Vrije Universiteit Brussel

Faculty of Sciences and Bio-engineering Sciences
Departement of Computer Science
Software Languages Lab

The Essence of Meta-Tracing JIT Compilers

Thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science in de Ingenieurswetenschappen: Computerwetenschappen

Maarten Vandercammen

Promotors: Prof. Dr. Coen De Roover
Prof. Dr. Theo D’'Hondt

Advisors: Dr. Joeri De Koster
Dr. Stefan Marr
Jens Nicolay

JUNE 2015

Vrije Universiteit Brussel

Faculteit Wetenschappen en Bio-ingenieurswetenschappen
Vakgroep Computerwetenschappen
Software Languages Lab

The Essence of Meta-Tracing JIT Compilers

Proefschrift ingediend met het oog op het behalen van de graad van
Master of Science in de Ingenieurswetenschappen: Computerwetenschappen

Maarten Vandercammen

Promotors: Prof. Dr. Coen De Roover
Prof. Dr. Theo D’Hondt

Begeleiders: Dr. Joeri De Koster
Dr. Stefan Marr
Jens Nicolay

JUNI 2015

Abstract

JIT compilation is a successful strategy for the execution of dynamic program-
ming languages, as it mitigates the performance penalties inherent to these lan-
guages. Tracing JIT compilers are an alternative to the more common method-
based JIT compilers. In tracing JIT compilation, the VM identifies frequently
executed, ‘hot” program paths at runtime. Once a hot path is detected, the VM
records all instructions in this path into a trace until execution loops back to
the first instruction of this path. The trace is then compiled and subsequent
iterations of this path execute the compiled trace instead of the original code.

However, despite the advantage tracing JIT compilers offer, the extra engi-
neering effort required to develop them is often seen to not be worth the effort.
The technique of meta-tracing offers a solution for this dilemma. Language in-
terpreters are built on top of a common tracing JIT compiler and this compiler
traces the execution of the interpreter while it is running a user-program. This al-
lows language implementers to reach acceptable performance levels with only
a minimum of effort required.

Until now, little attention has been paid to the formal foundations of (meta-)
tracing compilation. In this thesis, we build a meta-tracing compiler from the
ground up and establish a set of formal semantics describing the execution of
this compiler.

We extend our framework with a number of state-of-the-art features com-
monly found in other (meta-) tracing compilers. We introduce a loop hotness
detection feature, where a loop is only traced after a heuristic has determined
it to be sufficiently hot, and guard tracing, where we try to decrease the run-
time costs inherent to aborting the execution of a trace. We also investigate the
concept of trace merging. By joining traces when their underlying control-flow
merges, we can avoid having to trace all possible paths through a program.
This improves space efficiency and averts some of the runtime overhead asso-
ciated with tracing. Trace merging has not been widely deployed yet in existing
tracing compilers.

Samenvatting

JIT compilatie is een successvolle manier om dynamische programmeertalen
uit te voeren, aangezien het de negatieve impact op runtime performance, die
eigen is aan deze talen, verzacht. Tracing JIT compilers zijn een alternatief
voor de vaker gebruikte method-based JIT compilers. In tracing JIT compilatie
identificeert de VM vaak uitgevoerde, ‘hot’, control-flow paden at runtime.
Eens deze gevonden zijn, registreert de VM alle instructies die deel uitmaken
van dit pad in een trace totdat executie terugspringt naar de eerste executie
van dit pad. De trace wordt dan gecompileerd en volgende iteraties van het
pad voeren de geoptimiseerde trace uit in plaats van de originele code.

Ondanks het voordeel die tracing JIT compilers bieden, wordt de extra com-
plexiteit die nodig is om deze compilers te ontwikkelen vaak beschouwd als
een zware hindernis. De techniek van meta-tracing biedt een oplossing voor
dit dilemma. Language interpreters worden ontwikkeld bovenop een gemeen-
schappelijke tracing JIT compiler. Door deze compiler de executie van de inter-
preter te laten tracen, terwijl die een user-programma uitvoert, kunnen language
implementers acceptabele performantie niveaus bereiken met een minimum
aan overlast.

Tot op heden werd er weining aandacht besteed aan de formele basis van
(meta-)tracing compilatie. In deze thesis ontwikkelen we een meta-tracing
compiler vanaf nul en specifiéren we een set formele semantieken die de ex-
ecutie van deze compiler beschrijven.

We breiden ons framework uit met een aantal state-of-the-art features die
vaak deel uitmaken van andere (meta-)tracing compilers, zoals loop hotness
detection, waarbij een loop enkel getraced wordt als een heuristiek bepaald
heeft dat deze loop voldoende "hot’ is, en guard tracing, waarbij we de negatieve
performance hit die wordt opgelopen bij een trace side-exit proberen te verla-
gen. We onderzoeken ook het concept van trace merging. Door traces samen te
voegen wanneer hun onderliggende control-flow samenvloeit, kunnen we ver-
mijden om alle mogelijke paden doorheen de control-flow van een programma
te moeten tracen. Dit verbetert de space-efficiency en vermijdt een deel van de
runtime overhead die eigen is aan tracing. Trace merging werd nog niet vaak
gebruikt in huidige tracing compilers.

ii

Acknowledgements

This thesis would not have been possible without the assistance of my advisors,
Joeri De Koster, Stefan Marr, Jens Nicolay, and my promotors, Theo D’Hondt
and Coen De Roover. They sacrificed many hours discussing various topics,
providing invaluable insights, proofreading this dissertation, helping me solve
problems and errors I encountered, and generally guiding me in the creation
of this thesis. Throughout the year, I could always count on them to help me
along when I became stuck with some problem, no matter how trivial the issue
may have been. I want to thank all of them for their patience, compassion,
kindness and motivation. Sharing their wisdom and knowledge aided me in
understanding the various topics relevant to this thesis.

I would also like to thank all of my friends, as well as Leen, Raf and Lander,
for keeping me sane throughout the last year. The many laughs and drinks we
shared, their encouragements when I was lacking motivation, and their general
acts of friendship were invaluable to me.

The administration of the Software Languages Lab also deserves my grati-
tude, for providing the thesis students with several facilities such as the student
room

Lastly, I want to express my gratitude to my parents and my brother and
sister. Although their help may have been the easiest to overlook, it was by no
means the least important. I could not have gotten where I am today without
their help. Thank you!

iii

Contents

1 Introduction 1
11 Context 1

12 Problemstatementandgoal 2

1.3 Contributions o oL 3

14 Roadmap 4

2 Background 6
2.1 Just-in-time compilationo o oL 6
2.2 Trace-based compilation 7
221 Overview 7

222 Tracing 7

223 Guardinstructions L. 10

23 Meta-tracing 11
231 Overview 11

232 Example 12

2.3.3 Matching traces with userloops 13

234 Interpreterhints. 14

3 Related work 16
31 Overview. 16
311 Conception, 16

312 HotpathVM 16

313 TraceMonkey 17

3.14 Other tracing compilers 18

3.2 Formal frameworks L L L. 18
3.3 Traceselection strategies 19
34 Meta-tracing Lo 21
3.4.1 TheRPythonproject 21

3.42 Hierarchical VM layering 26

4 The SLIPT language 28
41 CESK-machines 28
411 Overview 28

412 Example oo 29

iv

CONTENTS

4.2
4.3

44
4.5
4.6

5.1
5.2
5.3
54
5.5
5.6

5.7
5.8
5.9

6.1

6.2

6.3

6.4

Syntax
CESKf#-machine i
431 Overview
432 CESKfdefinition
433 Evaluationrules.
Low-level instructionset
Redefining SLIPT’s semantics
Implementation L L L L.

Tracing semantics

Introduction
Tracing overview
Extended Syntax
Tracingmachine
Interface
Guard instructions e
5.6.1 Introduction
562 Guardexamples
5.6.3 Low-level instruction interface
5.6.4 Guardinstructions
5.6.5 Adding guards to existing transitionrules
Normal interpretation
Tracerecording
Traceexecution 0.

Extending the tracing framework

Hotloop detection
6.1.1 Overview
6.1.2 Extending the tracing machine
6.1.3 Semantics e
Guardtracing
6.2.1 Overview e
6.2.2 Extending the tracing machine
6.2.3 Guardinstructions
6.24 Semantics e e
Tracemerging L.
6.3.1 Overview
632 Syntax
6.3.3 Extending the tracing machine
6.34 Interface
6.3.5 Handling merging annotations
6.3.6 Low-level instructions interface
6.3.7 Semantics
Validationconclusion

CONTENTS vi

7 Conclusion 93
71 Summary 93
72 Contributions 94
73 Futurework 95

731 Optimizations 95
7.3.2 Direct versus meta-tracing 96
7.3.3 Additional features, 96

74 Overallconclusion 96

2.1
2.2
23

3.1
32

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
49
4.10
411
4.12
413

5.1
5.2

5.3
54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12

List of Figures

The phases used by a tracing JIT compiler 8
The logical control-flow of the Python program from Listing 2.1 10
The towers of interpreters when meta-tracing 11
Translating a language interpretertoC 22
The promote and elidable annotations in RPython 26
A set of transition rules for a CESK-machine 29
A concrete example of evaluating an assignment 30
The syntax of SLIPT 31
The CESKf#-machine 33
Handling variables and values 34
Evaluating definitions and assignments 35
Evaluating if-expressions, 36
Evaluating sequences of expressions 37
Evaluating function applications 38
The definition of bindParams 39
Evaluating apply-expressions 39
The low-level instructionset 42
The LLI CESKé-machine 45
The relation between the interpreter and the tracer 49
Transitioning between the three phases in a SLIPT program’s ex-

ecution 50
A SLIPT program that can be traced along with its resulting trace 53
The new definitionfor Exp 54
The tracing machine 55
The interface between the CESKf-machine and the tracer 56
The interface between the low-level instructions and the tracer . 61
The definition of guard-false 62
The definition of guard-true 63
The definition of guard-same-closure 63
The definition of guard-same-nr-of-args 64
The new transition rules for evaluating an if-expression 65

vii

LIST OF FIGURES

5.13
5.14
5.15
5.16
5.17

5.18

5.19
520

5.21

522
523
524
525

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22

The new transition rules for evaluating a function application .
The new transition rules for evaluating an apply-expression . .
Handling an applyFailedk(rator, i) continuation
Normal interpretation if no annotation is encountered
Normal interpretation if a can-close-loop annotation is en-
countered L
Normal interpretation if a can-start-1loop annotation is en-
countered L L
Trace recording if no annotation is encountered
Trace recording if an annotation with a different label is encoun-
tered
Trace recording if an annotation with the label that is being traced
isencountered Lo
Trace executionifnoguardfails
Trace executionifa guard fails
Trace execution if the end of a trace has been reached
Trace execution if the end of a looping trace has been reached

The updated tracing machine for loop hotness detection

The normal interpretation rules which have not changed
The additional normal interpretationrules
The updated tracing machine for guard tracing
The updated definition of guard-false
The updated definition of FventSignal
The updated trace recording rules
The trace execution rules which have not changed
The updated trace execution rules for handling guard failure . .
Trace execution if the end of a looping trace has been reached
The logical control-flow of Listing 6.1
An example of how control-flow is translated into three traces .
An example of how trace merging solves the issue of trace ex-
plosion
The new definitionof Ezp
The updated tracing machine for trace merging
The new definition of AnnotationSignal
A concrete example of how two traces are merged together . . .
The updated interface for low-level instructions
The implementation of the two new instructions
The normal interpretation rules for the two new annotations . .
The updated trace recording rules
The updated trace executionrules

viii

66
66
66
67

68

68
69

69

70
71
71
71
72

75
75
76
78
78
78
80
80
81
81
82
83

2.1
22
23
24
25
2.6
3.1
3.2
5.1
52
5.3
54
5.5
5.6
5.7
6.1
6.2
6.3
6.4
6.5
6.6

Listings

Python code containing a traceableloop 9
The resulting pseudo trace for thisloop 9
A small bytecode interpreter 13
The user-program 13
The bytecode for this user-program 13
The bytecode interpreter with a hint attached 14
Example of a false loopin Python 20
The annotationsused inPyPy 22
Afunctionin SLIPT oL L 49
Alooping functionin SLIPT 51
A function whose trace can contain a side-exit 52
AfunctioninSLIPT, 53
A function where control-flow may diverge 58
Control-flow diverging because of higher-order functions 59
A more subtle example of code where guards must be introduced 60
A function where control-flow merges 82
A program causing trace explosiontoarise 84
A program where trace merging may be detrimental 85
An example of how the new annotations areused 86
A nested if-expression L L. 88
A SLIPT program with diverging control-flow 89

X

Chapter 1

Introduction

1.1 Context

In order to satisfy consumers’ need for ever more powerful and responsive
applications, researchers do not only turn their attention towards the develop-
ment of increasingly sophisticated hardware, but also towards software mod-
els that optimize a program’s execution, such as just-in-time (JIT) compilation.
Instead of compiling an entire program upfront, a JIT compiler only compiles
those parts of the code that are frequently executed. Since compilation pro-
ceeds at runtime, the compiler can exploit knowledge of the program’s exe-
cution to apply optimizations that require precise information about the pro-
gram’s behavior, which is in general difficult to obtain for ahead-of-time com-
pilers. JIT compilation has especially proven its merit in the context of lan-
guages that use dynamic programming features, such as late-binding, or dy-
namic programming languages in general. For these languages, it is difficult
for static compilers to generate efficient code because they cannot know in ad-
vance which code will be called at runtime. JIT compilers on the other hand,
can observe the invoked code at runtime and subsequently use this informa-
tion to optimize the generated code.

In this thesis we present a trace-based JIT compiler. Trace-based JIT com-
pilation is a technique where the compiler identifies frequently executed, hot
program paths at runtime. Once a hot path is detected, the compiler records,
or traces, each of the instructions on this path into a trace. Tracing continues
across function calls and proceeds until execution jumps back to the first in-
struction that was recorded. The trace is then optimised and compiled. Subse-
quent iterations of this path execute the optimized trace instead of the original
code. Because a trace is a representation of a single path through the control-
flow, it consists only of a linear sequence of instructions, without any kind of
control-flow at all. This makes traces suitable targets for optimization, because
the absence of any control-flow, combined with the fact that a trace presents
concrete information on a program’s execution, increases the compiler’s abil-

CHAPTER 1. INTRODUCTION 2

ity to optimize the code. However, when executing a trace, we have to ensure
that the conditions that were responsible for following this path through the
program are still valid when the trace is executed. For this reason, we insert
guard instructions in the trace. A guard is responsible for checking a certain
condition in the trace. If it finds that the condition is invalidated, execution of
the trace must be aborted.

