmark”, we were able to show how the two extreme
paradigms – actors and threads – cope with the creation, destruction and synchro-
nization of computing resources. The solution as specified in our model shows
that we favour solutions that have minimal impact on the code itself, benefiting
expressiveness. This section has only scratched the very surface of such issues as
concurrency creation and synchronization. Subsequent sections will elaborate on
this. It will also mainly deal with more complex constructs such as delegation and
how they impose problems (and provide solutions) for a concurrency model.

5.2 The Pic% Model Reconsidered

The previous section has provided a basic feeling of how concurrent programs
are written in cPico. In the next section, details on the concepts introduced to
support concurrency will be discussed. For now, let us assume that cPico organizes
programs as trees of objects, which can share parents. Two children of the same
parent can be manipulated by two different active objects. In such case the parent is
sharedbetween multiple “threads”, and thus may be subject to the race conditions
that were introduced in section 3.3.1. To avoid this type of problems, the cPico
object model is quite different from the Pic% object model we have discussed in
2.5.3.3. This section will therefore briefly introduce the major differences between

CHAPTER 5. CPICO: A CONCURRENT PIC% 124

Pic%’s and cPico’s object model. Technical details and clear motivations for this
differentiation can be found in section 5.7.

Unlike Pic%, cPico makes a distinction between “call frames” and objects. A
call frame is a (usually temporary) extension of an environment in which a func-
tion body is evaluated. This frame stores arguments to – and local variables of –
the function. It has been explained in section 2.5.3.3 how such frames can be “cap-
tured” using the nativecapture . These call frames constitute exactly Pic%’s
objects. cPico will distinguish between call frames and captured objects. The rea-
sons in doing this are related to scope rules, detailed in section 5.7.2.

In cPico, an object will no longer delegate lookup for variables. That is, if
lookup for some variable namedx is initiated in an object, andx is not found, an
error will be raised instead of delegating the lookup forx to the receiver’s parent.
This effectively makes all cPico variablesprivate instead ofprotected. That is,
whereas variables can be freely accessed in Pic% by children, they canonly be
accessed by its declarator in cPico. The difference between call frames and ob-
jects is that call frames delegate lookup forboth constants and variables, whereas
objects willonly delegate constants. Section 5.7 describes the need for call frame
delegation and how such visibility rules solve some problems related to locking.

The same section will also illustrate how these particular scope rules for vari-
ables make it impossible to further employ dynamic scope. That is why cPico
reintroduces static scope. However, as noted in (D’Hondt and De Meuter, 2003)
and explained in section 2.5.3.3, storing the lexical environment as a part of func-
tions introduces problems when cloning objects. In order to cope with these issues
a somewhat peculiar lookup mechanism was constructed, which will be discussed
in section 5.8.2. In short, the most important differences with Pic% is that cPico’s
object variables areprivate, and that the language is subject to lexical or static
scope.

5.3 Concurrency Concepts

This section will discuss what language features we have added to Pic% to make
it a fully concurrent language. We will first introduce the new kinds of objects that
inhabit a cPico program. Next, we have a look at how these objects communicate
and synchronize with one another. Only when all necessary concurrency concepts
have been introduced will parent sharing be discussed in section 5.4.

5.3.1 Active Objects

We have already mentioned active objects on several occasions throughout this text.
They were mentioned in the context of ABCL when talking about concurrency, in
the context of Emerald in chapter 4 and in section 5.1 when discussing the actor
paradigm. An active object is aunificationof the notion of a process or a thread
and an object (Briot et al., 1998). This means that an active object is in control

CHAPTER 5. CPICO: A CONCURRENT PIC% 125

of its own methods. It will execute those methodsitself. This is in contrast to a
passiveobject, whose code is executed by some external process, or in our case,
some external active object.

5.3.1.1 Rationale

The reason for choosing thisintegrativeapproach to express computational re-
sources is mainly inspired by the vision that one encounters two kinds of objects
when modelling the world. The world is inhabited by passive objects like chairs,
desks, walls, apples, trees etc. . . and by more active or autonomous “objects” like
persons, animals, cars, computers etc . . . Of course the distinction can become
very vague: is a computer an autonomous object? Although it can be “active” on
its own, one can say the same about a tree. The point is that we notice that there are
some things in the world that we would like to model as autonomous objects, hav-
ing theirownthread of computation. This is one reason for choosing active objects
from a modelling point of view. From a more language theoretical perspective,
active objects are a good choice since they minimize the number of concepts a pro-
grammer has to deal with by integrating some inoneunifying concept. Moreover,
in a prototype-based language where everything can be regarded as an object, we
have not introduced some process construct that is “above” objects, rather, active
objects – although special – remainjust objects viewed from a conceptual angle.

cPico’s model diverges from the actor model as it is found in e.g. ACT1 be-
cause we allow these two types of objects to co-exist, namely both active and pas-
sive objects. Rather than to enforce making all entities active, we allow a combina-
tion of both. We found it odd having to model a complex number, for example, as
an active object. Our attempt is to reuse as much as possible from the actor model,
but to introduce additional concepts where they enhance the usability of the model
by facilitating the design and development of concurrent programs from a software
engineering point of view.

5.3.1.2 Active Objects in cPico

An active object is created by usingactivate instead ofcapture . For exam-
ple:

counter(n) :: {
incr() :: n := n+1;
decr() :: n := n-1;
activate()

}

defines an active counter object that will regulate the increment or decrement of
the counter itself.activate implicitly performs acapture , so that it gets a
reference to the “current dictionary”. Next, it will transform this dictionary into
an active object by associating a process and a message queue with it. The current

CHAPTER 5. CPICO: A CONCURRENT PIC% 126

dictionary activated byactivate is called the “behaviour” of the active object.
Note that inside the method of an active object,this() will point to this be-
haviour. That is, this() denotes apassiveobject. We have added the native
activethis() which always returns the “active object executing this native”.
The differences betweenthis().m() andactivethis().m() are not to be
confused: the first is a simple synchronous method call, while the second is an
asynchronous self-send, which will schedule a message request in the object’s own
request queue.

5.3.1.3 The Anatomy of an Active Object

When considering the internals of an active object, one can distinguish three con-
stituents:

• The active object’sbehaviour, which is in a sense very similar to an actor’s
script. It is represented by a simple passive object. In fact, this object will
always beserialized(see section 5.3.2).

• A lightweightprocess, denoting the computing power of the active object. In
our implementation, this component maps naturally onto Java threads. This
thread will continually wait for new messages to arrive and process them
sequentially. It will be automatically stopped whenever the associated active
object is garbage collected (see section 5.8.3).

• A message queuecontaining all messages sent to the object left unpro-
cessed. This is an essential and important component of Active objects, since
it allows for an active object to accept messages while it is processing.

Notice the complete analogy of this setup with the typical anatomy of an actor
(Agha, 1986). One major difference with the actor paradigm lies in the fact that
an active object’s behaviour may besharedbetween multiple objects. That is,
the behaviour is not just a private, encapsulated part of the active object. It is a
plain object that may be accessible by other objects without the intervention of
the active object skeleton. Second, in contrast to the actor model, cPico does not
feature abecomeoperation that allows the behaviour to be changed from one object
to another. The behaviouritself can be changed however, for example through the
use of imperative mixin methods. Third, cPico’s active objects have the capability
to reply to messages sent to them. That is, unlike typical messages sent to actors,
our messages do carry some “reply destination” (see section 5.3.3).

5.3.2 Serialized Objects

When considering multiple threads of control (multiple running active objects in
our model),intra-object concurrencycan occur. This means that there can be mul-
tiple active objects simultaneously executing a method of a certain object. In some

CHAPTER 5. CPICO: A CONCURRENT PIC% 127

cases, this imposes no problems. For example, there is no problem when two
objects want to read out some variable at the same time by calling some getter
function. Problems occur, of course, when dealing with the mutation of variables.
In such cases, we would want method invocation on some objects to beatomic. A
method invocation is atomic if, during the method evaluation, only one thread is
actively using the object. Other threads that want to access the object by calling a
method on it must wait. Our notion of serialized objects closely resembles Act1’s
“one-at-a-time” actors (Lieberman, 1987). Several authors have defended the use
of properly serialized objects. Taura et al. (1994) argue this makes reasoning about
the behaviour of methods substantially easier, since we do not have to take into ac-
count all possible interleavings of method invocations. Similar remarks are made
in (Meyer, 1993).

Objects that find themselves protected against multiple active threads are also
called serializedobjects. In serialized objects, requests are processed one at a
time, usually in their order of arrival (Briot et al., 1998). To ensure such behaviour
for activeobjects, a message queue is used, which will sequentially batch all in-
coming message sends. Hence, active objects are always serialized. Forpassive
objects which have no associated queue, locking is used1. A lock which is meant
to mutually exclude methods is also called amutex. This terminology and the
concept of serialized objects actually stems from an operating system structuring
concept called amonitor(Hoare, 1974). In Java, an object implicitly receives such
a mutex whenever at least one of its methods is declaredsynchronized . Any
synchronized method or statement block must first acquire the mutex before it can
continue.

In cPico, a serialized object can be created using theserialize native.
Much in the spirit ofcapture , activate and mixin , this native returns a
serialized version ofcapture() . A serialized passive object is equipped with
a lock. This lock has to beacquiredby any active object that wants to invoke a
method on it. This acquisition will take placeafter method lookup andafter actual
arguments to the method are evaluated. When the lock is acquired, the calling ac-
tive object is the “lock holder”. It can then proceed and execute the method body.
Before doing so, the lock holder will also add the lock to its personallock list. The
raison d’̂etre of this lock list will be explained below and in the following section.

A lock release is somewhat more difficult to program. Locks are released
whenever a method returns. This means that internally, upon the return of serial-
ized methods, the lock is released and removed from the lock holder’s lock list. To
support tail recursion, an implementation has to be careful that these lock releases
do not make the runtime stack grow if a method on a serialized object is invoked
tail-recursively. The lock list is necessary to maintain in the case of exceptions:
when the method body raises an exception, the runtime stack will be subsequently
ignored. It is therefore important that upon handling the exception by the virtual
machine, all locks within the lock list of the owner are released. The elements of

1In the current implementation, cPico locks are implemented using Java’s locking facilities.

CHAPTER 5. CPICO: A CONCURRENT PIC% 128

the lock list represent all outstanding locks that were scheduled to be released on
the runtime stack.

One important note is that onlymethod invocationswill be properly serialized.
Accessing constants on the object is possible at any time, however. Thus, when
performingo.m() on a serialized object, we will try to acquire the mutex. When
performingo.m , we will not. In this case,m will just be looked up in the constant
part of o and when found the value bound to it will be returned. The rationale
here is that such plain slot access can never mutate an object. Moreover, a method
invocation currently running in the object will not be able to influence the result
of the evaluation ofo.m sincem is aconstantbinding, and thus immutable. One
has to remain careful however, since the value returned by the lookup might be
mutable. This means that concurrent access could take place. For example, a table
t declared insideo ast[10]::void is mutable. That is:t := x is an illegal
expression, butt[i] := x is not! This also means multiple active objects can
executeo.t[i] := x at the same time, leading to possible race conditions. Of
course, accessing and mutating data in this way is highly discouraged. Moreover,
a value should only be declared as “constant” if it is really meant to be immutable.
In short, the serialized objectcanstay in control of the mutable table by providing
accessor and mutator methods which will be properly serialized.

We have not opted to make an object serialized by default, since this would
impose too much synchronization overhead. Objects properly encapsulated within
an active object do not require the overhead of locking, both in terms of time and
space. We do acknowledge that a safer scheme would be the introduction of de-
fault serialized objects and aunserialize native, but this would require purely
sequential programs to consider concurrency-related concepts.

As with any general mechanism providing locking, our mechanism is prone
to deadlock: when multiple serialized objects send messages to one another in a
circular fashion, every object will be waiting for the release of the lock held by
some other object. The result is a classical circular wait that makes (part of) the
program block. Section 5.4.3 gives some examples of deadlocks that remain in our
model.

5.3.2.1 Reentrant Locking

It is important that the mutex lock of an object isreentrant. This means that a lock
holder is always able to re-lock the lock it has already acquired. This is an impor-
tant property, since otherwise, deadlock arises the moment a recursive computation
is performed. As an example, consider:

makeSerializedObject() :: {
fac(n) :: if(n=0,1,n*fac(n-1));
serialize()

}

CHAPTER 5. CPICO: A CONCURRENT PIC% 129

If an active objecto was to call the functionfac on such a serialized object with-
out a reentrant mutex lock, then deadlock would immediately occur.o first locks
the object, proceeds with the method body and performs a recursive call, which
requires to lock the mutex again. Thus,o would wait for the mutex to be released
by itself. Using reentrant locks,o can acquire the lock as many times as it wants
when it is the owner. However, we require that the object releases the lock an equal
number of times as it has acquired it. In the implementation, a simple counter is
increased to represent the reentrant nesting level of the lock. Upon reentrant ac-
quisition it is incremented, upon release decremented. Only when the counter is
zero will the lock be truly released. If we would not adhere to such a strategy,
then imagine the consequences in the example above wheno would call fac(x) .
o would lock the object, and callfac x times recursively. Then, upon exiting
fac(0) it would release the mutex (since it returns from a method invocation)
and other objects would roam freely inside the objectwhile o is still active inside
it! Using the counter strategy, the lock counter will be decrementedx times. Only
when returning from the call tofac(x) will the lock be released.

5.3.2.2 Locking and First-class Continuations

There is an important problem when dealing with locking in combination with first-
class continuations. When using first-class continuations, a programmer can make
a “snapshot” of the runtime stack at a particular moment in time. Such a run-time
stack is comprised offrames, each incorporating specific evaluation code. Frames
responsible for unlocking an object are calledrelease frames. The programmer
can restore the run-time stack to any “snapshot” he has made before. Using the
continue native, the programmer can actually make a non-local jump in the
program. Since it breaks with the rigid call/return structure of ordinary function or
method invocations, it also breaks with our simple locking strategy. First of all, if
the programmer replaces the runtime stack by another one, he can discard release
frames such that the virtual machine would be unable to release outstanding locks.
Second, when jumping back to a certain saved continuation, it is possible that
release frames are executed twice, meaning that a lock is released multiple times,
resulting in erroneous behaviour. A program as simple as the following would then
crash:

object() :: {
m() :: call(cont);
serialize()

};

c: object().m();
continue(c, void);

When the run-time stack is captured insidem, the frame to release the object’s
mutex will still be on the stack. When later on jumping back to this code, the re-

CHAPTER 5. CPICO: A CONCURRENT PIC% 130

lease frame will be executed for the second time, leading to the release of an open
lock. Because one is able to store a snapshot of the running computation inside a
method of a serialized object, one can also break the atomicity guarantees on an
object: when multiple active objects use continue in parallel with the same conti-
nuation, they can be active simultaneously inside of a method of a serialized object.
Allowing only the active object that hascapturedthe continuation to continue on
it does not rule out this problem: an object can continue on its own captured con-
tinuation that contains a method invocation ofm while some other active object is
also executingm. The problem lies with the fact that locking inherently uses the
normal call/return control flow to organize locking. This control flow no longer
holds in a world with first-class continuations. Therefore, we will need to extend
environments to explicitly deal with lock management.

Our proposed solution is to cleverly reuse the lock list of an active object. At
the moment the runtime stack is captured, we can store (a copy of) the entire lock
list of the active object in the captured environment. Recall that the lock list con-
tainsall locks currently owned by that object and for which proper release frames
are on the stack. Whenever this environment is restored (i.e.continue is used
to jump back to the encapsulated continuation), the caller ofcontinue releases
all of his locks. This is necessary to prevent currently locked objects from being
locked forever. Subsequently, the stored lock list is retrieved and all contained
locks are re-acquired before evaluation in the new environment is continued.

This scheme is implemented in our proof of concept implementation. Care
had to be taken to ensure that reentrant locks werecompletelyreleased when per-
forming a continue . Also, if the captured stack contains a lock that is held
reentrantly, the lock has to be re-acquired as many times as it was taken before
the call upon continuation. One downside of the scheme is that if all locks in
the lock list are not taken atomically, chances for deadlock to occur will increase.
Deadlock could occur if some other active object is trying to acquire similar locks
in the lock list at the same time.

5.3.3 Asynchronicity and Promises

Active objects, just like actors, communicate using “message passing”. In a se-
quential object-oriented language, message passing is synchronous: the sending
object waits for the receiving object to compute the value. In fact, the sender does
not really “wait” for the result to be computed, instead, there is only one active
thread that transfers control from the caller to the callee and then back. In this
section, we will discuss how cPico defines message passing semantics and how
promises can be used to retrieve return values.

5.3.3.1 Asynchronous Message Passing

In cPico, message passing between active objects isasynchronous. This means
that the sending object doesnot wait for a result to return. Rather, it will compute

CHAPTER 5. CPICO: A CONCURRENT PIC% 131

in parallel with the callee that processes the message. This way, concurrency is
introduced in programs. When dealing with pure asynchronous message passing,
the message send returns no value. To be able to acquire a result, one has to work
with explicit callbacks. A small example will illustrate this:

caller() :: {
m(callee) :: callee.n(caller);
handleResult(result) :: display(result);
capture()

}

In the example, an objectcaller will perform an asynchronous method call
to a parametercallee object. To be able to acquire a result, the caller passes itself
as a parameter to the method. The callee will then “call back” on the caller through
thehandleResult method. This kind of code often gets quickly unreadable as
it pulls apart the context of where the call is made and where the result of some
computation is used further on. Moreover, we need some mechanism to link the
“call site” with the “result site”, that is, we need to make sure which result belongs
to which method call. To alleviate such problems, the concept of apromiseis
introduced.

5.3.3.2 Promises

The concept of a promise or a future has already been explained in section 3.4.2
when discussing ABCL’s “future type message send”. Put briefly, a promise is a
“placeholder” for the result of an asynchronous method invocation. That is, the
result of the method call will be stored inside this placeholder. Each method in-
vocation on an active object can be thought of as having such an implicit promise,
which will always be fulfilled (implicitly) by the value of the last expression in the
method body. Whenever an active object tries tousethe placeholder when it has
no value yet (“when the promise has not yet been fulfilled”) it is blocked and waits
for the value to arrive. If someone performs an operation on an already fulfilled
promise, the promise forwards the operation to its underlying value and thereby
becomes invisible to the programmer. The example above can be rewritten using
promises as follows:

caller() :: {
m(callee) :: display(callee.n());
capture()

}

The method call ton returns a promise, which is subsequently accessed by the
display native. This will make the caller block until the method has been com-
puted.

CHAPTER 5. CPICO: A CONCURRENT PIC% 132

Promises or futures are no new concept and have been used in other concurrent
and even distributed languages in the past, primarily in the late eighties. Exam-
ple languages are Multilisp (Halstead, Jr., 1985), ACT1 (Lieberman, 1987), Argus
(Liskov and Shrira, 1988) and Eiffel// (Caromel, 1990). In Multilisp, futures are
used to start up concurrent computations. Futures act as placeholders for the re-
sult of the computation. Accessing them before they are determined leads to an
implicit join synchronization. In Argus, promises are not transparent. Rather, they
are plainly used to get a handle to the return value of an asynchronous method in-
vocation. In Eiffel//, promises are calledawaited objects. Their key role there is to
supportwait-by-necessity(Caromel, 1989), whose main benefit is that it allows for
a smooth reuse of sequential programs. These programs can be parallelized with-
out having to add synchronization code. The implementation of cPico promises in
terms of Java synchronization primitives will be discussed in section 5.8.1.

One important reason for using promises is that they minimize the cognitive
load on the programmer when he has to deal with asynchronicity. This cognitive
load is much higher when forced to use callbacks or customers. Ideally, promises
are fully transparent, meaning a programmercannotdistinguish between a pro-
mise and its fulfilled value (in type, interface, behaviour or even identity). This
is the case in cPico. It is also a major distinction between cPico promises and
ABCL futures, which are not transparent. Also, unlike ABCL’s futures, cPico
promises can onlybecomeone value, they are no queues. Fully transparent fu-
tures are highly wanted in languages employing them, as can be seen from several
attempts in adding futures to popular languages like Java (Pratikakis et al., 2003)
and C++ (Chatterjee, 1989). These approaches ofaddingfutures to an existing lan-
guage are usually flawed because they interact in unpredictable ways with existing
language features, like equality testing, downcasting, type systems etc. . . Since we
have built a cPico interpreter ourselves, consistently integrating futures as part of
the language has been substantially easier (see section 5.8.1). Also, as mentioned
in section 4.2.5.1, the cPico language itself can more easily cope with futures as it
employs dynamic typing and uses message passing instead of operators.

5.3.3.3 Message Ordering

One important question concerning asynchronous message passing between active
objects is the execution order of received messages. For example, given the fol-
lowing code, wherestack is active:

{ x: stack.pop();
stack.push(5);
y: stack.pop()

}

How are thepush andpop messages on this stack going to be executed relative
to one another? Even though the messages are sent asynchronously, we would

CHAPTER 5. CPICO: A CONCURRENT PIC% 133

expect them to be executed in the order they were sent. In our model, this is the
case, but it does not necessarily have to be. Our model follows that of ABCL/1. In
(Yonezawa et al., 1986) this principle is stated as theAssumption for Preservation
of Transmission Ordering:

When two messages are sent to an object T by the same object O, the
temporal ordering of the two message transmissions (according to O’s
clock) must be preserved in the temporal ordering of the two message
arrivals (according to T’s clock).

Yonezawa et al. (1986) also note that this assumption was not made in the ac-
tor model, which can therefore sometimes be hard to understand. At first sight
it may seem that this ordering is trivial to implement when messages are sequen-
tially stored in a message queue, since a queue imposes the ideal linear ordering
we would like. Things become more complicated whenguardsare introduced to
delay messages to be executed. When a guard fails, we cannot just perform round
robin scheduling, as this would lead us to busy waiting. Instead, messages that
cannot currently be processed because a method is unavailable must be put in a
separate queue. If we then want the above transmission ordering property to hold,
we have to be careful not to execute any message sent by an object which has some
messages pending in the “unavailable queue”.

5.3.4 A Uniform Active Object Model

We have introduced active objects as objects having the ability to evaluate code
autonomously. One important aspect of an implementation is to try and keep the
interpreter as uniform as possible. Therefore, the “top-level processing power”
which will evaluate the input typed in by the programmer (and therefore will eval-
uatesource text), is also modelled as an active object. This object is called the
main active object.main is a plain active object whose behaviour is defined as
the root dictionary. Whenever the user evaluates some program text, this is de-
fined as an asynchronous method invocation ofeval on main , sent bymain
itself. This method invocation – like any other active object invocation – immedi-
ately returns a promise. The interpreter will subsequently try to print the “result of
evaluation”, which is this promise. Thus, it will automatically wait for the result of
evaluation (i.e. for the promise fulfillment).

Evaluatingactivethis() at top-level results in a reference to themain
active object. Evaluatingthis() will evaluate to theroot dictionary. Note that
root , like any other active object behaviour, is serialized. This might sometimes
lead to subtle deadlocks since it means thatall top-level functions are automatically
declared mutually exclusive. If this is not wanted, the programmer has to create
an unserialized view on the root and declare his functions in this view. Although
we know this is sometimes very clumsy for the programmer, the uniformity of the
model should not be broken since we want calls toactivethis() to be atomic.

CHAPTER 5. CPICO: A CONCURRENT PIC% 134

It is also this property that allows the user to perform multiple evaluations without
waiting for the previous evaluation to finish.

5.3.5 Concept Overview

The most important concepts introduced in cPico will now be reviewed briefly. The
addition of concurrency in the language is introduced byactive objects, very remi-
niscent to actors. Messages sent to active objects are processedasynchronouslyand
their corresponding methods are executed by the receiving active object itself. The
sender of such messages receives apromise, a placeholder promised to be fulfilled
with the return value of the method call. Accessing the promise’s value (“touch-
ing” a promise) before it is fulfilled synchronizes the accessor until the value is
available.

Whereas active objects are alwaysserialized, passive objects are not. Passive
objects can be explicitly turned into serialized objects using theserialize na-
tive. Any method call on this object is guaranteed to be atomic. In what follows,
the structural relationship of objects through delegation is studied in the context of
concurrency and the newly defined cPico language concepts.

5.4 Parent Sharing

In our model we will strongly advocate parent sharing as a solution to a variety of
problems. We have already explained the term in our introduction on prototype-
based languages. Parent sharing is one of the key features of prototype-based lan-
guages with delegation. Since it is possible to create two extensions from the same
object these two objects both have a sharing relation towards the same parent. As
such the children can use this common parent to communicate with each other. We
call this parent sharing. In this section we will demonstrate that using this type
of communication can have a variety of advantages, although they are also due
to another powerful feature of Pic%, called encapsulated mixin-based inheritance.
Using this type of inheritance which we have explained as part of the Agora model
in section 2.5.2, a parent can keep control over the objects that become its children.
This allows a form of control which allows us to characterize parent sharing as a
relation with many desired properties in a concurrent context.

5.4.1 Scope Functions

We have already mentioned that in our revised model children are not allowed
to see variables of their parent anymore. As such they are subject to the same
restrictions as any other object since they can only use the public interface of an
object. However, when we model certain objects to be children of some parent
this relationship should imply that the object has some additional privileges. One
of these rights that is always respected is function overriding. If the parent object

CHAPTER 5. CPICO: A CONCURRENT PIC% 135

usesthis().m() in its code then child objects may override this function with
specialized behaviour.

Additional privileges for children are offered through what we callscope func-
tions. The first of these scope functions is a generalization of thesuper native
which takes a single expression as argument. This expression is then evaluated
in the context of theparentobject. This allows for access to the variables of the
object’s parent. Consider the following simple example, which could be used to
calculate the sum of three numbers which can be supplied at different times.

parent(x) :: {
getx()::x;
child(y) :: {

m(z) :: super(x) + y + z;
capture()

};
capture() }

Notice thechild does not have to use the functiongetx to accessx, since it
can have direct access by evaluatingsuper(x) . In section 5.2 we have stated
that cPico splits the concepts of call frames and objects to prevent objects from
delegating lookup for variables. This is due to the fact that delegating lookup for
variables can cause a plethora of locking problems, as will be illustrated in section
5.7. However thesuper scope function does not compromise the model, since
it can be seen as the ad-hoc definition of a functionlambda()::exp which is
then immediately called. That is why we can regard the argument to the function
as being acritical section: it is guaranteed to execute when no other active object
is using the parent object. Of course a lock is only acquired if the parental object
is either serialized or active.

A similar native exists that allows to revert to the scope of the receiver, possi-
bly from within asuper invocation. Because super sends adhere to late binding
of self, the following relation holds:this() = super(this()) . In other
words, when usingthis() in a super scope function, we can access the initial
receiver. this can also be used as a scope function, of which the single argu-
ment expression will be evaluated in the receiver. We could for example rewrite
the methodmfrom the example asm(z) :: super(x + this(y)) + z .
Figure 5.1 shows another example of such an interaction. We have a general chat
client which has a chat-buffer and a specialized child which features some graph-
ical interface window. In the update methods we wish to update the buffer with
the contents of our window, we usesuper to access the chat-buffer variable. To
get the contents of the window we need to go back down using thethis scope
function.
Notice thatthis , like super , tries to acquire a lock on a serializedthis() first,
ensuring that race conditions cannot occur. We refer to appendix A.2.1 for a more
formal semantics of scope functions.

CHAPTER 5. CPICO: A CONCURRENT PIC% 136

Figure 5.1: Example of using Scope functions

The idea of evaluating some code issued by a parent in one of its children
(in our case usingthis(exp)) is not new. The programming language Beta
(Lehrmann Madsen et al., 1993) offers aninner construct, enabling a superclass
to implicitly use code of one of its subclasses. This construct can be used to directly
expresstemplate methods(Gamma et al., 1995). For such methods, it is natural for
the parent or superclass to stay in control of the global pattern. Parts of the pattern
which it cannot directly solve itself are then delegated to a child2.

5.4.1.1 Cloning Revisited

There is a general problem when combining cloning with extreme encapsulation.
The problem is that when an object creates a clone of itself, it finds the clone al-
ready encapsulated and hence cannot initialize it with other values for instance
variables unless the clone provides a public interface for doing this. However,
defining a public interface to mutate one’s instance variables would nullify all ben-
efits of extreme encapsulation, because one then has getter and setter methods for
instance variables. For this reason we introduced acloning native that takes an
expression as argument, which causes the expression to be evaluated in the context
of a freshly allocated clone ofthis() . The return value ofcloning is the ini-
tialized clone. For example, cloning a cartesian point withx andy coordinates and
initializing it to the origin would then be possible by evaluatingcloning(x :=
0; y := 0) .

2The resemblance between ourthis scope function and the Betainner construct was commu-
nicated to us by W. De Meuter

CHAPTER 5. CPICO: A CONCURRENT PIC% 137

Nevertheless, two problems remain with this approach to cloning. The first
one is a problem that can also be observed withsuper and this , though it is
more apparent withcloning . In the previous section we have already noted
that scoping functions can be thought of as being expanded into nameless thunks.
Because these functions have no arguments, they cannot be parameterized with
useful values by the caller. Consider the example of the cartesian point, we cannot
simply define:

clonePoint(newX,newY) :: cloning({x:=newX; y:=newY})

The reason is that the parameters ofclonePoint cannot be used in the
cloning expression. Our current implementation avoids this problem by evaluating
the expression tocloning in a copy of the frame in whichcloning is called.
This frame will be placed under the clone ofthis() . This allows the programmer
to use local variables in the call frame, as well as variables in the clone. The above
example then becomes valid.

A cleaner approach with regard to scoping would consist of defining special
typesof methods. For example, we could define a special type of “cloning method”,
annotated through a different syntax. Such methods will then always be executed
in the context of a clone. This alleviates aforementioned problems as the method
can take parameters just as any normal method. The downside of introducing such
methods is that it would break with Pic%’s extremely simple model where there is
not even a difference between functions and methods. Section 6.1.3.3 will revisit
these ideas.

A second problem with objects sharing their data with parents is whether or
not the parent should be cloned if the child is cloned. In standard Pic% this was
taken care of by aclone native which could be parameterized by a dictionary
that indicated the last parent to clone. This native is still present in cPico since
the cloning native is not sufficient to replace it.cloning can be thought of
as usingthis().clone(this()) , so the clone’s parents would be shared by
default. This is definitely not always wanted. Consider a cartesian2D point having
x and y coordinates, and a view extending the point to a3D point having az
coordinate. When cloning the3D extension, it seems logical to clone the parental
2D object.

5.4.2 Advantages of Parent Sharing

Parent Sharing has some advantages in a concurrent and distributed setting. First of
all it provides extra encapsulation which promotes security and safety. If all sharing
is done through parent sharing we can use the scope functions we have just men-
tioned to gain access to variables, without providing accessors. If this technique is
used consistently no hostile object can abuse any public accessor interface to gain
access to variables. This enhances thesecurityof the program, which is especially
important in a distributed context, where programs or parts of it may be moved to
harmful hosts. Furthermore this encapsulation also introducessafety. This means

CHAPTER 5. CPICO: A CONCURRENT PIC% 138

that if the internals of an object are inadvertently changed, we should only look
at the children of that object, instead of having to search the entire program for
uses of the public interface. Thus, scope functions promote the basic principles of
locality and modularity.

One additional advantage is that the shared parent is an ideal synchronization
medium for several children that can be activated by different active objects. Pos-
sibly the children themselves evenare active objects. They can communicate with
the parent which is for this purpose of course at least a serialized object. This
way they can periodically exchange information and the parent can serve as a safe
communication channel. By having to use scope functions that are also critical
sections, we can guarantee synchronization.

5.4.3 Deadlocks Using Parent Sharing

When using two objects that are either serialized or active (to avoid intra-object
concurrency), deadlocks can easily occur if two such objects collaborate with one
another in a composition relation. Although parent sharing can be used to pro-
vide more secure collaborations, deadlock can still occur between a parent and a
child. First, consider the situation where deadlocks can occur using composition.
An example is shown below where two serialized objects concurrently query for
each other’s name. Since bothA andB are serialized objects, their mutex will be
locked prior to method execution. Neither object will be able to continue since
both require the lock on each other.

A :: {
m() :: {

...
B.name();
...}

name() :: "A";
serialize();

}

B :: {
n() :: {

...
A.name();
...}

name() :: "B";
serialize();

}

On several occasions we have already advocated the use of parent sharing as
a safer way to write concurrent programs. However, even with programs that use
only parent sharing, deadlocks may occur as the following example shows. A
parent object initiates a dynamic lookup for a methodn. This method can be seen
as an abstract method of the parent. It knows that its children will implement it.

parent() :: {
m() :: this().n();
p() :: void;
child() :: {

CHAPTER 5. CPICO: A CONCURRENT PIC% 139

n() :: .p();
serialize()

};
serialize()

}
o: parent();
c: o.child();

However, this program can result in deadlock. Figure 5.2 illustrates such situations.
Consider two threads A and B. A callsm whereas B will calln directly. As such,
A has a lock on the parent objecto and B has a lock on the childc. For either one
to proceed a lock must be released. A solution to this problem is making the child
an active object, where messages get serialized and will be executed one by one.

Figure 5.2: Deadlock between objects in a parent-child relationship

5.5 Mixed-Object Delegation Patterns

This section introduces some of the technical problems that are associated with the
introduction of active objects as a separate entity in an object-oriented language.
It will be explained how active objects can interact with passive objects through a
delegation relation.

In order to model concurrent applications both active and passive objects are
integrated into the model. Our intention is to stay true to an integrative approach,
with attention to the usability of the language. The ease of programming is one
of the main reasons to introduce both passive objects and the possibility of shared
data. However, having to distinguish between two types of objects has some reper-
cussions. If it would be possible to mix active and passive objects in a delegation
chain, proper semantics for such relations must be defined. We will first consider
all possible relations before proposing our desired solution.

Passive-Passive DelegationThis is the classic case where we have a passive dele-
gation chain. Here we have a traditional extension in mind, such as extending
a2D point to a3D point. Naturally method invocation as well as delegation
implies synchronous evaluation.

CHAPTER 5. CPICO: A CONCURRENT PIC% 140

Active-Passive DelegationHere an active object is put underneath a passive hier-
archy. This can be done to encapsulate a passive object that will be shared
through parameter passing to some other active object. The queue of the
child will ensure that only one message is computed in the hierarchy, to
avoid for example the deadlock situation we have mentioned in the previous
section. Again this system behaves as expected, method invocation on the
child is asynchronous, invocation on the parent is synchronous. Moreover,
super sends from child to parent are also synchronous.

Passive-Active DelegationA passive view is created underneath an active object.
One way to envision the usefulness of such a hierarchy would be to see this
passive view as a part of a split object, where the active object is the “identity
holder”. Imagine aperson object, which is represented by an active object.
The roles this person could play (a sportsman, an employee, . . .) can be
modelled as passive views. The question we need to ask ourselves then is
whether we want method invocation on these roles to be synchronous. I.e.
when someone callsperson.asSportsman().sport() , do we want
this invocation to be synchronous or not? In other words: is the property of
being an active object inheritable?

• It might seem logical to request that the invocation is asynchronous and
that messages are in fact scheduled, since they are actually operations
on an active identity. However, this would imply that a passive view
is implicitly active if it is a child of an active object. This is in fact
confusing, in such a case it is better to use active views.

• When considering method invocation to be synchronous we run into
the problem of defining semantics for delegation to an active parent.
Since this parent is active it seems a reasonable request to demand that
all messages sent to it, even through delegation, will be scheduled in
the queue. This also gives us an awkward situation where delegation
actually schedules a message, and thus if the method is not overridden,
method invocation would suddenly become asynchronous even when
sent to a passive object.

As the reader can see the clear semantics we deemed necessary cannot be
provided in this case. Moreover we will observe a similar problem occurs
when extending active objects with active objects.

Active-Active Delegation There are two ways to look at delegation from active
objects to active objects. The first one is related to the role modelling we have
discussed in passive-active delegation. Only now the roles are independent
active objects. As such asynchronous message passing is acceptable.

• One way to deal with this technique is to allow that active objects share
the same message queue. This makes sense for the person-sportsman-
employee example, since operations on the person as an employee are

CHAPTER 5. CPICO: A CONCURRENT PIC% 141

actually operations on the person itself. This introduces some problems
of its own. First of all we need to store the object on which the method
was invoked for every request, and secondly sharing of active object
queues isnot always desirable. For example, since the root object is an
active object that is used to evaluate top-level code, all active objects
(being necessarily children ofroot) would end up sharing one queue.
This solution rules out any concurrency.

• The other approach is to create new active objects, with separate threads
and message queues. However when a message needs to be delegated,
we do not want to queue it in the parent as well.

The latter two cases demonstrate that the semantics of extending active objects
are somewhat vague. Therefore we will make it impossible to make such exten-
sions, not by forcing all active objects to be childless, but by separating the active
object’sbehaviour, which is a serialized object, and itsactive part. The active
part can be seen as the thread and a message queue, as explained before. This al-
lows us to specify that any extension of an active object is in fact an extension of
thebehaviourof the active object. This way we only have the first two cases we
have mentioned, and we obtain clarity, since we can stipulate the following rules.

1. A message sent to a passive object is always synchronous.

2. A message sent to an active object is always asynchronous.

3. Messages delegated by passive objects are never subject to scheduling. Super-
sends or self-sends are always synchronous.

The first two rules holdevenwhen the message is found in a different parental
object. Suppose a message is sent to a passive objectc whose parent is an active
object behaviour. Any message sent toc that needs to be delegated to its parent
– becausec does not implement the message directly – will eventually execute in
a call frame under that parent. Since the parent is thebehaviourof an active ob-
ject, we know that it is serialized, so a lock will be acquired on the parent before
executing the method. If the active object was busy computing, the sender of the
message will have to wait until the active object is finished so that the child can use
its behaviour. Only then can the delegated message acquire the lock and start com-
puting. Applying rule3, the method invocation will happen purely synchronous,
even though the method found is one implemented by an active object behaviour.

5.6 Conditional Synchronization

As mentioned in chapter 3, conditional synchronization is an important part of any
concurrent programming language. It allows two concurrent processes to synchro-
nize based on some condition. In section 3.5.2 we have made a survey of existing

CHAPTER 5. CPICO: A CONCURRENT PIC% 142

mechanisms to allow conditional synchronization. In a first attempt, we have tried
to allow conditional synchronizationwithoutadding new features to the language.
This was made possible by a special usage of promises. Subsequent sections will
discuss some of our ideas on using different conditional synchronization mecha-
nisms.

5.6.1 Synchronization via Promise Chasing

It is possible to add conditional synchronization to cPico without any new sup-
porting constructs by exploiting promises. To support conditional synchroniza-
tion, we notice that what we would really want is to “delay” an incoming message
send. How can this be achieved? One way of delaying an incoming message is
by reschedulingit. This is possible by performing an asynchronous self-send to
activethis() . Consider a small example to illustrate this delaying scheme.

stack(siz)::{
stk[siz]:void;
top:0;
push(x)::

if(top=siz,
activethis().push(x),
stk[top:=top+1] := x);

pop()::
if(top=0,

activethis().pop(),
stk[(top:=top-1)+1]);

activate() }

The example defines a bounded stack, in which apush request will have to
be delayed whenever the stack is full and apop request should be delayed when
the stack is empty. The code actually implicitly contains two “guards”, namely
top=siz and top=0 . Whenever such a condition holds, the processing of the
message can be delayed by rescheduling the request with the same arguments.
Thus, if the stack is full, it can use its built-in queue as additional storage space for
push operations that cannot be processed yet.

Things become a bit more complicated when looking at thepop operation.
Whereaspush will usually be called without caring about a return value,pop is
called for retrieving a value from the stack. That is, it will be called using code like
x: s.pop() . Notice thatx will be bound to a promise that will be “fulfilled”
whenever thepop message finishes executing. This is problematic ifs would
be empty. In that case the fulfillment of this promise should be delayed because
pop cannot be executed yet. In cPico, this “delay of fulfilling a promise” can be
achieved by using a special property of promises. They are able to become fulfilled
by otherpromises. That is: the value that will be placed in a promise placeholder

CHAPTER 5. CPICO: A CONCURRENT PIC% 143

canagainbe a promise. This is also sometimes called promise or futurechasing
(Feeley, 1993). Some languages (including cPico) allow for this. Other languages
require promise or future fulfillment to bestrict: a promise can only be fulfilled by
some determined value.

This chasing of promises is also inspired by ACT1’sGuardianactors (Lieber-
man, 1987). This type of actors can be used for conditional synchronization in a
manner similar to ours. That is, conditional synchronization is achieved by delay-
ing the response sent to a customer actor. The “reply address” is remembered and
a reply will be sent whenever the conditions are right. In our terminology we can
take this “delay” of a promise very literally. That is, when an object asks another
active object to do something, it receives the promise (to be taken literally!) that
the work will be done. Now imagine that the active object is in no position to carry
out the request right away. In that case, it has no other option but to fulfill its pro-
mise withanother promise, namely “that it will carry out the work some time later
on”. The active object can use this promise chasing to delay his task.

Continuing the earlier stack example, observe that a call tos.pop() returns
a promisep that, in the case of an empty stack, will be fulfilled by the value of
activethis().pop() . Since this is an asynchronous message send (to the
active object itself), it evaluates to a promiseq. But this promise will also be
the return value ofpop , so p will effectively be fulfilled by q. If the user ofs
were to use the promisep, this promise forwards any operation to its determined
value (which isq). It is then q that will make the caller block if it is not yet
determined (meaning thepop message is still not processed). Figure 5.3 visualizes
the situation for two recursive delays. Each piece of code evaluates to the promise
depicted below it.p andq are considered fulfilled promises.

Figure 5.3: Promise Chasing for Conditional Synchronization

Although at first sight it might seem nice to have conditional synchronization
without any special construct besides promises alone, we have to admit that this
mechanism is more eccentric than useful. The mechanism is not always that easy
to program since one must continually think about the underlying promises and
make sure that the resend is the last expression in the method body. Moreover, it is
not a good way to perform conditional synchronization as it suffers frombusy wait:
if the stack is empty, it will continually lead to rescheduledpop messages, forming
an increasingly growing chain of promises (i.e. the synchronization condition will
continually be polled). These reasons have lead us to consider more sophisticated

CHAPTER 5. CPICO: A CONCURRENT PIC% 144

conditional synchronization schemes.

5.6.2 Call-with-current-promise Synchronization

A second method of achieving conditional synchronization in cPico is to build
upon our promise model introduced into the previous section. This approach tries
to alleviate the aforementioned problems in two ways. First, it tries to attach less
stringent conditions to work with conditional synchronization than those imposed
by the call/return context. Up until now, promises were only created for an asyn-
chronous method call and fulfilled only by the method’s return value. This forced
us to tail-recursivelyreschedulemessages if we wanted to delay promise fulfill-
ment. Second, we want to get rid of synchronization through busy wait. A more
efficient scheme is wanted.

We have dubbed this conditional synchronization methodcall-with-current-
promise, analogous to Scheme’scall-with-current-continuation. The reasons in
drawing this analogy will be explained in the following section. In essence, we
introduce two new natives to work with promisesexplicitly, whereas up until now
promises have always been passed around “behind the scenes” by the interpreter.
One native is used to grab the “current promise”. By “current promise”, we mean
the promise that must be fulfilled by the currently executing code. Any running
cPico code serves the fulfillment of some promise. Recall from section 5.3.4 that
we also model top-level source code evaluation as asynchronous method invoca-
tion. Thus, there is always some promise to fulfill, even when not working with
active objects explicitly. The second native we introduce allows forfulfilling a
“captured promise”.

The delay native The nativedelay allows the cPico programmer access to the
hidden promise that will be fulfilled by the currently running method invocation.
One can imagine that it is defined as:

delay(exp(promise)) :: exp(reify(<real promise>));

That is,delay is a native much likecall that evaluates its only parameter, where
this parameter may make use of a variable calledpromise which will be bound
to a reified version of the current promise. This gives the programmer the ability
to savethe promise in some data structure and fulfill it at alater point in time.
delay has another – equally important – semantics and usage. Its typical use is
to preventthe current promise from being fulfilled by the value of the last expres-
sion in a function body. That is, we want to short-circuit the return value of the
function. This is whydelay does not evaluate toany value: it terminates the
current computation immediately and leaves the current promiseunfulfilled. When
evaluating

{ x: void;

CHAPTER 5. CPICO: A CONCURRENT PIC% 145

display("before");
delay(x := promise);
display("after") }

only before will be printed. Control will return immediately after evaluating
delay ’s expression. This will leave the current promise bound unfulfilled tox .

The fulfill native As mentioned before, the only operation defined on a reified
promise isfulfilling it. This is done through thefulfill native, taking a promise
and a value as arguments.fulfill(p,val) will fulfill p with val if p is a
promise. Armed with this operation, we can fulfill the captured promise of the
previous example stored inx with some value any time later on.

To see how these natives allow for conditional synchronization without busy
wait, consider the following example:

obj() :: {
item : void; waiting : void;
put(elt) :: { item:=elt;

if(!is_void(waiting),
fulfill(waiting, item)) };

get() :: if(is_void(item),
delay(waiting:=promise),
item);

activate() }

This code transcript defines an active object where aget message is explicitly
delayed until aput message arrives, without resorting to busy waiting. When a
get message arrives, eitheritem is returned if aput was already processed.
Otherwise, the promise fulfillment is explicitly delayed and the promise is stored
in waiting . Theput operation verifies whether someone is waiting for the item
and if so, fulfills the outstanding promise with its argument.

Reified promises We should still explain what exactly constitutes a “reified pro-
mise” and how exactly it differs from a real, hidden promise. A reified promise is
actually nothing more but a wrapper around a real cPico promise. Whereas a real
promise tries to “forward” all of its operations to its underlying value, a reified pro-
mise only allowsfulfill operations to take place. If the promise is otherwise
“touched” (by invoking any other operation on it), an error is raised. The reasons
in doing so are mainly related tosafety. Subtle bugs might creep into programs
which would be hard to detect if the captured promises were as transparent as their
real counterparts.

Consider the codedelay(1+promise) . Although it is a contrived example,
it illustrates the core problem: the+ operation will touch a promise which the
executor ought to fulfill itself. The addition is a strict operation and thus needs

CHAPTER 5. CPICO: A CONCURRENT PIC% 146

its arguments to be resolved. This will make the evaluating active object wait for
the promise to be fulfilled. But it is the active object itself that ought to fulfill this
promise, to politely answer to the request of a client object. This is obvious in
this small example, but recall that a promise can be stored without touching it in
some data structure and then use it transparently in a context outside of adelay .
Using reified promises, this code will result in an error instead of a hard-to-debug
deadlock. Reified promises can only be usefully employed by afulfill native.

Representing captured promises by special wrapper objects has its disadvan-
tages, however. First of all, whereas real promisesbecometheir value once ful-
filled, this is not the case with the promise wrappers. That is, ifx is bound to a
captured promise, and we evaluatefulfill(x, 1) , thenx will still point to a
reified promise (albeit a fulfilled one). Evaluatingx will not result in1. Second,
since wrappers always clash with identity, the equivalence operator (∼) will com-
pare wrapper identities and not their underlying values. These “disadvantages” are
not much of a problem since reified promises arenot meantto be transparent, in
contrast to their base-level counterparts.

Synchronous invocation semantics It is important to stress that an asynchron-
ous method invocation as always having an associated promise to fulfill. This
means we can rewrite every asynchronous method invocation ofm(args)::body
usingdelay andfulfill as:

m(args) :: delay(fulfill(promise, body));

We can then raise the question what the semantics are fordelay andfulfill
for a synchronous method call. We couldalsoassociate promises with synchronous
method calls, with the additional semantics that the calleralways immediately
touches the promise, so that it will block until the method returns. Thus, each syn-
chronous method callo.m(args) would be replaced bytouch(o.m(args)) ,
wheretouch(exp) waits for promise fulfillment and returns the fulfilled value
instead of the promise. Although technically it would be possible to implement
such concepts without resorting to using real promises, we currently do not as-
sign any new, special semantics for synchronous method invocation. This type of
invocation doesnot involve any promises. The semantics ofdelay is then to cap-
ture the promise of the asynchronous method invocation in which this synchronous
method invocation is spawned. Thedelay will then also return immediately to the
“return address” of the asynchronous invocation, meaning that it can non-locally
jump over a large number of synchronous method invocations in one step. All
locks taken during this asynchronous method invocation will be properly released.

5.6.2.1 Analogy with call-with-current-continuation

The reader acquainted with Scheme’s powerfulcall-with-current-continuationcon-
struct will undoubtedly have drawn the parallel betweendelay andcall/cc . In

CHAPTER 5. CPICO: A CONCURRENT PIC% 147

this section, we will motivate our reasons for naming this synchronization method
call-with-current-promise. For details oncall/cc , we refer back to section
2.5.3.2.

We start the analogy by noting that Pic% (and Scheme) can manipulatecon-
tinuationsin a structured way through the nativescall andcontinue . “cal-
l/cp” allows for structured manipulation ofpromisesthrough the nativesdelay
and fulfill . Both continuations and promises are implementation-level con-
cepts, normally not directly visible at the base level. Both crucially determine the
control-flow of a program. One can say that both concepts are juggled around
“behind the scenes” and that the provided natives allow us “to grab hold” of these
invisible entities.

The analogy does not end there. The reason why we have to provide ac-
cess to the current continuation through a native likecall is that sometimes
we want toavoid capturing some computations. For example, when evaluating
1+call(x:=cont;2) , we will not capture the assignment tox . This is nec-
essary to allow for the manipulation of the continuation to happen “outside” of
the current continuation. Similarly, ourdelay native temporarilyavoidsfulfill-
ing the current promise, by immediately returning without return value. This is an
important part of the semantics ofdelay .

The parallel betweencontinue and fulfill is obvious: both allow for
control-flow to continue and both are used to manipulate the captured concept.
Also, a continuation is represented by a wrappedenvironment. Promises are rep-
resented by a wrapped ”reified version” of the underlying transparent promise. To
end the analogy, we should note that “call/cp”, just like call/cc should be used to
build more high-level abstractions. One often finds applications of call/cc in build-
ing coroutine or exception handling abstractions. Our claim is that call/cp should
be used in a similar fashion, but for synchronization constructs. We will give an
example ourselves in the next section.

5.6.2.2 An Example: Rendez-vous

The call-with-current-promise synchronization scheme obviously needs a more de-
tailed example to illustrate its proper use. We will therefore discuss an implementa-
tion of rendez-vous. We will construct arendezvous object through which two
arbitrary active objects can perform a handshake, leading to implicit synchroniza-
tion and value exchange. This functionality is surprisingly simple to implement
using call/cp, whereas the solution using promise chasing was rather clumsy and
inefficient. The code for implementing therendezvous object is defined below:

rendezvous() :: {
firstVal : void;
first : void;
sync(val) ::

delay(if(is_void(first),

CHAPTER 5. CPICO: A CONCURRENT PIC% 148

{ first:=promise; firstVal := val },
{ fulfill(promise,firstVal);

fulfill(first,val)}));
activate()

};

rv?!val :: touch(rv.sync(val));

Two active objects can synchronize by invokingrv?!val on a third
rendezvous object. The?! operator will block on the promise of thesync
method. Only when both synchronees have invoked this operator will the value
of it evaluate to the value passed by the other synchronee. Note that since we are
dealing with method activation on active objects, concurrent method invocations
are properly serialized. Race conditions are thus ruled out. The first synchronee
finds the variablep initialized to void and therefore knows it is first. It will leave
its own promise unfulfilled and stores it inp. It also leaves behind its value inv .
The second synchronee will then retrieve this promise and perform a simple data
exchange by fulfilling the promises with one another’s values.

Note thatrendezvous needs to be an active object because we have ex-
plicitly chosen not to incorporate promises for synchronous method invocations.
This way, thedelay actually “makes sense”. Also, in a well-structured program,
delay should always be the last expression in a method body. A complete version
of the rendezvous object would also perform a reset of the instance variables
after the swap operation. This way, the object is reusable for multiple synchroniza-
tion attempts.

5.6.2.3 Expressing OR-parallel Evaluation

We have not yet mentioned what semantics to give to a promise that becomes
fulfilled more than once. Three approaches are possible: we could throw an error
upon all fulfillments except for the first, we could ignore subsequent fulfillments
or we could enqueue subsequent fulfillments. The third approach is taken in the
language ABCL (Yonezawa et al., 1986; Taura et al., 1994). Using this approach, a
promise or future becomes essentially a queue. Although this approach allows for
very expressive communication patterns between callers and callees, we have not
opted for this approach since it no longer makes futures transparent. If a future can
have more than one value, the caller has to explicitlyextractvalues from the future,
diminishing all benefits of transparency. We have opted for the second approach
of discardingsubsequent values, because it keeps promises simple and because it
does not really introduce any problems.

The semantics ofallowing multiple promise fulfillments actually gives rise to
a very elegant solution to OR-parallel scheduling (Taura et al., 1994). An OR-
parallel scheduler starts a number of tasks in parallel and waits for the results of
only oneof the tasks, usually the results of thefirst task to complete. This is called

CHAPTER 5. CPICO: A CONCURRENT PIC% 149

Eureka Synchronizationin (Taura et al., 1994). Lieberman (1987) introduces a
similar construct calledRACE, which is the future-based version of LISP’sCONS.
RACEwill evaluate all of its elements in parallel and construct a list of the values
in the order in which they have finished computing. A process accessing such a list
must block whenever it is still unknown what the next element in the list will be.

We have implemented a simple version of Eureka synchronization which will
evaluate a number of expressions in parallel and returns the value of the expression
to finish evaluating first. Inspeculative computing, such constructs are used fre-
quently to start various algorithms for the same problem and to return the value of
the algorithm that finishes first. Some algorithms will be beter suited than others
depending on circumstances which may be hard to capture. Of course, in a de-
cent implementation, we would be able tostopany running computation when the
“winner of the race” is known. A simple OR-parallel scheduler based on multiple
promise fulfillment is shown below:

evaluator() :: {
eval(promise, exp) :: fulfill(promise, touch(exp()));
activate() };

scheduler() :: {
race@exps() ::

delay(
for(i:1, i<=size(exps), i:=i+1,

evaluator().eval(promise, exps[i:=i+1])));
activate()

};

scheduler().race(
{ sleep(random()); display("nr1 arrived"); "nr1 won" },
{ sleep(random()); display("nr2 arrived"); "nr2 won" },
{ sleep(random()); display("nr3 arrived"); "nr3 won" })

When evaluated, this code excerpt creates ascheduler active object which
will process arace message, taking an arbitrary number of expressions. The
scheduler then starts up an evaluator active object to evaluate each expression and
instructs the evaluator to fulfill the promise of therace method. The example
creates three “runners” which arrive after sleeping an arbitrary amount of time.
The runner that “arrives first” will fulfill the promise with a text string. This string
will then be printed onto the screen.

5.6.2.4 Related Synchronization Schemes

It is interesting to determine under which conditional synchronization scheme (listed
in section 3.5.2) we can categorize call-with-current-promise. Not surprisingly,

CHAPTER 5. CPICO: A CONCURRENT PIC% 150

call/cp fits the continuation-based conditional synchronization schemes (section
3.5.2.5), albeit in a slightly different context. PScheme’s (Yao and Goldberg,
1994) ports are really extensions of continuations to a parallel context, whereas our
promises are merely “synchronization points” on which a continuation can block.
In PScheme,throw can be used to send subsequent values through a port which
will be enqueued and which can trigger the attached function multiple times. This
is not so in our context: we can fulfill promises multiple times, but each fulfill-
ment will not “trigger” the process that was blocked to re-evaluate some code. In
this regard,call/cp is very similar tocall/sp , because asingleport will also
discard all but the first value thrown into it.

We can also draw the parallel with ACT1’s Guardians (Lieberman, 1987). In
ACT1, each message has an associated implicitcontinuation, to which the result of
method invocation is sent. This should not be surprising as promises and continu-
ation actors are closely related. Guardian actors are special in that they can “grab”
their continuation actor and explicitly send them the result. Lieberman (1987) also
uses this method todelaythe reply of the result to the sender. In ACT1, guardians
are serialized, just like cPico active objects, so a delayed method invocation has to
terminate to ensure that other messages can be processed.

Another analogous concurrency control mechanism is noted in ABCL/f (Taura
et al., 1994). There, every method invocation also carries along an implicit future to
be fulfilled by the last expression in the method body. The equivalent of call-with-
current-promise in ABCL/f – which employs a syntax based on Common Lisp – is
expressed as:

(defun f() :no-implicit-reply t :reply-to future
...

(reply value to: future)).

The optional argumentno-implicit-reply ensures that the last expression
will not “fulfill” the future, while reply-to can be used to get a reference to the
implicit future. The combination of both constructs is the equivalent of ourdelay
native. Thereply special form can be used to send a result back to a future, the
equivalent offulfill .

In conclusion, we note thatcall/cp is powerful enough to support condi-
tional synchronization without resorting to busy wait. However, just like PScheme’s
multi-ports,call/cp is low-level and hardly reusable. It is subject to the inheri-
tance anomaly since extensions of an object cannot deal with synchronization code
in a modular way. The mechanism is only practically applicable when used to cre-
ate more high-level synchronization constructs. The problem is that such high-level
synchronization constructs are usually not cleanly integrated in the language, they
are merely user-defined abstractions. A high-level synchronization mechanism that
would be integrated within the language would better facilitate the construction of
concurrent programs.

CHAPTER 5. CPICO: A CONCURRENT PIC% 151

5.7 The Pic% Model Reconsidered, a Second Time Around

The cPico model that was introduced in 5.2 diverges on several important points
from the Pic% model which served as our starting point. Most importantly cPico
has ruled out dynamic scope in favour of lexical scope. Since such decisions should
not be taken lightly or for superficial reasons, we will show how concurrency is-
sues have lead us to the cPico model, starting from the Pic% model. The Pic%
model was already introduced profoundly in section 2.5.3, but we recall some of
the essential features here.

• Pic% unifies its environment model with its object model. There is no dif-
ference between a (conceptual) call frame (extension) that contains bindings
for arguments of a function on one hand and an object on the other hand.

• Objects can be constructed using constructor functions (De Meuter et al.,
1996), and object-based inheritance is achieved using nested mixin methods
(Steyaert et al., 1993).

• Pic% unifies the concepts of functions and methods and makes these entirely
first-class.

• Finally, Pic% reintroduces dynamic scope (D’Hondt and De Meuter, 2003)
to encode an intelligent code sharing technique expressively, shunning the
multiple inheritance solution used in Self (Ungar et al., 1991).

In section 5.3.1 the concept of a process and an object were merged into an
active object, but this particular design choice has no effect on the issues that will
be discussed in this section. Since the use of parent sharing in a concurrent and dis-
tributed setting is the core concept under investigation it would not make sense to
rule out that two active objects can manipulate children of a shared parent. How-
ever, wedo want to avoid concurrency problems such as race conditions, which
were introduced in section 3.3.

Another very important issue in cPico is that transparency of some concur-
rency issues should be strived for. cPico should impose a minimal overhead when
adapting a sequential program to a concurrent one. Since transparency is important
it seems natural that we have opted forimplicit concurrency control, reflected in
transparent promises and implicit locking schemes. One design of such an implicit
locking scheme is discussed next.

5.7.1 Automatic Locking

Integrating an implicit locking scheme in a highly flexible language such as Pic%
is very hard. One of the main problems is deciding what exactly needs to be locked.
Recall that Pic% objects consist of a list of variable bindings and a list of constant
bindings. These objects can be connected in a parent-child relation. The visibility

CHAPTER 5. CPICO: A CONCURRENT PIC% 152

of an object’s methods extends up to the global root dictionary in Pic%. Thus, the
scope of a parent is subsumed by the scope of its child.

How can the granularity of a lock be defined using such scope rules? Objects
whose data is used by a method call on itselfor one of its childrenshould always
be locked to avoid the problems explained in section 3.3. At first sight one may
be tempted to explore an incremental locking scheme, which just locks all parents
when a method is invoked on a child. Such a scheme is illustrated by figure 5.4.
When a functionf is called, the object in the hierarchy that executesf is auto-
matically locked. Lookup for the variablex need not be delegated to an unlocked
object, so no additional locks have to be taken. To find the variabley , lookup must
be delegated to some unlocked frames, which are locked prior to starting lookup
in the object. All locks are simultaneously released at the moment the function
returns.

Figure 5.4: Incremental Parent Locking

Whereas such an approach is feasible, it does require taking a whole range of
locks which is very expensive to do for each variable lookup that needs delega-
tion. Moreover, this scheme imposes too much restrictions on concurrency, since
“intermediate” objects will sometimes be locked even though this is not needed.
Yet another disadvantage is that these locks are not taken atomically and therefore
introduce a plethora of possibilities for deadlocks to occur.

Ideally onlyoneobject should be locked upon a method invocation, rather than
a whole hierarchy. This is not possible when employing Pic%’s scoping rules since
child methods have unlimited access to all variables that are defined along the par-
ent hierarchy. To restrict the amount of data that needs to be locked, method scope
must be restricted to deny access to variables that are not local to an object. Such
a restriction was added to cPico. The changes compared to Pic% are discussed in
the next section.

CHAPTER 5. CPICO: A CONCURRENT PIC% 153

5.7.2 Call Frames Versus Objects

The problem illustrated in the previous section is that any method can access vari-
ables that may be defined anywhere in the parent hierarchy. Since these variables
could besharedby multiple children and thussharedby multiple passive objects,
race conditions must be prevented. This requires a lock on the entire delegation
chain. A solution to reduce the granularity of locking is to change the method’s
scope fromprotected to private (in e.g. Java or C++ terminology). This way,
only the variables of the local object can be accessed, ensuring that a lock is only
acquired on that particular object, and not on any of its parents.

To change the scope of a method execution, a difference must be made between
real “objects” and mere “extensions” (call frames) in which method bodies are
evaluated. To see why, notice that a call-frame is always an extension of the object
on which the method is invoked. This enables proper scoping rules, as the method
can now “see” the instance variables of the receiver. The most important distinction
that has to be made between objects and call frames is this: whereas call frames
implement delegation forboth constants and variables, objects willonly delegate
lookup for constants, not for variables. This ensures that a method can still use
variables of its extended object, but no longer those variables of any of that object’s
parents.

A distinction between objects and call-frames is quite natural. Whereas both
consist of a constant and a variable part containing a number of bindings, and both
have a pointer to the “next” object or frame, objects can have more properties than
call frames. In a concurrent setting, for example, objects can be locked, while call
frames cannot. A small example will illustrate the new scoping rules implied by
the new delegation semantics.

parent(x) :: {
getx()::x;
child(y) :: {

m(z) :: getx() + y + z;
capture()

};
capture() }

Figure 5.5 shows a code snippet and the corresponding layout of the objects
in memory. The frame is visualized by a dashed border. Recall that arguments
to constructor functions in Pic% are also variables of the constructed object. The
variables are no longer “protected” in the Java-sense: in the original Pic% model,
child would have been able to accessx without any syntactic annotations. In
cPico, even a child cannot access the variables of its parent: when writingx , x will
be found only in the current call frameor in the receiver when it is a variable. The
call frame will delegate variable lookup if it cannot findx, but an object will not.
Constants however, are still delegated by both call frames and objects. Constants do
not pose problems in the context of concurrency since they are read-only. Although

CHAPTER 5. CPICO: A CONCURRENT PIC% 154

child has not definedgetx in the above example, it can still access it because
child will delegate toparent . Notice thatm can usey andz freely (they are
local tom or tochild), while it has to accessx through a provided getter function,
just like any other external object.