Meta-tracing is a generalization of regular tracing where we do not trace a
user-program directly, but where instead we trace the execution of a language
interpreter while this interpreter is running a user-program. Language developers
who wish to use tracing compilation for their language must create only a reg-
ular interpreter, without having to write a dedicated tracing JIT compiler. By
executing their interpreter using a meta-tracing compiler, language developers
can reap the optimization benefits without incurring its costs in complexity. In
order to maximize the effect of the trace-based optimizations, developers usu-
ally need to introduce hints for the meta-tracing compiler in their interpreter.

1.2 Problem statement and goal

Although tracing JIT compilers have existed since the early 2000s, little re-
search has been performed towards understanding the formal foundations of
tracing, and especially meta-tracing, compilation. Recently, there have been at-
tempts to capture the concept of tracing compilation in formal semantics (Guo
& Palsberg, 2011; Dissegna et al., 2014). However, both studies were geared
towards a single purpose only, proving the soundness of optimizations that
are applied on a trace, and could not be easily reused for other, more general,
purposes, such as investigating the impact of certain features of tracing compi-
lation on a program’s execution.

Specifically, in the framework developed by Guo & Palsberg (2011) two
near-identical sets of evaluation rules are necessary to describe a program’s ex-
ecution. One set is used to determine a program’s execution during normal
interpretation, i.e., when no tracing is going on whatsoever. The other set is
used to describe a program’s execution during the recording of a trace. This
increases the complexity of the framework and makes it more difficult to ex-
tend the evaluation rules. The framework described by Dissegna et al. (2014) is
also problematic: it does not model how traces are recorded concretely during
the execution of a program, but rather assumes the existence of a set of possi-
ble pre-existing traces for each state of the program, based on a heuristic that
is “hard-coded” into their model.

Both frameworks prove more than adequate when used only for reasoning
over the execution of a trace, but fall somewhat short in modelling all other
aspects of a program’s execution. Additionally, these models are both tightly
integrated with one specific set of evaluation rules, for one specific program-
ming language: their models cannot be adapted to simulate the execution of
any arbitrary programming language. For these reasons, it is difficult to extend
the tracing compilers described in their models with any new features. If one

CHAPTER 1. INTRODUCTION 3

wishes to formally reason about the impact of extending the tracing compiler
with a particular feature, they could not use these frameworks. Lastly, these
recent attempts were aimed entirely at understanding only direct tracing, and
not meta-tracing.

We propose to create a meta-tracing JIT compiler and specify a set of formal
semantics that express the workings of this compiler formally. This compiler is
minimalistic, yet functional. It is capable of doing just the following:

* Modelling all aspects of a program’s execution: the recording and exe-
cution of traces, as well as normal interpretation of the program without
any tracing whatsoever

¢ Handling guard instructions and aborting the execution of traces when
necessary

¢ Handling the hints used by language developers in their interpreters to
enable meta-tracing of these interpreters

We believe that implementing these three features is adequate for devel-
oping a complete formal model of how real-world meta-tracing compilers be-
have. By specifying our model through a set of formal semantics, we can un-
derstand how tracing compilation in general works on a formal level. Because
the proposed framework is minimalistic, we believe that the framework is eas-
ier to comprehend and extend with additional features.

In order to fulfil our goal of keeping our meta-tracing compiler minimalis-
tic, we model our compiler as an entity that attaches itself to an existing inter-
preter and records its actions while this interpreter evaluates a program. Be-
cause our compiler is a meta-tracing compiler, the input to this interpreter are
mainly other interpreters. However, because meta-tracing can be seen as a gen-
eralization of tracing in general, our compiler should also be able to function
as a regular, non-meta-tracing tracing compiler. By specifying our compiler ex-
plicitly through its interaction with an interpreter, we can make our compiler
configurable in the sense that it can trace the execution of any program, written
in an arbitrary programming language, as long as the compiler is attached to a
suitable interpreter, capable of executing this program.

1.3 Contributions

In this thesis, we develop a meta-tracing JIT compiler from scratch. To describe
the entire development process in its totality, we specify a language, SLIPT,
short for SLIP traced, and an interpreter for this language through a formal ex-
ecution model. We then define a formal model for our meta-tracing compiler,
which executes SLIPT programs by attaching itself to the specified interpreter
and tracing its actions. Although the proposed compiler is capable of execut-
ing arbitrary programs when a compatible interpreter is provided, we restrict
ourselves to the execution of SLIPT in this thesis.
Our compiler has the following characteristics:

CHAPTER 1. INTRODUCTION 4

* Minimalistic: because we build the compiler from the ground up, we
carefully select which features are absolutely essential to the process of
meta-tracing and which ones are not. The only features we include in
our minimalistic meta-tracing compiler are: the modelling of the record-
ing and execution of traces, as well as normal interpretation of a program,
the handling of guard failures and the handling of hints included in the
interpreter by language implementers. By removing all non-essential as-
pects of tracing compilation, we avoid adding unnecessary complexity
that makes it harder to reason over the workings of the model.

¢ Configurable: in contrast with formal specifications of tracing compil-
ers, the input language of the compiler does not have to be set in stone:
interpretation of the input language is cleanly separated from the actual
meta-tracing. This enables us to switch our SLIPT interpreter for any
other interpreter, as long as it conforms to a specific interface, in contrast
with previous work on formalizing tracing compilation.

* Extensible: because the compiler is minimalistic, it is easy to extend with
additional features, heuristics or optimizations. This quality has not been
achieved in previous attempts at formalizing tracing.

¢ Executable: we implement both the SLIPT interpreter and the tracing
compiler in Racket. To the best of our knowledge, previous formal mod-
els on tracing compilation were not actually implemented but only ex-
isted as a formal specification.

1.4 Roadmap

This thesis is structured as follows:

Chapter 2: Background presents the concept of tracing and meta-tracing
compilation and provides examples of traces that are produced both by di-
rect and by meta-tracing JIT compilers. It also explains the, sometimes subtle,
differences between both kinds of tracing compilers.

Chapter 3: Related work gives an overview of existing, commonly-used,
state-of-the-art (meta-)tracing compilers and specifies which features, heuris-
tics or optimizations are often found in these compilers. It also states which
approaches have already been attempted towards formally understanding the
concept of trace-based compilation.

Chapter 4: The SLIPT language specifies our input language, SLIPT, and
presents operational semantics detailing how this language is executed. These
formal semantics serve as the definition of our interpreter.

CHAPTER 1. INTRODUCTION 5

Chapter 5: Tracing semantics presents our tracing compiler and describes
how tracing is performed in our framework by providing the formal semantics
that express the workings of this compiler.

Chapter 6: Extending the tracing framework gives a validation for our frame-
work by integrating a set of extensions to our compiler, indicating that our
semantics are powerful enough to model non-trivial additions.

Chapter 7: Conclusion summarizes the contents of this thesis, states how the
problem statement has been answered and gives some directions for possible
future work.

Chapter 2

Background

2.1 Just-in-time compilation

Just-in-time (JIT) compilation is a technique where, instead of statically compil-
ing and optimizing an entire program upfront, the execution engine observes
a program’s execution and a JIT compiler emits machine code at runtime. Do-
ing so allows the compiler to take into account specific characteristics of the
program’s execution when generating machine instructions, such as the val-
ues or types of certain variables that are used in the code. This compilation
strategy is especially powerful when applied to languages that use dynamic
programming features, such as late-binding. The presence of late-binding gen-
erally prohibits an ahead-of-time compiler from determining which code will
be called at runtime, and therefore also hinders these compilers” ability to gen-
erate efficient code. Additionally, since the dynamic type of a variable is known
during a program’s execution, the JIT compiler can emit type-specialized code,
leading to optimal performance of the generated code.

The concept of JIT compilation became popular through the development
of a compiler for the programming language Self (Ungar & Smith, 1987; Smith
& Ungar, 1995), although seminal work on JIT compilation had already been
performed by Mitchell for the language LC? (Mitchell et al., 1967) and Abrams
for his APL machine (Abrams, 1970; Aycock, 2003).

Most JIT compilers are method-based compilers. These compilers identify
frequently executed, i.e., hot methods in a program at runtime and compile
them to native code so that subsequent calls to this method trigger the execu-
tion of the compiled code, instead of the original method.

CHAPTER 2. BACKGROUND 7

2.2 Trace-based compilation

2.2.1 Overview

Trace-based compilers are an alternative to method-based compilers. They are
built on two basic assumptions (Bolz et al., 2009):

* Most of the execution time of a program is spent in loops

* Severaliterations of the same loop are likely to take the same path through
the program

Starting from these two premises, tracing compilers do not limit themselves to
the compilation of methods, like method-based JIT compilers, but they trace
hot program paths in general. Many tracing JIT compilers however focus only
on compiling loops (Schneider & Bolz, 2012). For the remainder of this chapter,
we focus on compiling only loops.

Trace-based JIT compilation is usually performed in a mixed-mode execu-
tion environment (Bolz, 2012), consisting of both an interpreter and a JIT com-
piler. In a first phase, the interpreter executes the program but simultaneously
profiles the code, in order to identify frequently executed loops.

2.2.2 Tracing

When a hot loop is detected, the interpreter starts tracing the execution of this
loop: the operations that are performed by the interpreter during the execution
of this loop are recorded into a trace. Tracing continues until the interpreter
has completed a full iteration of the loop. Because the trace is a recording of
the operations performed by the interpreter, functions are automatically in-
lined in the trace. Not all operations are recorded; function calls themselves
and branching statements are not recorded directly into the trace. Once trac-
ing has completed, the recorded trace is compiled and optimized. Subsequent
iterations of this loop then execute the compiled trace instead of the original
loop.

Figure 2.1 shows the various phases in a program’s execution when using
a tracing JIT compiler.

CHAPTER 2. BACKGROUND 8

I Interpretation
with Profiling
entering
with exi new hot loop identified

machipé code

L

II. Interpretation
with Tracing

loop finished

Y

lll. Optimize and
emit machine
code

IV Execute
machine code

guard failure

Figure 2.1: The phases used by a tracing JIT compiler, retrieved from Bolz (2012,
Figure 2)

Since the trace consists of all operations that are performed by the inter-
preter as it executes one iteration of the loop, the recorded trace consists of a
linear sequence of instructions representing the specific program path that was
taken through the program while tracing. If control-flow splits at some point
during the program’s execution, e.g., because an if-statement is executed, then
the trace contains only instructions for executing one of these branches.

In the following, we give a concrete example, adapted from (Bolz, 2012), of
how tracing works. Consider the program shown in Listings 2.1. At some point
in the program’s execution, the interpreter might decide that the while-loop
inside the function strange_sum is hot and that it should be traced. Tracing
then starts from the beginning of this while-loop, continues through the call
to f and terminates when the last statement in the body of the while has been
executed. Since the function f contains an if-statement, control-flow splits in
two branches there. Suppose that the if-condition evaluated to false, i.e., b % 46
does not equal 41, then the false-branch was selected and the resulting trace
only contains instructions for executing this false-branch. Figure 2.2 shows the
full logical control-flow graph of this example Python program. The path that
was traced through this program is marked in blue.

Listings 2.2 shows a pseudo trace corresponding to this path. The current

CHAPTER 2. BACKGROUND

values of the variables result and n from the original program are read in
prior to the execution of the trace. The trace proper, which corresponds to the
actual loop in the program, then follows, consisting of a sequence of bytecode
instructions. At the end of the trace, execution jumps back to the beginning of

the loop.
def f(a, b):
it b % 46 == 41:
return a — b
1se

return a + b

def strange_sum(n) :
result = 0
while n >= 0:
result =
n -= 1
result

f (result, n)

return
Listing 2.1: Python code containing a

traceable loop, retrieved from Bolz (2012,
Figure 3)

corresponding trace:
result0 = read(result)
n0 = read(n)

loop:

inside f (result, n)
i0 = int_mod(n0, 46)
il = int_eqg(i0, 41)
guard_false (il)
resultl = int_add(resultO,
nl = int_sub(n0, 1)
i2 = int_ge(nl, 0)
guard_true(i2)
result0 = resultl
n0 = nl

result =

no0)

Jump (loop)

Listing 2.2: The resulting pseudo trace
for this loop, adapted from Bolz (2012,
Figure 3)

CHAPTER 2. BACKGROUND 10

start of
strange_sum| J7
start of
result =0 f
b % 46 == 41
n>=0
returna-b
result= ||
f(result, n) \ /
end of
n=1 [f

return result

!

end of
strange_sum

Figure 2.2: The logical control-flow of the Python program from Listing 2.1

2.2.3 Guard instructions

Because a trace is a representation of only one single path, we must ensure that
the conditions that caused the interpreter to select this path during the recording
of the trace are still valid during the execution of the trace. Concretely, for the
previous example, during the recording of the trace the interpreter executed
the false-branch of the if-expression inside the function f because the condition
b % 46 == 41 evaluated to False. This means that we must check during
the execution of this trace whether this condition still evaluates to False. If
it does not, execution of the trace must be aborted because an assumption on
which part of the trace is resting was proven to be invalid.

This is implemented by adding guards to the trace. A guard checks a con-
dition and if it finds that the condition does not hold, aborts execution of
the trace. Guard instructions are inserted into the trace during its recording.

o\

CHAPTER 2. BACKGROUND 11

In the previous example, two guards were used. A guard-false was in-
serted to check whether the conditionb % 46 == 41 evaluatesto False and
a guard_true was placed to determine whether the condition n >= 0 still
evaluates to True. If the condition that is associated with a guard does not hold
any more, we say that the guard fails. Execution of the trace is then aborted, and
the interpreter resumes normal interpretation of the program from the point
in the program corresponding to this guard failure. The process of aborting
execution and restarting interpretation is called a side-exit. Side-exits are inher-
ently costly to the runtime performance of the program’s execution, because
execution of the compiled and optimized trace must be abandoned and nor-
mal interpretation must be restarted.

Because the trace is a direct recording of the execution of a user-program,
the style of trace-based compilation that we presented in this section is called
direct tracing.

2.3 Meta-tracing

2.3.1 Overview

Whereas a direct tracing compiler records the execution of a user-program di-
rectly, meta-tracing refers to a configuration where a tracing interpreter executes
another language interpreter while this language interpreter itself is executing a
user-program. The tracing interpreter traces the execution of the language in-
terpreter and the recorded traces are compiled by a JIT compiler. The diagram
in Figure 2.3 shows how these interpreters are stacked onto each other.

User-program

Language interpreter

Tracing interpreter

Underlying runtime

Figure 2.3: The towers of interpreters when meta-tracing

An advantage to this approach is that language implementers can create
a regular interpreter for their language, run it with an already existing meta-
tracing compiler, and receive the benefits of trace-based compilation without
having to go through the effort of developing their own JIT compiler.