Figure 5.5: Pic% Object and Frame representation upon method invocation

When executingm, getx will first be executed. Due to Pic%’s dynamic scop-
ing, the call frame for this method will be constructed below the call frame ofm, not
below the parent object. This introduces the problem that during the execution of
getx , x will not be found. This is due to the fact that lookup forx must traverse
a child object which will not delegate lookup of variables. Nevertheless when a
method is defined in a parent, it should be able to access the lexically visible vari-
ables of its defining object. Dynamic scope makes this impossible. If static scope
is employed, the call frame ofgetx is an extension ofparent and the intended
semantics of the program are honoured. Other implications of the use of dynamic
scope as defined in Pic% will be discussed in the next section.

5.7.3 Dynamic Scope

Dynamic scope is one of the most remarkable features of Pic%. It allows for the
sharing of code in a more natural way than e.g. the traits scheme of Self Ungar et al.
(1991). Nevertheless dynamic scope also raises some problems from a software
engineering point of view, especially when combined with objects with protected
variables, as was already pointed out in the previous section. Thedynamic scopeas
it is currently conceived in Pic% seems to reintroduce at least part of the problems
observed in the early versions of LISP.

In cPico we have chosen to avoid aforementioned problems by reverting to
static scoping rules. Pic%’s natural code sharing is maintained using an adapted
lookup scheme, explained in detail in section 5.8.2. The difference between static
and dynamic scope is that statically scoped functions or methods’ call frames will
be extensions of the environment of definition, while dynamically scoped methods’

CHAPTER 5. CPICO: A CONCURRENT PIC% 155

call frames are extensions of the environment of invocation. In cPico, there are
three ways to access a slotx inside a method body:

• One can usex to denote a variable or function statically. In the original
Pic% model, this variable was also looked up dynamically. In cPico,x will
be looked up in the method’s or function’s local variable records or in the
static (lexical) object of the method.

• An explicit self-send likethis().x will result in dynamic lookup. This
is logical considering late binding of self. Super sends or delegation will
leave thethis() receiver variable unchanged. This method still allows for
variable overriding. One drawback of this is that in Pic%, only constants
can be accessed through qualification via the dot-operator. This means that
overridden variables cannot be accessed through this mechanism. We have
not complicated the semantics of message sends by checking whether the
receiver isthis , and attributing special behaviour to this case, especially
since scope functions alleviate this problem.

• A third way of referencing a variable or a method is through super-sends
using .x . This will initiate method lookup in thelexical parent, not the
parent ofthis() . Due to static scope, the static parent is in fact the parent
of the object to which the call-frame is attached.

Introducing static scope in combination with the lookup schemes discussed
above allows the programmer to restrict lookup to the lexical environment, by us-
ing regular function calls of the formf(args) . This introduces two additional
benefits that can be important in a distributed setting, namelysecurity, andsafety.
We will get back at these benefits in section 6.10.

We are not the only language designers having scaled down a dynamically
scoped system to a statically scoped system for reasons of introducing concurrency.
Multilisp, being an offspring of the originally dynamically scoped language LISP
has also opted for static scope. The reason in doing so is explained in (Halstead,
Jr., 1985, p. 509):

Lexical scoping [. . .] decouples the choice of variable names in a pro-
cedure P from the choice of free variable names in other procedures
that call or are called by P and thus promotes modularity more ef-
fectively than the traditional Lisp discipline of dynamic scoping [. . .].
Furthermore, the usual optimized implementation of dynamic scoping
by “shallow binding” does not adapt gracefully to a multitask envi-
ronment where various tasks running in the same address space may
have different values for the same variable. Implementation of lexical
binding by means of a static chain of environments continues to work
well.

CHAPTER 5. CPICO: A CONCURRENT PIC% 156

5.7.4 Object Creation

Due to the separation between objects and call frames in cPico, object creation has
to be reconsidered. Theonly object constructor in the language iscapture() ,
which used to “inject” the current call frame into the current object hierarchy. All
other natives that can be used to construct new objects, such as for exampleclone
andactivate will implicitly perform a capture first.

5.7.4.1 Capture semantics

In the original Pic% model no such explicit transformation is needed since the call
frame is the captured object. By distinguishing between objects and call frames,
capture() has to return an object, and so it has to explicitly transform a call
frame into an object. Converting the most closely nested frame is not enough,
however. capture() will have to transform all frames starting from the cur-
rent call frame up to the first object it encounters along the linked list of frames,
determined by the scoping rules. An example will illustrate why this is the case:

m() :: {
x :: 1;
n(y) :: { method() :: x+y; capture() };
n(2)

}

This example defines a functionm that contains a nested functionn. When
m() is called, a new call frame will be created. In this frame a functionn is defined
and subsequently called. Using lexical scoping rules for method application, the
activation record forn extends the activation record form andy will be bound to
2. This way, bothx andy will be visible inside ofn, as expected.n appears to
be a constructor function that returns an object. If we adhere to the new definition
of capture , which will capture and transform all call frames up to the first real
object, then the new object will containmethod , y andhas a parent containingx
andn. If only the most closely nested call frame was captured, any reference tox
or n would be lost, thus upon callingmethod x would not be found.capture
recursively traverses the call stack and transforms frames into objects one by one.
The result of the capture is the transformation of the most closely nested call frame.

5.7.4.2 Dynamic Versus Static Mixins

Another way to create new objects is by calling mixin methods on existing ob-
jects. The difference in semantics of function calls versus message sends invoked
throughthis() allow for the implementation of two types of mixins. Since any
invocation throughthis() results in dynamic scope, there is a big difference
between invokingm() and invokingthis().m() . Let us illustrate this with a
well-known example to demonstrate linearized inheritance through mixin classes
in CLOS (Budd, 2002, chap. 13):

CHAPTER 5. CPICO: A CONCURRENT PIC% 157

staticPerson(name) :: {
title() :: name;
asDoc() :: {

title() :: "Dr. " + .title();
capture() };

asProf() :: {
title() :: "Prof. "+ .title();
capture() };

capture() };
dynamicPerson(name) :: {

title() :: name;
asDoc() :: {

title() :: "Dr. " + .title();
this().capture() };

asProf() :: {
title() :: "Prof. "+ .title();
this().capture() };

capture() };

staticPerson("Einstein")
.asDoc().asProf().title() = "Prof. Einstein";

dynamicPerson("Einstein")
.asDoc().asProf().title() = "Prof. Dr. Einstein";

The main difference between the examples is the usage ofcapture . In
staticPerson , capture() will create a statically scoped view, while in
dynamicPerson , this().capture() will create a dynamically scoped view.
As the example shows, both are expressible in our model. Dynamically scoped
mixins are rather powerful because they effectively allow the same kind of “multi-
ple inheritance” as in CLOS, namely linearized inheritance. This allows for mixing
in different kinds of behaviour from all layers of the hierarchy to create rich com-
pound objects. In (Lucas and Steyaert, 1994) it is shown that such hierarchies
are more structured than those that can be achieved with conventional inheritance.
The difference in structure between the static and the dynamic person objects is
outlined visually in figure 5.6.

5.7.5 Natives

cPico reconsiders evaluation rules for some of the existing Pic% natives. Pic%
natives are only considered as functions that should plainly be applied instead of
sent to an object. There is one notable exception, beingo.clone(upTo) . How-
ever, more natives exist whose semantics should be adapted when invoked through
a message send. These natives are calledreifier nativesin the implementation.
One example of such native iseval . Invokingo.eval(exp) will evaluateexp

CHAPTER 5. CPICO: A CONCURRENT PIC% 158

Figure 5.6: Static versus dynamic functional mixins

in the context of the receiver. Other such natives are the aforementionedclone ,
capture , this , . . .

The semantics of sending such natives to objects will be clarified by explain-
ing the previous example on dynamic mixins. Consider the dynamic mixin cre-
ation usingthis().capture() . First, the nativethis is looked up and ap-
plied, yielding the current receiver which will become the parent of the new view.
Lookup for capture , will once again yield a native3. A message send of the
nativecapture to this() is subsequently evaluated. Sincecapture is a rei-
fier native, it is treated specially and rather than just triggering the native’s “apply”
behaviour, its “send” behaviour is executed. Acapture native sent to an object
will create an object from the “current call frame” as explained above. The parent
of the newly constructed object will point to thereceiverof capture instead of
the lexical environment of the mixin implementor.

Special attention is payed to one more native, namelysuper . When introduc-
ing the different ways of invoking a function, super delegation was also mentioned
using .m() . Such invocation isnot the same assuper().m() since in cPico
super() denotes a first class object. Therefore,.m() features late binding of
self, whilesuper().m() will not.

Having first-classsuper objects is an uncommon language feature, since most
languages only provide asuperkeyword referring to a “super object” to which
method lookup can be delegated. In class-based and concatenation-based lan-
guages, the super cannot be seen as a real object because delegation implies late
binding of self. This implies that“the self of super is not itself” (De Meuter,
2004). superin such languages is most obviously not a true self-contained object
and can thus not be seen as an entity separable fromthis() . In Pic%, being a
delegation-based language, a parent or “super” object is an object in its own right,
having a separate existence. A message to the parent (usingsuper().m()) is a
plain message send andnot delegation, featuringno late binding of self.

3It is assumed neitherthis norcapture are overridden in the object.

CHAPTER 5. CPICO: A CONCURRENT PIC% 159

5.7.6 Summary

This section has given some more founded “delta with the Pic% model” as we
have introduced it in chapter 2. In order to achieve intuitive program behaviour,
which is especially important for complex programs such as non-trivial concurrent
ones, the power and flexibility offered in Pic% were reduced in a number of ways.
First of all, a clear distinction was made between a call-frame which has extended
visibility to whatever lies above (be it another call-frame or an object). Objects,
on the other hand cannot delegate lookup for variables. As such, child objects can
only access the constant part of their parent, just like any other object. However,
when writing programs it sometimes becomes inevitable that only a certain set of
objects can access a parent’s variables. This is actually the reason for making them
delegate to that particular parent. Thus a child should actually have more rights
than other objects. This topic has been dealt with in section 5.4.1 where we have
introducedscope functionsthat alleviate this problem.

Furthermore our distinction between objects and call-frames has required us
to reconsider both the use of dynamic scope, which is impossible to uphold if
variables are made private. Another repercussion is that an explicit object creation
native is needed that transforms a call-frame into a true object. Finally, a distinction
between ordinary natives and reifier natives was introduced. Reifier natives exhibit
some special behaviour if they are sent to an object. For a more formal overview
of our changes to the language regarding static scope, we refer to appendix A.2.

5.8 Implementation

This section will go into some more detail on the implementation promises, lexical
scoping and garbage collection of active objects. It is not our intention to go into
the details of the specific Java implementation. For promises however, the Java im-
plementation is unavoidable as it discusses how synchronization using promises is
reflected in the underlying Java synchronization mechanisms. For static scoping,
the emphasis is more on the abstract level, and can be interpreted independently
from the implementation language. Slightly more formal semantics for this imple-
mentation can be found in appendix A.2.

5.8.1 Promise Representation

The goal of this section is to show how we have integrated thePromise data type
in the cPico interpreter. In most languages making use of futures or promises, the
representation is straightforward. In (Baker Jr. and Hewitt, 1977), a future is repre-
sented as a 3-tuple (process, cell, queue). In (Halstead, Jr., 1985), it is represented
as a quadruple (lisp value, task queue, determined flag, lock). Lieberman (1987)
also describes futures in terms of a value slot and a flag indicating determinacy.
Our implementation closely resembles the one of multilisp. Conceptually, a cPico
promise consists of:

CHAPTER 5. CPICO: A CONCURRENT PIC% 160

• A cPico value, initially void. When the promise is fulfilled, this value will
be assigned the fulfilled value.

• A boolean determining whether this promise has already been fulfilled.

• A lock to assure promise checking and promise fulfillment are atomic and
mutually exclusive.

• A waiting queue in which processes that are waiting for the value of the
promise are enqueued. Any process in this queue issuspended. When the
promise gets fulfilled, itresumesall of its waiting processes. This is used to
avoid busy waiting.

Notice that these are the “conceptual” constituents of a promise. In the Java
implementation, aPromise class consists of only the first two attributes explic-
itly. The second two are really at the meta-level (that is, we use implicit Java locks
and the Java waiting queue associated with an object’s monitor). ThePromise
class implementsall operations that any cPico value class must understand. All
such implementations are of the form:

Returntype methodName(arguments) {
return getValue().methodName(arguments);

}

This ensures that all operations are just forwarded to the underlying value and
effectively makes promises invisible,also at the implementation level! The only
operation which is not overridden in this way is the methodisPromise which
returns true, while it returns false for any other cPico value. This way, the im-
plementation can still discriminate between promises and other cPico values. The
methodgetValue() is of course the most important method of aPromise .
The method first checks whether the current promise is fulfilled. If it is, it just
returns the value in its value slot. The promise’s role has then degenerated to a
simple indirect pointer to the fulfilled value. If the promise is not yet fulfilled, the
currently executing thread is enqueued in the waiting queue. This is done implicitly
usingwait() . Thefulfill operation on a promise will assign the correct ful-
filled value, will set the determined flag and will then “resume” all blocked threads
in the waiting queue. This is done implicitly usingnotifyAll() . Because
bothgetValue andfulfill are declaredsynchronized , they will execute
atomically and mutually exclusive, guaranteeing consistent behaviour.

Notice that this method of implementing promises has the advantage that syn-
chronization not only becomes invisible at the cPico language level butalsoat the
Java implementation level. All synchronization is completely encapsulated inside
one class. There is a catch in doing this, however. One can think of a promise
as a “proxy” for the real value. As such, we have to be careful at the implemen-
tation level not to use downcasts or== equality operators. Recall the discussion

CHAPTER 5. CPICO: A CONCURRENT PIC% 161

in section 4.2.5.1. Downcasts are as such avoided in the implementation by re-
placing them by method calls of the formasDesiredValue() , having return-
typeDesiredValue . Such methods will either returnthis if this is of type
DesiredValue or raise an error if it is not. This offers the same functionality of
downcasting but is much more safe, controllable and reusable.

Let us give an example of how implicit synchronization is achieved in the im-
plementation. Consider the evaluation ofx+1 , wherex yields a promise. Both
arguments to the+ operation have an abstract type which can denoteany first-
class cPico value. Because the+ operation needs numbers, it needs to downcast
these values to cPico’s number type. By replacing this downcast by sending an
asNumber message to both arguments, the thread executing+ will automatically
be stalled until the promise denoted byx is fulfilled. This happens as invisible at
the cPico level as it happens at the Java level. This is an important property of
an implementation, since it allows for writing many operations on objects, without
ever having to worry about synchronization. If threads would have to be explic-
itly synchronized whenever a “strict operation” is performed, the implementation
would be more susceptible to bugs, hard to maintain and less reusable.

5.8.2 Supporting Static Scope in Pic%

In section 5.2 the reintroduction of static scope has already been mentioned. These
rules allow for more scoping control. However, we do not want to lose the concep-
tual ease of sharing code without resorting to concepts such as traits (see section
2.5.1.3). Such sharing is possible because functions do not contain their lexical en-
vironment. Because they are free from such a dependency, these functions can be
reused by multiple objects. Yet, a lexical environment is essential to enable static
scoping.

Our implementation reuses this sharing mechanism by employing a special
lookup mechanism. To realize static scoping the lexical scope of a method must
somehow be retrieved without storing it in the environment. To avoid reintroducing
the problems that were identified in (D’Hondt and De Meuter, 2003), a scope for
the function is providedat lookup-timeinstead of storing it atdefinition time.

Consider a message application of the formo.m(a,b) . The first step in the
evaluation of this application consists of the lookup ofm. The difference between
Pic% and cPico is that in Pic% afunction is returned, while in cPico aclosureis
returned by the method lookup mechanism. Argument evaluation and parameter
binding will proceed in a similar fashion in both languages. In Pic%, the function
will subsequently be applied and its body is executed in the context of (an extension
of) thecurrentenvironment. This results in dynamic scope, as the function will be
able to access arguments visible at call-time. Because cPico will apply aclosure,
carrying a proper lexical environment, the function will get executed in the context
of the paired environment. This enables static scoping rules.

It remains to explain how and when precisely the cPico closure is constructed.
Since it is notstoredtogether with the function, it must becreatedwhen the func-

CHAPTER 5. CPICO: A CONCURRENT PIC% 162

tion is retrieved. Note that it is exactly this closure that would be the return value
of the expressiono.m . This shows that the the method lookup scheme readily sup-
ports the use of first-class methods. In fact, when applying a method, lookup will
return a “first-class method” and will then immediately apply it.

Considero to be the receiver from the above example. Lookup formwill start
in the constant part ofo. Consider a functionm is found in the objectp (possibly
after delegation, in which caseo 6= p). The closure, constructed at the moment the
functionm is retrieved, consists of:

• The function that needs to be executed. This function contains a name, an
argument list and a body.

• The “current” dictionary, which is thedictionary wherem was found(p in
this case). Upon calling the associated function, the function body will be
executed in an extension ofexactly thisdictionary. This is what re-enables
static scope: “the environment of execution will be placed under the environ-
ment of definition”. We consider the dictionary where a method was found
to be exactly this “environment of definition”.

• The late boundthis , which corresponds to theinitial receiverof the mes-
sage. In the example, this iso, which is the place where self-sends4 should
start their lookup.

• The super dictionary, which is also kept static. In casu this means that
the super dictionary is the parent ofp. This ensures that super sends are
evaluated in the enclosing lexical environment of the sender.

• The evaluator, which is active object to which the closure is tied. Ifo is an
active object then the evaluator will beo, otherwise the active object that is
currently executing the lookup is used.

In Pic%, only the receiver is stored in a closure. The added dictionaries sup-
port lexical scope, whereas the evaluator is used to keep track of which active
object should execute the method. In short, the approach of attaching the static
scope of a function at lookup-time allows for the function to besharedby multiple
objects, since the function will always be looked up in the right receiver. Thus,
the dictionary enclosed in the closure will always be the correct object. Functions
are “dependency-free”: they are immutable and can be freely shared, moved and
re-entered between clones. To conclude, we refer to appendix A.2 for a slightly
more formal definition of this lookup mechanism.

5.8.3 Garbage Collection of Active Objects

In his paper on the actor-based language ACT1, Lieberman (1987) pleads in favour
of dynamic allocation of processes, just as would happen with e.g. LISP or Scheme

4Self-sends are invocations of the form this().m()

CHAPTER 5. CPICO: A CONCURRENT PIC% 163

cons cells. Active objects, like cons cells, can be simply created “whenever needed”,
and should be reclaimed properly by a garbage collector to uphold the illusion that
the user has infinite memory. Thus, the dynamic allocation and reclamation of
processes should resemble that for simple data storage. The reasons for doing this
are also similar: the explicit deletion or killing of processes is discouraged for the
same reason explicit storage reclamation is discouraged. If two processes would
communicate with a third process, and one of these processes kills the shared pro-
cess, the other process would also be influenced by this operation. Lieberman calls
it “explicit deletion of processes considered harmful” (Lieberman, 1987). This po-
sition is also defended by Baker Jr. and Hewitt (1977), who give the example of
a database accessed by concurrent processes. If the processes must each lock the
database before using it, and a process using the database is suddenly killed by
another process, the database will remain forever locked, since the process has had
no chance to properly release its lock. Making a process release all its locks upon
sudden termination is no option: it would leave an object (or a database) in an
inconsistent state.

Garbage Collection of active objects is also an important issue in so-called
“eager beaver” evaluators (Baker Jr. and Hewitt, 1977) which evaluate their argu-
ments using “future order” evaluation, as opposed to call-by-name or call-by-value
parameter passing. With this type of parameter passing, each argument is evaluated
in a separate thread concurrently. The result is a future which will make the called
function block whenever it needs access to an actual argument that has not yet been
evaluated. In such schemes, it becomes important to detect when processes are no
longer useful. That is: a process should be terminated whenever it appears that the
result it is computing is no longer required. Note that this is only true in a func-
tional language. In an imperative language, it does not mean that a process may be
killed just because its return value is not used, because of side effects. In (Baker Jr.
and Hewitt, 1977), a garbage collection algorithm for such a functional evaluator
is outlined.

5.8.3.1 Active Object Garbage Collection in cPico

Our implementation naturally maps active objects in cPico to threads in Java. One
problem in doing this is that the thread of an active object will never die. That is, the
thread driver willendlesslyquery its message queue for messages to process. Thus,
Java willneverbe able to claim the thread since it never stops. We therefore need
to perform a bit of garbage collection manually. The trick is to exploit the fact that
each Java active object thread is coupled with exactlyoneJava object representing
the first-class active object. Whenever this normal Java object is garbage collected,
we know that no-one will be using the active object anymore. Therefore, we can
safely stop its thread. This is possible in Java through the concept of afinalizer.
This is a method that will be invoked by the garbage collector when the object is
known to be garbage. Since each active object has a pointer to its associated thread,
it is easy to shut it down from within this finalizer method.

CHAPTER 5. CPICO: A CONCURRENT PIC% 164

By relying on the Java garbage collector to reclaim the active object, we must
make sure that we do not create memory leaks by having pointers from the thread
to the active object. If the thread would keep a reference to its associated object,
the latter would never be reclaimed. Therefore, a link between the thread and its
active object isonly established when the thread is executing a method invocation
on the object. We will now give an informal proof of correctness for our simple
garbage collection scheme. We will show that our thread is only killed if and only
if its queue is empty and it is guaranteed that no more messages will arrive.

First of all, note that because a pointer is kept from the thread to the active
object during method execution, an active object canneverbe reclaimed while the
thread is active. A thread can thus only be reclaimed whenever it is blocked on
its queue. Whenever the thread is waiting for new messages to arrive (its queue is
empty), it will have no more references to its associated active object. This means
the active object can potentially be collected and memory leaks are avoided. Now
consider that the active object is garbage collected and Java invokes the finalizer.
At that moment, we have the strict guarantee that the thread is not computing, but
blocked on his queue. Furthermore, it can be deduced that no more messages will
arrive in this queue, sinceno other Java object has a reference to the active object
anymore. The thread can thus safely be destroyed: it is blocked on an empty queue
in which no other message will ever arrive.

Whenever a message is enqueued in a thread’s queue, the message itself will
contain a reference to the thread’s associated active object. This ensures that an
active object can never be reclaimed when its thread still has some messages left
to process. Subtle race conditions that would kill the process could occur if such
references would not be kept. If an active object is created, sent some messages and
then all references to it are removed, the active object will first properly process all
messages sent to it. In fact, we can safely state that an active object can only be
reclaimed after all messages ever sent to it are processed.

5.9 Epilogue: Delegation Versus Synchronization

In their widely known paper on inheritance and synchronization Briot and Yonezawa
(1987) discuss how concerns for delegation and synchronization can conflict with
one another. We have identified this problem as well through our experiences in
investigating synchronization in adynamicallyscoped Pic%. One of the key fea-
tures of what makes delegation so dynamic is that variables are conceptually also
accessed through message passing, implying they can be easily overridden in child
objects and that a parent can actually use “abstract variables” (analogous to abstract
methods). Using dynamic scope, Pic% was equipped with such powerful features.

The conflict between distributing knowledge among objects (and manipulating
such knowledge through delegation) and synchronization of concurrent access by
multiple objects is illustrated in (Briot and Yonezawa, 1987) by the example of a
counter object, having anincrement method which updates its count by one.

CHAPTER 5. CPICO: A CONCURRENT PIC% 165

The counter has to sendget andset messages to its “variable” to manipulate it.
Variable access happens through message passing to decouple variable values from
their lexical context. The classical example of a ghost write can occur because an
object can read the value of the counter variable before another object has had the
chance of both readingand incrementing the variable. This is due to the fact that
the readand write on the variable were not atomic. Accessing variables through
message passing for atomic reads and writes only is not enough to safeguard entire
methods from being atomic.

Similar problems occur when naively delegating to a parent to access or modify
a variable. Since the parent object may be shared by multiple children, one must
ensure that updates on its variables happen atomically. Again, when evaluating
code liken:=n+1 , it does not suffice to acquire a brief lock on the parent, readn,
release it, add one ton and then re-acquire a brief lock on the parent to storen+1 .
Other children may access or modify the parent in between these actions. That
is why we have introduced expressions likesuper(x:=x+1) which guarantee
that the expression is executed atomically. Briot and Yonezawa (1987) also note
problems with deadlock through recursive self-sends. Our model has prevented
local (synchronous) self-sends from deadlocking using reentrant locks. Deadlock
can still occur when dealing with multiple active objects working on the same
object hierarchy.

Note that in Pic%, supporting delegation for constants has never introduced
any problems, since they are immutable. In the context of concurrency, it was
the implicit delegation of variables necessary for dynamic scope that caused afore-
mentioned problems. Re-adopting static scope has been our solution to the prob-
lem. Thus, we have sacrificed some flexibility to incorporate more synchroniza-
tion. This general tradeoff appears to be fundamental, as witnessed in (Briot and
Yonezawa, 1987, p. 39):

[...] the attempts to increase the flexibility of inheritance by widely
distributing functions and knowledge among objects complicates the
synchronization issues. The tradeoff between the distribution for the
sake of flexibility and the atomicity for the sake of synchronization
appears to be fundamental in concurrent (distributed) computation.

It appears that a simple delegation mechanism that incorporates atomicity,
flexibility (such as variable overriding) and expressiveness is hard to construct.
We have been able to solve some synchronization problems, but only at the cost
of decreased flexibility. Our model strives for expressivity and achieves this in
part due to its high transparency (automatic locking, no syntactical distinction be-
tween asynchronous or synchronous messages, lazy synchronization via promises).
Atomic method invocation using serialized objects also avoids much of the prob-
lems with concurrent access. However, limited experience in programming in our
concurrent extension has taught us that locks are too deadlock-prone. When a pro-
gram deadlocks, transparency all of a sudden becomes aburdenon the programmer

CHAPTER 5. CPICO: A CONCURRENT PIC% 166

since he has to discover allimplicit locks that have possibly lead to the deadlock.
Debugging such programs ishard because locking is managed at the meta-level
and is never really visible in the code.

5.10 Conclusion

In this chapter we have presented the language cPico, featuring a concurrency
model for Pic%. The language is a middle ground between the actor and the thread
paradigm. The former model is reflected in cPico’s active objects and asynchron-
ous message passing, whereas the latter is visible in such constructs as serialized
objects and atomic method invocation. In order to support such a model we had
to slightly reduce the flexibility of Pic%. The most drastic changes in this context
were abandoning dynamic scope and undoing the total unification of the object and
the environment model.

We have introduced the notion of active objects which are conceptually close to
actors in the actor model. Our model does not incorporate behaviour replacement,
and allows active objects to have true mutable state. Method invocation to active
objects is also asynchronous, but it supports direct return values through the use
of transparent promises. Because mixing active and passive objects in a parent-
child hierarchy was complex and problematic, we have distinguished between the
behaviour and the “active part” of an active object. Only the (passive) behaviour is
used in parent-child hierarchies.

Because simple passive parent objects are allowed to be shared by several ac-
tive objects, proper synchronization mechanisms were needed. A serialization of
these objects, using reentrant locks was therefore introduced, guaranteeing atomic
method invocation. We have extensively treated one particular sharing relation,
called parent sharing and have advocated that if two objects share a parent through
delegation, this parent provides extra security, safety and synchronization. Condi-
tional synchronization was achieved through explicit control over promises using
call-with-current-promise .

The most difficult part in developing a clean concurrency model proved to be
the proper delegation of sharedvariables(as opposed to constants). Because data
in a pure delegation-based scheme can be spread across multiple objects, synchro-
nizing all these objects to ensure serializable methods is more problematic than in
typical class-based schemes (Briot and Yonezawa, 1987). Also, implicit locking
improves expressivity but can make programs hard to understand, especially when
deadlocks occur.

Throughout the design of the concurrency model,expressivityandsimplicity
were strived for. Expressivity was illustrated in part by our “expressivity bench-
mark” in section 5.1.1, although it must be admitted that no exact scientific crite-
rion exists that can adequately measure expressivity. A more elaborate example,
illustrating a solution to the so-calledsame fringeproblem can also be found in ap-
pendix B.1. Simplicity was achieved by allowing only passive-passive delegation

CHAPTER 5. CPICO: A CONCURRENT PIC% 167

schemes and by reusing promises for conditional synchronization.
Concluding this chapter, our concurrency model must allow for a clean tran-

sition into a distributed context. Exactly how our concurrency concepts provide
for a good distributed foundation will be explained in the next chapter. There, we
will extend cPico with a distribution model, providing the necessary constructs to
facilitate writing distributed programs.

Chapter 6

dPico: a Distributed Pic%

The previous chapter has introduced cPico, a concurrent version of Pic%. This
chapter will build upon that language to explain dPico (distributed Pico), which
extends cPico with a distribution model. In cPico, we have introduced concurrency
through active objects. As we have argued before, the construction of a thorough
concurrency model should make a distribution model with multiple collaborating
virtual machines easier to develop. As will be shown, the distribution model intro-
duces some intricacies of its own, requiring a redesign of a number of previously
introduced language features.

In chapter 4 we have identified several language features required for a full-
fledged distributed language. In section 6.1, we will clearly state which of these
features are dealt with in this chapter and which fall beyond the scope of this dis-
sertation. We will also illustrate how programs in dPico should be organized and
it will be discussed how the new language both reuses and redefines concepts from
cPico.

Continuing with section 6.2, two simple semantic rules will be introduced con-
cerning object parameter passing across the network. These semantics will largely
determine the unit of distribution of the model. However, clear as the new seman-
tics may be, it will be shown that they provide inadequate support forparent shar-
ing, a dominant characteristic of the cPico object model. A solution to this problem
is presented in section 6.3 with the introduction of a new inheritance model featur-
ing a parallel delegation structure to separate active from passive objects.

The dramatic change in the organization of object delegation requires us to re-
view some of the language features of cPico. In particular, more controlled exten-
sion mechanisms are needed to achieve better object structuring. This is explained
in sections 6.1.3 and 6.4. The introduction of a second – parallel – delegation hi-
erarchy will also require a revision of method lookup and method invocation on
active objects, which is done in section 6.5. This section also proposes a means to
reduce network traffic in a distributed setting.

Subsequent sections will be more concerned with the distribution aspects of
dPico. Section 6.6 will present the simple mechanism to acquire initial references

168

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 169

to remote objects. At that point, sufficient dPico knowledge is communicated to
be able to canalize dPico’s concepts in a small example application in section 6.7.
Continuing with a renewed discussion on promises in section 6.8, we will focus
on necessary changes to their representation and behaviour in a distributed setting.
Section 6.9 will provide some pointers on how “continuation mobility” is achieved
in the language. Indeed, some limited support for code mobility is present in dPico,
due to the fact that any first-class value can be “moved” from one virtual machine
to the other, and continuations (Pico environments) are first-class values. Although
high-level well-integrated mobility abstractions fall outside the scope of this dis-
sertation, we do not underestimate their importance to support “ambient-ready”
applications. See (De Meuter, 2004) for a detailed treatment of such language
constructs.

The dPico model has some characteristics that inherently promote security and
safety. These features will be the topic of section 6.10. Section 6.11 will then put
the dPico model into perspective by highlighting some of its limitations. Section
6.13 concludes the distribution model for Pic%.

6.1 Objectives

Chapter 1 has identified the concerns that need to be addressed by an “ambient-
ready” programming language. Here, we will briefly review those required lan-
guage characteristics and clearly state the ones that will be incorporated in dPico
and those that will not.

Distributed object inheritancewas an interesting feature to achieve some of the
functionality required for the scenario. The integration of such distributed object
inheritance into our model will be the core topic of this chapter. Another important
identified concern wasstrong code mobility. We have not yet researched integration
of proper object movement in our model. Supplying amove native as is done in
Emerald (Jul et al., 1988) is found to be too low-level. We support the statement
move considered harmfulin (De Meuter, 2004). However, we will not pursue our
quest for proper movement abstractions any further in this dissertation. One more
language characteristic we will leave unexplored isbroadcast communication, even
though we find the idea of amultivalue(De Meuter et al., 2003a) very appealing to
achieve this. A fourth concern was the presence ofautonomous processes, which
has been extensively dealt with in the previous chapter with the introduction of
active objects.