CHAPTER 2. BACKGROUND 12

2.3.2 Example

Listings 2.3 shows the implementation of a small bytecode interpreter writ-
ten in Python, based on an example given by Bolz (2012). A bytecode inter-
preter is an interpreter that executes programs by statically compiling them
to a sequence of bytecode instructions, after which these instructions are ex-
ecuted. This interpreter features 256 general-purpose registers, as well as a
program counter and an accumulator register. Listing 2.4 presents an example
user-program, written in the language implemented by this interpreter, which
resembles Python. Listing 2.5 shows the bytecode that is generated when com-
piling this user-program to bytecode used by the language interpreter.

CHAPTER 2. BACKGROUND

def interpret (bytecode, acc):

regs = [0] * 256
pc =0
/hile True:
opcode = ord(bytecode[pc])
pc t=1
Jumps to location if acc ==
1f opcode == JUMP_IF_A:
target = ord(bytecodel[pc])
pc +=1
if acc:

pc = target
move acc to register
elif opcode == MOV_A_R:
n = ord(bytecode[pc])
pc +=1
regs[n] = acc
move register to acc
eli opcode == MOV_R_A:
n = ord(bytecode[pc])
pc +=1
acc = regs[n]
add register to acc
:11f opcode == ADD_R_TO_A:
n = ord(bytecode([pc])
pc +=1
acc += regs|[n]
decrement acc

elif opcode == DECR_A:
acc —= 1

return acc

elif opcode == RETURN_A:
return acc

Listing 2.3: A small bytecode interpreter, re-

trieved from Bolz (2012, Figure 5)

res = 0
i =a
while (i != 0):
i,,
res += a
return res

Listing 2.4: The
user-program

2.3.3 Matching traces with user loops

13

1 =a
MOV_A_R O

copy of a
MOV_A_R 1

loop:

i-—
MOV_R_A 0
DECR_A
MOV_A_R O

res += a
MOV_R_A 2
ADD_R_TO_A 1
MOV_A_R 2

if i!=0: goto loop
MOV_R_A O
JUMP_TIF_A loop

return res
MOV_R_A 2
RETURN_A
Listing 2.5: The
bytecode for this
user-program, re-
trieved from Bolz
(2012, Figure 6)

Because the input to the tracing interpreter is the language interpreter featured
in Listing 2.3 and not the user-program of Listing 2.4, the tracing interpreter
cannot know when the user-program loops. A naive tracing interpreter is en-
tirely oblivious of the fact that it is executing another interpreter and executes
its input as it would execute any other program: the tracing interpreter identi-
fies and traces hot loops in the language interpreter, instead of hot loops in the
user program, as would be the case in direct tracing. This often leads to unac-

CHAPTER 2. BACKGROUND 14

ceptable performance. Concretely, it might trace one iteration of the while-loop
featured in Listing 2.3. This loop, called the bytecode dispatch loop, takes the
next bytecode instruction in the compiled bytecode of the user-program, dis-
patches over the opcode of this instruction and subsequently executes it.

When this loop has been traced and the next instruction of the bytecode
must be executed, the interpreter executes the trace it has just recorded. How-
ever, this trace only corresponds to the execution of one specific opcode, e.g.,
MOVE_R_A, while the compiled bytecode for the user-program consists of in-
structions with many different opcodes. Although this trace is executed in
each iteration of the bytecode dispatch loop, execution immediately needs to
be abandoned when it is noticed that the opcode of the current instruction does
not match MOVE_R_A. In essence, this problem is caused by the fact that the
tracing interpreter traces one loop of the language interpreter, even though it is
likely that different iterations of the same loop take completely different paths
through the loop. This problem is essential to meta-tracing compilation in gen-
eral and must be solved to achieve satisfactory performance.

The issue can be solved by making the tracing interpreter trace one loop
of the underlying user-program, also called user loop instead of a loop of the
interpreter. Instead of tracing the execution of one bytecode instruction, the
tracing interpreter would then trace the execution of a sequence of instructions.
Whenever a new iteration of a user loop is started, the language interpreter
would execute the same sequence of bytecode instructions again, causing the
tracing interpreter to execute the compiled trace instead.

2.3.4 Interpreter hints

The tracing interpreter however does not have any mechanism to detect user
loops. Because its input is the language interpreter, it is only aware of loops
in the language interpreter. A common solution to this problem is to let the
language implementers include hints in the language interpreter they devel-
oped (Bolz, 2012; Yermolovich et al., 2009). Listing 2.6 shows how the pre-
vious bytecode interpreter is updated to include a small hint, the annotation
can_enter_jit, from the language developers in the implementation of the
JUMP_IF_A opcode.

interpret (bytecode, a):

regs = [0] * 256
pc = 0
True:
opcode = (bytecode[pc])
pc += 1
opcode == JUMP_TIF_A:
target = (bytecode[pc])
pc += 1
a:

target < pc:
can_enter_jit (target)

CHAPTER 2. BACKGROUND 15

pc = target
opcode == MOV_A_R:

Listing 2.6: The bytecode interpreter with a hint attached, adapted from Bolz
(2012, Figure 8)

Because this language interpreter is a bytecode interpreter that uses a pro-
gram counter, pc, to refer to the instruction that is currently being executed,
the program counter can be used as an indicator to detect when a user loop
is occurring. The value of this program counter keeps increasing throughout
the execution of this user program. For the program to loop, this counter must
therefore at some point be reset to a smaller value. This means that we can
detect loops by checking on the program counter’s value: if it equals a value it
has already had before, the user program loops.

The can_enter_jit hintis triggered when execution jumps back to a pre-
vious point in the program, i.e,, when target < pc where target is the
location to where execution must jump. The tracing interpreter processes this
hint and makes a note of the fact that execution jumps back to this specific point
in the user program’s execution. Execution jumping back often enough to this
point is an indication that this user loop is hot and that the actions of the lan-
guage interpreter must be traced. Tracing terminates when this hint, with the
same value as target, is triggered again. When such a hint is next encountered,
using a target for which a trace already exists, the tracing interpreter executes
the recorded trace instead.

Using these interpreter hints effectively allows us to trace user loops instead
of loops in the language interpreter.

Chapter 3

Related work

3.1 Overview

3.1.1 Conception

The concept of recording the execution of a program path was introduced in-
dependently from each other by Bala et al. in the context of their work on the
Dynamo dynamic compiler (Bala et al., 2000), and Deaver et al. while present-
ing Wiggins/Redstone (Deaver et al., 1999; Aycock, 2003). In both works, a
JIT compiler is presented that operates on a program’s binary image, i.e., the
native instructions that were outputted by some other compiler. This is in con-
trast with later tracing JITs which work on a higher level: usually on the level
of bytecode or some other intermediate representation (Gal et al., 2006, 2009;
Chang et al., 2009; Bolz et al., 2009). These early compilers therefore separated
the optimizations that can be performed at runtime from the optimizations
that can be applied prior to execution. Both Dynamo and Wiggins/Redstone
already contain the core concept behind trace-based JIT compilation: a focus on
using hot program paths as the basic compilation unit, rather than methods, as
was usually done in JIT compilers until then (Aycock, 2003).

3.1.2 HotpathVM

Since their debut, multiple projects have proven that trace-based JIT compi-
lation is a viable alternative to method-based JIT compilation. HotpathVM,
a tracing compiler for a JVM intended for use on embedded devices, was re-
leased in 2006 by Gal, Probst and Franz (Gal et al., 2006). Although the lim-
ited resources available to this compiler restrict the time that can be spent on
compiling and optimizing code, HotpathVM is still competitive with more tra-
ditional, heavy-weight JIT compilers, showing the potential of trace-based JIT
compilation. They mainly accomplish this through a novel use of SSA transfor-
mations: instead of transforming an entire control-flow graph into SSA form,
only the variables that are actually used in the recorded trace are transformed

16

CHAPTER 3. RELATED WORK 17

into SSA form. This approach requires that the VM explicitly imports the initial
context around the trace starting point by moving local variables and stack lo-
cations that are used in the trace into SSA variables through so-called ¢ nodes.
Correspondingly, SSA variables are moved back onto the stack or in local vari-
ables around every side-exit. Gal et al. have named this approach for SSA
transformations Trace SSA (TSSA). By transforming the recorded trace into SSA
form, it becomes much easier to apply compiler optimizations such as loop in-
variant code motion or common subexpression elimination. Combined with
the inherent linearity of traces, it is possible to apply much more aggressive
optimizations in a shorter timespan, and with more limited resources for the
device.

HotpathVM makes a distinction between three phases during the compila-
tion of the trace: transformation of the trace into SSA form, code analysis and
code generation. Each of these phases can be completed in a single pass over
the code, making it possible for the compiler to produce optimized machine
code in linear time.

3.1.3 TraceMonkey

Tracing JIT compilers have recently attracted some attention as a means for op-
timizing dynamic languages (Bolz et al., 2009). Mozilla and Adobe jointly re-
leased two tracing JIT compilers: TraceMonkey for Javascript (Gal et al., 2009)
and Tamarin-Tracing for ActionScript (Chang et al., 2009). TraceMonkey con-
siders side-exit locations as potential trace heads: whenever the execution of a
trace must be aborted, e.g., because of a guard failure, the VM starts recording
a trace from the point where execution was aborted. This improves runtime
performance because, later on, when execution of a trace is aborted again at a
point from which a trace has been recorded, the VM can start executing this
trace, instead of having to restart interpretation.

TraceMonkey introduces an innovative implementation of trace trees. The
concept of trace trees refers to the observation that, by considering side-exit
locations as potential trace heads, the trace recorder has the tendency to ar-
range all traces that arise in the form of a tree. This can be problematic in the
case where nested loops are being traced. Usually, the inner loop in a nested
loop is traced first, since it is also the first to become hot. Exiting the trace
of the inner loop causes the trace compiler to start recording from the point
of the exit, through the loop header of the outer loop, until execution reaches
the inner loop header again. Thus, the trace for the outer loop is essentially
contained in the guard trace of the inner loop trace. This can be very problem-
atic in cases where there a lot of different side-exit locations in the inner loop
trace, because the outer loop is duplicated in the guard trace for each of these
locations leading to excessive amounts of code duplication and, hence, mem-
ory consumption. TraceMonkey solves this issue by recording nested trace trees.
Each loop is represented by its own trace tree, so the code for an outer loop is
contained to its own trace tree and not duplicated across the different branches
of the trace tree for the inner loop. Furthermore, TraceMonkey’s trace recorder

CHAPTER 3. RELATED WORK 18

takes the control-flow graph of the program into consideration. This allows the
recorder to determine whether a loop is the inner loop of another.

By combining these two aspects, a solution for this problem becomes evi-
dent. Instead of naively starting tracing at the side-exit of an inner loop and
continuing recording the guard trace across the outer loop header, the trace
recorder detects when it has reached the outer loop and aborts the guard trace
here. Later on, if it traces the outer loop and encounters the inner loop header,
it detects that a trace tree for this inner loop already exists so it records a call to
this inner loop. Thus, TraceMonkey’s approach essentially boils down to form-
ing trace trees for each different loop and then linking these trace trees together
via calls.

3.1.4 Other tracing compilers

Inoue et al. (2011) retrofitted a tracing JIT compiler from a method-based JIT
compiler for Java. They compared both kinds of JIT compilations and noted
that the increased compilation scope available in trace-based JIT compilation
has a large positive effect on the quality of the code that is emitted by the com-
piler. Specifically, they found that method-based JIT compilers are very suc-
cessful in programs with an execution profile containing some hot spots, but
they are more limited when dealing with programs that have a flat execution
profile. This is largely due to the fact that method-based JIT compilers do not
aggressively inline ‘cold” methods, in order to avoid unnecessary code dupli-
cation. Tracing JIT compilers do not suffer from this issue because they trace
program execution paths and hence automatically inline everything. Inoue et
al. also noted that tracing JIT compilation comes at the cost of an increased
runtime overhead, which partially offsets the advantages gained by tracing
compilation.

Other important organizations, including Microsoft and the Lua commu-
nity, have released JIT compilers that are at least partly based on the techniques
from tracing (Bebenita et al., 2010; Pall, 2013).

3.2 Formal frameworks

Guo and Palsberg have provided a formal foundation to model trace recording
in order to prove the soundness of optimizations applied on traces by trace-
based JIT compilers. Their model is based on the notion of bisimulation (Guo
& Palsberg, 2011). The concept of bisimilarity was first raised in the context
of concurrency theory and can intuitively be thought of as a relation between
two program-states. Two states are bisimilar if each action on one state can be
matched by an action on the other state, and if the resulting states can again be
proven to be bisimilar (Sangiorgi, 1998). Guo & Palsberg defined a small lan-
guage and identified some of the essential aspects required to enable tracing a
program’s execution. They described these aspects through a formal semantics

CHAPTER 3. RELATED WORK 19

which allows them to formally reason about the workings of a tracing com-
piler and the optimizations that can be employed by them. Guo & Palsberg
concluded that certain optimizations, such as dead-store elimination where as-
signments to variables that are not used in the trace, commonly used in the
more traditional, method-based JIT compilation, are unsound when applied in
the setting of tracing JIT compilation.

To describe a program’s execution in their model, they use two sets of eval-
uation rules. The first set is used to describe the program’s execution when no
trace is being recorded. The other set of evaluation rules is almost identical to
the first, but is used during the recording of a trace.

Logozzo et al. later adapted the work of Guo and Palsberg to provide an-
other framework which can also be used to prove the soundness of optimiza-
tions ons traces. They proposed an alternative framework, based on abstract
interpretation, which, as they claim, is less restrictive and more closely models
real-world tracing JIT compilers (Dissegna et al., 2014). Using their framework,
it becomes possible to prove the correctness of certain optimizations which
could not be proven to be sound in Guo and Palsberg’s model. In their frame-
work, Dissegna et al. do not model how traces are recorded concretely. They
start by defining a set of all possible traces for each program-state, based on a
heuristic that determines which traces can exist for each state.

The functionality of both formal models is fairly limited. Both frameworks
are bound to one particular execution model, for one particular programming
language. If someone wishes to employ their model to investigate an entirely
different execution model, they must convert their model to the execution se-
mantics used by either of both formal models. Even then, these frameworks
can only be used to explore the soundness of trace optimizations.

Both formal models were also aimed completely at understanding direct
tracing. They cannot be used to investigate meta-tracing compilers.

Other than these two models, not much research has gone towards inves-
tigating the formal foundation of tracing JIT compilation, although in Bolz,
Cuni, FijaBkowski, et al. (2011), where an allocation removal optimization is
presented, a formal description of the optimization is also presented. The scope
of this formal model however is entirely limited to describing the optimization
that they demonstrated.

3.3 Trace selection strategies

A trace selection strategy determines when a tracing JIT compiler starts and
stops tracing. These strategies are important because they have a large impact
on the runtime profile of the JIT and as such deserve some attention. Several
trace selection strategies have been explored in order to improve not only run-
time performance, but also e.g. memory consumption in tracing JIT compilers.

The seemingly most common trace selection strategy, used in e.g., Dynamo
(Bala et al., 2000), LuaJIT (Pall, 2013) and PyPy (Bolz et al., 2009), is based
around a technique called most recently executed tail (MRET). Algorithms based

CHAPTER 3. RELATED WORK 20

on this approach identify a number of potential trace heads, program points
from where a trace can be started such as the target addresses of backwards
branches or side-exits in existing traces, and subsequently observe how many
times these heads are executed. If this execution count rises above a certain
threshold, the compiler starts tracing. Tracing continues until an end-of-trace
condition is reached (Bala et al., 2000). What constitutes an end-of-trace con-
dition depends on the exact strategy under evaluation, but these conditions
commonly include repetition detection, buffer overflows, which arise when the
trace becomes too long and the recording buffer overflows, or the formation of
irregular events, such as throwing an exception or invoking a native call (Wu
etal., 2011).

Repetition detection is used to detect cyclic repetition paths in the recorded
trace. Several strategies are known for implementing this detection, such as
stop-at-backwards-branch, which stops tracing at every backwards branch, cyclic-
path-based which works by checking whether the current value of the operation
counter has already been encountered during trace recording, and static-scope-
based strategies which leverage static information about the program structure
(Hayashizaki et al., 2011).

Hayashizaki et al. (2011) have warned against a too naive implementation
for checking this repetition detection condition. They coined the term false loop
to signify cyclic paths, i.e., “paths that start and end at the same instruction
address” (Hayashizaki et al., 2011), but which do not form a cyclic execution
path, i.e., aloop. A common source of this issue consists of functions that have
multiple invocation sites, as shown in Listings 3.1, which was adapted from
another example used in Baumann et al. (2015).

g(x, y):

£():

Listing 3.1: Example of a false loop in Python

In this case, tracing might start at the first invocation of g. This continues
through its body and returns to the while-loop of £ until it finally stops at
the second invocation of g. Although the JIT has now concluded that it has
traced a full loop, it has actually only traced the execution of an invocation to
g. These kinds of short, non-looping traces are usually not the ideal targets for
tracing, because optimizing them has only a smaller effect, and exits from these
traces are more frequent, leading to performance degradation. Hayashizaki et
al. proposed an approach they named false loop filtering to detect these false
loops. They also investigated a number of potential techniques to implement
this approach, with varying levels of accuracy and runtime overhead.

Wau et al. (2011) have proposed a number of techniques targeted at trace se-
lection in order to improve the memory consumption of the JIT compiler. They

CHAPTER 3. RELATED WORK 21

evaluated a specific MRET-based selection strategy, taken from the work of (In-
oue et al., 2011), and evaluated this strategy in function of its space efficiency: its
ability to maximize steady-state performance while minimizing memory con-
sumption. They identified two types of sources of space inefficiency: the for-
mation of short-lived traces and non-profitable trace duplication. Furthermore,
they proposed six techniques to improve space efficiency. Although their work
was mainly intended to improve memory usage of the JIT compiler, they noted
that an increased space efficiency should also lead to less frequent instruction
cache misses and hence an improved steady-state performance.

3.4 Meta-tracing

The idea of meta-tracing is quite recent and as such has only received mini-
mal attention in research. Conceptually, this thesis is very related to the PyPy
project, one of the first projects to introduce the concept of meta-tracing (Bolz,
2012). PyPy was started around 2003 as an attempt to create a minimalistic
meta-circular Python interpreter, for educational purposes, but it has since
moved on to become a subject for research towards high-performance VM'’s
(Fijalkowski, 2013), specifically through a focus on JIT compilation.

3.4.1 The RPython project

RPython is a proper subset of Python, developed to combine the flexibility
offered by Python, with the high performance program execution generally
achieved in statically typed languages. To this end, RPython has eliminated
some features found in regular Python, such as multiple inheritance and re-
flection. It also restricts the typing rules found in regular Python: in contrast
with regular Python, RPython is statically typed, although types can be in-
ferred and must not be explicitly stated by the programmer. This allows for a
generous speed-up, making RPython competitive with languages such as C#
and Java (Ancona et al., 2007).

The PyPy framework has grown into a whole development environment,
based around RPython. The framework is aimed to create high-performing,
but easy-to-write, interpreters. The original Python interpreter, PyPy, is just
one of these interpreters that were created. The PyPy framework is also of-
ten called the RPython framework, because interpreters developed in this frame-
work must be written in RPython.

The toolchain of this framework, called the translation toolchain, could be
used to translate any interpreter written in RPython into the same interpreter
but built on another platform, such as C, CLI or the JVM, by following a se-
ries of transformation steps. Figure 3.1, taken from , shows how a Python
interpreter in the PyPy framework is translated into a C executable. During
this translation, the toolchain inserts a number of low-level services into the
interpreter, such as the components responsible for the memory- or threading-
model. This removes the burden of implementing these details from the lan-

CHAPTER 3. RELATED WORK 22

(Application (Python))
[PyPy Interpreter (RPython) Jﬂ PyPy
Compiler \-__._y

Python Interpreter (C) Fy stz ()

Figure 3.1: Translating a language interpreter to C, retrieved from Paska (2012)

guage developers, allowing them to only focus on the high-level implementa-
tion details.

To a certain extent, language developers have the option to select which
components they wish to include. One of these components that can be in-
cluded is a tracing JIT compiler, called Meta]IT (Bolz et al., 2009). This JIT
compiler does not trace the execution of the user-program being run however,
but instead the execution of the interpreter while it runs this program, so it
is indeed a meta-tracing compiler. Meta]IT follows a trace selection strategy
based on the MRET algorithm, where the execution of a number of potential
trace heads are monitored. In the case of RPython’s meta-tracing compiler,
only the target addresses of backward branches, i.e., the program counters, are
monitored.

A meta-tracing compiler ideally records the execution of a loop in the user-
program, instead of the execution of a loop in the language interpreter. In the
common case where the language interpreter is a bytecode interpreter, loops
can be detected by checking the value of the program counter. This program
counter keeps increasing unless the language interpreter executes a backwards
branch. However, because the tracing compiler has no knowledge on the se-
mantics of the target language for the language interpreter, it cannot know
when loops occur. In other words, the tracing compiler does not know when
a backjump is executed by the language interpreter and hence cannot know
when a possible starting point for the trace is reached.

To solve this issue, language developers are required to annotate their inter-
preter with several hints, designed to transfer specific knowledge on the execu-
tion of the user-program from the language interpreter to the tracing compiler.

In Listings 3.2, retrieved from Bolz et al. (2009), an example is shown of how
annotations can be placed in a generic bytecode interpreter created in the PyPy
framework.

tlrjitdriver = JitDriver (greens = [’'pc’, ’'bytecode’],
reds = ['a’, 'regs’])

def interpret (bytecode, a):
regs = [0] * 256
pc =0
vhile True:
tlrjitdriver. jit_merge_point ()

CHAPTER 3. RELATED WORK 23

opcode = (bytecode[pc])

pc +=1
opcode == JUMP_TIF_A:
target = (bytecode[pc])
pc +=1

a:
target < pc:
tlrjitdriver.can_enter_jit ()
pc = target
opcode == ...

Listing 3.2: The annotations used in PyPy

The code shows the implementation of the interpreter’s bytecode dispatch
loop. This loop is responsible for the execution of the bytecode: each iteration
of this loop corresponds with the execution of one instruction. Two annota-
tions have been placed inside this loop: tlrjitdriver.jit merge point() and
tlrjitdriver.can_enter_jit(). The first annotation should always be placed
at the beginning of the dispatch loop and is used to signal to the tracing in-
terpreter where to bail to when execution of the trace must be aborted. The
tlrjitdriver.can enter_jit() annotation should be placed around each lo-
cation where a user loop can be closed. As mentioned before, in the case of a
bytecode interpreter, these are the places where a backjump is executed. These
two annotations provide enough information to the tracing interpreter to en-
able it to record traces matching the user loops instead of the interpreter loops.

Other than the PyPy interpreter, several other interpreters have been built
on top of the RPython framework by now, including interpreters for Haskell,
Prolog and PHP (Thomassen, 2013; Bolz et al., 2010; Homescu & Suhan, 2011).
Although seemingly less common, non-bytecode interpreters have been cre-
ated in this framework as, well, including Pycket, an interpreter for Racket,
which was based on the design of a CEK-machine (Bolz et al., 2014).

This last interpreter is noteworthy, because developing an interpreter for
Racket raises a number of inherent challenges, such as the need to transform
most special forms of the language to a small set of core forms. Furthermore,
because the Pycket interpreter is not a bytecode interpreter, it does not store
an operation counter, making it significantly more difficult to find loops in the
user-program.

This problem is further aggravated by the fact that the only core Racket
form that can cause the program to loop is the function application form, through
function recursion. However, treating the body of every lambda form as a trace
header would lead to redundant tracing and trace duplication. To solve this is-
sue, Bolz et al. relied on the work mentioned earlier here by Hayashizaki et al.
(2011) and compared two techniques to improve trace selection.

Allocation removal

Bolz, Cuni, FijaBkowski, et al. (2011) discuss a strategy for allocation removal
in the traces that are generated by Meta]IT. This optimization focuses on re-

CHAPTER 3. RELATED WORK 24

moving redundant object allocations in traces. Object allocations are especially
costly in dynamic programming languages, because the absence of static type
information forces the interpreter to box all primitive objects. That is, primitive
objects are wrapped in a small structure containing e.g., a tag which specifies
the type of the object. Because these boxes are allocated on the heap, mem-
ory consumption increases, and with it, pressure on the garbage collector. A
large performance boost can therefore be achieved by avoiding object alloca-
tion wherever possible.

Once a trace has been recorded, the allocation removal optimization is run
on this trace. Through a process called escape analysis, the optimization places
all objects that are created in this trace in one of four categories, depending
on whether and how they escape the trace. The escape analysis algorithm tra-
verses the trace in a single pass and optimistically assumes that every object it
encounters will escape the trace. It then replaces these objects by static objects,
which contain their value as it was observed at runtime, and removes their allo-
cation. Since the value of the object is now stored in a static object, subsequent
operations that depend on the value of this object can be resolved statically by
the algorithm and can hence be removed, assuming that the operation does
not produce any side-effects on non-static objects. If the escape analysis algo-
rithm later determines that a static object does escape the trace, it replaces this
static object again by a dynamic, boxed, object in a process called [ifting. Note
that the use of these static objects also automatically enables a constant folding
optimization, where operations that depend on objects whose value is known,
either at compile time in the case of ahead-of-time compilers or at runtime in
the case of JIT compilers, can be removed, since the result of these operations
can be statically determined.

Bolz, Cuni, FijaBkowski, et al. have noted that this optimization success-
fully removes between 4% and 90% of all allocations, resulting in a speedup
between 20% and 695%. They have also presented a formal description of this
optimization.

Constant folding

This optimization has already been discussed in the context of the allocation
removal optimization. Bolz et al. have argued that this optimization is espe-
cially useful when meta-tracing, because a regular, unoptimized, trace would
be dominated by instructions manipulating interpreter structures, such as the
bytecode string and the operation counter. Remember however that these are
‘green’ variables. The tracer therefore depends on the values of these variables
to decide which, if any, trace to execute. It is therefore safe to assume that the
value of these variables is fixed at the beginning of the trace, so for all intents
and purposes it can be argued that their value is constant. This makes it possi-
ble to constant fold away all operations that depend on their values, assuming
these operations are side-effect free. When applying this optimization on the
PyPy meta-tracing compiler, a 4.7 speedup is reported on a simple benchmark.

CHAPTER 3. RELATED WORK 25

Bolz, Cuni, Fijalkowski, et al. have later presented a more powerful tool
for applying constant folding in a meta-traced interpreter. They presented two
additional annotations which can be used by the language developers to offer
extra information about the runtime profile of the language interpreter to the
tracing compiler, making it possible to apply not only constant folding on some
small set of variables, such as the aforementioned ‘green’ variables or variables
only allocated in the trace, but on effectively any variable. In essence, to con-
stant fold away an operation on a variable, two conditions need to be ensured
once the trace has been recorded:

* The value can be statically determined by the optimizer

* The operation is free of any side-effects

Note that, even though we are dealing with a JIT compiler and hence we
know the value of any variable encountered while tracing, the first condition is
not automatically satisfied, because the value of a variable can change between
subsequent runs of the trace. It is therefore not guaranteed that the optimizer
can know the value of a variable at an arbitrary point in time.

These two extra annotations were introduced to solve both conditions. The
first annotation, promote, can be applied on any variable used in the interpreter.
It signals back to the compiler that the value of this variable rarely changes
and is thus, in practice, constant throughout the execution of the program.
When encountering this annotation during tracing, the tracing compiler inserts
a guard for this variable in the trace to check whether the value of the variable
is equal to the value that was encountered during tracing. This then allows the
compiler to treat this variable as a constant for the remainder of the trace. This
annotation therefore solves the first condition.

The second condition is solved by introducing the elidable annotation. By
marking functions in the interpreter as elidable, language developers state to
the tracing compiler that the function is pure, i.e., free of side-effects, and hence
also referentially transparent: any call of this function in a program on a certain
input can be replaced by the result of this function call on that input. This
means that a call to a elidable function with a constant (set of) arguments can
be replaced by just the result of this function that was observed at runtime,
during the recording of the trace.

Listings 3.2 shows an example of how these two annotations could be used
in an interpreter. The resulting, optimized, trace is shown to the right.

Note that the very first instruction in this trace is a guard which checks the
value of the variable a. This guard is a result of the promote annotation in
the function f. Because this guard is placed in the trace, the compiler is au-
tomatically saved from incorrect usage of this annotation. If a variable which
frequently changes value is promoted, a guard failure is triggered when run-
ning the optimized trace. Although the frequent side-exits lead to performance
degradation, they do not cause any incorrect behavior while running the inter-
preter. The elidable annotation on the other hand does introduce bugs when

CHAPTER 3. RELATED WORK 26

A ()t
__init__ (self, x, y):
self.x = x

self.y =y

f(self, wval):

guard(al == 0xb73984a8)
promote (self) i
self = self.c() + val # al.c() = 9 iff al.x = 4
Y ’ v2 = 9 + val
l.y = v2
@elidable at-y = v
c(self):

self.x » 2 + 1

al = A(4, 0)
address of al = 0xb73984a8
al.f(10)

Figure 3.2: The promote and elidable annotations in RPython

used incorrectly, although Bolz, Cuni, Fijalkowski, et al. do discuss some fu-
ture work where a debugging mode in the compiler would check the validity
of this annotation.