Even though dPico does not address such important concerns as partial failure
handling and mobility, essential for next-generation “ambient programming lan-
guages”, the distribution model is still powerful enough to express a variety of
interesting problems in a natural way. We have opted to elaborate only part of the
required features to ensure that they integrate well within one language, rather than
just designing independent and unrelated features that may work well on example
programs but which cooperate badly. Such features tend to interact in unexpected

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 170

ways with other language constructs if they do not fit well into the existing lan-
guage’s design. After all, true language engineering is based on consolidation
and a well-considered choice among alternatives to achieve the desired behaviour
(Hoare, 1973).

6.1.1 Targeted Applications

Hoare (1973) has stated that it is very important for a language designer to envision
the goals of his programming language. In other words, we must think about the
target software applications of the language under construction. Since we do not
fulfill all of the requirements that have been identified in the scenario in chapter
1 it is obvious that dPico will not be used to program Maria’s P-Com. However,
our moderate language could be used to develop“connected applets” (De Meuter,
2004). In such a software application, the user requests and “downloads” a piece of
runnable code or an object that will remain connected to the server that has created
it. The link between the “applet” client and the spawning server is a privileged
parent link, which allows the client to access functionality that is not necessarily
part of the public interface of the server.

In the scenario of chapter 1 the control object that is delivered from the meeting
room projector to Maria’s P-Com can be seen as such a connected applet. It is an
object consisting of both data and executable code. Using this control object, Maria
can then for example adjust settings, and project images. This functionality is not
directly available on the projector itself. It can only return control objects to users
who have the correct access rights.

Security is not the only advantage of this mechanism. Imagine a simple client-
server chat application. The chat server can spawn “chat applets” whenever some
client is requesting to collaborate in the chat session. The server can respond to
such requests by returning the chat applet which remains connected to the server
through its parent link. The server will keep track of where the chat applet is lo-
cated, so that it can route messages to it from other clients. An important feature
required here is that a parent can get a reference to its created child! Due to en-
capsulated inheritance, this is possible in dPico, and the server can keep track of
his children. Because a child can always delegate to its parent, the server is an
ideal mediator to ensure communication between two separate applets not having
a direct communication link. We have written such a software application in dPico.
The source code of this example program illustrates the more important features of
the language and can be found in appendix B.2.

6.1.2 Extending The Concurrency Model

It is natural to build the distribution model on top of our concurrency model de-
signed to cope with concurrency issues. We have extensively motivated that in
our particular context, distribution and concurrency are tightly coupled. Neverthe-
less, such a choice needs some consideration. It is to be expected that cPico will

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 171

need adjustments to cope with the complex problems posed by distribution. Be-
fore explaining the required changes, we will first review and motivate why we feel
that the concurrency model we have presented is a good starting point for crafting
dPico.

Let us first briefly summarize cPico’s main arsenal of language features to
tackle concurrency issues. We have introducedactive objects, equipped with buffers
to ensure serialized execution of requests. Method invocation onserialized objects
ensuredatomic method invocation. Finally messages sent to active objects were
handledasynchronously, to increase their autonomy. In order for the sender of
such messages to be able to retrieve results and to synchronize on the call,trans-
parent promiseswere introduced. This proved to be a key feature of cPico since it
combines the high degree of concurrency that can be obtained from asynchronous
message passing, and the simplicity that comes from a controllable way of thinking
promoted by synchronous message passing.

We need to maximally exploit these features when transcending to the realm of
distribution. As we will see, active objects will be the hallmark of our distribution
model, since we can reuse many of cPico’s concepts for active objects, irrespective
of the active object’slocation. In a distributed setting, we value the power of their
autonomy and their asynchronous communication.

In the previous section we have introduced “connected applets” (De Meuter,
2004) as client objects that have a distributed parent or delegation link. To this
end, we need to introduce the concept of a “netview”. A netview is in essence
a view that is created on an object that resides on another node in the network.
Active objects seem an ideal candidate to express the client and server objects (the
child and parent in a netview relation). Both have their own thread of computation,
so they can autonomously process requests and each execute code at a different
location. In order to be able to express such delegation relation between active
objects, some changes to the inheritance scheme of cPico are required. Recall
that cPico only allows for delegation relationships between passive objects. The
necessary changes will be documented in section 6.3.

Notice that the goal of our distribution model is to achieve transparency of lo-
cation. This transparency is used to abstract away from the underlying “processor
cloud” in which the programs live. Since there will be a lot of asynchronous com-
munication between different active objects, the dPico programmer will have to be
wary of synchronization issues. Therefore, we cannot simply make the distinction
between active and passive objects entirely transparent. We will see how a clear-
cut distinction is upheld between active and passive objects by re-organizing them
into separate delegation hierarchies. This distinct organization is crucial for the
programmer to recall which objects are active and thus require special attention
when it comes to synchronization.

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 172

6.1.3 Object Extensions Revisited

Before turning to the distributed aspects of dPico, its object creation and extension
mechanisms are explained. These mechanisms differ somewhat from the approach
taken in Pic% and cPico. A new extension mechanism is incorporated in dPico
is because there is a strong need for morecontrol over object hierarchies. cPico’s
extension mechanisms usingcapture is too liberal. Moreover, such scheme pro-
vides no “static” information to the interpreter to discriminate between constructor
functions and ordinary functions. In a distributed context, such static information
will prove to be crucial. Before introducing dPico’s distributed concepts, a more
controllable object extension mechanism is discussed.

Recall from section 2.5.3.2 that Pic% objects can be extended by “capturing”
a dictionary that is extended during function application with a call frame. The
capture() native simply returns this extended dictionary, and is as such suffi-
cient to create new objects. We have also introduced aclone native which could
clone its receiver up to a given dictionary. Later on, in chapter 5, we had to adapt
the semantics ofcapture() in cPico, since mere “call frames” were no longer
full-fledged objects (see section 5.7.2). Thecapture native had the additional
task of “converting” call frames into objects. Yet, the way in which objects were
created didn’t change conceptually. For instance, to create a point object with two
accessor methods, it suffices to write (in either Pic% or cPico):

point(x,y) :: {
getx() :: x;
gety() :: y;
capture()

}

We have already addressed some problems using such an object creation scheme
in the context ofcloningobjects in section 5.4.1.1. There, we have advocated the
use of a scope function termedcloning to create implicit clones of objects while
allowing arbitrary code to be executedin the context of the clone. In this section,
we will further extend this approach to also include plain object extensions (views)
and imperative mixin methods. At first, the benefits may seem a bit superficial, but
as we will see in section 6.4.1, this new object creation mechanism will prove to
have more fundamental advantages in the context of distribution. Also, although
the new method of object creation might at first seem awkward, we will present a
syntactic extension to Pic% in section 6.1.3.4 which will greatly ease the use of our
new concepts.

The approach to object extension we will take here closely resembles the one
taken in Agora (De Meuter, 1998). As explained in section 2.5.2.2, Agora intro-
duces specialVIEW: andCLONING: reifiers, which install methods whose body
is executed in the context of new objects upon invocation.

dPico introduces three new native functions –view , mixin andcloning –

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 173

which will achieve similar semantics1. Each of these new native functions takes
exactly one argument expression, which must evaluate to a function or a closure.
Its return value is a behaviour-modifying “wrapper” around the function. Invoking
such a wrapper will apply the underlying function, but in a new or modified object
context. Subsequent sections will explain each of the natives in more detail.

6.1.3.1 View Methods

Theview native returns, for any function or closure, a “view version” (or “view
method”). When applied, the view method’s body will be evaluated in the context
of a view extending the currentthis() object. Thus, evaluatingview(fun) is
equivalent to evaluatingthis().view(fun) . Since the view function is eval-
uated in the context of the view, references tothis() in its body will point to
the extensionitself, while super() will evaluate to the object under extension.
This is in contrast with thecapture -approach, wherethis() always points to
the object under extension. Figure 6.1 illustrates the difference between both ap-
proaches using the simple example of amammalobject being extended to ahuman
object. Hence,human is a view onmammal.

Figure 6.1: Object extension usingcapture versus usingview

The point object is defined using view functions as follows:

point :: view(
lambda(x,y) :: {

getx() :: x;
gety() :: y

})

Notice that point is no longer declared as a function, but rather as a plain reference,
which will get bound to the result of applyingview on some function named
lambda . Remark that this is not an anonymous function as in Scheme. It is merely

1This cloning method replaces the scope function approach of cPico, explained in section
5.4.1.1.

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 174

a function namedlambda . Notice also that there is nocapture() or this()
expression necessary to “return the object”. When a view method is applied, it will
discard the result of its underlying function and return the view itself. If we were
to usethis() inside the body oflambda , it would refer to the view itself.

The attentive reader may have noticed thatcapture() refers to the view
frame itself during the execution of a view method. This is because view methods,
when applied, do not create an extra call frame to bind their arguments. Instead,
arguments are bound in the object extension directly. This allows for thex and
y parameters to become instance variables of the point, just like this was the case
in the capture() approach of Pic%. Using theview method approach, the
capture() native has become obsolete and will no longer be used as the object
constructor.

6.1.3.2 Mixin Methods

Mixin methods exhibit more complex behaviour, since they allow for an object to
be imperativelychanged. A mixin method, like a view method, executes its un-
derlying function in the context of the mixin itself. As is also the case with view
methods, mixin methods always implicitly operate onthis() if no receiver is
specified. When a mixin method is invoked, a clone of the receiver is created. The
parent of the receiver is subsequently assigned to this clone. Next, the receiver ob-
ject iscleared: all of its variables and constants are removed. The mixin method’s
body will then execute in the context of this emptied object. Figure 6.2 clarifies
the operation ofmixin through an example. In the example, a 3D point, being an
extension of a 2D point is imperatively changed into a 3D sphere.

Figure 6.2: Applying a mixin method to an object

The third figure shows that in the context of execution of a mixin method,this()
still refers to the original receiver (the former 3D point, being turned into a sphere),
while super() now denotes the clone of the receiver’sold behaviour (being a 3D
point). As one can see, arguments and definitions in the mixin’s body will be bound
in the original receiver. Thus, any object having a reference to the 3D point will
now observe the point as a sphere. Using super sends, the sphere can still access

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 175

its old point behaviour. When applied, mixin methods will always implicitly return
this() , that is, the “extension”.

6.1.3.3 Cloning Methods

The last of the three special methods are thecloning methods. Cloning methods
solve the problems discussed in section 5.4.1.1 relating to the problem of passing
arguments to thecloning scope function. There, a rather “ugly” solution was
taken by executing thecloning scope function in a copy of the call frame, such
that variables defined at “call time” became visible. As already mentioned at that
point in the text, dedicated cloning methods alleviate this problem, since they can
take arguments just like normal methods.

A cloning method executes its body in acloneof the receiver and always re-
turns this clone. Function calls of cloning methods operate onthis() . Unlike
view and mixin methods, cloning methodsdo create a call frame, meaning that
definitions made in the cloning method will no longer be visible inside the clone
when the actual method returns. Cloning methods have the advantage that inside
their body,this() already refers to the clone, and variable initialization can take
place. Figure 6.3 illustrates the evaluation context during cloning method applica-
tion.

Figure 6.3: Applying a cloning method to an object

To illustrate the usage of cloning methods, we will show how to clone a point
object:

point :: view(
lambda(x,y) :: {

getx() :: x;
gety() :: y;
clonePoint :: cloning (

lambda2(nx, ny) :: {
x := nx;
y := ny

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 176

})
})

6.1.3.4 Extending Pic%’s Syntax

As can be witnessed from the examples in the previous sections, creating view or
cloning methods using the new concepts is rather cumbersome due to the absence
of anonymous functions in Pic%. Therefore, we have added some syntax exten-
sions to Pic% which simplify the creation of special methods. The main problem
is that we had to introduce temporary functions merely to serve as input forview ,
mixin or cloning , because Pic% lacks anonymous functions. These temporary
functions merely pollute the namespace and should be avoided.

To be more precise, we did not introduce new syntax, but have rather defined
semantics for syntax previously “not in use”. In Pic%, it is not possible to “define
a message send”. That is, the Pic% interpreter will throw an error when trying
to evaluateo.m(args):body . The left-hand side of a definition, declaration or
assignment should always be a plain invocation, not a message or super send. We
will allow such a syntax to enable the use of “anonymous functions”.

When evaluatingexp.m(args):body , the expressionexp will first be eval-
uated to a functionf . If the result of evaluatingexp is not a function, an error is
raised. The functionf will be immediatelyapplied to a new function comprised
of the namem, the argumentsargs and the bodybody . Yet, the methodmwill
not yet be bound in the current dictionary. Rather,mwill eventually get bound to
the result of applyingf to the unbound function. We can approach the behaviour
of these semantics by writing:

f.m(args) : body ≡ m : f(m(args) :′ body)

Where:′ is some imaginary definition operator whichcreatesa function but does
not bind it in the dictionary. Put differently,:′ can be used to create “anonymous
lambda functions” (although methods in Pic% still always carry a name). For
f.m(args)::body , the semantics stay largely the same, but instead the result
of applyingf to the function is now bound to aconstantm instead of a variable.

How can our new object creation schemes outlined above benefit from this new
syntax? When the nativeview is used to play the role off , “view methods” can
now easily be created by simply annotating a normal Pic% function with aview
qualification. The same can be done for creating mixin or cloning methods. We
will illustrate the new syntax on our previous point example:

view.point(x,y) :: {
getx() :: x;
gety() :: y;
cloning.clonePoint(nx, ny) :: {

x := nx;

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 177

y := ny
}

}

When evaluatingview.point(x,y)::body , view will be evaluated to
the native functionview, which is subsequently applied to the function
point(x,y)::body . The result (a “view method”) will be bound tom, instead
of the function that would result from the same syntaxwithout the view qualifica-
tion. The same goes for mixin and cloning methods. We believe this new syntax
allows for an expressive creation of “wrapper methods”, while keeping the number
of concepts in the language minimal. Also, no “real” syntax extensions to Pic%
were necessary. In fact, the parser did not even have to be adapted to parse the
above syntax.

Notice also that the newly defined syntax is really completely independent from
these three new natives. The syntax can be used for other abstractions as well.
Consider the following example which “lifts” methods to becomecritical sections.

critical(semaphore) ::
lift(function) ::

lifted@args :: {
semaphore.P();
function@args;
semaphore.V()

}

view.bankAccount(bal) :: {
mutex: makeSemaphore();
critical(mutex).withdraw(amnt) :: bal := bal - amnt;
critical(mutex).deposit(amnt) :: bal := bal + amnt;

}

Usually, functions which will be used at the left-hand side of a “message def-
inition” are higher-order functions that return another function. Thus, they can be
regarded as “function transformations”, although this does not necessarily have to
be the case. In the example above,critical is a function taking a semaphore ob-
ject as an argument. It returns a temporary function, which is the function that will
be applied tom. This function in turn returns an extended function which “wraps”
the original function in semaphore wait and signal message sends. This allows for
methods to be easily flagged as “critical sections” on a given semaphore, as is il-
lustrated by the simple bank account whosewithdraw anddeposit methods
will be mutually exclusive.

When defining a language, it is important to define complete or consistent se-
mantics. In Pic%, for example, one can always define, declare or assign any of the
three invocations (reference, application and tabulation). Up until here, we have

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 178

merely described semantics for defining or declaring a qualification consisting of
a receiver and an application. For completeness, we have also extended Pic% with
the proper semantics to deal with the definition or declaration of qualifications
containing a reference (f.x:exp) and a tabulation (f.t[i]:exp). Using our
previous notation, their intuitive semantics are:

f.x : exp ≡ x : f(exp)
f.t[i] : exp ≡ t : f(t[i] :′ exp)

For references, the syntax does not really offer any advantage (as can be wit-
nessed by the lack of the:′ operator). For tabulations however, it allows a function
f to intercept a table before binding it to the environment. More detailed semantics
of message definitions can be found in appendix A.4.1.

Concluding, it can be seen that dPico’s extension mechanism through “wrap-
per” functions provides for more controlled object extensions. We have also claimed
an amount of “static” information was needed to discriminate between constructor
functions and ordinary functions. The above object creation scheme effectively
allows the interpreter to discriminate between “view methods” and normal meth-
odsbefore even applying the function. The advantages such information brings
will become clear when discussing active object extensions in section 6.4.1. In the
following sections, dPico’s distributed aspects will be covered, starting with the
parameter passing mechanism for message sends to remote objects.

6.2 Distributed Parameter Passing Semantics

As has been extensively discussed in chapter 4, an important part of distributed
programming languages is their definition of proper parameter passing semantics
when messages are sent across the boundaries of the local address space. This
section will discuss how object references are dealt with when objects are passed
as arguments during a remote method invocation.

Our main approach is to base our distribution model as much as possible on
our concurrency model. Since the latter is mostly built upon active objects, we will
also consideractive objects as the unit of sharingin a distributed setting. That is,
we will allow only active objects to be shared between multiple Pic% interpreters.
Although this approach might seem a bit restrictive at first, it simplifies the seman-
tics of the language a great deal. First, let us argue why sharing only active objects
is advantageous in our context:

• Recall that active objects are equipped with their own message queue and
with a serialized behaviour. As such, they find themselves naturally encap-
sulated and protected from race conditions. The buffer ensures that only one
method is executed at a time. Also, the message queue can automatically
buffer incoming network requests, just like it can queue up local message

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 179

requests. Thus, there is no need for extra queues to buffer network requests
to passive objects.

• Allowing only remote references to active objects ensures that any call to a
remote object willalwaysbe asynchronous. This is because the only remote
objects are active objects, and as was already mentioned in section 5.5, any
call to an active object is always asynchronous.

• Since remote method invocations will always be asynchronous (as they must
be method invocations on active objects), we gain a huge amount of effi-
ciency. In a distributed context, asynchronous method invocation is highly
advisable as it allows for performing a lot of communication without block-
ing the sender. Blocking the sender during a remote method invocation
is inefficient since such invocations are inherently slower than their local
counterparts. Idle times could quickly become a performance bottleneck for
communication-intensive objects. The main disadvantages of asynchronous
method invocations – the lack of return value and corresponding caller-callee
synchronization – are countered by our usage of promises.

• As will be discussed in section 6.2.2, allowing only active objects to be re-
motely referenced eases implementation-level object management and re-
duces the number of remote object references if passive objects are involved.

• Allowing only active objects to be shared simplifies the language’s seman-
tics by allowing for a simple set of programming guidelines. For example,
if the programmer wants to share data across the network, he is forced to
encapsulatethat data in an active object. Therefore, he is forced to think
about the concurrency issues involved, and access will be guaranteed to be
serialized.

Of course, disallowing remote references to simple passive objects has its
downsides too. In subsequent sections, we will clarify how our restriction on shar-
ing is enforced throughout the language. Where appropriate, we will also discuss
the disadvantages of the imposed restrictions.

6.2.1 Publishing Objects

When trying to make two Pic% interpreters communicate, the first issue is how to
make the interpreters able to access each other’s objects. This “service discovery”
mechanism will be discussed in detail in section 6.6. For now, it is only important
to know that we allowonly active objects to freely “publish” themselves. That is,
only active objects will be directly accessible by objects residing on other inter-
preters. Allowing passive objects to publish themselves would immediately break
our constraint on remote references.

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 180

6.2.2 Parameter Passing and Return Values

As mentioned in section 4.2.5.2, having the ability to send messages across a net-
work requires one to properly define how arguments are passed on to a remote
method. This is necessary when invoking methods on remote objects. Since only
active objects are allowed to be referenced remotely, we will be using very sim-
ple parameter passing semantics for both arguments and return values for remote
method invocations:

• Active objects arealwayspassed by reference.

• Any other Pic% value isalwayspassed by copy2. Note that this rule is also
applicable forpassiveobjects.

Next to being directly “published”, an active object can thus also be remotely
referenced by passing it as an argument to a remote method. Passive objects present
problems, however. They cannot be passed by reference, since this would force us
to provide remote references to passive objects. The alternative is to pass them by
copy, which means that a copy of the object is passed to the callee.

One problem that immediately manifests itself ishow muchto copy and send
on to the receiver. Our semantics are to alwayscopy the entire transitive closure
of the object. Two remarks are in place here. First, copying the entire transitive
closure is the only viable solution to uphold the constraint on remote references. If
only the parameter object would be copied, and this object has references to other
passive objects, these references would have to be “cut off” and replaced by remote
references to passive objects. Second, note that this transitive closure is only taken
up to the point where an active object is encountered. That is, active objects within
the transitive closure of a passive object are still passed by reference. Thus, active
objects can be seen as nodes where the object graph being transmitted is implicitly
pruned.

The policy of copying the transitive closure of a passive object has both ad-
vantages and disadvantages. The obvious downside is expensiveness. Copying a
cyclic data structure incurs some overhead, making parameter passing more expen-
sive than plainly passing a simple remote reference. Second, the remote method
will receive a copy of the argument, meaning that any changes made to such a
passive object arenot reflected in the original object. There is no replication man-
agement scheme to keep the copies consistent. This enforces the use of active
objects to accomplish network-wide sharing.

The use of the copy semantics has some advantages as well. First of all,
since less objects are passed by reference, there is less implementation-level ob-
ject management to be performed. There will be less remote references, allowing
for smaller “remote object tables”, which manage the mapping between local and

2Unique values likevoid will remain unique per virtual machine, however.

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 181

remote references. Also, execution of the remote method itself can be sped up be-
cause method invocations to passive arguments can be handled locally. They do
not have to travel back over the network to the caller.

Our approach of disallowing sharing of passive objects between multiple inter-
preters can also be observed in a local, concurrent setting in the language Eiffel//
(Caromel, 1990, 1993) in which passive object arguments are copied when in-
voking a method on a local active object (Ehmety et al., 1998). This completely
eliminates shared passive objects between multiple “processes” or active objects,
regardless of locality. The advantage is that passive objects will never be prone to
race conditions. On the other hand, such semantics are expensive. We allow pas-
sive objects to be shared by local active objects freely. For this purpose, we have
provided serialized objects as a protection mechanism against the race conditions.
The different semantics for parameter passing to local or remote active objects are
not without consequences. Section 6.11 will get back at this.

6.2.3 Passing Delegation Links

We have noted that when passive objects are passed by copy, a transitive closure of
the target object is always copied, stopping at active objects which are replaced by
remote references. It is important to consider what will happen to theparentof an
object. In other words, is the transitive closure also taken across delegation or par-
ent links? Since parent links always refer to passive objects in the inherited cPico
object model, the parentmustbe passed by copy too, to prevent any remote refer-
ence to passive objects. This uncovers a major weakness in the simple semantics
of disallowing shared passive objects in combination with cPico’s object model:
parent sharing across the network islost! A parent will always be copied whenever
one of its children is passed to another interpreter. The original parent will not be
able to support sharing of state across the network. cPico’s object model will thus
have to be refined if dPico is to be rendered useful.

Recall from chapter 1 that we envisaged distributed object inheritance hierar-
chies to be a prime feature of the language under study. Therefore, in section 6.3
distributed parent sharing will be reintroducedwithout sacrificing the simple pa-
rameter passing rule introduced in this section. The answer lies in the creation of
delegation links to active objects. Such delegation schemes have a price to pay in
increased complexity, however. Therefore, we have evaluated some viable delega-
tion alternatives with regard to semantic simplicity and integration in the existing
model. The latter is important to ensure that the new solution does not break with
the concurrency model introduced in cPico.

6.3 Implications for Parent Sharing

The hypothetical model we have introduced in the previous section has one major
drawback. It prevents distributed parent sharing, due to the fact that all passive

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 182

objects are passed by copy across the network. In cPico, all delegation links refer
to passive objects and delegation to an active object is rerouted to its passive be-
haviour. Using the outlined parameter passing semantics, we would always copy
the entire passive hierarchy when making a netview (i.e. a view on an object that
resides on another location). Since we can only pass around active objects the
solution must be to “activate” the hierarchy. Since active objects are passed by
reference, we can only have a distributed object graph if we have pointers to active
objects.

There are two different ways to introduce active objects in the hierarchy, which
we will both illustrate using a simple (albeit abstract) example. Consider two ac-
tive objectsaParent andaChild , whereaChild should be seen as an active
extension ofaParent . In the hypothetical model we have presented in the previ-
ous section, this relationship is implicit, since they are only related due to the fact
that the behaviour ofaChild delegates to the behaviour ofaParent .

In this section we will try to reorganize how delegation pointers are maintained
between objects, to make the relation betweenaParent andaChild explicit.
This means that the active objectaParent appears somewhere in the delegation
chain ofaChild . Only thenaChild andaParent can reside on different ma-
chines, since remote references can only be made to active objects.

6.3.1 Mixed Inheritance

A first solution might be just to allow the parent pointer of a passive object to refer
to an active object directly. This evolution is shown in figure 6.4. Objects marked
with a “thread symbol” are active objects. The object marked with anN represents
the dictionary containing all native functions. This approach reintroduces a mixed
inheritance scheme where both active and passive objects may appear. This rein-
troduces the awkward semantic peculiarities we have associated with it in section
5.5 of the previous chapter.

Figure 6.4: Restructuring Active Parent-Child relations with mixed inheritance

It is also important to remember that we do not want to change the rules for
invocation we have proposed in chapter 5. We will repeat these rules here for the
sake of readability. Messages sent to a passive object are always synchronous,
whereas messages sent to an active object is always asynchronous. Delegation is
always synchronous. A message is considered to be “delegated” when

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 183

1. it is sent to a child but implemented (found) in a parent,

2. when a super send is used to delegate the message explicitly.

In this mixed inheritance scheme keeping delegation synchronous may be diffi-
cult to uphold. The first case of delegation can be solved by immediately schedul-
ing the request in the right queue3. However, keeping super sends synchronous,
even if the parent is active (and can thus be remote) would mean that at least some
invocations over the network are performed synchronously, which is a situation
we want to avoid in our context. This is one of the reasons to refrain from using
remote references to passive objects, so the mixed inheritance solution does not
really solve the problem gracefully in all cases.

To cope with the restriction on remote references we would have to put severe
restrictions on our language and prohibit an invocationm() if the method m is
defined in an active parent object. This would also imply that an invocation of the
form .m() is entirely prohibited if the parent would be active, since this would
always force synchronous invocation on active objects. These are draconian mea-
sures to restrict method invocation without a simple and concise set of rules behind
them.

Another problem with the mixed inheritance scheme is that the natives dictio-
nary is only found at the top. Thus, in a distributed system where some delegation
links cross machine boundaries, method lookup for natives may involve remote
lookup. This is of course unacceptable, since even Pic%’s “control structures” like
begin and if are natives. If we would want to keep the language realistic, this
would require us to short-circuit the lookup of native functions. This would mean
that we always first check whether an identifier is a native, and if so return this
native before starting general method lookup. This would prevent native overrid-
ing, which shows that the mixed inheritance scheme really conflicts with existing
language concepts.

We conclude that although mixed inheritance does allow for distributed in-
heritance, it also introduces a plethora of problems such as exceptional cases for
method lookup and natives. These problems seem to suggest that a different, sim-
pler delegation scheme is needed that still allows for distributed inheritance.

6.3.2 Parallel Inheritance

In cPico, we have advocated the distinction between active objects and their passive
behaviours. However, the fact that distributed hierarchies are required – something
which can only be done using active objects – seems to suggest that active objects
require their ownseparatehierarchy. To support active object hierarchies, we will
equip active objects withtheir ownparent pointers whereas previously only the
behaviour had pointers. The parent pointers of an active object canonly point to

3With this approach we can schedule the request in the queue of the last active object we encoun-
tered.

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 184

active objects. Thus, the link between two active objects is now made explicit
by connecting them directly, as is shown in figure 6.5. Note that, even though
the figure depicts two objects markedN , in reality, onlyonenatives dictionary is
present on each virtual machine.

Figure 6.5: Restructuring Active Parent-Child relations with parallel inheritance

We have called this inheritance schemeparallel hierarchiessince it is possible
to maintain a parallel set of delegation hierarchies. On the one hand there is an ac-
tive hierarchy composed solely of active objects, which may be distributed. On the
other hand, there is a passive hierarchy comprised completely of passive objects.
Such a passive hierarchy is local to an active object. The behaviour of the active
object is in a sense the “root” of the local passive hierarchy.

This double hierarchy solves the problems we encountered with the application
of natives with the mixed inheritance scheme in which natives could only be found
at the top of the hierarchy. In this proposal with double hierarchies, natives appear
locally at the top ofeverypassive hierarchy, which ensures that natives will never
be looked up remotely if they are applied to a passive object. If a native is applied
on anactiveobject, e.g.ao.+ , such lookup requestscan travel over the network,
but this is of course needed to ensure that native overriding remains possible.

The parallelism introduced by our new inheritance scheme is also reflected in
the evaluation context, in which the evaluator keeps track of such information as
wherethis() andsuper() point to. In Pic%, an evaluation context was always
fully identified by the triple (current ,this ,super). Due to the introduction of
the active hierarchy andmultiple passive hierarchies, this triple is not sufficient
anymore. We also need to maintain active counterparts for each of these context
parameters.

In cPico, the context already contained anactivethis parameter, which is
the active object currently executing the method. dPico contexts introduce three
new context parameters. During method application,acurrent is the active ob-
ject that has implemented the running method (i.e. it is the active object in which
the method was lexically found).asuper is the parent ofacurrent 4, pointing

4Sinceasuper is alwaysthe parent ofacurrent , we have in our implementation only kept
track ofacurrent .

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 185

to the lexically scoped active parent. Finally,athis represents the active object
that initially received the executing method. In this more complex active object
delegation scheme, cPico’sactivethis should be interpreted asacurrent
and is thus obsolete.

By restricting receiverless invocations likem() and .m() to the passive hi-
erarchy, we can avoid the problems encountered with mixed inheritance. This is
because we interpret such expressions in the context of the passive hierarchy only.
Thus,super() always refers to a passive object and delegation is guaranteed to
be synchronous. This is possible because of the clean separation between the two
hierarchies. Figure 6.6 stresses this separation and is meant to provide amental
imageof how dPico objects are structured.

Figure 6.6: Identifying context parameters in parallel hierarchies

Another important observation is thatthis() is not necessarily the behaviour
of athis . This will only be the case ifathis equalsacurrent . To see why,
note that we do not wantthis() or super() to cross the boundaries of the
current passive hierarchy. Therefore,this() is only late-bound with respect to
the passive hierarchy, guaranteeing that a message sent tothis cannot escape the
passive hierarchy.

Of course sometimes a message maywantto be able to escape from the current
passive hierarchy. When evaluatingm() , the method call is restricted to the passive
hierarchy. If a message is to be sent to another passive hierarchy,athis().m()
or asuper().m() can be used. Notice that crossing the boundaries of the pas-
sive hierarchy involves asynchronicity. Thus, the programmer must be cautious
with the return value (to avoid deadlocks). However, crossing passive hierarchies
via athis or asuper has the advantage that it is done through an explicit mes-

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 186

sage send to an active object. This should be a clear reminder to the programmer
that such message sends are handled asynchronously and return a promise. The
mixed inheritance scheme did not have such clear guidelines.

This scheme, usingathis().m() for dynamic lookup of a method and
asuper().m() for methods that are located in an active parent, is better suited
towards a support for distributed object inheritance. This due to asynchronicity of
all message passing occurring along the active inheritance chain. This is very use-
ful since it is exactly this kind of communication that we want to establish across
a network. The synchronous communication is limited to the passive hierarchy,
which is always local due to thecall-by-copysemantics for passive objects we
have introduced in section 6.2.

One of the main reasons that the parallel delegation strategy will work is the
fact that we propose a controlled extension mechanism for both passive and active
extensions. This new mechanism replaces theactivate() native which could at
all times be used to make an isolated active object out of an existing passive object.
In our current system where both passive and active objects are always structurally
related, such an (active) object creation mechanism is too liberal. In the next sec-
tion the constructs that have been introduced to achieve controlled extension of
active objects are discussed.

6.3.3 Summary

In this section we have discussed two different mechanisms to introduce active
objects as part of the delegation chain. This is essential in order to have distributed
object inheritance, with sharing of distributed parents, a key feature of dPico. In
order to be able to distribute a hierarchy, without copying objects, parental active
objects are a necessity since they are the only values that are passed by reference.

The first mechanism removed the restriction imposed in cPico that passive ob-
jects can only delegate to other passive objects. Apart from reintroducing the prob-
lems we have discussed in chapter 5, a new range of problems arise when this
mixed inheritance mechanism is employed in a distributed setting. The second
mechanism, which is the one that is actually used in dPico, parallels the passive
hierarchy with a new active hierarchy. In order to have more control over how hi-
erarchies are built, we have abandoned theactivate native in favour of a more
rigid extension mechanism. For passive objects, these extensions have already been
explained in section 6.1.3. The extension mechanisms for the active hierarchy will
be explained in the next section. The semantics of method lookup on an active
object in such a hierarchy, will also be described later on in section 6.5.1.

In order to support the parallel delegation structure a new set of natives were
added that allow for asynchronous message sends to the active hierarchy. For clar-
ity, they are summarized in table 6.1. All four natives are explained in the context
of a message send to both an active and a passive object. The “owner” of a pas-
sive object denotes the active object in control of the passive hierarchy where the
object is located. For a full review of all important natives in dPico with a brief

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 187

description of their meaning we refer to appendix C.

active.m() passive.m()
mimplemented inaParent mimplemented inpParent

this() aParent ’s behaviour passive
super() this() ’s parent pParent ’s parent
athis() active Remains unchanged

asuper() aParent ’s parent Parent of owner ofpassive

Table 6.1: Summary of Natives Supporting Parallel Hierarchies

6.4 Distributed Object Inheritance

In the introduction of this chapter we have already mentioned that distributed object
inheritance is one of the key features of the distribution model. In order to support
it, the inheritance model among objects has been refactored which has lead to a
separate hierarchy of active objects, better suited for distribution aspects. To ensure
that the dPico programmer cannot escape structuring his objects as for example
shown in figure 6.6, we need a controlled and concise extension mechanism for
active objects. We will build upon the controlled extension mechanism of passive
objects usingview methods. We will also look at how activescope functions,
similar to the ones introduced in section 5.4.1, are fit into the parallel hierarchies.

6.4.1 Active Object Extensions

We have introduced the concept of parallel delegation hierarchies in the previous
section, without much attention to how such hierarchies would be constructed. This
section introduces the active counterparts ofview andmixin .

6.4.1.1 Active Views

An active view is very similar to a regular, passive view. The difference is that an
active view is applied to the active part of the hierarchy. An active view creates a
new active object whose parent will refer to the active object on which the view
was invoked.

Striving for simplicity and minimality, we were first tempted to reuse theview
native for passive objects, introduced in section 6.1.3, to create extensions on active
objects as well. At first sight, this would be an ideal decision since it unifies the
notions of both passive and active object extensions. The unification could be
conceived as follows: when aview method is invoked on an active object, it
creates an active object extension, when it is called on a passive object it creates
a passive view. This approach has its limitations, since the view itself lacks the
necessary context, to determine whether it will be applied on the active or on the

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 188

passive part. Its code will have unpredictable effects, because its semantics will
depend on the type of the receiver of the view.

If a view is written as described in section 6.1.3, it would always have to be
taken into account that this view can be used both to create an active view and a
passive view. This also means that thesuper and this natives would not be
freely usable anymore. Figure 6.7 illustrates this problem for calls tosuper . If a
view would be written,super cannot be used to access a methodm which can be
seen lexically, since if the view would be applied to an active object, leading to the
creation of an active view, the method is located in the behaviour of another active
object. This can be observed in parta of the figure. In the same vain,asuper is
also unusable, since the view might also be passive, in which caseasuper will
immediately start looking one level higher up in the active hierarchy, skipping the
desired method. This is illustrated by partb of the figure.

Figure 6.7: Super send problems with a unified view construct

Thus, view method bodies do not only depend on their specification but also
on the kind of object they are dynamically applied to. This unpredictable context
sensitivity is a bad property for a language concept. The examples further illustrate
why we have ruled out the idea of unifying passive and active views. If we cannot
perform such a unification, we must resort to the introduction of a separate active
view. This is done in dPico usingaview .

Theaview native is in fact a function lifter that is quite similar to theview as
it is defined in section 6.1.3. In the case ofaview , a function is lifted as an “active
view function”. Just asview always creates an extension of its passive receiver,
or this() if used receiverless,aview creates an extension of its active receiver,
or athis() if none is present. Figure 6.8 illustrates the creation of an active
view nested somewhere in the passive hierarchy. The newly created active view is
denoted with with a dotted border. The context parameters shown are those active
during the active view’s body evaluation. We assume the active view function to
have been applied to the object denoted byasuper in the figure.

Note that in this figure we clearly see that the passive context pointers are
pointing to the passive object hierarchy of the active object that we are constructing.

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 189

This allows us to make parameters of anaview method to become variables in the
behaviour of the new active view. Using this mechanism, we automatically lose
track of the passive lexical environment in which theaview was defined, which
can be clearly seen in the figure. This forces the programmer to pass everything
he will need as a parameter since he cannot depend on “passive lexical visibility”.
We think this is a good practise since this context will not be available either when
invoking messages on the active view. As such we introduce uniformity and make
the programmer consider explicitly which references he may need in the newly
created active view.

Figure 6.8: Active view creation with location of context parameters

The importance of active views lies in their natural support for distributed in-
heritance, in factaview is the only way to create a delegation link over the net-
work in dPico. Since we have not considered a move operator for active objects,
we can only create a distributed hierarchy using such a netview, which is an active
view on a remote active object. When an active view method is applied on an active
object, the view isalwayscreated at the site of caller, even though the object under
extension may be remote.

Here the real power of the function lifting approach to object extension is un-
covered. As we have explained, wrapper functions such asview andaview allow
us create a specialized function, altering the evaluation context of the original func-
tion prior to application. Imagine we still were to useactivate() for creating
active views. If we were then to send a message to a remote active object, the
remote object would process the message, and finally execute theactivate()
native. This would create an active object extension at the location of the remote
object. Since the parameter passing semantics we have introduced in section 6.2.2
clearly state that active objects are only passed by reference, the extension would be
passed back as a remote reference. So, rather than having a distributed inheritance
relation we would end up with a local inheritance relation on a remote location and
a remote reference to the child.

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 190

This evaluation behaviour can be avoided by “annotating” functions at the im-
plementation level. This is exactly what is done by the “wrapper functions”. These
annotations allow the interpreter to change its default evaluation behaviour with re-
spect to function application. Function application in dPico, just like in Pic%, fol-
lows a recipe-query (Briot and Yonezawa, 1987) scheme, in which a method must
always first be “downloaded” to be able to access its formal arguments. These for-
mals are needed to ensure call-by-name parameter-passing semantics (there may be
some actual arguments which cannot just be evaluated right away). Since functions
can now be annotated as active view constructors, a remote interpreter invoking the
method is alerted that the wrapped function is to be executed locally. Indeed, the
“static information” provided by the wrapper gives the interpreter essential infor-
mationbeforethe method body is evaluated. The active view’s body is then evalu-
ated locally, creating an active view on the machine of the caller, which avoids hav-
ing to implement amovemechanism for active objects. Inside theaview body the
parent of the view, which may be located remotely, will be available asasuper .
A concrete example that uses this extension mechanism is given in section 6.7.

6.4.1.2 Active Mixins

A second form of active object extension is the active mixin. The introduction of
amixin next toaview makes the active object extensions symmetric to their pas-
sive counterparts. Just like active views mirror passive views by extending objects,
active mixins mirror passive ones by imperativelymodifyingexisting objects. Re-
call from section 6.1.3.2 that mixin methods always implicitly act uponthis()
when invoked receiverless. Likewise, active mixin methods always implicitly op-
erate onathis() in such an invocation context.

Active mixin methods can be used to imperatively change a target active ob-
ject. The net effect of applying anamixin method to a receiver is that the active
object’s behaviour is replaced by the new behaviour as specified in the amixin’s
body. The old behaviour will be placed in a clone of the receiver. Subsequently,
the receiver’s parent is set to this clone. As such, the old behaviour implementation
is still accessible through sends toasuper() . To clarify the operation of active
mixins, figure 6.9 depicts the creation of an active mixin, together with the context
of evaluation during application of the amixin method.

6.4.2 Active Scope Functions

In section 5.4.1, we have introducedscope functionswhich execute their single
argument expression in a specified scope. The two most important scope func-
tions werethis(exp) andsuper(exp) . Both were interesting since they al-
lowed for flexible parent-child communication. Moreover, they provided for safe
concurrent access to objects since they defined critical sections whenthis() or
super() was serialized. In this section, their “active counterparts” are intro-
duced: the active scope functionsathis(exp) andasuper(exp) .

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 191

Figure 6.9: Active Mixin Method Application

The intuitive semantics of these active scope functions will probably be clear
to the reader.athis evaluates its argument expression in the behaviour of the
dynamic active receiver (athis()), while asuper evaluates hers in the par-
ent of the lexical active object. The major distinction between the passive and
the active scope functions is that whereasthis(exp) and super(exp) are
synchronous method invocations,athis(exp) andasuper(exp) follow the
asynchronous tradition of active objects. This means that a call to an active scope
function will return apromisethat will be fulfilled once the call is complete. Active
scope functions will thus be scheduled like any other asynchronous method invo-
cation on an active object.athis(exp) will be evaluated byathis() itself,
while asuper(exp) will be evaluated byasuper() . Notice that these seman-
tics make sense, as we can interpretathis(exp) asathis().eval(exp) ,
which is a simple message send to an active object.

Recall that thethis scope function preserves “late binding of self” by ensur-
ing thatsuper(this()) is equal tothis() . Analogously,athis preserves
“late binding of active self”, sinceasuper(athis()) equalsathis() . This
allows for easy communication between an active child and its parent and vice
versa. An expressive example of such communication and a good illustration of
the use of scope functions is given in section 6.7.

There is one important remark to make regarding synchronization. The scheme
of making active scope functions asynchronous in combination with late binding
of active self can introduce a subtle deadlock if the programmer is not careful. If
a certain active object evaluatesasuper(exp) and subsequently blocks on the
returned promise, he can only continue after his active parent has evaluatedexp .
However, if this expression somewhere contains a call toathis that will also
block, the parent object will in turn wait for its child, leading to a simple cyclic
wait – a deadly embrace.

Figure 6.10 illustrates such deadlock through the use of a simple example,
calculatingx+ y + z, wherex andz are defined in the child andy is defined in the

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 192

Figure 6.10: Deadlock using Active Scope Functions

parent. This is really a contrived example merely used to illustrate the deadlock.
When the child invokes theasuper function, it will have to wait for the promise
to be fulfilled to carry out the+ operation. Likewise, the parent will wait for the
child for similar reasons, and deadlock occurs.

We believe that by clearly distinguishing between active and passive scope
functions, we allow for a better understanding of their semantics. The “a” prepended
to each native regarding active objects should warn the programmer that he is deal-
ing with asynchronicity and that he has to be careful when to touch the return value.
Especially when sending messages toathis some care has to be taken. Evaluat-
ing touch(athis().m()) will usually immediately deadlock an object which
will be waiting for itself. However, due to late binding of active self, it is possible
that athis() is a different object than the executing object, in which case the
code fragment might not deadlock. In general, it is recommended that a self-send
to athis() is only touched in the context of theasuper scope function, since
we then can then at least guarantee thatathis() will not be equal toasuper() .

6.5 Active Object Method Invocation

We still have to explain how a method invocation on an active object is handled
in the distributed version of Pic%. Such method invocation is slightly more com-
plicated because the receiver can either be a local or a remote active object. In
the case of remote receivers, network calls will have to be performed to achieve
method invocation. As a running example throughout this section, the invocation
of ao.m(arg) will be handled whereao is assumed to be an active object,mde-
notes a valid method, andarg refers to any Pic% value. As for any Pic% method
invocation, applying a method on an active object involves a two-step process:

Method lookup This means we will have to search for the implementation ofm,
starting the lookup in the receiverao and possiblydelegatingto parent ob-
jects. As mentioned in section 5.8.2, ifm is bound to a function, method

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 193

lookup will always return aclosurecontaining the necessary context param-
eters to ensure static scope.

Method application Method application starts by binding the actual arguments to
the formal arguments of the function wrapped in the closure in acall frame.
Subsequently, the method body is evaluated in the proper context, consisting
of the call frame and the necessary objects stored in the closure.

The following sections will go into some more detail on both aspects of method
invocation on active objects.

6.5.1 Active Object Delegation

The purpose of active object delegation is to locate the methodmin a chain of active
objects. The lookup mechanism is reminiscent to that for passive objects, yet there
are some notable differences. First of all, a lookup request is handled separately for
local and remote objects. Local objects respond to a lookup request for a constant
by searching for a given identifier in the constant part of their behaviour. If the
method is not found there, the lookup request is synchronouslydelegatedto the
active object’s parent. This is possible since active objects now have their own
parent, apart from the parent of their behaviour. If the topmost active object (which
is normally themainactive object) cannot find the requested identifier, lookup ends
in the natives dictionary.

If we encounter the requested identifier along the delegation chain, and it is
bound to a function, the function is wrapped in anactive closure. Such an active
closure stores the function together with two active object context parameters: the
“current active object”ao’ denoting the active object in which the method was
found, and the “receiver active object”, which is the original dynamic receiver of
the message (ao in our example). Notice that such an active closure will never
contain passive objects, which is very important since this closure can travel across
the network. This can happen ifao (the receiver ofm) andao’ (the container of
m) reside on different virtual machines. When encountering a remote active object
in the delegation chain, a network request for the lookup ofm is sent to it. The
reply to this network request is either an active closure ifm represents a function
or simply the value ofm otherwise. Active closures have the same goal as their
passive counterparts: writing simplyao.m instead ofao.m(arg) must evaluate
to some closure that captures necessary context information to be able to correctly
applym later on. Hence, dPico featuresfirst-class remote methods.

Notice that lookup requests initiated in active objects willonly consider iden-
tifiers in theirdirect behaviour part, not in any parent of their behaviour. To see
why, notice that if passive delegation would be allowed for each encountered active
object along the active delegation chain, an extra passive object would need to be
stored in the active closure, namely the passive (lexical) implementor5. This would

5The dynamic passive receiver,this() would not have to be stored, since it can always be

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 194

mean that the lexical behaviour has to be copied to ensure the constraint on remote
references, if the active closure would need to travel across the network. Such se-
mantics would obviously be very confusing and expensive. By allowing method
invocation on active objects only to consider the direct behaviour, the need for stor-
ing passive objects is avoided, since all necessary passive context information can
be restored from the stored “current active object”.capture() andthis() are
derived as the active object’s behaviour,super() is that behaviour’s parent.

The active object delegation algorithm is very briefly touched upon in the se-
mantics of dPico found in appendix A.4.3. Having discussed the method lookup,
we will now turn our attention to method application.

6.5.2 Applying an Active Closure

The next step in evaluatingao.m(arg) is to invoke the active closureao.m on
the proper arguments. Actual arguments must always be evaluated in the context
of the caller. For active closures, the binding mechanism is entirely similar to the
passive case. The most important distinction with passive method invocation is the
question ofwho will evaluate the body of the method. In the passive case, there
was only one candidate for evaluation, being the active object performing the call
to the passive object. In the case of active objects, we can choose between three
active objects to perform the evaluation: the active object performing the method
invocation, the active receiver of the message or the lexical implementor of the
method.

6.5.2.1 Choosing the Method Evaluator

We have chosen to make the lexical implementor of the method the evaluator of
the method body, as it is the most logical choice in the context of lexical scoping.
That is, the call frame of the method mustalwaysextend the behaviour part of this
lexical implementor. This is needed to ensure that “free variables” in the method
will correctly refer to the lexically visible instance variables of the active object.
From a more conceptual point of view, it also makes sense to have the implemen-
tor of the method also execute it. A final argument in favour of our choice is that
our delegation scheme therefore comes very close to Henry Lieberman’s original
proposal of delegation in (Lieberman, 1986). There, objects or actors can dele-
gate a message to theirproxy (their parent in our specific case), thereby implicitly
stating “I don’t know how to respond to this message, can you respond for me?”
(Lieberman, 1987).

This kind of delegation scheme is very close to ours, except that we have to
break down delegation in three steps: method lookup, argument evaluation and
method application. The reason why the arguments cannot just simply be evalu-
ated first and then passed on to parent active objects together with the delegated
message is that some care has to be taken with Pic%’s call-by-name parameter

derived as the behaviour of the current active object.

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 195

passing semantics explained in section 2.5.3.2. By introducing lazy evaluation, it
must first be ensured which arguments may be evaluated before telling a parental
object to apply a certain method. Nevertheless, the idea of having a parental object
handling the message request instead of the original receiver remains very close
to the original idea of delegation. Late binding of self is translated to late binding
of active self in the context of active object delegation. That is, during method
application,athis() will still point to the original receiver, not to the lexical
implementor.this() however, will always point to the behaviour of the lexical
active object. We cannot makethis() point to the behaviour ofathis() as
this behaviour could possibly be located remotely, and we cannot create remote
references to passive objects.

6.5.2.2 Method Evaluation Context

When the arguments are finally evaluated and bound to a call frame, all that re-
mains to be done is to pass on this call frame to the lexical active objectao’ . This
is done by scheduling the call frame, the method body and a promise in the active
object’s request queue. The caller then merely continues its evaluation, evaluat-
ing ao.m(arg) to a promise. Whenao’ processes the request, it will set the
call frame’s pointer to its behaviour and will start evaluating the method body in a
context wherethis() is bound to his behaviour,super() is bound to the be-
haviour’s parent,athis() is bound toao andasuper() is bound toao’ its
parent. This evaluation context is visualized in figure 6.11.

Figure 6.11: Active Object Method Evaluation Context

When the method’s body is evaluated, the corresponding value is used to ful-
fill the promise that was passed by the caller. This will wake up any active ob-
ject blocking on the promise. More detailed semantics regarding active object
lookup, active closures and active object method invocation can be found in ap-
pendix A.4.3.

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 196

6.5.3 Minimizing Network Traffic

Performing method lookup over the network is a costly operation, which is why
such lookup should only be performed when it is essential for the correct operation
of the program. In order to minimize unnecessary network traffic, the active object
hierarchy can be “collapsed”, thereby obtaining locality. dPico supports such a
collapse through thecopydown native.

Figure 6.12 shows how a copy of the behaviour that is being “copied down” re-
places the natives dictionary6. The natives are typically the parent of the behaviour
of an active object, although this is not always so due to imperative mixin methods
(see section 6.1.3.2).

Figure 6.12: Applyingcopydown

Let us introduce the use ofcopydown using a simple program that allows
travel agencies to book airline company flights. The code fragment below shows
a constructor function for an active view per airline company. Every airline com-
pany exports two simple methods, which are not further specified here. Thebook
method books a flight to a given destination for a client, and thelist method re-
turns a table of all destinations that this particular airline offers. ThetravelAgency
constructor function represents a travel agency’s view on the particular airline com-
pany.

‘ destinations is a table of passive objects ‘
‘ with a ’name’ and a ’book’ method ‘
aview.airline(destinations) :: {

book(name, client) :: ...
list() :: ...
aview.travelAgency() :: {

copydown();
list() :: .list();
update() ::

destinations := asuper(destinations)

6Since a copy-down involves the entire behaviour of the parent, the natives will still be at top of
the hierarchy afterwards.

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 197

}
}

Intuitively, the most frequent request that will need to be answered is alist
request, since most customers will first want to browse all the possible destina-
tions before deciding to book a flight. The goal is now to reduce unnecessary
network traffic to the airline company object. Thereforecopydown() is used
to copy the entire behaviour of the airline to the machine of the travel agency.
Thus, the behaviour of thetravelAgency active object now has a parent which
containsdestinations , book , list andtravelAgency . Since the whole
behaviour has been copied we can rest assured that all needed local variables in
methods are available.

In section 6.5.1, we have already stated that during active method lookup,
only the behaviour of the active objects along the active hierarchy are searched.
Since the copied-down methods are not expanded in that behaviour, but rather at
least one level higher up, an invocation ofaTravelAgency.list() will ac-
tually still travel up to theairline object because it is not directly found in
aTravelAgency . To prevent this, definitions that need to remain visible in
the interface of the active object have to be explicitly overridden. This is illus-
trated in the example wherelist is overridden usinglist():: .list() .
This makesaTravelAgency.list() find the “artificially overridden”list .
When evaluating.list() , thelocalhierarchy of the travel agency will be searched
and the copied down locallist will be found and applied.

Notice that clients invokinglist on a travel agency will receive information
that is constructed from possibly outdated local information. In the example, this is
no real issue since the destinations that an airline offers do not change frequently.
Sincebook is not “artificially overridden”,book messages are always sent di-
rectly to the airline to avoid e.g. double bookings. Thus, the method of “artificially
overriding” methods can also be seen as an advantage, since it offers some con-
trol as to which methods may be used by directly clients. Finally, the example
also shows how to update copied-down information in a very simple way using the
active scope functions discussed in section 6.4.2.

6.6 Service Discovery: First Contact

In a distributed setting it is essential to be able to get an initial remote reference
to an object. As mentioned in section 6.2, such initial references are necessarily
always references to active objects. To allow active objects to make themselves
visible we have introduced theao.register(channelName) native. This
native function ensures that its receiver is an active object, and subsequently reg-
isters the active object on a specific channel. The modelling ofregister as
a method instead of an operatorregister(ao,channelName) ensures Ex-
treme Encapsulation of objects. Objects not willing to be publicly visible can over-
ride register .

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 198

In our current distribution model, a channel is nothing more than a text string
that can be used to describe some properties of the registered object. For example,
an active object that represents a data projector might be published on the “projec-
tors” channel. Since it is possible to register an active object on multiple channels,
a single object can perform multiple roles. For example a laptop can register both
as a “Computer” and as a “Visualization Device”.

Using theregister native we can couple an active object to a channel. In
order to retrieve, possibly remote, references to the objects of a channel we use a
simplemembers native. This native function takes a channel name and returns
a Pic% table of the active objects that have registered themselves to that specific
channel. The actual implementation of this native relies heavily on how the channel
information is maintained.

Initially the mapping of channels to their members was maintained on a specific
server, and all registered object references were thus transmitted to that server. This
model was very simple and allowed for the members of a channel to be simply
fetched from this central server. However, using a single server is not really wanted
in the setting of ambient intelligence. For example, Maria will not want to connect
to some server to find out that there is a projector in the seminar room. Rather,
devices seemingly “smell” one another as soon as they get into one another’s range.
The use of a single server also poses severe fault-tolerance problems. If the server
crashes, channels would become unusable.

Therefore our current Java implementation, briefly described in section 6.12,
does not use a global server but rather keeps published remote object references
local to each virtual machine. Every VM contains a mapping per channel for all
active objects that have locally registered to that channel. This has the advantage
that such a network lookup is a lot less vulnerable to failures, since the management
is no longer in the hands of one server. Moreover this approach is also better suited
to model devices that may go out of range in a wireless setup. At this point they
will appear to be no longer present on the channel.

To find the members of a specific channel, a single request to some server is
now impossible. Instead, a request for the members of a given channel is broad-
casted to all devices currently “in range”. Each such device responds to the broad-
cast message with the set of active objects locally registered in that channel. After
this handshake with all available members, the sets are unified and the result con-
verted to a fixed-size table. This mechanism is illustrated in figure 6.13. The im-
plementation makes some simplifying assumptions, such as the fact that all virtual
machines in range will properly reply to the request.

In the future we would like to explore what role multivalues, which are a lot
more dynamic than Pic% tables, can play in this discovery process. We could for
example return a “multivalue” before all nodes have returned, where results are
“accumulated” as they arrive at the node. This would also avoid the requirement
that all process should return a value. However we have explicitly chosen not to
incorporate multivalues as of yet in dPico to be able to focus on the core of the
language’s concepts, such as distributed hierarchies. We have deferred multivalues

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 199

Figure 6.13: Broadcasting amembers request

as future work.

6.7 An Example: a Distributed Chat Client

Up to now, we have defined several concepts in dPico, including a new object
creation mechanism, a distinction between an active and a passive object hierarchy
and a plethora ofthis andsuper constructs to access both hierarchies. This
section is meant to bring it all together and to give an example of how distributed
applications can be written in dPico.

The example illustrated here is a distributed chat client. It uses parent sharing
as a primary mechanism to structure the code. It also shows how parent sharing
is used achieve collaboration between several child objects. Due to the distributed
nature of the application, all objects in the example are active. Aserverobject is
introduced which is designated two tasks. First, the server decides who can join a
given chat channel. Second, it is the server’s responsibility tobroadcasta message
to all registered clients. The server is modelled as ashared parentof the registered
clients. The clients themselves are active views on the server. A general structure
of the code example is shown below to emphasize the parent-child relation of server
and clients.

aview.chatServer(channelName, maxClients) :: {
clients[maxClients] : void;
occupancy : 0;
aview.registerClient(nam) :: {

...
};
sendMsg(msg) :: { ... };
...

};

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 200

The server is defined as being an “active view” on the top-level active object
(main). The registerClient method can be used to create active views on
the server. It will alsoautomaticallyregister the client it creates with the parent.
If registerClient is called remotely, it will naturally create a netview (i.e. a
remote active view) on the server. The server contains a table of to keep track of
registered clients and a variable keeping track of thenumberof registered clients.

Upon initialization of the client, the parent needs to register the new active
view. This is plainly done by adding the view to theclients table. However,
how is the parent to get a reference to its own active view? Upon execution of
registerClient , theaview ’s code is already evaluated in the context of the
client itself. Therefore, the client will perform the registration inside the body of
registerClient . Note that it can beguaranteedthat any created client will be
properly registered, because the client code is nested in the parent’s code. Hence,
the server dictates the behaviour of its clients, and malicious behaviour is ruled out.
registerClient is defined as follows:

aview.registerClient(nam) :: {
receiveMsg(from,msg) :: display(from,": ",msg,eoln);

asuper(
if (occupancy=maxClients,

error("Sorry, channel is full"),
clients[occupancy := occupancy+1] := athis()))

};

The methodreceiveMsg will be invoked by the server whenever a client
has sent a message to the chat channel. A client will plainly print this message
to the screen, together with the identification of its sender. More important is the
use of the active scope functionasuper to register the client with the server.
Recall thatasuper asynchronously evaluates the argument expression in the con-
text of asuper() . The latter denotes the active object under extension, which
is the server in this example. Hence, the client politely registers itself with the
server. The server does not have to define any special method for it. This reg-
istration mechanism issecure. If the server would have had a public method
register(aClient) , malicious objects could use such public method to reg-
ister client objects that are no children of the server.

Notice how late binding of active self is exploited in the registration code. The
object that gets added to theclients table isathis() , which still denotes the
active view. Hence, the server is properly passed a reference to its client child.
What follows is the code forsendMsg , defined on the server object, which broad-
casts a message to all registered channel clients.

sendMsg(msg) :: {
from: athis(nam);

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 201

for(i:1, i <= occupancy, i:=i+1,
clients[i].receiveMsg(from, msg));

"message sent"
};

Although the message is defined in the parent, it is meant to be invoked on a
client. Delegation will ensure the message is understood. As explained in section
6.5, a message delegated to a parent will also beexecutedby that parent. Thus, it
is the parent which will executesendMsg . Due to late binding of self,athis()
will refer to the client to which thesendMsg request was really sent. The parent
can use the active scope functionathis(exp) to retrieve thenameof the sender
(which is the initial receiver ofsendMsg). The server then reroutes this message
to all of its registered clients by sending each of them thereceiveMsg message.
Notice that such invocations happenasynchronously. This illustrates the power of
asynchronous message passing, where the calling object (the parent) can quickly
distribute messages to possibly very distant chat clients without suffering from
delays.sendMsg will probably return even before the text message is received by
all clients.

It should be noted that the messagesendMsg should not be sent directly to the
server object. Doing so would deadlock the server:athis() would point to the
server itself, so the server would asynchronously ask itself for its name and block
forever on the resulting promise. This is because the request fulfilling the pro-
mise returned byathis(nam) is scheduled in the server’s own queue. When the
server subsequently touches the promise, it blocks and thereby keeps the scheduled
request that should fulfill the promise from getting executed.

To be able to access the chat server remotely, service discovery as explained in
the previous section should be added. To this end, a chat server will register itself
on the dPico channel denoted by its channel name. It suffices to add the expression
register(channelName) to the body ofchatServer . Since a function ap-
plication ofregister is considered similar to a self sendathis().register ,
it is the chat server under creation that will be registered.

Finally, consider the following code being executed on a virtual machinedif-
ferent from the one on which a chat server hosting the channel “vubServer” is
deployed.

{ vubserver: members("vubServer")[1];
client : vubserver.registerClient("John Doe");
client.sendMsg("Hello World") }

A remote reference to the server is retrieved by requesting the members of the
“vubServer” channel.client is a remote active view on this server. The message
sent to this client will properly be broadcast by the parent to all registered clients
on any number of virtual machines.

The distributed chat client example illustrates how easy it can be to structure
software according to a simple parent sharing relation. A non-trivial client-server

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 202

application as outlined above can be written in dPico in less than 20 lines of code
which we think is quite expressive. Bidirectional communication between parent
and children is naturally achieved through the delegation link. Upward commu-
nication happens through implicit delegation or explicit super sends. Downward
communication is made possible by late binding of self. A similar example mak-
ing use of such communication can be found in (Dedecker and De Meuter, 2003).

Notice that all participating objects in the example are active. This means that
they find themselves protected against race conditions, since messages sent to them
are properly serialized. This eases reasoning about the concurrency involved. The
programmer will still have to be careful with the return values of asynchronous
message sends, however. The complete source code of thechatServer example
can be found in appendix B.2.

Having discussed the most important concepts of dPico, the following section
will discuss promises, inherited from cPico. An implementation-level technique
will be discussed that keeps promises a manageable abstraction in a distributed
context.

6.8 Promises in a Distributed Context

In section 5.3.3.2, we have introduced promises as a mechanism for supporting re-
turn values of asynchronous method invocations on active objects. In this section,
we will extend the use of promises to support method invocations on remote active
objects. Although the concepts will stay largely the same for the dPico program-
mer, we will need some extra support to ensure a correct operation of promises
in a distributed setting. To sketch the problems involved, notice that a message
sent to a remote object will be handled by the receiver itself. This means that the
method corresponding to the message is executed remotely (from the point of view
of the caller). A promise is used by the caller to get a handle to the result of the
invocation. However, the callee will also need a reference to the promise to be able
to fulfill it. Thus, we have two active objects on separate virtual machines each
needing a reference to the same promise.

This introduces conceptual as well as implementation-level problems. Concep-
tually, the only language value that could be shared between virtual machines up
until now were active objects. Promises will have to break this rule such that callees
can properly fulfill the correct promise. The following section will explain how
promises are adapted to become remotely accessible while hiding this from the pro-
grammer. Section 6.8.2 will then discussautomatic continuations(Ehmety et al.,
1998). These continuations allow for increased asynchronicity using promises and
are related to the implementation-level problems promises raise in a distributed
context.

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 203

6.8.1 Remote Promises

As mentioned in the introduction, the problem in using promises for remote method
invocations is that the promise itself needs to besharedbetween multiple inter-
preters. In order to deal with this sharing, we introduce aremote promise, which
is nothing more than a proxy for a promise residing on a different machine. When
transferring promises across a network, we will not send the promise in itself, but
rather a surrogate, a remote promise. Such references are very similar to the re-
mote object references to active objects. The idea is that the caller of a remote
method invocation gets a reference to the locally created promise, while the callee
receives a remote promise. When the remote promise gets fulfilled by the callee,
it will automatically forward its fulfilled value over the network as to fulfill the
local promise. If the calling process was blocked on the local promise, the re-
mote active object can implicitly wake it up through the remote promise. Just as
the implementation-level remote object references require a “remote object table”
to map proxies to objects, so do remote promises require some bookkeeping by a
“remote promise table”.