Type specialization

Because in the context of meta-tracing the program being traced is an inter-
preter, this constant folding technique can automatically be used as a type spe-
cialization optimization. It suffices for language developers to mark the types
of values as constant and make sure that the corresponding functions are elid-
able, and all instructions that depend on the type of a value are folded away,
effectively enabling type specialization in the trace.

3.4.2 Hierarchical VM layering

Simultaneously with the creation of RPython’s meta-tracing compiler frame-
work, Yermolovich et al. (2009) have explored the feasibility of meta-tracing.
They investigated whether it would be possible to run a VM for a dynamic
language, which they named the guest VM on top of another, more mature,
high-performing VM, named the host VM. In their set-up, the guest VM was
LuaVM while the host VM was the Tamarin-Tracing VM. Because the LuaVM
is written in C while Tamarin-Tracing executes ActionScript code, the code for
the LuaVM was first converted to ActionScript using the Adobe Alchemy ex-
tension of the LLVM compiler framework. Yermolovich et al. also identified
the fundamental challenge behind the meta-tracing approach, namely that the
host VM does not realize it is executing another VM, causing it to optimize this
guest VM just like it would optimize any other program. They initially used

CHAPTER 3. RELATED WORK 27

the program counter of the Tamarin-tracing VM to detect loops, but just like
the naive implementation of RPython’s tracing compiler, this caused the host
VM to trace the main interpreter dispatch loop, leading to very frequent guard
failures. To solve this, they introduced hints into the guest VM which were
used to signal back the value of the guest VM’s program counter. The value of
this program counter was then combined with the value of the host VM’s pro-
gram counter into a virtual program counter and this virtual program counter
was subsequently used to detect loops. This approach is similar to the ‘green
variables” used in RPython.

Chapter 4

The SLIPT language

We introduce our input language, SLIPT, by presenting the formal semantics
that specify the semantics of this language. SLIPT is a variant of Scheme, but
lacks features such as macros or call/ cc-style continuations. The formal seman-
tics are defined as a set of rules operating on a CESK#-machine, which is itself a
novel adaptation of the more common CESK-machine (Felleisen & Friedman,
1987). In this chapter, we start by explaining the meaning and purpose be-
hind CESK-machines in general to lay a solid foundation for further sections.
From Section 4.2 onwards, we present SLIPT itself. We first specify the syn-
tax of this language. Afterwards we express the semantics of this language
as a set of transition rules operating on a CESK#-machine. We then continue
by introducing a low-level instruction set for the CESK#-machine. These in-
structions are just a set of rules that operate directly on the CESK#-machine,
instead of on SLIPT. Introducing these instructions then allows us to redefine
our CESK#-machine in a new setting. We have provided an implementation
for the CESK#-machine, written in Racket. In the final section, we describe
how this implementation works.

4.1 CESK-machines

4.1.1 Overview

CESK-machines are deterministic state-transition systems that can operate as
formal specification models for the semantics of any language, i.e., the differ-
ent features and aspects of that language (Felleisen & Friedman, 1987; Felleisen,
1988). They can be used to formalize the semantics of this input language: the
meaning behind the various features and aspects of the language. Their state
is composed of four components: a control (C), an environment (E), a store
(S) and a continuation component (K). The analogy has been made between
these four components and the instruction pointer, the local variables, the heap
and the stack respectively (Might, 2015). The control component refers to the

28

CHAPTER 4. THE SLIPT LANGUAGE 29

location in the program that is currently being evaluated by the interpreter.
Depending on the language that is used, as well as the implementation of the
interpreter, the control can be an expression, a program counter referring to
a set of bytecode instructions etc. The environment is a mapping from vari-
able names to addresses, while the store is mapping from addresses to values.
Together, these components are used to lookup the value of variables in the
program.

An alternative approach would be to combine the environment and the
store into a single component that maps names directly to values. This is ex-
actly what is done in CEK-machines. A CEK-machine is identical to a CESK-
machine except that it lacks a store component and uses the environment to
bind variables to values directly. However, CESK-machines have some ad-
vantages over CEK-machines that make it easier to perform abstract reasoning
over the workings of the machine. For example, when creating a closure, the
closure might need to refer to its own lexical environment. When we bind this
closure to a variable, we effectively place the closure itself in the environment.
If we were to only use an environment and not a store, then from an abstract
point of view, we have an object that points to the same location in which it is
currently residing (Van Horn & Might, 2010). Using a store solves this issue,
because the closure itself resides in the store instead of the environment. In or-
der to simplify potential future research on this thesis, we have therefore opted
to base our research on a CESK- instead of a CEK-machine.

The continuation component represents the future of the computation. The
continuation is often modelled as a stack of frames where each frame repre-
sents the actions the machine must take when evaluation of the current control
component is completed.

The transition rules between the possible states of the CESK-machine then
define how a program is executed by the machine In other words, it is these
rules that define the actual semantics of the language under consideration.

4.1.2 Example

As an example of how CESK-machines are used, suppose a language that has
assignments such as the following;:

r:=1+1

The relevant transition rules could then be expressed as in Figure 4.1:

<war:=e, p, 0, Kk >— <e, p, g, setk(var) : K > (4.1)
<wvy+v9, p, 0, k>—<nyBNng, p, 0, K> (4.2)
<w, p, o, setk(var) : kK > = < v, p, olp(var)/v], K > 4.3)

Figure 4.1: A set of transition rules for a CESK-machine

CHAPTER 4. THE SLIPT LANGUAGE 30

In these rules, each tuple corresponds to a particular state of a CESK-machine.
The first field in the tuple is the control component, ¢, the second the environ-
ment, p, the third the store, o, and the fourth field is the continuation stack, «.
We use the following terminology in these semantics: var refers to a variable, e
to a general expression and v is always a value: i.e., an expression that cannot
be evaluated any further, such as a number or a boolean.

In rule 4.1, we describe how to evaluate general expressions of the form
var := e: we push a certain continuation, the setk continuation on the stack,
and continue with the evaluation of the right-hand expression of the assign-
ment. The setk continuation stores a reference to the name of the variable
being assigned to so that, when the evaluation of the right-hand expression
completes, we can pop this continuation from the stack, extract this variable’s
name and update its value. Rule 4.2 expresses how to evaluate the sum of
two values in a program. Assuming these values are indeed numbers, we only
have to actually add these numbers together. In rule 4.3, we state that if the
control component currently contains a value, which per definition cannot be
evaluated any further, and the top of the continuation stack holds a setk con-
tinuation, we pop this continuation, extract the variable’s name from it, and
then perform the actual update of this variable. To modify a variable’s value,
we first have to fetch the address of this value from the environment, which is
expressed here as p(var), and then update the location to which this address is
pointing.

By applying these general transition rules on the example assignment shown
previously, we obtain the series of CESK-states shown in Figure 4.2.

<z:=1+4+1p, 0, K>—
<141, p, o, setk(z) : k >
<2, p, o, setk(z) : k >
<2, p, olpl@)/2) v >

Figure 4.2: A concrete example of evaluating an assignment

Evaluating this assignment, and by extension, evaluating programs in gen-
eral, is a combination of evaluating the expression stored in the control, push-
ing and popping the correct continuations from the continuation stack and then
acting on these continuations.

4.2 Syntax

The syntax of our input language, SLIPT, is based on SLIP, a derivative of
Scheme designed by Theo D'Hondt for educational purposes (D'Hondt, 2015).
SLIP has Scheme syntax, but omits certain aspects, such as macros and forward
declaration of variables. SLIPT also lacks these features, as well as a native eval
function and call/cc-style continuations.

CHAPTER 4. THE SLIPT LANGUAGE 31

The formal semantics below specify the syntax of the input language.

e € Exp = Application
| (apply Ezp Ezp)
| (begin Erpx)
(define Variable Exp)
(define DefineFunctionPattern Erpx)
(if FEzp Ezp)
(if Fzp FExp Fxp)
| (Lambda LambdaParameters Expx)
| Literal
| Native function
| (set! Variable Exp)
| Variable
Application = (Exp+)
DefineFunctionPattern = (Variable+)
| (Variable+ . Variable)
LambdaParameters = (Variable+)
| (Variable+ . Variable)
| Variable
x € Variable = Identifier

Literal = Boolean

| Number
| String
| Symbol

Figure 4.3: The syntax of SLIPT

SLIPT contains both native and user-defined functions. A user-defined
function is a function created by the programmer either through a 1ambdaexpression,
or by defining a function directly using the (define Define FunctionPattern Expx)
syntax.

CHAPTER 4. THE SLIPT LANGUAGE 32

4.3 CESKO-machine

4.3.1 Overview

We express the semantics of SLIPT as a CESK#-machine, which is a variation on
the CESK-machine. A CESK§-machine is a six-tuple which, in addition to the
four components used in regular CESK-machines, i.e., control, environment,
store and continuation, also contains a value register (v) and a value stack (6).
The value register stores the result of evaluating an intermediate expression.
The value stack is mainly used for evaluating function applications and, to a
lesser extent, the evaluation of sequences of expressions. For example, when
evaluating a function application, we push all evaluated arguments onto this
stack, and we pop them from that stack when binding the parameters of the
function. This stack also saves the environment before evaluating certain ex-
pressions, so that the environment of the program can be restored at a later
point in time. These two additional components are not strictly required, but
their inclusion offers some advantages.

In the small CESK-machine that was shown in Section 4.1, evaluated ex-
pressions, i.e., values, were stored in the control component. Suppose however
that we are evaluating a large expression, consisting of many different subex-
pressions that also need to be evaluated, and whose values need to be stored
until evaluation of the compound expression is complete. By including a value
register and a value stack, we can easily store these intermediate values for as
long as is required.

In contrast to the previously presented CESK-machine, the control compo-
nent of a CESK#-machine not only stores expressions, but also continuations
that were popped from the continuation stack. This has the advantage that it
is now always clear when we are actually evaluating an expression, and when
we are following a continuation: if the control contains an expression we are
evaluating, else we are following a continuation.

4.3.2 CESKO definition

Figure 4.4 shows the formal definition of the CESK6#-machine.

CHAPTER 4. THE SLIPT LANGUAGE 33

¢ € ProgramState = ps(Control, Env, Store, KStack, Val, VStack)
«a € Address = Identifier
clo € Closure = clo(lam(z, e), p)
Control = Exp
| Kont
p € Env = Variable — Address
¢ € Kont = aplck()
| applyk(rator)
| definek(z)
| haltk()
|ifk(es, e2)
| randk(e, es, 7)
| ratork(i)
| seqgk(es)
| setk(z)
Kk € KStack = Kont : KStack
|
o € Store = Address — Val
val € Val = Literal
| Closure
| Native function
0 € VStack = (Val + Env) : VStack

| €

Figure 4.4: The CESK#-machine

In our definition, CESK6-states are also called program-states. We define con-
tinuations (Kont) for evaluating apply, set!, define, if and begin-expressions.
We use respectively the continuations applyk, setk, definek, ifk and seqk for
these expressions. For function applications, we use the continuations randk,
ratork and aplck. Additionally, we use a special halting continuation that sig-
nals the end of program execution. This halting continuation (haltk) is pushed
to the continuation stack at the very start of the program execution.

Like CESK-machines, the environment (Env) is a mapping from variables
to addresses, while the store (Store) is a mapping from these addresses to val-
ues. A continuation stack (KStack) is a list of continuations, and the value
stack (VStack) is a list of values or environments. A closure is a combination

CHAPTER 4. THE SLIPT LANGUAGE 34

of a lambda and its lexical environment. A function is represented as a list
of variables, its parameters, and its body. Addresses are unique identifiers.
They could be defined as e.g., natural numbers, but their exact definition is
irrelevant in the context of this thesis. Values, i.e., expressions that cannot be
evaluated any further, are either the literals we defined in the previous section,
or closures.

4.3.3 Evaluation rules

We now present the evaluation rules for SLIPT programs, which define the ac-
tual semantics of SLIPT. These rules are expressed as transition rules between
various program-states. We explain how each rule is constructed and we pro-
vide mnemonic labels to refer to each rule.

Variables and values

Evaluating a variable lookup:
evar

ps(:c, Py 0, d) kR, U, 9) E—
ps(¢, p, 0, K, a(p(z)), 0)

Evaluating a value:
evalu

ps(val, P O, ¢ R, U, 9) —
pS(é, P, 0, R, ’U(ll, 9)

Evaluating a call to 1ambda:

ps((lambda z . es), p, 0, ¢ : K, v, 0) elubd,

ps(o, p, o, K, clo(lam(z, es), p), 6)
Figure 4.5: Handling variables and values

Evaluating a variable is accomplished by looking in the environment for
the address associated with this variable, and subsequently using this address
to look up the variable’s value in the store. This value is then moved to the
value register. To handle values, such as numbers, strings, booleans, native
functions or closures, we only have to copy the value to value register, since
no actual evaluation has to be performed. elmbd states how calls to lambda are
handled, and subsequently, how user-defined functions or closures are con-
structed. lambda takes two arguments: a list of variables, its parameter list,
and a list of expressions, the body of the function. From these two elements,
we create a lam structure. We wrap this structure in a clo and add the current
environment, which serves as the lexical environment of the closure.

CHAPTER 4. THE SLIPT LANGUAGE 35

Definitions and assignments

Evaluating the definition of a variable:
edfvr

ps((define z e), p, 0, kK, v, 0)
ps(e, p, o, definek(z) : k, v, p:0)

Syntactic sugar for defining a function:

ps((define (f . pars) . body), p, o, ¢ : K, v, 0) =2

ps(¢, p[name — o], ola — ¢], &, ¢, 0)

where c equals clo(lam(pars, body), p)

Completing the definition of a variable after having evaluated its expression:

ps(definek(z), p, o, ¢ : K, v, p' : 0) kdefv

ps(¢, o'z — o], ola — v], K, v,)
where « is a new, unique adress

Evaluating an assignment:

eset!

ps((set!z e), p, 0, Kk, v, 0)
ps(e, p, o, setk(z) : k, v, p:0)

Completing the evaluation of an assignment to a variable:
kset

ps(setk(m), P, O, ¢ ‘R, U, pl : 9) E—

ps(d), pl7 O’[p/(:L') - U]v K, U, 0)
Figure 4.6: Evaluating definitions and assignments

To define a variable =, we evaluate the expression whose value will be
bound to = and we push definek(z) to the continuation stack. When evalu-
ation of e is completed, we pop this continuation, extract the variable name x
and update the environment and the store so that x is bound to the value v that
has just been evaluated.