6.8.2 Automatic Continuations

Automatic continuations, as explained in (Ehmety et al., 1998) occur when an asyn-
chronous method fulfills its promise with apartial result. A partial result is either
an unfulfilled promise or a data structure indirectly pointing to an unfulfilled pro-
mise. When the callee returns such partial results to its caller, two strategies can be
followed. Either the callee mustwait for the result to becomecomplete(i.e. all un-
fulfilled promises in the return value must be fulfilled), or it can simply return the
partial result already and continue serving other requests. When the latter strategy
is chosen, anautomatic continuationis said to occur.

Such situations can occur in cPico or dPico when an active objecta sends a
messageb.m() to another active objectb. a will immediately receive a promise
that will be fulfilled with the return value ofm. If b now returns a promise asm’s
return value,a’s promise will be fulfilled byb’s returned promise. As explained
in chapter 5, fulfilling promises with other promises is possible in our language
and sob can continue processing other requests – it does not have to wait for its
return value to be complete in order to “return from the method call”. Thus, our
semantics and implementation allow for such automatic continuations.

In (Ehmety et al., 1998), both approaches to partial return values – blocking
the callee or allowing for continuation – are compared. The automatic continuation
strategy is preferred since it exploits more parallelism by favouring chained asyn-
chronous method invocations. If an active objectao1 invokes a methodao2.m() ,
and this method returnsao3.n() as its value, then it makes sense thatao2 can
continue and that it does not have to wait forao3 to computen before it can return
its value toao1 .

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 204

6.8.2.1 Distributed Automatic Continuation Support

A distributed context that necessitates the use of forwarding promise proxies com-
plicates the support for automatic continuations. To see why, reconsider the ex-
ample of the three active objectsao1 , ao2 andao3 from the previous section.
Assume each of the objects is located on a different virtual machine. These ob-
jects and the methods they invoke are shown in figure 6.14. The method invocation
ao2.m() initiated byao1 will spawn a local promiseρl1 at ao1 ’s location and
a remote promiseρr1 at ao2 ’s location. Likewise, the callao3.n() generates
promisesρl2 andρr2. Now, the promiseρl2 will be the return value ofm, and thus
ρr1 will be fulfilled with it. Sinceρr1 is a “forwarding proxy”, it forwardsρl2 to
ρl1. Recall that promises are never transported across the network. Instead they
are passed by reference and thus a new remote promiseρr3 is created atao1 ’s site,
“pointing to” ρl2. If ao1 now blocks onρr3, it will againhave to perform a remote
call to ao2 ’s interpreter to see whetherρl2 hasn’t been locally fulfilled yet. The
example is visualized in figure 6.14. Full circles represent local promises, while
dotted circles represent remote ones.

Figure 6.14: Using Remote Promises to support Automatic Continuations

To eliminate this excessive remote promise and the resulting network traffic
overhead, we employ an algorithm that will transform “fulfilled by” links into “for-
wards to” links. Whenever a promiseπ is fulfilled by another promiseρ, we will
not “propagate”ρ, but instead ask it toforward its valueto π when it becomes
determined. Thus, we have turnedρ into a “forwarding promise” which will for-
ward its eventual value toπ. Thus, the relation “π is fulfilled by ρ” is reversed and
transformed to “ρ forwards its value toπ”. Figure 6.15 illustrates the changes this
implies for the previous example. Notice the disappearance ofρr3. This promise is
no longer needed asρr1 will only forward determinedvalues over the network. No-
tice how a “forwarding chain” is created naturally, flowing from one promise to an-
other. When the call toao3.n() finally returns some value, this value will travel
all along the forwarding links, fulfilling the promises as it is passed on through.

If a remote promise is now asked to forward another promise, the remote pro-
mise asks that promise to forward its eventual value whenever it becomes available.
To ensure that this value is in turn not a promise, the forwarding scheme must be

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 205

Figure 6.15: Using Promise forwarding to support Automatic Continuations

applied recursively. Since a local promise can now become a “forwarding pro-
mise” as well, we must encode a general mechanism for local as well as for remote
promises.

6.8.2.2 Promise Forwarding Graph

From the above example, the reader might get the impression that a forwarding
promiseρ can only ever forward tooneother promiseπ. But, since “ρ forwards to
π” is now equivalent to “π is fulfilled by ρ”, we see that this is only true if there is
no otherpromiseπ′ such that “π′ is fulfilled by ρ”. This condition does not hold in
general: we can have one value that fulfills many promises. A really easy way to
accomplish this is to make use of call-with-current-promise as explained in section
5.6.2. Using thedelay native, it becomes possible to get hold of promises as
manipulable values. It is then easy to write:

fulfill(p1,p3);
fulfill(p2,p3);

Here,p3 corresponds toρ, while p1 andp2 representπ andπ′. Since there
are nowtwo promises dependent on the value ofp3 , the latter must forward its
eventual value tobothof them. This promise forwarding scheme is easily mapped
on a graphG(V,E) where the verticesV are promises and the edgesE can be
defined as{(π, ρ)| π forwards to ρ }. This graph can easily contain cycles, as
is witnessed by the legal expressionfulfill(p,p) . If an active object ever
touches a forwarding promise, it will have to block and wait for the promise to
be fulfilled, as is the case for regular promises. Thus, althoughG may contain
cycles, touching a promise in a cycle will not lead to a livelock by endlessly chasing
forwarding pointers since forwarding promisesonly forward fulfill requests,not
“touch requests”.

When a forwarding promise gets fulfilled by a determined value (i.e. any value
other than a promise), it will transcend to a determined state and forward its value
to all of its “registered clients”. From that moment on, the promise is no longer
a forwarding promise. If a number of forwarding promises are structured in a
cycle, and one of them gets fulfilled with a determined value, interesting behaviour

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 206

occurs. The fulfilled promise will forwards its value to its neighbour, which will
again forward it to his neighbour, and so on. . . . As such, the entire cycle will all of
a sudden get fulfilled. This fulfillment through forwarding will not go into livelock
(i.e. the value is not forwarded around the cycle indefinitely), since a promise
first becomes a determined promise before it starts forwarding. Since determined
promises plainly ignore any forwardedfulfill request, the travelling value will be
“absorbed” by the initiator when it has gone round the entire cycle once.

To summarize, we see that a promise in our improved forwarding scheme can
be in one of three states:undeterminedwhen it does not have any value yet,deter-
minedwhen it is fulfilled by a determined value andforwardingwhen it is fulfilled
by a promise itself. Moreover, a promise can be subject to three fundamental op-
erations: it can be fulfilled, it can be asked to forward its value to another promise
and it can be queried for its value. The entire state diagram for promises is shown
in figure 6.16. In the diagram, we assumep to denote a promise andv to denote
any value but a promise. Each transition is annotated with pseudo code indicating
the response to a given message in the receiving state.

Figure 6.16: The Promise State Diagram

A local promise always starts out in theuninitializedstate. One can regard a
“remote promise” as being nothing more than a local promise that is initiated in
the forwardingstate, having as its sole forwarding client some promise across the
network. Remote promises can therefore also be plainly reified using call-with-
current-promise.

The scheme of forwarding promises is more than a plain optimization tech-
nique to support proper automatic continuations. From the above explanation, it
is clear that forwarding promisesavoid livelock. This would not be the case if we
would not employ the forwarding scheme. Consider the execution of the following

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 207

code fragment in such a case:

fulfill(p1,p2);
fulfill(p2,p1);

This would transform bothp1 andp2 into determinedpromises, rather than
forwardingpromises. If an active object were to perform an operation on one of the
promises, it would inevitably get stuck in an infinite loop:p1 will consider itself
fulfilled and will delegate the operation top2 , who will in turn delegate the opera-
tion top1 , ad infinitum. We see that, by turning promises into forwarding promises
that do not delegate “touch” requests, we can banish such promise livelocks.

6.9 Transmitting Environments: Basic Mobility

Programs can be transformed to first-class values usingcall as environments,
a property dPico has inherited from Pico. Such environments are Pico’s nomen-
clature for a run-time stack paired with a dictionary (representing the root of the
“heap”). Such values are calledcontinuationsin Scheme. Because an environment
is first-class, a “snapshot of a running program” can be perfectly passed as an ar-
gument to a remote method invocation. Recall from section 6.2.2 that any value
other than active objects and promises are passed by copy. This means that the en-
vironment will have to be copied, which includes the run-time continuation stack
of the program and all values reachable from the environment root.

This ability of passing around Pico environments allows for a primitive form
of code mobility. It is possible for some active object running at a virtual machine
A to execute:

... ‘part 1‘
call({ result := remote.interpret(cont);

continue(exit, result) });
... ‘part 2‘

We assumeremote to refer to a remote active object andexit to be bound to
some environment denoting a place to “jump to” as to escape the local execution
of the code labelledpart 2. The purpose of the code excerpt is to make a snapshot
of part 2 by storing it in the variablecont and to subsequently pass that environ-
ment to some object residing on virtual machineB. If the latter object issues a
continue on the given environment, it willlocally executepart 2:

aview.evaluator() :: {
interpret(program) :: continue(program, void)

}

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 208

Moreover, useful data can be passed topart 2 if this code uses the value of the
call expression, and ifevaluator continues the program with a useful value.
dPico will ensure that the entire stack is properly copied, together with the heap
data. Recall from section 5.3.2.2 that environments also store information on locks
and their reentrancy status. When transmitting locks across the network, this infor-
mation is also properly serialized, such that remote continuation of an environment
ensures any copied serialized object will be properly locked again. Notice also that
any context information of the program, such as whereathis() and this()
point to, is transmitted as well. Thus, even if environments are passed around to
other active objects, only the active object evaluating the code will be modified.
Context parameters will remain unchanged. For instance, in the example,asuper
will not all of a sudden point to the parent ofremote upon continuation atB.

The purpose of this section was to show that the fundamental basis for strong
code mobility is present in our language. Running programs can be “interrupted”
(the run-time stack can be frozen in a Pico environment) and the resulting snapshot
can be transmitted to a remote object. The latter can continue execution of the
program locally. To properly support strong mobility as we have envisioned it in
chapter 1, dPico will have to be extended with more high level constructs. Strong
mobility could for example beunifiedwith the movement of active objects. If an
active object would be able to move to another interpreter while running code, code
and object mobility would be unified and the number of concepts in the language
would be kept minimal. We will not consider such advanced mobility schemes any
further in this dissertation.

6.10 Security and Safety Issues

As we have explained before, security and safety are major issues when dealing
with distributed computing. Though we have not devoted too many attention to
security and safety issues in dPico, we have ensured that at least the objects them-
selves can take care of security if they need it. This is possible due to certain
language features that inherently enhance the security and safety of the system. Ex-
amples areparent sharingin combination with acontrolled extension mechanism
and the avoidance of operators that break Extreme Encapsulation. The observation
that encapsulated inheritance by views and mixins allows for more security and
safety was already made in (De Meuter et al., 1996).

Security Although we provide only a public and a private interface to objects,
scope functions introduce a form of “protected” interfacing, by allowing children
to access functionality of a parent not reachable through plain super sends. The
advantage of this protected interface is that it can only be used by descendants.
The parent itself does not have to make provisions and does not have to identify
which methods may be accessed by a child, as is the case in Java. This allows the
parent to make certain methods which manipulate sensitive data private, such that

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 209

other malicious objects cannot abuse these methods. The parent always knows that
its own children will be able to access it using a scope function. Since the parent
decides on which objects can be its children, security is maintainable.

The aspect of security also comes into play when trying to find a good mix
between allowing unforeseen extension of objects and security. Consider a passive
object that allows extension from the outside (i.e. it allows for the creation of
children with arbitrary code). This means that unknown children can override any
set of methods and variables. As in cPico, the parent object can stay in control by
invoking lexical functions instead of the overridden ones usingm() instead of an
explicit self-sendthis().m() .

dPico introduces a similar technique for the active hierarchy. The technique
provides some additional benefits in a distributed setting. First of all, a call of the
form m() guarantees that the method in the local behaviour will be called, whereas
athis().m() may invoke a (possibly unsafe) overridden method. More im-
portantly in a distributed setting evaluatingathis().m() may lead to remote
method lookup. If the method is applied asm() instead, it is guaranteed that no
network traffic will occur (given thatm is bound to a function). Locality may be
considered for optimization concerns, but also helps to reduce an active object’s
vulnerability to partial failures. Using thecopydown native which we have ex-
plained in section 6.5.3, we have given the dPico programmer some tools to ensure
that even functions defined in the parent can be applied locally.

Safety Where security is meant to fend off possible intruders, safety is more
of a software engineering concern. As we have already stated in section 4.2.2,
safe languages try to “restrict” the impact of an error or a programming bug. This
means that we want to minimize the amount of code the programmer should inspect
in order to find a bug. Program structure is an important aspect that needs to be
taken into consideration in order to be able to confine errors. We have mapped this
need for structure onto the lexical structure by reintroducing static scope and by
only allowing object extensions through controlled application of special extension
functions which automatically set up proper evaluation contexts behind the scenes.

The introduction of the new object extensions has two additional advantages
with respect to security. First of all, we cannot suddenly objectify an arbitrarily
deep nesting of call frames. With a call tocapture this could be done in cPico,
thereby changing the semantics of for example delegation of variables. Such com-
plex semantics are often obfuscating to the programmer. It may be hard to trace
where these implicit transformations affect the programmer’s code, and as such
these transformations make the language less safe.

The explicit use of pointers compromises safety. Therefore pointers do not ex-
ist in the standard Pic% model and dPico does not introduce them either. All types
of local and remote pointers are managed by the interpreter. Parent pointers are
made immutable and fixed through encapsulated inheritance with views and mix-
ins. An object extension’s parent is known at creation time and cannot be changed

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 210

later on. Although we lose some of the flexibility of Self and dSelf, immutable par-
ent pointers are vital for both the safety and the security of objects. If a child would
be able to change its parent, it could designate any object to become its ancestor,
allowing it to abuse scope functions to gain access to the new parent’s variables.

The only other type of remote references left in the system are remote promises
which can be reified usingdelay . Remote promises are kept identical to local
promises for dPico programmers. Thus, a remote promise can never be forced to
forward its value to another promise. The fact that all pointers are managed by the
system also allows the implementation of (distributed) garbage collection, which
also improves safety, as explained in section 4.2.2.

6.11 Limitations

Although dPico offers an original and innovative way to deal with some non-trivial
issues like distributed object inheritance in a controlled and expressive way, we
have found that the language has some flaws as well. This section highlights the
limitations we have identified. Some of these will probably be dealt with as the
language is subject to more design iterations. Others will prove to be more funda-
mental to the language’s core concepts. To avoid these limitations, concepts will
have to be entirely removed or reworked. Finally, the language lacks some im-
portant features we have not been able to design due to time constraints or because
they are too complex to deal with all at once. A list of identified limitations follows.

• As we have mentioned in 6.5.1, method lookup in active objects willonly
consider the direct behaviour of active objects. The behaviour’s parent is
never searched. This is because active object delegation can cross network
boundaries, and the passive objects should not be transmitted by copy during
method lookup. One way around this is to reintroduce remote references to
passive objects into the language, but to hide these references in encapsulated
context objects, such that they will never be directly usable by the program-
mer. Yet, allowing remote references to passive objects breaks down the
simple semantics and complicates the implementation.

• The above limitation has some direct consequences for passive mixins. As
discussed in section 6.1.3.2, a mixin method will move the passive hierarchy
“upward”, in the sense that the subject of a mixin will receive a new parent
object. Now consider a mixin method applied to the behaviour of an active
object. As discussed above, when performing method lookup in active ob-
ject, only the behaviour itself is visible, not its parent. Thus, only mixed in
behaviour will be visible: any methodmdefined in the old behaviour that
is not overridden in the mixin suddenly becomes invisible. The dPico pro-
grammer explicitly has to override each method he wants to “inherit” from
the old behaviour by writing code such asm() :: .m() .

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 211

• Although the active scope functionsathis andasuper allow for an ex-
pressive communication link between child and parent, section 6.4.2 has
warned about possible deadlocks that can occur if the promise returned by
the scope functions is used unwisely. What is most problematic is that it is
not always clear when it is safe to use the return value of an active self-send
usingathis . If athis() is not bound to a different object, the sender will
deadlock because it will eternally wait for a promise it has to fulfill itself.
This problem is, however, not inherent to the scope functions themselves.
Rather, it is an instance of the more general problem of a circular wait, in-
carnated in dPico by blocking on promises. When using such tools to control
inheritance, deadlocks can always be willingly or unwillingly programmed.

• In section 6.2.2, it was explained how passive objects are passed by copy
during a remote method invocation. Performing such a transitive copy from
a given root object is problematic in the context of serialized objects7. To
properly marshal a serialized object, its mutex must be acquired to ensure
that no active object is using the object when it is copied. This may lead to
very subtle deadlocks as it is always dangerous to invisibly acquire locks.
If such a deadlock occurs, the programmer will hardly be able to debug it,
since it requires him to trace the entire transitive closures for cyclic waits.

• The different semantics we have developed for parameter passing to lo-
cal or remote active objects come at the cost of sacrificing some location
transparency, as was already noted in section 6.2.2. Consider an active
library object and a passivebook object. The semantics of invoking
library.archive(book) will highly depend onlibrary ’s location.
If library is a local active object,book will be passed by reference.
If library is located remotely,book will be copied, and side effects of
archive will not be visible to the originalbook . The only two solutions
are either to passbook by copy even iflibrary is a local object or to pass
book by reference iflibrary is remote. The first solution is expensive,
whereas the second introduces references to passive objects, complicating
the semantics.

• Similar problems occur with call-by-name parameter passing in a distributed
context. Imagine the invocation of a method taking call-by-name parameters.
Since actual arguments always need to be wrapped in closures as to not lose
context information, the closure will be passed by copy if the receiver is a
remote object. This leads to the copying of the caller’s context. Although
it is expensive, it is necessary to ensure no passive objects are shared be-
tween interpreters. This again prevents remote references to passive objects,
ensuring that active objects remain the unit of sharing.

7Here, we interpret serialized in its concurrent setting. We will employ the term marshaling for
serialization in a distributed context to avoid confusion.

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 212

• dPico completely lacks error handling constructs, crucial to any realistic dis-
tributed programming language. To construct realistic ambient programs, it
would need to deal with such problems as unavailable remote objects and
promise timeouts. Incorporating full-fledged partial failure handling mecha-
nisms in dPico falls outside of the scope of this dissertation. We will explore
some of our ideas regarding this topic in our directions for future research in
chapter 7.

6.12 Proof of Concept Implementation

In order to conduct our experiments and to validate our design decisions we have
implemented dPico in Java. Implementing and using several versions of dPico
allowed us to test the consequences of alternative language design solutions for
important choices, both on the implementation of the semantics itself, and on the
usability of the model for the programmer. A clear example of such a decision is
the rejection of incremental locking schemes (see section 5.7.1) which lead to the
introduction of several new concepts as is described in section 5.2.

The choice for Java as our implementation medium is partly motivated by plat-
form independence and because the Java virtual machine is available on a number
of small mobile devices such as cellular phones through the Java 2 Micro Edition
application environment (Sun Microsystems, 2004). Our current implementation
has not yet been ported to J2ME, but with future development for such target de-
vices in mind we have chosen the Java platform to avoid having to rewrite our
existing code-base completely.

Currently our proof of concept implementation of dPico does not use a real net-
work for communication. Instead, a dPico interpreter can start up multiple virtual
machines – each having its own front-end window for user interaction. These “dis-
tributed” virtual machines have onlyoneobject in common. This singleton object
models a network, through which virtual machines can communicate. Nevertheless
we have been careful to never rely on the locality of objects. We use the built-in
Java serialization mechanism to encode a dPico object graph in a bytestream. Only
bytestreams and similar native Java types can be communicated through the net-
work object. Remote object references are not represented as “proxies” or “wrap-
pers” having a hidden pointer to their referenced objects, but are actually repre-
sented as a unique identifier. When passing a remote object reference, only this
object identifier is transmitted. A remote object table is used to resolve such iden-
tifiers to local objects. This also guarantees a total decoupling of local virtual
machines.

The decoupling ensures that no dPico value can ever be really shared between
local virtual machines. This should allow us to extend our implementation to a
realistic distributed context using only moderate modifications. In an earlier ver-
sion of the language, we have implemented the distributed virtual machines using
SOAP middleware technology. This implementation was abandoned due to prob-

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 213

lems in using SOAP in our distributed experiment. The details thereof have been
published in (Van Cutsem et al., 2004).

In our implementation we have neither been concerned with efficiency nor with
optimization techniques, as language features tended to change during the incre-
mental and iterative development of the language. Moreover, the implementation
is intended to serve as a “proof-of-concept” that enables us to test and verify our
design, rather than being a full-fledged programming environment. Nevertheless
we are aware that efficiency is an important issue, especially when designing a
language for small devices with low computing power and stringent memory con-
straints. Therefore we have never considered language features that would bein-
herentlyinefficient.

6.13 Conclusions

This chapter has introduced a distributed extension for Pic%, called dPico. dPico
inherits concepts from cPico, such as active objects with atomic method invocation,
but puts them in a different – distributed – perspective. The key element in this new
perspective is the introduction of a new active delegation hierarchy that parallels
the passive one. The idea is to completely separate active and passive delegation
hierarchies. This separation, along with the fact that only active objects can be
remotely referenced, promotes active objects to the unit of distribution.

dPico has also removed cPico’s liberal object extension mechanism based on
calls tocapture andactivate . Instead, a more strict, but also more readable
and more structured scheme is introduced. This scheme is based on “lifting func-
tions” such asview andaview . These particular natives are responsible for the
extension of the passive respectively active object hierarchy. In combination with a
simple discovery mechanism, this allows us to write programs with distributed ob-
ject inheritance. This type of applications can already be used to express a variety
of distributed applications categorized as “connected applets” (De Meuter, 2004),
which is currently often mimicked using a combination of HTML with embedded
JavaScript. Regarding strong mobility, dPico allows for programs to travel across
the network in the disguise of encapsulated environments. Although the key ingre-
dients to support strong mobility are present, the research to put them all together
is deferred as future work.

In order to maintain the benefits of promises for active object method invo-
cation across the network, remote promises were introduced as “network proxies
for promises”. By exploiting the relation between promises, a more efficient “pro-
mise forwarding graph” was constructed, through which only determined values
(i.e. non-promises) could flow, avoiding the transmission of promises across vir-
tual machine boundaries.

dPico has been found to have some advantages with respect to security and
safety due to its ability to enforce a disciplined use of parent sharing for both con-
currency and distribution control. Nevertheless, dPico still has its limitations such

CHAPTER 6. DPICO: A DISTRIBUTED PIC% 214

as the limited scope of active object lookup. This lookup scheme only searches
the direct behaviour of active objects to avoid having to pass remote references to
passive context objects. Furthermore, distribution is not entirely transparent since
sharing of passive objects is allowed between local active objects but disallowed
between distributed active objects.

Summarizing dPico, we can state it to be a small distributed language, featur-
ing distributed active object inheritance to support sharing of state across virtual
machine boundaries. Paired with encapsulated inheritance, this allows for safe
distributed applications to be written in a high-level language. Apart from param-
eter passing semantics, the location of the active objects is made transparent, such
that the programmer never explicitly has to deal with remote references, explicit
proxies or the concept of a location in its own right. We believe such “location
abstraction” to be as important to high-level distributed languages as is “variable
address abstraction” to high-level sequential languages.

Chapter 7

Conclusions

As explained in the introduction, the goal of our work was to explore how to write
programs that work in – and interact with – a dynamic, flexible, mobile and open
computing world. This has lead us to the exploration of a variety of programming
languages that are used to write concurrent and distributed programs. However,
we feel that none of these languages is suited to writing programs that target the
digital habitat of a “processor cloud” in which personalized small devices interact
with computers that have become invisible and embedded in the environment.

Technically, this dissertation has addressed a gap in the spectrum of distributed
programming languages. We have advocated that prototype-based languages are
more suitable for writing distributed applications than class-based languages. Class-
based languages suffer from added complexity in a distributed context. One ex-
ample concerns the movement of objects across the network, requiring a whole
hierarchy of classes to travel along. Moreover, these classes should be kept consis-
tent, if language semantics are to remain clear. This places a heavy burden on the
run-time system supporting such a distributed language. Following the vision that
future computing environments will consist of small devices with limited memory
and computing power, it is our conviction that another solution should be explored.

Prototype-based languages, featuring only objects, may provide a solution. The
observation that objects without classes can perform better in a distributed context
is certainly not new. This approach has lead to the creation of some languages that
already implement part of our ideas. These languages, which we have described in
section 4, all seem to lack an essential feature. Emerald (Hutchinson et al., 1991)
and Obliq (Cardelli, 1994) are both promising languages, but neither of them in-
troduces the distributed delegation we wish to investigate. dSelf (Tolksdorf and
Knubben, 2001) does introduce distributed parent sharing, but its support for con-
currency is limited and the language seems to have very little concern for security
at all.

215

CHAPTER 7. CONCLUSIONS 216

7.1 Reflections on cPico and dPico

Our approach, embodied in two tiny languages, tries to exploit the concept of
shared parents between distributed objects to deal with issues in both concurrent
and distributed programming. dPico has been iteratively designed, starting from
the prototype-based language Pic% (De Meuter et al., 2003b). Distributed object
inheritance was introduced without sacrificing the safety that was offered in the
base language through nested mixin-based inheritance (Steyaert et al., 1993) and
by following the principles of Extreme Encapsulation (De Meuter, 2004).

cPico unifies the notions of an object with that of an autonomous process into
anactive object. This results in an atomic and asynchronous invocation of meth-
ods on such objects. Problems regarding the lack of synchronization or return value
with asynchronous invocations are countered by the use oftransparent promises.
These promises allow for asynchronous invocations to have a return value just like
synchronous ones. The main idea of the concurrency model is centred around
the question whether parent sharing facilitates consistent shared data between au-
tonomous processes. cPico demonstrates how awkward it is to share passive data
through composition relations and how parent sharing may be a viable alternative.
Promises are used as a means to introduce conditional synchronization, keeping
the language minimal since it does not require the addition of new concepts.

The concepts of cPico have been extended in a distributed setting, leading to
the language dPico. The active objects introduced in the concurrency model have
become the unit of distribution. The rationale is that distributed objects should
beware of concurrency issues and should favour asynchronous communication, two
concepts taken care of by active objects. To impose a program structure where a
clear-cut distinction between active and passive objects can be made, both types of
objects are organized in a separate delegation hierarchy. This leads to symmetrical
active and passive object extensions. Such an organization ensures that all message
sends to remote objects are asynchronous.

With the introduction of dPico we have created a prototype-based language
which uses parent sharing to express concurrency and distribution. To the best of
our knowledge this type of language has not been thoroughly explored thus far.
Figure 7.1 categorizes some of the languages we have discussed in the dissertation
according to the concepts of prototypes, delegation, concurrency and distribution.
We consider Java to be a language that addresses both concurrency and distribution,
due to its support of remote method invocation. Borg and ABCL/1 are classified as
prototype-based languages even though they are actually more object-based since
they lack a delegation mechanism.

7.2 Rough Edges to The Proposal

This section describes the key points in our research that have not yet been entirely
resolved. It also reviews the deficiencies of the proposed languages and how these

CHAPTER 7. CONCLUSIONS 217

Figure 7.1: Categorizing Languages According To Key Language Features

deficiencies should be removed in future work. The research areas of importance
that were left unattended in this dissertation will be briefly recapitulated in the
following section.

As mentioned in section 6.11 of the previous chapter, dPico still has its lim-
itations. For example, a method lookup along an active object chain will only
consider thebehaviourof the active objects encountered. Secondly dPico still em-
ploys different parameter passing semantics for message sends to local and remote
active objects. Both limitations stem from disallowing remote references to pas-
sive objects. Perhaps a more nuanced scheme can be constructed that can deal with
these issueswithoutsacrificing the simple semantics.

Regarding cPico, we we had to thrash out the question of combining delegation
with synchronization (see section 5.9). cPico’s solution to the problem employs
locks: objects can be declared serialized, guaranteeing atomicity through locking.
This scheme has the drawback of quickly introducing subtle deadlocks in code
where multiple active objects tightly communicate, even when they are structured
in a parent-child relation. Perhaps the simple reception queue of active objects is
too simplistic and should be augmented with such features as ABCL’s selective
message reception.

From a technical point of view, one of the rough edges to our work is that it
has not been evaluated in a realistic setting. To do so, the proof of concept inter-
preter will have to be founded with a realistic distribution layer, capable of making
two virtual machines communicate across a network. Technologies such as JXTA
(section 4.2.4) could be considered for the creation of a more realistic service dis-
covery mechanism. The interpreter should also be ported to small mobile devices,
e.g. by making use of the J2ME application environment. Experiments could then

CHAPTER 7. CONCLUSIONS 218

be conducted where multiple interpreters collaborate on multiple mobile devices,
interconnected by a wireless network. To be able to conduct experiments on such
lightweight devices, the interpreter will have to be considerably optimized. Al-
though we owe much of our research results to Pic%’s simple object model, the
representation of objects in dPico is too heavy and method lookup is too slow.
It would be interesting to investigate the applicability of Self’s object model and
adaptive optimization techniques (Smith and Ungar, 1995) to Pic%.

Only very recently, we have come across a distributed programming language
very similar in spirit to dPico, calledE (Open E Project, 2004). Due to time restric-
tions, we were unable to thoroughly present the language in chapter 4. The lan-
guage features an object-centred approach, also using promises and asynchronous
message sends.E is worthwhile investigating, as it incorporates a deadlock-free
promise-pipeliningarchitecture (Stiegler, 2000), which may solve the delegation
versus synchronization problem. Other strong points ofE are its powerful security
mechanism and its fault tolerance abstractions.

Finally, and no less important, we should be gaining someexperiencewith
dPico by using it to build a variety of distributed applications. Only then will the
theory on structuring software through parent sharing be applied in practice and
can the language design choices be properly evaluated.

7.3 Directions for Future Research

This section will briefly touch upon some research areas we have not been able
to consider in depth but which seem indispensable in a realistic language targeted
at Ambient Intelligence. dPico still misses some important language constructs to
deal with partial failures and exceptions. Such issues as mobility and broadcasting
identified as important language features for AmI in the introduction have also
not been dealt with. On a more technical track, distributed garbage collection is
left unimplemented in the system. What follows is a brief overview of the most
important topics deserving attention in future research.

7.3.1 Split Objects

We have not yet been able to research in depth how dPico’s object model could
facilitate the management of split objects (Bardou and Dony, 1996). Such split
objects occur naturally in frame-based object models where asinglelogical entity
is represented bymultiple physical objects. Such representation is for example
used to modelroleswith the typical example of a person that can be regardedas
a sportsman oras anemployee. The problem is to find the right abstraction to
represent the split object identity. Perhaps active objects that encompass a passive
hierarchy could prove to be a solution. The passive hierarchy would be the split
object and the encompassing active object would be the identity of the split object.

An issue left unresolved in the same context is the exploitation of thebehaviour

CHAPTER 7. CONCLUSIONS 219

of an active object. If an active object could change its behaviour, this could lead to
interesting abstractions such as conditional synchronization schemes reminiscent
of behaviour sets (Kafura, 1990) or abecomeoperation similar to the one found in
actor languages. One could e.g. model a queue as a split object having the roles or
statesemptyandfull. Messages can then be synchronized according to the “current
role” (i.e. the behaviour) of the split object.

7.3.2 Partial Failure Handling

One ofthemajor issues left untouched in dPico is partial failure handling (section
4.2.8). To facilitate fault tolerant programs, able to deal with parts of the program
crashing or becoming temporarily unavailable without warning (e.g. due to devices
going in and out of broadcast range), the necessary language features will need to
be developed. There is a strong need for an expressiveexception handlingmecha-
nism. Simple schemes such as thetry-catch constructs from Java or C++ are
not sufficient in dPico, because ofasynchronousmethod invocations. More flexible
mechanisms are necessary. Emerald’s handlers andE’s when-catch construct
(specifically designed for dealing with promises) provide hopeful abstractions.

One simple approach to fault tolerance we have not been able to implement
yet is the “caching” or “buffering” of messages sent to temporarily unavailable
remote objects. Since our language model ensures that remote objects are always
active, these cached messages can simply be “appended” to the active object’s
message queue whenever it becomes available again. Also, the idea ofsending a
message to a promisewas considered, to speed up program execution. Currently,
sending a message to a promise will block the sender until the promise is resolved
to an object. Some of these ideas appear to have already been developed in the
E programming language, which features aneventual sendoperation, able to send
messages to promises (Stiegler, 2000). TheE language kernel will ensure that
messages sent to such promise will be sent to the underlying object, preserving
order.

7.3.3 Multivalues

In the course of our scenario we have illustrated the need for broadcast communi-
cation. Currently this need is left unaddressed in the proposed model. To support
such broadcasting the concept of amultivalue– a value which is a number of values
all at the same time – is interesting. Locally, a multivalue can be seen as a collec-
tion of values, which broadcasts messages to all of its components. Furthermore it
should be possible to distribute a multivalue across several virtual machines, where
every node maintains its local members. Messages sent to such a multivalue will be
applied to the local members and are simultaneously broadcasted over the network
where other virtual machines will send the message to their own local members.
This mechanism is very similar to the way we currently perform a query with the
members native (see section 6.6).

CHAPTER 7. CONCLUSIONS 220

Multivalues could even serve as a replacement for our current channel abstrac-
tion altogether, where what we now call a channel then becomes a distributed mul-
tivalue. Multivalues clearly have potential, but it remains to be seen what the reper-
cussions of their introduction would be on the language.

7.3.4 Mobility Abstractions

One important aspect of Ambient Intelligence that has not yet been dealt with thor-
oughly in our proposed languages is mobility. Both object mobility as employed
in e.g. Emerald and strong code mobility as it has been implemented in e.g. Borg
deserve some attention. As explained in section 6.9, dPico is equipped with a good
basis to support strong mobility. It remains to integrate it more closely in the lan-
guage, perhaps by unifying strong mobility with the movement of active objects.
Viewed in this light, our active objects are evolving towards full-fledgedsoftware
agents. Indeed, like an agent, an active object is an autonomous computing entity.
By properly integrating mobility in the language, such a unification would augment
the expressivity of dPico considerably, without having to give up its simplicity.

7.3.5 Distributed Garbage Collection

In order to support the realistic development of truly distributed programs that op-
erate in a real networked context, distributed garbage collection will have to be
implemented. More specifically, a garbage collector is needed that takes into ac-
count the effects of objects that can move across a network. Objects that may
temporarily become unavailable due to nodes going out of range must also be con-
sidered. Finally, it remains a challenge to discover how garbage collectors can and
should interact with objects that are part of a distributed multivalue.

Appendix A

Pic% Semantics

This appendix goes into more detail on the programming language Pic% and its
concurrent and distributed extensions. We describe the semantics of the language
using a pseudo-formal model, largely based on our own interpreter, written in Java.
Although we do not claim this is a true formal definition of the language, we do
think expressing the evaluation rules in this way offers the advantage of readability
and clarity. A Java implementation is obviously too complex to discuss in detail.
Moreover, the semantics are sketched usingrecursiveevaluation rules, whereas the
real Pic% interpreter is written in continuation-passing-style, explicitly represent-
ing the Pic% run-time stack without allowing (Java-)recursive evaluation. Proper
denotational semantics would evaluate expressions with respect to some continu-
ation κ and an environment or storeσ. We simplify matters by sticking to an
ordinary recursive interpreter, omittingκ, and allowing for our environments to be
mutable, thereby making it unnecessary to continually pass updated environments
via σ.

The appendix starts with basic evaluation rules for the basic Pic% language in
section A.1. In sections A.3 and A.4, this basic language model is adjusted and
minimal semantics are provided for some language features of cPico and dPico.
Note that it is always our intention to provideclear rather thansoundformal se-
mantics.

A.1 Basic Pic% Semantics

Our semantics start by giving an overview of thestructureof the Pic% language
values. Section A.1.2 continues and defines the rules to evaluate expressions into
values.

A.1.1 Abstract Grammar Entities

First and foremost, this section defines whatkindof values inhabit a Pic% program.
That is, we will describe what constitutes a first-class Pic% value. Recall that even

221

APPENDIX A. PIC% SEMANTICS 222

Pic% parse trees are first-class values. These parse trees are the skeleton of a
program. Evaluating such structure usually results in a new kind of Pic% value.

Each basic value is represented as a functor, acting as a data structuring mech-
anism. Each such functor belongs to a certain set orclassof Pic% values. The
fact that these sets are reflected in the semantics is not surprising, as we have im-
plemented the interpreter in aclass-basedlanguage. Hence, any Pic% value was
implemented as an instance of a Pic% value class. These classes are structured in
an inheritance relation, which we model here using the subset relation. That is, if
B is a subclass ofA, andi(C) denotes the set of objects which are “instances of
class C”, then it holds thati(B) ⊆ i(A).

Table A.1 gives an overview of all abstract grammar entities paired with their
corresponding set.

Name Functor Set

Number nbr(n), n ∈ N NBR
Fraction frc(f), f ∈ R FRC
Text txt(s), s ∈ String TXT
Table tab(a), a ∈ Array TAB
Void voi() VOI
Reference ref(txt) REF
Tabulation tbl(inv, exp) TBL
Application apl(inv, exp) APL
Message msg(dct, inv) MSG
Super sup(inv) SUP
Definition def(inv, exp) DEF
Declaration dcl(inv, exp) DCL
Assignment ass(inv, exp) ASS
Quotation quo(exp) QUO
Function fun(nam, arg, bdy) FUN
Closure clo(fun, ctx) CLO
Native nat(nbr) NAT
Dictionary dct(cst, var, nxt) DCT
Binding bnd(nam, val, nxt) BND
Environment env(c, ctx), c ∈ Cont ENV
Context ctx(cur, ths, sup) CTX

Table A.1: The Pic% basic language values

Aside from these values, we also defineAG to be the union of all value sets.
We also define invocationsINV ≡ REF ∪ TBL ∪ APL. The set of values
VAL are all values except for the values from the second category. They denote
any Pic% value that isself-evaluating. The set of qualificationsQUA is equal to
MSG∪SUP. Not surprisingly, all these special sets are implemented as abstract
classes in the interpreter, since they allow for some abstraction over all constituent

APPENDIX A. PIC% SEMANTICS 223

subclasses.
There are some remarks to be made regarding some language values. First of

all, the classString simply denotes strings of ascii characters (although not all
ascii characters are actually allowed). We assume this class has defined an equality
operator= over its values, comparing two strings. TheArray class simply denotes
an indexable data-structure. We assume an accessor and mutator operation, able to
get or set the contents of a location in the array. They are accessible through the
methodsget andset defined on tables.Cont denotes the set of “continuations”.
A continuation can be regarded as a “frame” containing some data and code. The
run-time stack of a Pic% program is entirely comprised of such frames. In our im-
plementation, such frames are first-class objects, although this does not necessarily
have to be the case. What is important, however, is that they are madeexplicit in
an implementation.

Concerning Void, we will denote it’s sole instance byvoid. Natives have a
constituent “index”, making it possible for the implementation to link a certain
native to some implementation-level code. To support the nativecall , we would
have to express the semantics using continuation-passing-style, where the “current
continuation” is made explicit so that it can be reified and passed into the Pic%
base level. Context values are never really used in a Pic% program (though they
can be accessed as such through tabulation of a closure or environment). They
represent an “evaluation context”, which is used frequently in our semantics, as
will be explained below.

Dictionaries represent Pic%’s objects. They are built up out of a constant part
and a variable part, which are both lists of bindings. The end of a parent-chain
or binding-chain is always denoted byvoid. Theclone operator from section
2.5.3.3 can now be defined as follows:

let o = dct(cst, var, nxt) in

clone(upTo, o) ≡
{

dct(cst, copy(var), nxt) if upTo = o
dct(cst, copy(var), clone(upTo, nxt)) otherwise

A.1.2 Evaluation Rules

This section will explain evaluation semantics for each value listed in table A.1.
This “interpreter” will be written in an object-oriented style, meaning that we will
send anevalmessage to a language value in order to evaluate it. Thisevalmessage
takes exactly one argument (next to its implicit receiver): the evaluationcontext. As
noted in table A.1, a context consists of three dictionaries: a “current dictionary”
in which evaluation is currently active, a “this dictionary” pointing to theinitial
receiver of the method we are processing and finally a “super dictionary”, pointing
to the dictionary used in super-sends. We will represent a context asctx(c τ σ).

Next to theeval function, defined for each expressione ∈ AG, the subset of
dictionaries also understands a set of accessor and mutator methods.getCst(nam)
andgetAny(nam) perform dictionary lookup in the constant part and both parts

APPENDIX A. PIC% SEMANTICS 224

respectively. addV ar(nam, val) and addCst(nam, val) add new bindings to
the variable respectively constant lists of an object, whilesetV ar(nam, val) re-
assigns a binding’s value. We assume these three mutators all returnval.

A.1.2.1 Values and Quotations

A large part of Pic%’s first-class object space consists ofvalues, which are self-
evaluating. Formally, for anyv ∈ VAL , we have:

v.eval(ctx) ≡ v

A quotation allows for the reification of a parse tree. Using this construct, the
programmer can directly access parse tree values such as references and definitions.
Its evaluation rule is also extremely simple:

quo(exp).eval(ctx) ≡ exp

A.1.2.2 Definition, Declaration and Assignment

For the evaluation rules of definitions, declarations and assignments, it is best to
recall Pic%’s natural3 × 3 syntax system which shows each of these language
values combines an invocation with some expression. The evaluation rules are thus
determined by theinvocation. For definitions and assignments, they are as follows:

def(ref(nam), exp).eval(ctx) ≡ ctx.c.addV ar(nam, exp.eval(ctx))
def(apl(nam, arg), exp).eval(ctx) ≡ ctx.c.addV ar(nam, fun(nam, arg, exp)).wrap(ctx)
def(tbl(nam, idx), exp).eval(ctx) ≡ ctx.c.addV ar(nam,maketab(idx.eval(ctx), exp))

ass(ref(nam), exp).eval(ctx) ≡ ctx.c.setV ar(nam, exp.eval(ctx))
ass(apl(nam, arg), exp).eval(ctx) ≡ ctx.c.setV ar(nam, fun(nam, arg, exp))
ass(tbl(nam, idx), exp).eval(ctx) ≡ ctx.c.getAny(nam).set(idx.eval(ctx), exp.eval(ctx))

The auxiliary functionmaketab(nbr(siz), exp), will create a tabletab(a)
wherea[i] = exp.eval(ctx) for i ∈ [0, siz[. The evaluation rules for a decla-
ration are entirely similar to those of a definition, except for the usage ofgetCst
instead ofgetV ar. The functionwrap will be defined in the next section.

A.1.2.3 Invocations

The evaluation of references, tabulations and applications is what drives a Pic%
program. These are frequent operations with important semantics. Most notably,

APPENDIX A. PIC% SEMANTICS 225

evaluation of an application will lead tofunction application, which will be ex-
plained in more detail in section A.1.2.5. The evaluation rules for references re-
volve mainly around lookup. Tabulations lead to table indexation.

ref(nam).eval(ctx) ≡ ctx.c.getAny(nam).wrap(ctx)
apl(exp, arg).eval(ctx) ≡ exp.eval(ctx).apply(arg, ctx, ctx)
tbl(exp, idx).eval(ctx) ≡ exp.eval(ctx).get(idx.eval(ctx))

The functionwrap is defined below. It is used to “wrap” bare functions in a clo-
sure, which “captures” necessary context information to be restored when the func-
tion is applied. This is necessary to ensure correct semantics forfirst-class methods.

val.wrap(ctx) ≡
{

clo(val, ctx) if val ∈ FUN
val otherwise

A.1.2.4 Qualifications

A qualification can either be a message send or a super send. Their evaluation
rules closely resemble those of the above invocations, but their lookup dictionary
is specifically qualified. Qualifications can also only be used to query for thecon-
stantsof the qualified dictionary.

msg(rcv, ref(nam)).eval(e) ≡ let o = rcv.eval(e) in

o.getCst(nam).wrap(ctx(o o o.nxt))
msg(rcv, apl(nam, arg)).eval(e) ≡ let o = rcv.eval(e) in

o.getCst(nam).apply(args, e, ctx(o o o.nxt))
msg(rcv, tbl(nam, idx)).eval(e) ≡ rcv.eval(e).getCst(nam).get(idx.eval(e))

sup(ref(nam)).eval(e) ≡ e.σ.getCst(nam).wrap(ctx(e.σ e.τ e.σ.nxt))
sup(apl(nam, arg)).eval(e) ≡ e.σ.getCst(nam).apply(args, e, ctx(e.σ e.τ e.σ.nxt))
sup(tbl(nam, idx)).eval(e) ≡ e.σ.getCst(nam).get(idx.eval(e))

A.1.2.5 Application and Parameter Binding

We have been using the methodapply to denote evaluation of applications, mes-
sage sends and super sends. This application is responsible for both properly eval-
uating and binding arguments and for evaluating a function body in some new “call
frame”. Let us start by defining theapply method itself. Apply’s semantics differ

APPENDIX A. PIC% SEMANTICS 226

depending on the type of the receiver. It receives two context parameters: an ac-
tual argument evaluation contextacx and a body evaluation contextbcx. A closure
by itself also contains a closure evaluation context,ccx. Closure application will
delegate to function application, whereccx will be used instead ofbcx.

fun(nam, for, bdy).apply(act, acx, bcx) ≡ let c′ = bcx.c.extend().bind(act, for, acx) in

bdy.eval(ctx(c′ bcx.τ bcx.σ))
clo(fun, ccx).apply(act, acx, bcx) ≡ fun.apply(act, acx, ccx)
nat(nbr(n)).apply(act, acx, bcx) ≡ nativeapply(n, act, acx, bcx)

The methodextend can be simply defined as:

rcv.extend() ≡ dct(void,void, rcv)

The method simply opens up a new scope to bind the arguments in and to evaluate
the function body. Note the subtle differences in context usage of functions and
closures. Whereas functions use the “current context” to evaluate both arguments
and body, closures will only use this context for argument evaluation. The scope
and body are related to the closure’s encapsulated context. This is necessary to sup-
port proper use of first-class methods. It remains to explain the parameter binding
mechanism. First, we ensure the actual arguments get evaluated to a table (which
is not necessarily the case when using @).

dct.bind(tab(act), for, e) ≡ for.call(tab(act), dct, e)
dct.bind(exp, for, e) ≡ for.call(exp.eval(e), dct, e)

Next, the interpreter will dispatch over the type of theformal arguments of the
function. Canonically defined functions have tables as actual arguments. Functions
defined using @ can either have references or applications as formal arguments:

tab(for).call(tab(act), dct, e) ≡ for.bindTab(act, dct, e)
ref(nam).call(tab(a), dct, e) ≡ dct.addV ar(nam, evalAll(a, e)); dct

apl(nam, arg).call(tab(a), dct, e) ≡ dct.addV ar(nam,makeThunks(nam, arg, a, e)); dct

[].bindTab([], dct, e) ≡ dct

[for|fs].bindTab([act|as], dct, e) ≡ for.bindOne(act, dct, e); dct.bindTab(as, fs, e)

APPENDIX A. PIC% SEMANTICS 227

We have used Prolog-like syntax to represent the head and tail of the underly-
ing array value of a table. TheevalAll auxiliary function takes an array of un-
evaluated entities and an evaluation context, and returns a tabletab(a′) where
a′[i] = a[i].eval(e). makeThunks(nam, arg, a, e) returns a tabletab(a′) where
a′[i] = clo(fun(nam, arg, a[i]), e). In both cases, it holds thati ∈ [0, size(a)[.
In the case of tables, we now need to couple each actual argument to a formal
parameter. The semantics depend on the type of formal parameter, to distinguish
call-by-value from call-by-name.

ref(nam).bindOne(act, dct, e) ≡ dct.addV ar(nam, act.eval(e))
apl(nam, arg).bindOne(act, dct, e) ≡ dct.addV ar(nam, clo(fun(nam, arg, act), e))

A.1.2.6 Capture, this and super Natives

We end an overview of the basic Pic% semantics by defining proper semantics for
the nativescapture , this andsuper . Not surprisingly, these natives merely
provide access to the invisible evaluation context ever present in the evaluation of
an expression. We assume “capture”, “this” and “super” to represent the indices of
the corresponding natives.

nativeapply(capture, tab([]), acx, bcx) ≡ bcx.c

nativeapply(this, tab([]), acx, bcx) ≡ bcx.τ

nativeapply(super, tab([]), acx, bcx) ≡ bcx.σ

A.2 Reintroducing Static Scope

The previous section has defined function application semantics to adhere tody-
namicscope. This is because functions do not store a lexical environment but rather
use one that is passed to them at call-time. Contrast this with closures who do have
a paired evaluation context, which they will use when their underlying function
is applied. Closures can be used to introduce static scope in Pic%. Indeed, if all
functions would be defined as:

f := (f(args) : body)

Pic% would be a statically scoped language, sincef(args):body evaluates to
a closure and any function is immediately replaced by a closure representing the
function’s lexical environment. Our method of introducing static scope is thus
based on such “closure wrapping”, explained in section 5.8.2. Functions will be

APPENDIX A. PIC% SEMANTICS 228

wrapped in closures atmethod lookup timerather than at definition time, as shown
in the code excerpt above. In concrete, this means that a call todct.getCst or
dct.getAny will neverreturn a function anymore. Functions are always wrapped
in closures just before they are returned. This means thatapply will only have
to consider closures and natives. Since closures support static scoping if they are
provided with a lexical environment, it remains to be explained how we can provide
a function with a proper lexical context at method lookup time.

Remember that we could not store the dictionary of definition inside of a
method, because methods should be shared by clones. Care had to be taken to
ensure a function is always executed in the right object. The reason for wrapping
a function at method lookup time is that the dictionary in which we search for the
method is the object in which we should evaluate the method’s body.

A function’s lexical context – like any context – consists of a “current dictio-
nary”, which is the object under which the function’s call frame will be hung (i.e.
the dictionary that will be extended when the function is applied). The “this” dic-
tionary must refer to the properdynamicreceiver of the function, while the “super”
dictionary denotes the parent of thestatic (lexical) parent. Thus,super is the
parent of the “current dictionary”. An updatedgetCst method is defined below
which will properly wrap functions in a lexical environment:

dct.getCst(nam, ths) ≡ dct.cst.lookup(nam, ths, dct)
void.getCst(nam, ths) ≡ error

bnd(nam, val, nxt).lookup(nme, ths, dct) ≡ nxt.getCst(nme, ths, dct)
bnd(nam, val, nxt).lookup(nam, ths, dct) ≡ val.wrap(ctx(dct ths dct.nxt))

void.lookup(nam, ths, dct) ≡ dct.nxt.getCst(nam, ths)

Any functionf found bylookup will be wrapped in a contextctx(dct ths dct.nxt).
Here, dct points to thestatic dictionary in which the function is reallyfound.
The extra parameter togetCst, ths is the dynamic receiver. As explained above,
super is set to the parent ofdct. Evaluatingcapture() insidef will result in
a dictionaryfrm wherefrm.nxt = dct. Evaluatingthis() will result in ths,
evaluatingsuper() in dct.nxt.

The methodgetAny is updated in an analogous manner. The only other adap-
tation required to support static scope is to update all calls togetCst andgetAny
in the above semantics. We will only rewrite those for applications here, to pass
the extraths argument:

apl(nam, arg).eval(e) ≡ e.c.getAny(nam, e.τ).apply(arg, e, e)
msg(rcv, apl(nam, arg)).eval(e) ≡ let o = rcv.eval(e) in

o.getCst(nam, o).apply(args, e, ctx(o o o.nxt))

APPENDIX A. PIC% SEMANTICS 229

sup(apl(nam, arg)).eval(e) ≡ e.σ.getCst(nam, e.τ).apply(args, e, ctx(e.σ e.τ e.σ.nxt))

Notice the extra argument togetAny or getCst. In super-sends,e.τ is passed
as the dynamic receiver, note.σ. This clearly demonstrates “late binding of self”:
the receiver is left unchanged by super-sends.

A.2.1 Scope Functions

Recall from section 5.4.1 that the nativesthis andsuper can also take an arbi-
trary expression as an argument, which will be evaluated in the context ofthis()
or super() respectively. Annotating the evaluation process with contexts, their
evaluation is easily expressed:

nativeapply(this, tab([exp]), acx, ctx(c τ σ)) ≡ exp.eval(ctx(τ τ τ.nxt))
nativeapply(super, tab([exp]), acx, ctx(c τ σ)) ≡ exp.eval(ctx(σ τ σ.nxt))

Late binding of self can again be illustrated by considering the evaluation of
super(this()) = this() .

A.3 Concurrency Model Semantics

The semantics for cPico are only very briefly discussed since they have only been
an intermediate step in the development of dPico. Nevertheless, some important
concepts were introduced in cPico which dPico has inherited. This section will
briefly outline the necessary language values that will also be needed in the follow-
ing section.

We assume a functionpromise() exists which returns a new undetermined pro-
mise. Strict operations operating on such promises can use the functiontouch(p)
to access the value. Finally, the functionfulfill(p, v) can be used to fulfill a pro-
mise with a value. cPico’s active objects are represented as a pairao(beh, que)
wherebeh ∈ DCT represents the active object’s behaviour andque is aQueue.
This queue is not first-class, but has two operationsenQ anddeQ which can be
used to enqueue or dequeue evaluation requests. Such an evaluation request is rep-
resented asreq(rcv, bdy, ctx, pro) wherercv ∈ AO is the active object receiving
the request,bdy ∈ AG is the expression to evaluate,ctx ∈ CTX is the context
to evaluatebdy in andpro is the promise to fulfill. Such requests are created upon
application of a method on an active object. Message sends to active objects are
discriminated from messages sent to plain objects when the body context’s receiver
bcx.τ is an active object.

APPENDIX A. PIC% SEMANTICS 230

let bcx = ctx(c ao(beh, que) σ) in

fun(nam, for, bdy).apply(act, acx, bcx) ≡ let cf = c.extend().bind(act, for, acx) in

let ρ = promise() in

que.enQ(req(bcx.τ, bdy, ctx(cf beh σ), ρ));
ρ

The semantics of executing such a request are defined as follows:

ao.exec(req(ao, bdy, ctx, ρ)) ≡ lock(ctx.c.nxt);
fulfill(ρ, bdy.eval(ctx));
unlock(ctx.c.nxt);

Before execution of the body, it is ensured that the lexical object in which the
method was found is properly serialized through the use of the functionslock and
unlock.

A.4 Distribution Model Semantics

In this section we will briefly try to explain the most important semantics underly-
ing dPico. We will first have to introduce a number of new data types to be able to
describe the intended semantics. First, the class of active objectsAO will have to
be redefined. This set is now partitioned inlocal andremoteactive objects, such
thatAO ≡ LAO ∪RAO. Any active object from the previous section is now a
local active objectlao(beh, que, nxt) consisting of a passive behaviour, a request
queue and an added parent pointer.

A remote active object is represented asrao(loc, id) whereloc represents the
virtual machine on which the remote object resides andid is a unique identifi-
cation for the remote object, relative to its location. Active closures are repre-
sented asacl(fun, acur, aths), wherefun ∈ FUN denotes a wrapped function,
acur ∈ AO denotes the implementor offun, andaths ∈ AO denotes the dy-
namic receiver.

Finally, due to the addition of active object hierarchies, we will extend a con-
text ctx with two new parameters:αc, the lexical active implementor andατ the
dynamic active receiver, such that

nativeapply(athis, tab([]), acx, ctx(c τ σ αc ατ)) ≡ ατ

nativeapply(asuper, tab([]), acx, ctx(c τ σ αc ατ)) ≡ αc.nxt

APPENDIX A. PIC% SEMANTICS 231

A.4.1 Message Definition

This section more formally explains the semantics of the syntax introduced in sec-
tion 6.1.3. As noted there, the main purpose of this syntax is to allow a grace-
ful application of higher order functions, which are used to implement special
view, mixin and cloning methods. This way, constructing views, active views or
cloning methods becomes more visually appealing, while keeping the number of
concepts introduced to a minimum. The syntactic notation in Pic% isf.x:exp ,
f.m(args):exp andf.t[i]:exp . Their semantics are listed below. For dec-
larations, it suffices to replaceaddV ar by addCst.

def(msg(fun, ref(nam)), exp).eval(e) ≡
e.c.addV ar(nam, fun.eval(e).apply(tab([exp.eval(e)]), e, e))

def(msg(fun, apl(nam, arg)), exp).eval(e) ≡
e.c.addV ar(nam, fun.eval(e).apply(tab([fun(nam, arg, exp)]), e, e))

def(msg(fun, tbl(nam, idx)), exp).eval(e) ≡
e.c.addV ar(nam, fun.eval(e).apply(tab([maketab(idx.eval(e), exp)]), e, e))

Using these semantics, it becomes clear that we always bindnam to the value
of applying some function to a value (in the case of a reference), a function (in
the case of an application) or a table (in the case of a tabulation). When using this
syntax for applications, it becomes clear thatfun must evaluate to some higher
order function, since it will take another function as parameter. This is quite special
in Pic%, as the function passed as an argument tofun carries a name, yet it is not
bound to this name in the environment. Normally, when functions are created in
Pic%, they always get bound immediately in the environment. These “message
definition semantics” allow for the name of an invocation to be bound to some
value different than what regular Pic% semantics prescribe.

A.4.2 Representing Virtual Machines

Since dPico operates across several interpreters, the semantics somehow have to re-
flect this. We will assume the virtual machine on which an expression is evaluated
can be made explicit using the syntax:
‖exp‖π

Here,π represents a process or virtual machine evaluatingexp. We have already
mentioned that remote active objects are represented asrao(loc, id) and thatloc
represents the virtual machine on which the remote object resides. We will assume
the existence of a function‖resolve(i)‖π that resolves the remote active object
rao(π, i) to a local active object.

Regarding serialization (marshaling) and deserialization (unmarshaling), two
functions are introduced.µ(v) takes any valuev ∈ AG and marshals it according

APPENDIX A. PIC% SEMANTICS 232

to the rules outlined in section 6.2.2. The functionυ(val) takes a serialized value
and transforms it to a proper dPico value. For most dPico values,υ(µ(val)) re-
sults in a copy ofval. For active objects, remote references are created. We will
introduce some syntactic sugar to ease the description of serializing dPico values:

µπ(val) ≡ ‖µ(val)‖π
υπ(val) ≡ ‖υ(val)‖π
valπ→ρ ≡ υρ(µπ(val))

A.4.3 Active Object Method Invocation

This section describes the semantics behind active object delegation as explained
in section 6.5. First of all,getCst will have to be redefined.getCst has taken two
arguments up to now: the identifier to be found and the passive dynamic receiver.
For active object delegation,getCst is adapted to take as an argument theactive
dynamic receiver. The behaviour ofgetCst for active objects is then roughly:

let val = lao.beh.cst.lookup(nam, beh, lao) in

lao.getCst(nam, aths) ≡

acl(val.fun, lao, aths) if val ∈ CLO
val if val 6= null
lao.nxt.getCst(nam, aths) if val = null

‖rao(π2, i).getCst(nam, aths)‖π1 ≡ resolve(i).getCst(namπ1→π2 , athsπ1→π2)π2→π1

Notice how agetCst operation on a remote active object is translated to agetCst
operation to a local active object. Since this local object resides on a differentV M ,
the arguments togetCst are serialized and properly unserialized atπ2. The value
that was found is then properly serialized and sent back toπ1. Notice that dele-
gation does not involve any promises and thus is purely synchronous. Consider
the scenario that an active object closure was found. Application of such a closure
happens as follows:

acl(fun, acur, aths).apply(arg, acx, bcx) ≡
let cf = acur.extend().bind(arg, fun.for, acx) in
let ρ = promise() in
acur.send(cf, fun.bdy, aths, ρ); ρ

lao(beh, que, nxt).send(cf, bdy, aths, ρ) ≡ que.enQ(req(cf, bdy, aths, ρ))

‖rao(π2, i).send(cf, bdy, aths, ρ)‖π1 ≡
resolve(i).send(cfπ1→π2 , bdyπ1→π2 , athsπ1→π2 , ρπ1→π2)π2→π1

APPENDIX A. PIC% SEMANTICS 233

Notice that requests have changed in comparison with cPico. Requests no
longer carry a contexte since this might contain passive objects which would be
copied. Rather, only the call framecf and the active receiveraths are sent to the
active object, together with the body and the promise. How these new requests
are handled is shown below. Notice that the call frame’s parent is set to the local
behaviour. This can only be done only here since it is only at this point that we
have the guarantee that the behaviour of the receiving active object is co-located
with the call frame. In the code fragment above,cf might have been created on a
differentV M than theV M whereacur resides.

lao(beh, que, nxt).exec(req(cf, bdy, aths, ρ)) ≡ let e = ctx(cf beh beh.nxt aths nxt)in
cf.nxt← beh; lock(beh);
fulfill(ρ, bdy.eval(e))
unlock(beh)

A.4.4 Active Object Extension

This section will introduce the semantics necessary to explain howaview can
create distributed object extensions. We will represent active views as a functor
avw(fun). To evaluate the application of such a wrapper function, a new objecto
is created, whose parent is set to the native dictionaryNAT. Next, the arguments
are evaluated and bound in this new object. The active viewaview itself is a new
local active object whose behaviour iso and whose parent isathis() . Since
athis() can be a remote active object,aview’s delegation link can be a remote
reference. Theaview method’s body is executed in a context whereathis()
will point to the view itself, as can be witnessed by the context parameters. Notice
that the final evaluation result is always the active view itself.

avw(fun).apply(arg, acx, bcx) ≡ let o = NAT.extend().bind(arg, fun.for, acx)in
let aview = lao(o, new(Queue), bcx.ατ)in
fun.bdy.eval(o o o.nxt aview aview);
aview

The view itself is evaluated in the contextctx(o o o.nxt aview aview), thus
acurrent is bound toaview. asuper will then point toaview.nxt, which is
bcx.ατ . Theaview native’s behaviour itself can be easily described as:

nativeapply(aview, tab([exp]), acx, bcx) ≡ avw(exp.eval(bcx))

APPENDIX A. PIC% SEMANTICS 234

Whereexp.eval(bcx) ∈ FUN ∪ CLO, otherwiseavw(val) is undefined.
Similar semantics can be written down for theamixin andcloning natives.

Appendix B

Examples

B.1 The Same Fringe Problem

The Same Fringe problem is a simple concurrency problem where the elements of
two trees are compared to decide whether or not they are equal. Speedup is gained
by having two processes generate the fringe of both threes concurrently, and having
a third process to do the comparison. To decouple producers (the tree generators)
from the consumer (the comparator), a bounded buffer is used to store intermediate
results.

The Same Fringe problem is a classical problem which can be used to demon-
strate a wide range of concurrency concepts. It requires creation (forking) of con-
currency by spawning new processes to handle the generation of the trees. More-
over, since it requires a bounded buffer, it provides for an excellent demonstration
of conditional synchronization. Because the bounded buffer is shared between
producers and a consumer, the necessary serialization issues such as locking also
need to be introduced. The Same Fringe problem is demonstrated using ABCL in
(Yonezawa et al., 1986) and PScheme in (Yao and Goldberg, 1994).

Our solution to the problem is shown below. The bounded buffer is expressed
usingcall-with-current-promise to achieve conditional synchronization
to make a client wait whenever the buffer is empty or full. The Tree generators are
active objects who will recursively traverse their tree using an in-order tree walk.
Along the way, each element is enqueued in the generator’s queue. We need a way
to tell the comparator that our tree walk has ended and that no more elements will
arrive. This is handled by always passing a “flag” down the tree. The flag will
only be true for (direct or indirect) right-hand children of the root. This way, the
rightmost leaf is able to detect that it is the last processed leaf, and it can leave
behind an “end of tree” token in the queue.