Similar to Scheme, we provide the programmer with syntactic sugar for
defining functions. Defining a function is similar to directly creating this func-
tion by using lambda and immediately binding this closure to a variable.

Assigning a variable is similar to defining a new variable: we first evaluate
the expression e and we push a setk(z) continuation. When evaluation of e is
completed, we pop this continuation from the stack, retrieve the variable name
z, use the environment to locate the address of this variable in the store, written
here as p/(z), and assign the new value to this address.

If-expressions

Like Scheme, an if-expression consists of two or three subexpressions: the if-
condition, the true-branch and possibly a false-branch.

Evaluating an if-expression, with a potential else-branch:

CHAPTER 4. THE SLIPT LANGUAGE 36

eif

ps((if eel . €2), p, 0, K, v, 0) —
pS(E, Py O ifk(elv 62)) R, U, P 0)

Completing an if-expression without an else-branch whose condition evaluated to #f:
kifsf

ps(ifk(el, ‘(). p, 0, ¢ : &, #£, p' 1 0) —
ps(o, o, o, &, (), 0)

Completing an if-expression without an else-branch whose condition did not evaluate to #£:
kifst

pS(ifk(eZ, ‘())a Py Oy Ky U, p/ : 0) -
ps(el’ p/’ 0.7 H? 1}’ 0)

Completing an if-expression with an else-branch whose condition evaluated to #f:
ps(ifk(el, €2), p, o, i, #£, p/ 1 0) =
ps(627 p/a g, K, U, 9)

Completing an if-expression with an else-branch whose condition did not evaluate to #f:
ps(ifk(el, €2), p, o, k, v, p’ : 0) Kifde,
ps(eZ) p/7 O‘? K;7 v’ 9)

Figure 4.7: Evaluating if-expressions

When evaluating an if-expression, we first evaluate its condition and we
push ifk(e;, eg) to the continuation stack. Once the condition has been eval-
uated, we pop the ifk continuation. How evaluation proceeds depends on
the condition’s value and on whether or not a false-branch was provided. If
the condition evaluated to #f but no false-branch was given, the if-expression
evaluates to ' (), as stated by the kifsf rule. In other words, expressions such
as (1f #f 99) evaluate to ' (). In any other case, we continue evaluation
through the branch that corresponds with the value of the condition.

Sequences

Evaluating a begin-expression consisting of zero subexpressions:

ps((begin), p, 0, ¢ : K, v, 0)
ps(¢, p, o, k, (), 0)

Evaluating a begin-expression consisting of exactly one subexpression:

ps((begin ¢), p, o, K, v, §) 25

ps(e, P, 0, Ky U, 9)

Evaluating a begin-expression consisting of more than one subexpression:

ps((begin e . es), p, o, Kk, v, 0) <bend,

ps(e, p, o, seqk(es) : k, v, p:0)

CHAPTER 4. THE SLIPT LANGUAGE 37

Completing the evaluation of the last expression in a sequence:
¢ kseq0
ps(seqk(())7 pPs O, ¢ PRy U, ;0/ : 0) —
/
ps(¢, s 0, K, v, 0)

Completing the evaluation of an expression in a sequence:

ps(seqgk(e : es), p, o, kK, v, 0) Keedl,

ps(e, p, o, segk(es) : k, v, 0)

Figure 4.8: Evaluating sequences of expressions

Sequences of expressions are expressed either explicitly through a begin
expression or implicitly as the body of a function. These sequences are mod-
elled as thunks, so they have their own contained environment: variables that
are created inside this sequence are not visible outside the sequence. Hence,
before starting the evaluation of a sequence, we first save the current environ-
ment on the value stack so that it can be restored later on. Evaluating sequences
of expressions is done by pushing and popping the seqk(es) continuation. This
continuation holds a list of all expressions that still need to be evaluated. Af-
ter finishing the evaluation of one item, we pop the continuation, retrieve the
next item from the list, push a new seqk continuation and then start evaluating
the item we just extracted. Once all items have been evaluated, we restore the
environment that was initially saved to the value stack.

Function application

Evaluating a function call without any arguments:

ps((rator), p, o, Kk, v, 0) Lapto,

ps(rator, p, o, ratork(0) : k, v, p:0)

Evaluating a function call with at least one argument:

ps((rator . e; : ... 2 ey), p, 0, K, v, 0) seplt,
ps(en, p, o, randk(rator, e,_; :...:e7, 1): K, v, p:0)

Completing the evaluation of the last argument in a function application

pS(I'aIldk(rator’ ‘(), i), p, o, K, 0, p/ : 9) krnd0

ps(rator, p', o, ratork(i) : k, v, p:v:60)

Completing the evaluation of an argument with more arguments still left to evaluate:

. krnd1
ps(randk(rator, e; : ej4q :...: eg, i), p, 0, K, v, p' : 0) =

ps(e;, p', o,randk(rator, ej1; : ... e, i+ 1):K, v, p:v:6)

Completing the evaluation of a user-defined operator in a function application:
krtrc

ps(ratork(i), p, o, k,clo(lam(pars, body), px), p': vs : ... : v; : 0)
ps((begin body), p*', o’ aplck() : k, v, p' : 0)

CHAPTER 4. THE SLIPT LANGUAGE 38

where < p+’, 0’ > equals bindParams(pars, i1 : ... : ii, p*,0)

Completing the evaluation of a native function in an application:
ps(ratork(i), p, o, ¢ : K, v, p' 1 v; vy 2 0) Lrtrn,
ps(o, o', ok, A(v,v; 1 ... vy), 0)

where A(rator, rands) applies the native function rator on the arguments rands

Completing the evaluation of a function’s body:
ps(aplck(), p, o, ¢ : K, v, p’' : 0) Kepld,
ps(¢, o', o, K, v, 0)
Figure 4.9: Evaluating function applications

When evaluating function application with one or more arguments, we first
reverse the list of arguments, evaluate the first argument of the reversed list,
i.e., the last argument of the application, and then push the randk, short for
operand, continuation on the stack. If an argument has been evaluated, the
randk continuation has been popped and there are still arguments left to eval-
uate, we save the value of the argument onto the value stack, push a new
randk continuation and we evaluate the next argument. If all arguments have
been evaluated, or there were no arguments to begin with, we push a ratork,
short for operator, continuation on the stack and start evaluating the operator
itself.

Recall that we allow users to employ native functions and not only user-
defined SLIPT functions. All functions that are not user-defined functions are
automatically considered to be native functions by the CESKf-machine.

When evaluating the application of a user-defined function, we first save
the current environment on the value stack and then switch to the lexical en-
vironment of the closure. We bind all parameters to their corresponding argu-
ments, located on the stack, via the bindParams function. We then push the
aplck continuation on the stack and evaluate the body of the function. The
number of arguments that are to be bound is expressed through the ¢ compo-
nent of the ratork continuation, and was created via the successive pushes and
pops of the randk continuation. If the number of parameters does not match
this 4, function application fails. Once the function’s body has been executed,
the aplck continuation is popped. At this point, the environment that was
saved to the stack before executing the function call is restored.

The krtrn rule determines how applications that use a native function as
operator are handled in SLIPT. For brevity, the precise definition of these native
functions and how they can be applied is left out of this thesis. We assume that
we have some way of calling a native function f on a list of arguments es,
expressed as A(f, es). The result of this application is then moved to the value
register.

The auxiliary function bindParams(pars, args, p, o) is defined as:

bindParams(‘(), ‘(), p, o) =

CHAPTER 4. THE SLIPT LANGUAGE 39

<p, 0>

bindParams((par : pars), (arg: args), p, o) =
bindParams(pars, args, p[par — «|, o[a — arg))

bindPara.ms(par7 args, p, 0) =
< plpar — a], ola — args] >

Figure 4.10: The definition of bindParams

We use the symbol « to refer to a new, unique address.

This function takes a list of parameters, another list of arguments, an envi-
ronment and a store, and returns the new environment and the store in which
all arguments have been bound to their corresponding parameter.

If the list of parameters and arguments are both empty, the environment
and the store are returned. If the arguments and parameters are both non-
empty lists, we bind the first element of the arguments list, arg, to the first
element of the parameters list, par. bindParams then reduces to itself with the
rest of the arguments and parameters. As in Scheme, functions in SLIPT can
have a variable number of arguments. These kinds of variable-arity functions
have the same semantics as they do in Scheme: all additional arguments are
grouped together in the form of a list to the very last parameter of the function.
This case is handled through the third rule of bindParams: if the set of param-
eters is a symbol instead of a list, args is bound to this symbol. Since no more
arguments are left to bind, the new environment and store are returned.

Apply

Evaluating a call to apply:
ps((apply rator rands), p, o, k, v, 0) caply,

ps(rands, p, o, applyk(rator) : k, v, 0)

Completing the evaluation of the arguments:

ps(applyk(rator), p, o, Kk, v1 1 ...t vy, 0) Xaply,
ps(rator, p, o, ratork(i) : K, vt ...t Uy, P UL Uy 2 0)

Figure 4.11: Evaluating apply-expressions

To evaluate apply-expressions, we first push the applyk continuation and
we then continue with the evaluation of the operands. Once evaluation of
rands is completed, we pop the applyk continuation, extract the rator ex-
pression and start evaluating it. To handle the actual application, we push a
ratork continuation with the correct number of arguments, i.e., the length of
the operands list, onto the stack. From this point on, the function application
continues as it was defined previously.

CHAPTER 4. THE SLIPT LANGUAGE 40

4.4 Low-level instruction set

In this section we present a small instruction set for the CESK#-machine. The
goal of this instruction set is to reduce each of the evaluation rules that were
just presented to a set of traceable basic instructions. This set consists of a to-
tal of eighteen low-level instructions used for manipulating the registers of the
machine. Like the evaluation rules from Section 4.3, these instructions express
a transition from one program-state to another, but on a lower level: each in-
struction generally only updates one component of the program-state. Because
tracing the different evaluation steps of SLIPT results in a linear trace of basic
instructions, i.e., control-flow is completely removed, we do not define any
low-level instructions for manipulating the control component of the machine,
i.e., the expression or continuation register.

It is important to understand that these instructions are completely orthog-
onal to the semantics of SLIPT. They are not used directly to execute a lan-
guage, but to model the execution of the CESK#-machine. Conceptually, these
instructions can be viewed as a sort of assembler instructions for the CESK6-
machine. By defining these instructions, we can study the workings of the
CESK#-machine on an even lower level of granularity than through the seman-
tics described in the previous section. Whereas the previous section describes
the small-step semantics for SLIPT, these instructions express ”smaller-step”
semantics for the CESKé-machine.

By carefully selecting the low-level instructions we now introduce, we can
redefine the formal semantics of SLIPT that were specified in the previous sec-
tion. This is exactly what we will do in Section 4.5.

The instruction set is defined as follows:

Allocating a variable from the value register:

ps(67 p7 0.7 K? ’U7 0) avar(X)
ps(e, plz — a], ola = v], &, v, 6)

Applying a native function:

ps(e, p, 0, K, v, Vg :...:v; 2 0)
ps(e, p, o, k, A(v, v @ ... 2 v;), 0)

Creating a new closure:

ps(e, p, 0, K, v, 0) ceteln o)
ps(e, p, 0, k, clo(lam(z, es), p), 0)

Moving a literal to the value register:
litv(x)
S

ps(€7 p’ 0.7 H? ’U7 0)
ps(e, p, 0, k, z, 0)

Looking up a variable:

CHAPTER 4. THE SLIPT LANGUAGE 41

lvar(x)

ps(e7 p’ 0.7 H) v7 9)
ps(e7 Py 0, K, J(p(x))v 0)

Popping a continuation from the continuation stack:

ps(e7 p? O—7¢:’i7 /U, 0) Ep_l{i)_)

ps(e, p, 0, K, v, 6)

Save the environment and move all arguments to the top of the stack
to prepare the machine for a function call:

ps(e, p, o, k, clo(lam(z, es), p*), vy : ...: v; : 0) prc@t),

ps(e, px, o, k, clo(lam(z, es), p*), vy : ... 2 v; : p: 0)

Pushing a continuation on the continuation stack:

ps(e, p, 0, Kk, v, 0) @),

ps(e7 p’ 0.7 ¢ : K? /U’ 9)

Restoring the environment from the value stack:

renv()

pS(€7 Py 0, Ky U, P/ : 9)
pS(€7 plv g, K, U, 9)

Restoring a value from the value stack:

ps(e, p, o, Kk, v, val’ : 0) ﬂ

ps(e, p, o, K, val’,)

Restoring the first 7 values from the value stack:

ps(e, p, 0, K, v, V7 1.1 v;:0) M

ps(e, p, 0, K, V1 :...: v, 0)

Saving all values in the value register one by one to the value stack:

ps(e, p, 0, K, V7 ¢ .. i Uy, 0) svav()

ps(e, p, 0, Ky U1 1ot U,y Vg ¢ et Uy 2 0)

Saving the environment to the value stack:

svev()

ps(e, p, 0, K, v, 0)
ps(e, p, 0, Kk, v, p:6)

Saving a single value to the value stack:

ps(e7 p7 0—7 K? ’U7 0) ﬂ
ps(e, p, 0, kK, v, v:0)

Saving the first i values from the value register one by one to the value stack:

CHAPTER 4. THE SLIPT LANGUAGE 42

ps(e, p, 0, Ky U1 @ 1035 i Uy, 0)
ps(e, p, 0, Ky Vigg t et Uy U1 ¢ ot 01 0)

Setting the environment:
stev(px)
S

ps(e7 p? 0—7 K? ’U, 0)
ps(e, px, 0, K, v, 0)

Setting the store:
stst(o*)
—_—

ps(e, p, 0, K, v, 0)
ps(67 p’ 0.*7 K? /U7 0)

Assigning a new value to an existing variable:

stvr(x)

ps(e, p, 0, K, v, 0)
ps(e, p, olp(z) = v], K, v, 0)
Figure 4.12: The low-level instruction set

Note that every instruction is labelled by a mnemonic that may or may not
take a list of parameters. These parameters bind any free variables that occur
in the rule. This implies that every low-level instruction can be completely
defined by using its label along with the appropriate argument. For example,
moving the value 0 to the value register of the program-state is expressed as
1itv(0).

4.5 Redefining SLIPT’s semantics

We can redefine the semantics of SLIPT by using this low-level instruction set.
In this section we redefine the semantics for SLIPT that were provided in Sec-
tion 4.3. Since our instruction set lacks operations for altering the control com-
ponent, we ignore this component.

Ignoring the fact that the control component remains unchanged by each of
these new transition rules, the semantics below are identical to the semantics
defined in Section 4.3. By reimplementing the previous evaluation rules with
these new instructions, we prove that the instruction set is powerful enough to
express non-trivial semantics.

We name the CESK#-machine that we now define the LLI CESKé-machine:
the low-level instructions CESK#-machine, to make the difference with the or-
dinary CESK® that was presented in Section 4.3.

ps((apply rator rands), p, o, k, v, 0) :
pshk(applyk(rator))

ps((begin), p, 0, ¢ : K, v, 0) :

CHAPTER 4. THE SLIPT LANGUAGE 43

litv(‘())

popk()

ps((begine), p, 0, K, v, 0) :
€

ps((begin e . es), p, 0, k, v, 0) :
svev()
pshk(seqk(es))

ps((define (name . pars) . body), p, o, ¢ : k, v, 0) :
avar(name)
ccls(pars, body)

stur(name)

popk()

ps((define z e), p, 0, kK, v, 0) :
svev()
pshk(definek(z))

ps((if eel . e2), p, 0, K, v, 0) :
svev()
pshk(ifk(el, e2))

ps((lambda z . es), p, 0, ¢ : K, v, 6) :
ccls(z, es)

popk()

ps((set!z e), p, o, k, v, 0) :
svev()
pshk(setk(z))

ps((rator), p, o, &, v, 0) :

svev()
pshk(ratork(0))
ps((rator . e; : ...t ey), p, 0, kK, v, 0) :
svev()
pshk(randk(rator, ez :...: e,, 1))

pS(I7 p7 O'?d):,i? U’ 6) :

CHAPTER 4. THE SLIPT LANGUAGE

lvar(x)

popk()

ps(val, p, o, ¢ : K, v, 0) :
litv(e)
popk()

renv()

popk()

ps(applyk(rator), p, o, K, v; : ... : vy, 0) :
svav()
svev()
pshk(ratork(n))

ps(definek(z), p, o, ¢ : K, v, p' : 0) :
renv()
avar(x)
popk()

ps(ifk(el, ‘()), p, o, ¢ 1 K, #£, p' : 0) :
renv()

popk()
litv(*())

ps(ifk(el, (), p, 0, K, v, p' : 0) :
renv()

ps(ifk(el, €2), p, o, k, #£, p' : 0) :

renv()

ps(ifk(el, €2), p, o, Kk, v, p' : 0) :

renv()

ps(randk(rator, (), i), p, 0, k, v, p' : 0) :
renv()
svvl()
svewv()
pshk(ratork(z))

44

CHAPTER 4. THE SLIPT LANGUAGE 45

ps(randk(rator, e; : €j41 : ...t e, i), p, 0, K, v, p 1 0) :
renv()
svvl()
svev()
pshk(randk(rator, (cdr rands), i+ 1))

ps(ratork(i), p, o, k,clo(lam(pars, body), px), p' : vy ..t v; 1 0) :
renv()
prfe(i)
stev(px')
stst(o’)
pshk(aplck())

where < px’, 0’ > equals bindParams(pars, vy : ... : v;, p*, 0)

ps(ratork(i), p, o, ¢k, v, p' 1 vy v, 1 0)
renv()
anat(i)

popk()

ps(seqk(‘()), p, o, ¢ : K, v, p' 1 0) :
renv()
(

popk()

ps(seqk(e : es), p, o, Kk, v, 0) :
pshk(seqk(es))

ps(setk(z), p, o, ¢ : K, v, p' : 0) :
renv()
stor(z)
popk()
Figure 4.13: The LLI CESK#-machine

4.6 Implementation

We have implemented both the regular CESK#-machine as well as LLI CESK6§
in Racket. This serves as an experimental validation and as a basis for further
research in this thesis. There are some small deviations between the formal
semantics and the actual implementation.

To ease further development in SLIPT, the syntax of the implemented inter-

CHAPTER 4. THE SLIPT LANGUAGE 46

preter has been extended to include some of the various let, let* and letrec
constructs, as well as and, or and cond-expressions. Because there is a large
semantic overlap between the interpreter and Racket, we did not redefine any
of the SLIPT literals, i.e., strings, booleans, numbers and symbols, but we used
reflective overlap: SLIPT literals are implemented as their equivalent Racket
literal. We also extended the domain of SLIPT literals to include all additional
Racket literals, such as characters and regex strings.

All native functions that are defined for SLIPT are implemented as Racket
functions. The interpreter automatically makes sure that these Racket func-
tions are integrated into SLIPT. Applying a native function in SLIPT can then
be accomplished by applying the underlying Racket function on the corre-
sponding arguments.

Although the interpreter differentiates between user-defined SLIPT func-
tions and native functions, this difference is not visible to the programmer de-
veloping SLIPT programs. Native functions can thus safely be used in combi-
nation with user-defined functions inside SLIPT programs.

Chapter 5

Tracing semantics

5.1 Introduction

In this chapter, we present a tracing compiler for SLIPT, based on the CESK®-
machine from the previous chapter. We only develop a minimalistic meta-
tracing compiler here, which does not contain any non-essential features that
are commonly found in other, state-of-the-art tracing compilers. By ignoring
these non-essentials, we concentrate on creating a solid foundation for our
compiler. In Chapter 6, we build on this foundation and expand our compiler
with additional features.

We present our tracing compiler as a formal semantics, similar to the previ-
ous chapter, and we express the workings of our compiler as a series of transi-
tion rules between tracer-states.

The key idea behind our tracing compiler is that we divide the execution of
a SLIPT program into three distinct phases: normal interpretation, trace recording
and trace execution. The first phase corresponds with an interpreter executing
the program and ignoring everything related to tracing entirely. In the sec-
ond phase, the execution of an interpreter is recorded into a trace. In the third
phase, we execute a trace that was previously recorded. We further assign re-
sponsibility for each of these phases to two separate entities: a tracer and an
interpreter. The interpreter is nothing more than the LLI CESK6#-machine pre-
sented in Section 4.5, i.e., the CESK#-machine that operates on the low-level
instruction set. Throughout this chapter the terms interpreter and CESK6-
machine are used interchangeably: they always refer to the same concept. The
tracer is a new entity that is defined in this chapter. Together, these two entities
compose the tracing compiler. The trace execution phase is the responsibility
of the tracer, while normal interpretation is handled by the interpreter. Trace
recording is the joint responsibility of both tracer and interpreter.

The tracer is master over the interpreter: it monitors and controls the execu-
tion of the interpreter and decides when to transition from one state to another.
The interpreter is able to communicate with the tracer through a well-defined,

47

CHAPTER 5. TRACING SEMANTICS 48

but flexible, interface. Figure 5.1 shows how the tracer and the interpreter are
related.

This interface allows the CESK#-machine to transfer information about its
execution, along with several other important signals, back to the tracer, which
then uses this information to capture the execution of the machine at trace-
recording time. Note that the tracer does not have any way of checking on the
state of the program currently being executed, as this is completely the respon-
sibility of the interpreter. However, the tracer can gather some information on
the execution of the program by interacting with the interpreter.

By creating an explicit interface between the two, it becomes possible to
switch one CESKf#-machine for another without impacting the tracer. For the
purpose of this thesis, we stick to tracing SLIPT programs, but our framework
is entirely configurable in the sense that we can plug in whatever interpreter
we want, as long as it conforms to our interface. We can even plug in machines
that interpret a language completely different from SLIPT. Only two require-
ments must be satisfied by the interpreter in order for it to be traced: the inter-
preter must satisfy this interface, and it must be possible to trace its actions, i.e.,
it must be possible to reify its actions so that they can be inserted into a trace.
In this thesis, we only describe the tracing machine in combination with the
LLI CESK#-machine. In this configuration, the second requirement is automat-
ically satisfied because the LLI CESK6#-machine operates using the low-level
instruction set. Every action that is performed by the interpreter can therefore
be represented as a sequence of low-level instructions.

An introduction to tracing compilation was given in Chapter 2. In Section
5.2, we give an informal overview of how SLIPT programs are traced and what
kinds of traces can be produced, using some concrete examples. We slightly
extend the syntax of SLIPT in Section 5.3 so it becomes possible to trace the
CESK6#-machine. In Section 5.4, we give a formal definition of our tracer. In
Section 5.5 we go into more detail on the interface between the tracer and the
interpreter, and we explain exactly how they cooperate. Section 5.6 contains
some information on how we use the guard instructions (introduced in Chap-
ter 2) in our framework. From Section 5.7 through Section 5.9, we explain the
three phases in the execution of a SLIPT program: normal interpretation, trace
recording and trace execution respectively.

5.2 Tracing overview

To trace a SLIPT program, the traced program must contain a number of anno-
tations that specify where to start and stop tracing. We specify two annotations
in our tracing compiler: can-start-loop and can-close-loop annota-
tions. can-start-loop annotations are used to signal the starting point of
traces, can-close-loop annotations form the end point. Both annotations
are spread throughout the program at locations relevant for tracing. An anno-
tation is always parametrized by a label that identifies the trace that starts or
ends at this location. Such a label takes the form of a SLIPT value, such as a

CHAPTER 5. TRACING SEMANTICS 49

Tracer

Interface CESKG
machine

Figure 5.1: The relation between the interpreter and the tracer

boolean, a symbol or even a function. Listing 5.1 shows some example SLIPT
code containing both can-start-loop and can-close-1loop annotations.

(define (complex-calculation n)
(can-start-loop 'complex—-trace)

define a (sgr n))

define b (x 2 a))

define result (sqrt b))

can—-close-loop 'complex-trace)

result)

(
(
(
(

Listing 5.1: A function in SLIPT

The execution of a SLIPT program is divided in three distinct phases: nor-
mal interpretation, where the interpreter executes the program without any
tracing going on whatsoever, trace recording, where the actions of the inter-
preter are recorded, and trace execution, where a previously recorded trace is
executed. These tracing annotations serve as transition points where the pro-
gram’s execution may shift from one phase to another. Figure 5.2 shows a full
state diagram expressing how the three execution phases are linked. Through-
out the rest of this section, we explain this diagram by presenting concrete
examples of SLIPT programs that use tracing annotations and by explaining
how these programs are executed exactly.

CHAPTER 5. TRACING SEMANTICS 50

Trace finished

can-start-loop
~\ [existing trace]

Normal

> interpretation
4 Guard failed
can-close-loop [same label)f

Store trace
Executing trace

can-start-loop can-start-loop Trace finished
[no existing trace] [same label)/Store trace [Trace loops]

Recording trace

Figure 5.2: Transitioning between the three phases in a SLIPT program’s exe-
cution

Bounded traces

We first consider the example program shown in Listing 5.1. Since the ex-
ecution of a program always begins in the normal interpretation phase, the
interpreter starts off with the evaluation of this program. When it evaluates
the (can-start-loop 'complex-trace) expression, it first evaluates the
label ' complex-trace and then checks whether a trace with this label has al-
ready been recorded. Since there is no trace yet with the label (can-start-loop
'complex-trace), we transition to the trace recording phase and the tracer
starts recording a trace with this label from this point on. The interpreter
proceeds as before, but all of the actions it executes during interpretation are
now recorded into a trace by the tracer. Once the tracer has started tracing,
it continues to do so across all function calls until the interpreter reaches the
(can-close-loop 'complex-trace) expression. Because the interpreter
has now reached a trace end point with a label identical to the label of the trace
it is currently recording, tracing stops, we shift back to the normal interpreta-
tion phase and the recorded trace is stored under the label ' complex-trace.
The trace is therefore bound by the can-start-loop and can-close-loop
annotations.

The next time the interpreter calls the complex-calculation function
and encounters the (can-start—-loop 'complex—trace) annotation, itdis-
covers that a trace for this label already exists and the framework starts execut-
ing this trace instead of continuing with normal interpretation, i.e., we move on
to the trace execution phase. The body of this function, and hence the contents
of this trace, does not contain any apparent potential locations for side-exits.

CHAPTER 5. TRACING SEMANTICS 51

Recall from Chapter 2 that a trace performs a side-exit when it aborts the exe-
cution of a trace before it has reached the end of the trace. This usually occurs
when a guard fails. Because there are no apparent locations where a guard
could fail in this example, the interpreter is guaranteed to continue executing
the trace until the trace has come to an end, at which point we transition back
to the normal interpretation phase. The interpreter restarts interpretation from
the point in the program corresponding with the end of the trace, namely right
after the location of the (can-close-loop 'complex-trace) annotation
and before the result expression.

Looping traces

Listing 5.2 shows an example of a recursive function that contains only one
annotation: a can-start-1loop annotation with the label 'print-number.

(define (do-something)
(can-start—-loop 'do-something)
(if (= (random 2) 0)

(displayln 0)
(displayln 1))
(do—something))

Listing 5.2: A looping function in SLIPT

Once the interpreter evaluates this annotation, it checks whether a trace
with the label 'print-number has already been recorded. If not, we transi-
tion to the trace recording phase and the tracer starts tracing from the point of
this annotation. Since the body of this function does not contain any can-close-loop
annotations, tracing continues across the recursive function call until the can-start-loop
annotation is reached again in the next iteration. Encountering a can-start-loop
again with the label 'print-number completes the circle and causes trac-
ing to stop. can-start-loop annotations have the implicit condition that
they are placed at the start of a loop since we are usually only interested in
tracing loops. In this case, the loop takes the form of the recursive function
print-number-loop. If tracing starts from a can-start-1loop annotation
with some label and later on the interpreter sees another can-start-loop
annotation with the same label, the interpreter assumes it has completed one
full iteration of some loop and that it has encountered the same annotation.
Since the underlying control-flow loops, the trace itself should also loop. Traces
that therefore end at a can—-start-1oop annotation should be restarted once
execution has reached their end, in order to accommodate to the implicit loop-
ing semantics of the trace. Note that the interpreter cannot make the distinction
between two annotations that have the same type and carry the same label, so
it always considers them identical, even though they are possibly different.

CHAPTER 5. TRACING SEMANTICS 52

Side-exits

Listing 5.3 shows an example of a function that does contain possible locations
for side-exits in the trace.

(define (do-something)
(can-start—-loop 'do-something)
(if (= (random 2) 0)

(displayln 0)
(displayln 1))
(do-something))

Listing 5.3: A function whose trace can contain a side-exit

As mentioned in Chapter 2, the interpreter uses special instructions called
guards to make sure that the conditions that were present while tracing a pro-
gram are still valid when executing the trace. Concretely, this means that when
tracing do-something, the tracer places a guard in the trace at the location
corresponding to the if-test. If during tracing of this function (random 2)
evaluates to 0, then the tracer inserts a guard into the trace to check that, if
the trace is executed, (random 2) again evaluates to 0. If this trace is now
re-executed and (random 2) evaluates to 1 instead of 0, a guard failure is trig-
gered. This causes the tracer to abandon the execution of the trace, which is
called a side-exit. Execution of the program then transitions back to normal in-
terpretation, so the interpreter resumes interpretation of the program starting
from the point of the guard failure. In this case, the guard failure occurred
at the location of the if-test, so interpretation is restarted from just after the
if-condition and right before the false-branch is evaluated.