A comparator simply starts up two tree generators and will communicate with
them indirectly using a small shared queue. It will then continually dequeue and
compare elements from both queues until the token is scanned or two elements
differ, in which case it is signalled that both trees do not match. Note that the

235

APPENDIX B. EXAMPLES 236

bigger the shared queues, the more independent producers and consumer will be
able to work. In the case where the queue has size1, the generators will never be
able to get ahead on the comparator by more than one element.

The entire executable example is shown below:

{

nil :: [];
null(tree) :: tree=nil;
node(k,f,n) :: [k,f,n];
leaf(v) :: node(v,nil,nil);
key(node) :: node[1];
first(node) :: node[2];
second(node) :: node[3];

screen() :: {
show@args :: display@args;
serialize()

};

s :: screen();

queue(siz) :: {
q[siz]: false;
‘in points to next free spot‘
‘cnt keeps track of nr of elts in the queue‘
in: 0; cnt: 0;
waitforEnQ: void;
waitforDeQ: void;
empty() :: cnt=0;
full() :: cnt=siz;

enqueue(item) :: {
if(full(),

‘fulfill the promise to enqueue item later‘
delay(waitforDeQ := [promise,item]));

if(!is_void(waitforEnQ),
‘someone is waiting for an item to fill the queue‘
{ fulfill(waitforEnQ, item);

waitforEnQ := void },
{ q[in+1] := item;

in := (in+1)\\siz;
cnt := cnt+1 });

item };

APPENDIX B. EXAMPLES 237

dequeue() :: {
if(empty(),

‘fulfill the promise to dequeue later‘
delay(waitforEnQ := promise));

item : q[((in+siz-cnt)\\siz)+1];
if(!is_void(waitforDeQ),

‘someone is waiting for a dequeue to empty the queue‘
{ q[in+1] := waitforDeQ[2];

in := (in+1)\\siz;
fulfill(waitforDeQ[1],waitforDeQ[2]);
waitforDeQ := void },

cnt := cnt-1);
item };

‘export interface to ensure enqueue and dequeue‘
‘are synchronous operations‘
interface(me) : {

enqueue(item) :: touch(me.enqueue(item));
dequeue() :: touch(me.dequeue());
capture()

};

interface(activate())
};

treeGenerator(q,nam) :: {
‘we continually pass a flag to our right child‘
‘this makes it possible to identify the rightmost child,‘
‘who can then signal the end of the tree‘
generate(tree, flag) ::

if(null(tree),
if(flag, q.enqueue("eot")), ‘signal end of generation‘
{ s.show(nam, " generated: ",

q.enqueue(key(tree)), eoln);
activethis().generate(first(tree), false);
activethis().generate(second(tree), flag) });

activate()
};

comparator(tree1, tree2) :: {
q1: queue(5);

APPENDIX B. EXAMPLES 238

q2: queue(5);
g1: treeGenerator(q1,"t1");
g2: treeGenerator(q2,"t2");

compare() :: {
g1.generate(tree1, true);
g2.generate(tree2, true);
compareElements(q1.dequeue(), q2.dequeue())

};

compareElements(e1, e2) : {
s.show("comparing ", e1, " and ", e2, eoln);
if(((e1="eot") & (e2="eot")), ‘both trees end, stop‘

true,
if (e1 = e2, ‘both elements equal, continue comparing‘

compareElements(q1.dequeue(), q2.dequeue()),
false))

};
activate()

};

test()::{
exec() :: {

exTree1:: node(1, node(2, leaf(4), leaf(5)),
node(3, leaf(6), leaf(7)));

exTree2:: node(1, node(2, leaf(4), leaf(5)),
node(3, leaf(6), leaf(7)));

c: comparator(exTree1, exTree2);
s.show("both trees equal? ", touch (c.compare()), eoln)

};
activate()

};

test().exec();
true
}

APPENDIX B. EXAMPLES 239

B.2 A Distributed Chat Client

‘ --- At Interpreter A --- ‘
{
‘create an active view on the main active object‘
aview.chatServer(channel, maxClients) :: {

clients[maxClients] : void;
occupancy: 0;

‘creates an active child of the server‘
aview.registerClient(nam) :: {

receiveMsg(from,msg) :: display(from,": ",msg,eoln);
‘the child properly registers itself with the server‘
asuper(

if (occupancy=maxClients,
error("Sorry, channel is full"),
clients[occupancy := occupancy+1] := athis()))

};

‘broadcast a message to all registered clients‘
sendMsg(msg) :: {

from: athis(nam);
for(i:1, i <= occupancy, i:=i+1,

clients[i].receiveMsg(from, msg));
"message sent"

};

‘publish the server to all interested interpreters‘
register(channel)

};

server: chatServer("vubServer", 10);
tom: server.registerClient("Tom");
tom.sendMsg("Hello world")

}
‘ --- At Interpreter B --- ‘
{
‘get a reference to the chatServer, a remote active object‘
vubserver: members("vubServer")[1];
stijn: vubserver.registerClient("Stijn");
stijn.sendMsg("Hello") }

Appendix C

Natives

This appendix gives a brief overview of the crucial natives added to cPico and
dPico to support the new concepts of both languages.

Native Effect or value
cPico
activate() Creates an active object
serialize() Creates a serialized object
this() Dynamic receiver of a message
super() Parent of lexical object
activethis() Active object currently executing
this(exp) Evaluateexp in the scope ofthis()
super(exp) Evaluateexp in the scope ofsuper()
mixin() Mixin current behaviour in the receiver
cloning(exp) Evaluateexp in a clone of the receiver
delay(exp) Allows access topromise , interrupts control flow
fulfill(pro,val) Fulfill a promise with a value

dPico
this() Passive receiver of a message
super() Parent of lexical passive object
this(exp) Evaluateexp synchronously in scope ofthis()
super(exp) Evaluateexp synchronously in scope ofsuper()
athis() Active receiver of a message
asuper() Parent of lexical active object
athis(exp) Evaluateexp asynchronously in scope ofathis()
asuper(exp) Evaluateexp asynchronously in scope ofasuper()
view(fun) A function able to create a passive view onthis()
mixin(fun) A function able to create a passive mixin onthis()
aview(fun) A function able to create an active view onathis()
amixin(fun) A function able to create an active mixin onathis()
cloning(fun) A function able to create a clone ofthis()
register(nam) Registerathis() in a channel namednam
members(nam) A table of all registered objects in channelnam
delay(exp) Allows access topromise , interrupts control flow
fulfill(pro,val) Fulfill a promise with a value
copydown() Copies all ofasuper() ’s behaviour one level down

240

Bibliography

Abelson, H. and Sussman, G. J. (1985).Structure and Interpretation of Computer
Programs. MIT Press, Cambridge, MA.

Agha, G. (1986).Actors: a model of concurrent computation in distributed sys-
tems. MIT Press.

Agha, G. (1990). Concurrent object-oriented programming.Communications of
the ACM, 33(9):125–141.

Baker Jr., H. G. and Hewitt, C. (1977). The incremental garbage collection of
processes. InProceedings of Symposium on AI and Programming Languages,
volume 8 ofACM Sigplan Notices, pages 55–59.

Balter, R., Lacourte, S., and Riveill, M. (1994). The Guide language.The Com-
puter Journal, 37(6):519–530.

Bardou, D. (1996). Delegation as a sharing relation: Characterization and interpre-
tation.

Bardou, D. and Dony, C. (1996). Split objects: a disciplined use of delegation
within objects. InProceedings of the 11th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages 122–137.
ACM Press.

Benton, N., Cardelli, L., and Fournet, C. (2002). Modern concurrency abstractions
for C#. In Magnusson, B., editor,Proceedings of ECOOP02, volume 2374 of
LNCS, pages 415–440. Springer.

Black, A., Hutchinson, N., Jul, E., and Levy, H. (1986). Object structure in the
emerald system. InConference proceedings on Object-oriented programming
systems, languages and applications, pages 78–86. ACM Press.

Blashek, G. (1994).Object-Oriented Programming with Prototypes. Springer-
Verlag.

Borning, A. (1986). Classes versus prototypes in object-oriented languages. In
Proceedings of the ACM/IEEE Fall Joint Computer Conference, Dallas, Texas,
November 1986, pages 36–40.

241

BIBLIOGRAPHY 242

Briot, J.-P., Guerraoui, R., and Lohr, K.-P. (1998). Concurrency and distribution in
object-oriented programming.ACM Computing Surveys, 30(3):291–329.

Briot, J.-P. and Yonezawa, A. (1987). Inheritance and Synchronization in Concur-
rent OOP. In B́ezivin, J., Hullot, J.-M., Cointe, P., and Lieberman, H., editors,
Proceedings of the ECOOP ’87 European Conference on Object-oriented Pro-
gramming, pages 32–40, Paris, France. Springer Verlag.

Budd, T. (2002). An Introduction to Object-Oriented Programming. Addison-
Wesley, third edition.

Cardelli, L. (1994). Obliq A language with distributed scope. Technical Report
122.

Cardelli, L. (1998). Abstractions for mobile computation. MSR-TR 34, Microsoft
Research.

Caromel, D. (1989). Service, asynchrony and wait-by-necessity.Journal of Object-
Oriented Programming, 2(4):12–18.

Caromel, D. (1990). Programming Abstractions for Concurrent Programming. In
Technology of Object-Oriented Languages and Systems, PACIFIC (TOOLS PA-
CIFIC ’90).

Caromel, D. (1993). Towards a method of object-oriented concurrent program-
ming. Communications of the ACM, 36(9):90–102.

Caromel, D. and Rebuffel, M. (1993). Object based concurrency: Ten language
features to achieve reuse. In Ege, R., Singh, M., and Meyer, B., editors,Proceed-
ings of TOOLS-USA’93, Santa Barbara, (CA), USA, pages 205–214. Prentice-
Hall, Englewood Cliffs (NJ), USA.

Chatterjee, A. (1989). Futures: a mechanism for concurrency among objects. In
Proceedings of the 1989 ACM/IEEE conference on Supercomputing, pages 562–
567. ACM Press.

Codenie, W., D’Hont, K., D’Hondt, T., and Steyaert, P. (1994). Agora: Message
passing as a foundation for exploring OO language concepts.SIGPLAN Notices,
29(12):48–57.

Connolly, T. and Begg, C. (1999a).Database Systems: A Practical Approach to
Design, Implementation, and Management. Addison-Wesley, second edition.

Connolly, T. and Begg, C. (1999b).Database Systems: A Practical Approach
to Design, Implementation, and Management, chapter 19. Transaction Manage-
ment. Addison-Wesley, second edition.

De Meuter, W. (1998).Agora: The story of the simplest MOP in the world - or -
The Scheme of object orientation. Springer-Verlag.

BIBLIOGRAPHY 243

De Meuter, W. (2004).A Prototype-Based Approach to Mobility. PhD thesis, Vrije
Universiteit Brussel. Upcoming.

De Meuter, W., Dedecker, J., and D’Hondt, T. (2003a). Wild abstraction ideas for
highly dynamic software.

De Meuter, W., D’Hondt, T., and Dedecker, J. (2003b). Intersecting classes and
prototypes. InProceedings of PSI-Conference, Novosibirsk, Russia. Springer-
Verlag.

De Meuter, W., Gonzalez, S., and D’Hondt, T. (1999). The design and rationale
behind pico.

De Meuter, W., Mens, T., and Steyaert, P. (1996). Agora: reintroducing safety in
prototype-based languages.

Decouchant, D., Krakowiak, S., Meysembourg, M., Riveill, M., and de Pina, X. R.
(1988). A synchronization mechanism for typed objects in a distributed system.
In Proceedings of the 1988 ACM SIGPLAN workshop on Object-based concur-
rent programming, pages 105–107. ACM Press.

Dedecker, J., Cleenewerck, T., and De Meuter, W. (2003). Distributed object in-
heritance to structure distributed applications. InACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and Applications, OOPSLA
2003, October 26-30, 2003, Anaheim, CA, USA.

Dedecker, J. and De Meuter, W. (2003). Communication abstractions through new
language concepts.

Devalez, C. (2003). Application streaming in java. Master’s thesis, Vrije Univer-
siteit Brussel.

D’Hondt, T. (1996). The pico programming project.http://pico.vub.ac.
be .

D’Hondt, T. (2004). Principles of object-oriented languages.http://prog.
vub.ac.be/POOL .

D’Hondt, T. and De Meuter, W. (2003). On first-class methods and dynamic scope.
Proceedings of LMO, pages 137–149.

Dijkstra, E. W. (1975). Guarded commands, nondeterminacy and formal derivation
of programs.Communications of the ACM, 18(8):453–457.

Dony, C., Malenfant, J., and Cointe, P. (1992). Prototype-based languages: from
a new taxonomy to constructive proposals and their validation. InConference
proceedings on Object-oriented programming systems, languages, and applica-
tions, pages 201–217. ACM Press.

BIBLIOGRAPHY 244

Ehmety, S., Attali, I., and Caromel, D. (1998). About the automatic continuations
in the Eiffel// model. InProceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications, pages 219–225.

Feeley, M. (1993).An Efficient and General Implementation of Futures on Large
Scale Shared-Memory Multiprocessors. PhD thesis, Brandeis University.

Fournet, C. and Gonthier, G. (2002). The join calculus: a language for distributed
mobile programming. InProceedings of the Applied Semantics Summer School
(APPSEM), volume 2395, pages 268–332. Springer-Verlag.

Frolund, S. (1992). Inheritance of synchronization constraints in concurrent object-
oriented programming languages. InProceedings of the Sixth European Confer-
ence on Object-Oriented Programming (ECOOP). Springer-Verlag.

Fuggetta, A., Picco, G. P., and Vigna, G. (1998). Understanding Code Mobility.
IEEE Transactions on Software Engineering, 24(5):342–361.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley.

Goldberg, A. and Robson, D. (1989).Smalltalk-80: The Language. Addison-
Wesley Longman Publishing Co., Inc.

Gosling, J., Joy, B., and Steele, G. (1996).The Java Language Specification. GO-
TOP Information Inc.

Halstead, Jr., R. H. (1985). Multilisp: a language for concurrent symbolic compu-
tation. ACM Trans. Program. Lang. Syst., 7(4):501–538.

Hoare, C. A. R. (1973). Hints on programming language design. Technical Report
STAN-CS-73-403, Stanford University.

Hoare, C. A. R. (1974). Monitors: an operating system structuring concept.Com-
mun. ACM, 17(10):549–557.

Hoare, C. A. R. (1978). Communicating sequential processes.Communications of
the ACM, 21(8):666–677.

Hutchinson, N. C., Raj, R. K., Black, A. P., Levy, H. M., and Jul, E. (1991). The
emerald programming language. Technical report, Dept. of Computer Science,
University of British Columbia, Vancouver, Canada.

Ichbiah, J. D., Barnes, J. G. P., Firth, R. J., and Woodger, M. (1986).Rationale for
the Design of the ADA Programming Language. The Pentagon, Washington, D.
C., 20301, U. S. A., 1986.

ISTAG (2003). Ambient intelligence: from vision to reality. Draft report.

BIBLIOGRAPHY 245

Jul, E., Levy, H., Hutchinson, N., and Black, A. (1988). Fine-grained mobility in
the Emerald system.ACM Transactions on Computer Systems, 6(1):109–133.

Kafura, D. (1990). Act++: building a concurrent c++ with actors.Journal on
Object Oriented Programming, 3(1):25–37.

Kafura, D., Mukherji, M., and Lavender, G. (1993). Act++ 2.0: A class library
for concurrent programming in c++ using actors.Journal of Object-Oriented
Programming, 6(6):47–55.

Kafura, D. G. and Lee, K. H. (1989). Inheritance in actor based concurrent object-
oriented languages.Comput. J., 32(4):297–304.

Kaminsky, A. and Bischof, H.-P. (2002). Many-to-many invocation: a new object-
oriented paradigm for ad hoc collaborative systems.

Lange, D. and Oshima, M. (1998).Programming and Deploying Java Mobile
Agents with Aglets. Addison Wesley. http://aglets.sourceforge.
net .

Lea, D. (1999).Concurrent Programming in Java: Design Principles and Patterns.
Addison-Wesley, second edition. Online Supplement athttp://gee.cs.
oswego.edu/dl/cpj .

Lehrmann Madsen, O., Moller-Pedersen, B., and Nygaard, K. (1993).
Object-oriented programming in the BETA programming language. ACM
Press/Addison-Wesley Publishing Co.

Levy, H. M. and Tempero, E. D. (1991). Modules, objects and distributed pro-
gramming: issues in rpc and remote object invocation.Softw. Pract. Exper.,
21(1):77–90.

Lieberman, H. (1986). Using prototypical objects to implement shared behavior
in object-oriented systems. InConference proceedings on Object-oriented pro-
gramming systems, languages and applications, pages 214–223. ACM Press.

Lieberman, H. (1987).Concurrent Object-Oriented Programming in Act 1. MIT
Press.

Lieberman, H., Stein, L., and Ungar, D. (1987). Treaty of orlando. InAddendum
to the proceedings on Object-oriented programming systems, languages and ap-
plications (Addendum), pages 43–44. ACM Press.

Liskov, B. (1988). Distributed programming in argus.Communications Of The
ACM, 31(3):300–312.

Liskov, B. and Shrira, L. (1988). Promises: linguistic support for efficient asyn-
chronous procedure calls in distributed systems. InProceedings of the ACM

BIBLIOGRAPHY 246

SIGPLAN 1988 conference on Programming Language design and Implementa-
tion, pages 260–267. ACM Press.

Lucas, C. and Steyaert, P. (1994). Modular inheritance of objects through mixin-
methods. InProceedings of the 1994 Joint Modular Languages Conference,
pages 273–282.

Maheshwari, U. and Liskov, B. (1995). Collecting cyclic distributed garbage by
controlled migration. InProceedings of PODC’95 Principles of Distributed
Computing.

Malenfant, J., Dony, C., and Cointe, P. (1992). Behavioral Reflection in a
prototype-based language. In Yonezawa, A. and Smith, B., editors,Proceedings
of Int’l Workshop on Reflection and Meta-Level Architectures, pages 143–153,
Tokyo.

Matsuoka, S. (1993).Language Features for Re-use and Extensibility in Concur-
rent Object-Oriented Programming. PhD thesis, The University of Tokyo, 7-3-1
Hongo, Bunkyo-ku, Tokyo 113, Japan.

Matsuoka, S. and Yonezawa, A. (1993). Analysis of inheritance anomaly in object-
oriented concurrent programming languages. InResearch directions in concur-
rent object-oriented programming, pages 107–150. MIT Press.

Meyer, B. (1993). Systematic concurrent object-oriented programming.Commu-
nications of the ACM, 36(9):56–80.

Milicia, G. and Sassone, V. (2004). The inheritance anomaly: ten years after. In
Proceedings of the 2004 ACM symposium on Applied computing, pages 1267–
1274. ACM Press.

Milner, R. (1993). The polyadic pi-calculus: a tutorial. In Bauer, F. L., Brauer,
W., and Schwichtenberg, H., editors,Logic and Algebra of Specification, pages
203–246. Springer-Verlag.

Mulet, P. and Cointe, P. (1993). Definition of a reflective kernel for a prototype-
based language. In Nishio, S. and Yonezawa, A., editors,Proceedings of the 1st
JSSST International Symposium on Object Technologies for Advanced Software,
Kanazawa, Japan, pages 128–144. Springer-Verlag, Berlin.

Norcross, S. J. (2003).Deriving Distributed Garbage Collectors from Distributed
Termination Algorithms. PhD thesis, University of Saint Andrews.

Open E Project (2004). E: Open Source Distributed Capabilities.http://www.
erights.org .

Philippsen, M. and Haumacher, B. (1999). More efficient object serialization. In
IPPS/SPDP Workshops, pages 718–732.

BIBLIOGRAPHY 247

Piquer, J. M. (1991). Indirect reference counting: A distributed garbage collection
algorithm. In Aarts, E. and van Leeuwen, J., editors,Proceedings of the Confer-
ence on Parallel Architectures and Languages Europe (PARLE’91), Eindhoven,
The Netherlands, volume 505 ofLecture Notes in Computer Science. Springer-
Verlag, Berlin, Germany.

Pratikakis, P., Spacco, J., and Hicks, M. (2003). Transparent proxies for java fu-
tures.

Raj, R. K., Tempero, E. D., Levy, H. M., Black, A. P., Hutchinson, N. C., and
Jul, E. (1991). Emerald: A general-purpose programming language.Software -
Practice and Experience, 21(1):91–118.

Schougaard, K. (2003). Language support for distributed computation.

Smith, R. B. and Ungar, D. (1995). Programming as an experience: The inspiration
for self. Lecture Notes in Computer Science, 952:303–??

Smith, W. R. (1995). Using a prototype-based language for user interface: the
newton project’s experience. InProceedings of the tenth annual conference on
Object-oriented programming systems, languages, and applications, pages 61–
72. ACM Press.

Steyaert, P. (1994).Open Design of Object-Oriented Languages, A Foundation for
Specialisable Reflective Language Frameworks. PhD thesis, Vrije Universiteit
Brussel.

Steyaert, P., Codenie, W., D’hondt, T., De Hondt, K., Lucas, C., and Van Lim-
berghen, M. (1993). Nested mixin-methods in agora.Lecture Notes in Computer
Science, 707:197–??

Steyaert, P. and De Meuter, W. (1995). A marriage of class- and object-based
inheritance without unwanted children. InProceedings of ECOOP ’95, volume
952 ofLecture Notes in Computer Science, pages 127–144. Springer.

Stiegler, M. (2000). The E language in a walnut.http://www.skyhunter.
com/marcs/ewalnut.html .

Stroustrup, B. (1986).The C++ Programming Language. Addison-Wesley Long-
man Publishing Co., Inc.

Sun Microsystems (2004). Java 2 Micro Edition.http://java.sun.com/
j2me .

Surribas, E., Oktaba, H., and Huerta, E. (1996). cc++: a concurrent object-
oriented language.Revista de la Sociedad Chilena de Ciencia de la Computa-
cion, 1(1):15–30.

BIBLIOGRAPHY 248

Taivalsaari, A. (1993).A Critical View of Inheritance and Reusability in Object-
oriented Programming. PhD thesis, University of Jyvaskyla.

Taivalsaari, A. (1996). Classes vs. prototypes - some philosophical and historical
observations.

Taura, K., Matsuoka, S., and Yonezawa, A. (1994). Abcl/f: A future-based poly-
morphic typed concurrent object-oriented language - its design and implemen-
tation. In Proceedings of the DIMACS workshop on Specification of Parallel
Algorithms,1994.

Thorn, T. (1997). Programming languages for mobile code.ACM Computing
Surveys, 29(3):213–239.

Tolksdorf, R. and Knubben, K. (2001). dself - a distributed self. KIT-Report 144,
TU Berlin.

Tolksdorf, R. and Knubben, K. (2002). Programming distributed systems with
the delegation-based object-oriented language dself. InProceedings of the 2002
ACM symposium on Applied computing, pages 927–931. ACM Press.

Ungar, D., Chambers, C., Chang, B.-W., and Hölzle, U. (1991). Organizing pro-
grams without classes.Lisp Symb. Comput., 4(3):223–242.

Ungar, D. and Smith, R. B. (1987). Self: The power of simplicity. InConference
proceedings on Object-oriented programming systems, languages and applica-
tions, pages 227–242. ACM Press.

Van Belle, W. and D’Hondt, T. (2000). Agent mobility and reification of computa-
tional state, an experiment in migration. InInfrastructure for Agents, Multi-
Agent Systems, and Scalable Multi-Agent Systems, number 1887 in Lecture
Notes in Artifical Intelligence. Springer Verlag.

Van Belle, W. and Fabry, J. (2001). Experiences in mobile computing: The cborg
mobile multi agent system. Presented at Tools Europe 2001.

Van Belle, W., Verelst, K., Fabry, J., and D’Hondt, T. (2000). The cborg mobile
multi-agent system.http://cborg.sourceforge.net .

Van Belle, W., Verelst, K., Van Buggenhout, K., and D’Hondt, T. (2001). Is mes-
sage sending good enough? communication and synchronisation revisited. Ac-
cepted at ECOOP 2001, Workshop 17.

Van Cutsem, T., Mostinckx, S., De Meuter, W., Dedecker, J., and D’Hondt, T.
(2004). On the performance of soap in a non-trivial peer-to-peer experiment. In
Proceedings of the 2nd International Working Conference on Component De-
ployment, Lecture Notes In Computer Science. Springer Verlag.

BIBLIOGRAPHY 249

Verelst, K. and Van Belle, W. (2000). Synchronization and communication in
mobile multi agent systems csp revisited. Submitted at ECOOP 2000, Workshop
7.

Vitek, J., Serrano, M., and Thanos, D. (1997). Security and communication in
mobile object systems.

Weiser, M. (1991). The computer for the twenty-first century.Scientific American,
pages 94–100.

Wilson, P. R. (1992). Uniprocessor garbage collection techniques. InProc.
Int. Workshop on Memory Management, number 637, Saint-Malo (France).
Springer-Verlag.

World Wide Web Consortium (2003). Simple object access protocol (soap) 1.2
w3c note.http://www.w3.org/TR/SOAP/ .

Yao, C. and Goldberg, B. (1994). Pscheme: Extending continuations to express
control and synchronization in a parallel LISP. Technical Report TR1994-655,
New York University.

Yonezawa, A., Briot, J.-P., and Shibayama, E. (1986). Object-oriented concurrent
programming in abcl/1. InConference proceedings on Object-oriented program-
ming systems, languages and applications, pages 258–268. ACM Press.

Index

ABCL, 20, 65
ABCL/f, 68
Message Passing Types, 67

ABCL/f, 150
ACT++, 72
ACT1, 77, 150
Actions, 105
Active Document, 93
Active Object, 65, 124
active object, 63
Active Objects, 171
Actors, 54, 115, 119
Administrative Domains, 81
Agents, 112
Agora, 20, 29, 172
Aliasing, 109
Ambient Intelligence, 1, 85
amixin, 190
Analysis, 13
Application Migration, 112
Argus, 104
asuper, 184
Asynchronous Message passing, 130
athis, 184
Atomic Invocation, 60
atomic invocation, 63
Atomic Method Invocation, 126, 171
Atomicity, 66
aview, 188

Become, 121
Behaviour Replacement, 54, 72
Behaviour Set, 72
Behavioural Synchronization, 69
Borg, 112
Bounded Buffer, 70

Busy Wait, 142

C#, 74
Call-by-move, 88, 102
Call-by-name, 40
Call-by-visit, 88, 102
Call-with-current-continuation, 41, 146
Call-with-current-promise, 144
Callback, 114, 130
cC++, 73
Chasing, 142
Chords, 74
Cloning, 12

methods, 175
In Pico, 45
With static scope, 161

Cloning Families, 51
Kevo, 17

Closure, 22
Active , 193, 194

Communication, 113
Concatenation, 17
Concurrency

Race Conditions, 2
Serialization, 2, 105

Concurrency Model, 119
Condition Variable, 56
Condition Variables, 71
Conditional Synchronization, 69, 110,

141
Connected Applets, 170, 171
Constructor Functions, 43
Continuation, 41, 55, 77, 119, 129
Copydown, 98, 196
cPico, 2, 171
Critical Section, 135, 177

250

INDEX 251

CSP, 114
Cubbyhole, 70
Customer, 55

Deadlock, 128
Delegation, 10, 16–18, 25
Differential Copy, 19
Distributed Garbage Collection, 91,

220
Distributed Inheritance, 2, 5, 106, 169
Distribution Model, 168
dPico, 1, 168
dSelf, 96, 106

Concurrency In, 108
Dynamic Mixins, 156
Dynamic Modification, 15

Forms of, 15
Dynamic Scope, 41, 46, 154

for Method Reentrancy, 47

E Programming Language, 218
Embedding, 108
Emerald, 100

Concurrency, 102
Empathy, 10
Encapsulated Inheritance, 34, 170
Eureka Synchronization, 148
Express Mode Messages, 66
Extreme Encapsulation, 33, 84, 87,

103, 109

Finalizer, 163
Fork, 110, 120
Frame-based languages, 9
Future, 67, 131
Future Order Evaluation, 163

Garbage Collection, 162
Guardians, 105

In Act1, 77, 143
Guards, 73
Guide, 73

Handheld Computing, 93

Inheritance

Controlled, 34
Inheritance Anomaly, 58, 63
Integrative approach, 63
Intra-object Concurrency, 126

Java
Concurrency Model, 57

JavaScript, 20
Join, 110, 120
JXTA, 85

Kevo, 17, 20
Cloning Families, 17

Language Design, 6, 21
Intersectional , 29
Minimalism, 21
Uniformity, 21

Lazy Evaluation, 23, 40
Library approach, 63
Linearized Inheritance, 156
Lobby, 28, 107
Local Methods, 107
Lock, 119
Locking, 105

Granularity, 152
Incremental, 152

M2MI, 85
Meta-programming, 12, 18, 24

In Pico, 42
Meta-object protocol, 33, 36

Method Invocation
Atomic, 126
Remote, 86

Middleware, 81
Minimality, 6
Mixin, 31

-based Inheritance, 170
methods, 174
Active , 190

Mobile Computating, 1
Mobile Computation, 82, 93
Mobile Computing, 93
Monitor, 56, 127

INDEX 252

MOOSTRAP, 18, 20
Multiple Inheritance, 22, 26
Multivalue, 6, 219
Multivalues, 198
Mutex, 56, 110, 127

Name Server, 84, 111, 113
NewtonScript, 20

Obliq, 17, 20, 96, 108
Generalized Clone, 108
protected, 109
Self Inflicted, 109

OR-parallel Scheduler, 148

Parallel Inheritance, 183
Parent Sharing, 2, 24, 51, 134

Advantages, 137
Controlled, 134

Partial Failure, 90, 103, 104, 219
Passive Object, 124
persistence, 90
Personal Area Network, 1
Pervasive network, 95
Pi-calculus, 115
Pic%, 37

First-class Methods, 47
Pico, 37
Port, 76
Promise, 67, 131, 171, 202

Automatic Continuation, 202
Forwarding , 205

Prototype, 8, 9, 12, 25
Corruption Problem, 13, 19, 25

Proxy, 86, 160
PScheme, 76, 149

Race, 148
Recovery, 105
Reentrancy, 46

Reentrant Locks, 128
Reflection Protection, 36
Reflective approach, 63
Reifier, 31

Natives, 157

Reliability, 103, 104
Remote Device Control, 93
Remote Method Invocation, 86
Remote Reference, 84, 107
Rendez-vous, 147
Replication Management, 95
Reply Destination, 67
RMI, 86
Routing, 113

Safety, 82
Scheme, 32, 37, 41
SCOOP, 73
Scope Functions, 134

Active, 190
Security, 83

Denial Of Service, 83
Masquerading, 83

Selective Message Receipt, 65
Self, 20, 96

Mirrors, 24
Name Space Objects, 28
Traits, 24

Semaphore, 56, 71
Serialization, 88

In Concurrency, 127
Serialized Object, 171
Service Discovery, 179, 197
Sharing, 16

creation-time, 16
life-time, 16
name-, 16
Parent, 18, 24, 51
property-, 16
value-, 16

Singleton, 25, 50
Slots, 14, 22
Smalltalk, 23, 96
Split Objects, 18, 218
Static Scope, 41

Network-wide , 111
Strong Mobility, 5, 93, 113, 169

Advantages, 94
Continuation Mobility, 168, 207

INDEX 253

In Borg, 113
Versus Weak, 94

Structural Reification, 28
Subtype, 101
Synchronization, 105, 113, 114, 171

Conditional, 110

Taxonomy, 13
of Sharing, 16

Templates, 10
Thread, 110
Threads, 56, 119
Threat Model, 83
Transaction, 90, 105
Transmission Ordering, 132

Ubiquitous
Computing, 1
Network, 95

Unification, 114

Variable Overriding, 21, 46
View, 31, 172

methods, 173
Active , 187
In Pico, 44
NetView, 171, 181

Wait-by-necessity, 67
Workflow Management, 93