Trace example

In our framework, since we are tracing the actions of the LLI CESK#-machine
from Section 4.5, the trace of a SLIPT program consists of the low-level program-
state transition instructions that were introduced in Section 4.4. Execution of
a trace is then nothing more than consistently applying each instruction to a
certain program-state, and using the resulting output state as the input for the
next instruction. In essence, executing a trace is playing back a series of low-
level state transitions that have been recorded earlier. As an example, Figure
5.3 shows the program already presented in Listing 5.1 and part of its trace
side by side. Concretely, the trace handles the evaluation of the expression
(define a (sqr n)).

CHAPTER 5. TRACING SEMANTICS 53

svev()

pshk(definek(a))

svev()

pshk(randk(sqr, ' (), 1))
lvar(n)

popk()
renv()
svvl()

(define (complex-calculation n)
(can-start-loop 'complex-trace)
define a (sgr n)) svev()

(
(defj:‘ne bo(x 2 a)) pshk(ratork(1))
(define result (sqrt b))

(

can-close-loop 'complex-trace) lvar(sqr)
result) popk()

Listing (5.4) A function in SLIPT renv()
anat(1)
popk()
renv()
avar(x)
(

popk()

(a) Part of the trace corresponding
with the code from Listing 5.4

Figure 5.3: A SLIPT program that can be traced along with its resulting trace

This trace matches the sequence of instructions that the LLI CESK#-machine
executes if it evaluates the expression (define a (sqr n)).

Annotations

It should be noted that although it seems extremely cumbersome for users to
have to place annotations at all locations where programmers wish to start
or stop tracing, this issue is not so severe in practice. This compiler is devel-
oped primarily to serve as a meta-tracing compiler, so the input to the CESK6-
machine are other interpreters. This also means that the people who will be
generally writing programs for this framework are the language developers
that create these interpreters. These people are therefore the only ones who
have to understand how tracing works in our framework and where these an-
notations have to be placed: the end-users who develop programs on top of the

CHAPTER 5. TRACING SEMANTICS 54

language interpreters built by the language developers do not need to have this
knowledge at all. Furthermore, although we had to use one or two annotations
per example program that we have shown in this section, language interpreters
built on top of this framework generally only require a handful of annotations
at most to function correctly.

5.3 Extended Syntax

To enable the tracing of the LLI CESK#-machine, we must include can-close-loop
and can-start-loop annotations in our SLIPT programs. We therefore ex-

tend the syntax of SLIPT with these tracing annotations. Since these are the

only expressions we have to add to our syntax, extending the syntax is straight-
forward. We extend our definition for Ezp to include these new annotations.
Figure 5.4 shows the updated definition of Exp.

ec€ Fxp= ...
| (can-close—-1loop Val)

| (can-start—loop Val)

Figure 5.4: The new definition for Exp

5.4 Tracing machine

In this section, we formally define the tracing component of our framework.
We also call this the tracing machine, or simply tracer, in contrast with the LLI
CESK§-machine which serves as the interpreter in our framework.

CHAPTER 5. TRACING SEMANTICS 55

TracerState = ts(EzecutionPhase, TracerContext, ProgramState, False + TraceNode)

FEzxecutionPhase = TE
| NI
| TR

7 € Trace = Instruction : Trace
| e
tc € TracerContext = tc(False + TraceNode, TNs)
val € TraceKey = Val
tn € TraceNode = tn(TraceKey, Trace)
TNs = TraceNode : TNs

| e

Figure 5.5: The tracing machine

Execution of a SLIPT program is defined as transitioning between the phases
of normal interpretation, trace recording and trace execution. Execution can
therefore be represented as a state machine.

TracerState Because a program’s execution is controlled by the tracing ma-
chine, we define tracer-states that capture the state of the tracing machine. Such
a state is a four-tuple consisting of an evaluator-state keyword, a tracer context,
a program-state, and a trace node, if any trace is being executed.

ExecutionPhase The EzecutionPhase is a keyword that indicates in which
phase the tracing machine is working. It always takes the form of one of three
values: NI when the tracing machine is in the normal interpretation phase, TR
when the tracer is in the trace recording phase and T'E when the tracer is in the
trace executing phase.

TracerContext The tracer context is a structure used to store various infor-
mation relevant to the tracer, such as the trace that is currently being captured
or recorded, as well as a list of all traces that have already been recorded. To
implement the tracer-context, we must first define a trace-node auxiliary con-
struct. A trace-node is a structure that associates a trace to a trace-key. The
trace-key is the label that is given to the trace, as explained in Section 5.2. The
tracer context consists of a list of trace-nodes, the traces that have already been
recorded previously, as well as a single trace-node that represents the trace that
is currently being captured. If no trace is being recorded, this field of the tracer
context is set to False.

CHAPTER 5. TRACING SEMANTICS 56

ProgramState The third component of a tracer-state is its program-state. This
is the state on which both the CESK§-machine and the instructions in the trace
operate. So if the the tracing machine is either performing normal interpreta-
tion of its input-program or is recording a trace, it constantly feeds this program-
state as input to the CESK#-machine, captures the resulting output-state of the
interpreter and swaps its old program-state for this new state. This program-
state is also required when the tracer is executing a trace, since it serves as the
input to each instruction that was recorded into the trace.

TraceNode The final field of the tracer-state is either the trace-node that is
currently being executed, i.e., a structure containing the trace that is being exe-
cuted along with the label of this trace, or it is False if no trace is being executed
at the moment.

A trace consists of a series of the low-level instructions that were presented
in Section 4.4. Figure 5.3 of Section 5.2 shows an example trace.

5.5 Interface

We now define the interface between the LLI CESK#-machine and the tracer.
This interface is extremely important, because it is the bridge between the
tracer and the interpreter. Before we formally define the workings of the trac-
ing machine, we first define the interface through which the CESK#-machine
interacts with the tracer, which allows us to express more clearly the actual
mechanics employed by the tracing framework. The interface is expressed in
Figure 5.6.

CesktReturn = cesktStep(ProgramState, Trace, AnnotationSignal)
| cesktEvent(EventSignal)
EventSignal = CesktStopped
AnnotationSignal = CCL(Val)
| CSL(Val)
| False

Figure 5.6: The interface between the CESK@-machine and the tracer

The relationship between the tracer and the interpreter is defined as a master-
slave relation, where the tracer is the master and controls the execution of the
interpreter. Whenever the tracer asks it to, the interpreter performs a single
transition rule, i.e., a single step, on a given input-state.

CHAPTER 5. TRACING SEMANTICS 57

CesktReturn Until now, a transition would take a certain program-state and
return a new program-state. This is no longer satisfactory because we must
now trace the actions of the interpreter, so we require the interpreter to piggy-
back certain signals about its evaluation of the program to the tracer. We there-
fore wrap the return values of each transition of the LLI CESK@-machine in
an extended structure, allowing us to return not only the new program-state
that resulted from this transition but also additional information that may or
may not be relevant to the tracer. For example, if the CESK#-machine has en-
countered a tracing annotation, it should have a way to signal this back to the
tracer, so that the tracing machine may decide to start tracing, or to start exe-
cuting a previously recorded trace. Each CESK transition therefore returns a
CesktReturn structure, which contains a program-state, an annotation signal,
and a series of instructions, i.e., a trace.

ProgramState The ProgramState is the program-state that resulted from ap-
plying this transition on the given program-state.

AnnotationSignal The CESK6@-machine express to the tracer that a tracing
annotation has been encountered by using the correct AnnotationSignal. Since

we have included two annotations in SLIPT, we must define two annotation
signals: CCL for can-c-1lose-loop annotations and CSL for can-s-tart-loop
annotations. These signals carry the label used by the annotation. Recall that

this label is a SLIPT value, so we define the label used in the signal to be a

Val. If the CESK6 has not encountered any tracing annotation, it returns False
instead of an annotation signal.

Trace The CESK#-machine must return the sequence of actions it has per-
formed in that transition. These actions are the low-level instructions used
in each transition of the LLI CESK#-machine. Because each transition can be
described in terms of a handful of low-level instructions that are applied on a
program-state, we can trace the execution of the interpreter by recording the se-
quence of low-level instructions that correspond with the transition rules that
the interpreter applies.

Events To add flexibility to this interface, we define event returns. These are
special return values that can be used by the CESK@-machine in case of special
events, such as when the evaluation of the input program has been completed.

Interface example

In order for the CESKf-machine to comply to this new interface, we have to
wrap the result of all transitions that it applies. We do not redefine the full
semantics, but in Table 5.1 we show two examples of how the new transition
rules look in comparison with the old rules.

CHAPTER 5. TRACING SEMANTICS 58

Old transition rule Wrapped transition
ps((begin), p, 0, &k, v, 0) =% | ps((begin), p. 0. 6, v, 0) T
ps(¢, p, 0, K, (), 0) cesktStep(ps(¢, p, o, k, (), 9),
{litv(*()), popk()},
False)
ps(seqgk(e : es), p, 0, kK, v, 0) Loed, ps(seqk(e : es), p, 0, Kk, v, 0) Kool
ps(e, p, o, segk(es) : k, v, 0) cesktStep(ps(e, p, o, seqk(es) : k, v, 0)
{pshk(seqk(es))},
False)

Table 5.1: The old transition rules compared to the new, wrapped rules

5.6 Guard instructions

5.6.1 Introduction

In this section we explain how guards are handled by our framework. Guard
instructions are used by the tracer to ensure that certain conditions that were
valid while a trace was being recorded still hold when the trace is executed.
If the guard fails when the trace is executed, execution of the trace must be
aborted. We specify four kinds of guard instructions in our framework. We
provide a formal definitions of these guards in this section.

5.6.2 Guard examples

A trace is essentially a recording of a linear control-flow: the path through the
program that was taken while the trace was being recorded. As the following
three examples demonstrate, it is however possible that this control-flow is no
longer valid when the trace is executed.

Ordinary guards

Consider the following example, which we have already seen in Section 5.2.

(define (do-something)
(can-start—-loop 'do-something)
(if (= (random 2) 0)

(displayln 0)
(displayln 1))
(do-something))

Listing 5.5: A function where control-flow may diverge

Suppose that when this function was traced, (random 2) evaluated to 0.
Then the trace contains code to execute the true-branch, and only the true-
branch, of this if-expression, i.e., (displayln 0). When executing the recorded

CHAPTER 5. TRACING SEMANTICS 59

trace, the expression (random 2) must still be re-evaluated. However, it is
possible that this expression evaluates to 1 this time, which means that the
false-branch must be evaluated. We can say that the control-flow of the pro-
gram diverges at trace-execution time with respect to the control-flow at trace-
recording time. To protect ourselves from these divergences, we introduce
guard instructions into the trace while we are recording it. When the trace is
executed, these guard instructions take a program-state as input, check on the
conditions that ensure identical control-flow and when these conditions dif-
fer from the ones that were present while recording the trace, the guard sig-
nals an error and execution of the trace is aborted. Concretely, in the previous
example we would introduce a guard that checks whether the expression (=
(random 2) 0) evaluates to #t when executing the trace. If it does, execu-
tion of the trace continues normally, else the guard fails and execution of the
trace is aborted. The tracing machine then switches back to normal interpreta-
tion of the program, starting from the point of the guard failure.

Guards for higher-order functions

Listing 5.5 is not the only example of a program where guards must be intro-
duced to safeguard the validity of the control-flow. Because SLIPT allows for
the creation of higher-order functions, we must be careful when tracing func-
tion applications. Consider the program in Listing 5.6.

(define (qg)
(displayln "g was called"))

(define (h)
(displayln "h was called"))

(define (do-something f)
(can-start—-loop 'do-something)
(displayln (f))

(do-something h))

(do—something g)
Listing 5.6: Control-flow diverging because of higher-order functions

In this program, we are using a higher-order function do-something that
takes a parameter f referring a function. When we first call do-something,
f refers to the function g but after the first iteration, £ changes to the function
h. If the first iteration is traced, we must prevent the tracing machine from
executing the g function in every iteration of the trace. This is done by inserting
a guard. The guard checks the identity of the function being called, before
actually executing the function.

Guards for apply-expressions

A more subtle example of when guards are necessary is shown in Listing 5.7.

CHAPTER 5. TRACING SEMANTICS 60

(define (g a b)
(+ a b))

(define (do-something-else args)
(can-start—-loop 'do-something)
(apply g args)
(do—-something-else ' (1l)))

(do—-something-else '(1 2))
Listing 5.7: A more subtle example of code where guards must be introduced

In this program we have a function do-something-else in which we ap-
ply the function g to some list of arguments. In the first iteration, the arguments
lististhelist ' (1 2) butin subsequent iterations this list changesto ' (1). The
problem here is that we are using apply to call g on some arguments, instead
of calling g directly on these arguments. As the example shows, it is possible
that the number of arguments changes between iterations of the loop. In other
words, the number of arguments used is dynamic instead of static.

If the first iteration of this function is traced, the tracing machine inserts
instructions into the trace which correspond with evaluating the expression
args, which evaluates to ' (1 2), pushing these values on the value stack and
then calling g on the first two values of the value stack. In other words, the trace con-
tains instructions for popping the first two values from the stack, even though
in subsequent iterations, the list of arguments only contains one element. Ap-
plying g on a list with only one element must cause a runtime error but in
practice, the tracing machine calls g with the value 1 and whatever other value
lies below 1 on the value stack.

If we were to replace (apply g args) by (g arg-1 arg-2),wewould
not encounter this issue, because it is statically determined that g is called on
two arguments. Although the value of these two arguments may change be-
tween trace-recording and trace-execution time, the number of arquments does
not change. We could solve this problem by adding a guard to the trace that
checks the number of arguments used in an apply-expression.

5.6.3 Low-level instruction interface

Low-level instructions take a program-state and return another program-state.
In principle, guard instructions are no different from any other instructions:
they are inserted in a trace and take some program-state as input. Guards
should therefore also share the signature ProgramState — ProgramState. How-
ever, such a signature makes it impossible to introduce the guards that are
necessary in our framework because guards must have some kind of way of
signalling to the tracing machine that the condition they are guarding is inval-
idated. This problem is similar to a problem we encountered earlier. Similar
to low-level instructions, the transition rules that are employed by the CESK#-
machines used to take a program-state as input and return a new program-
state. This made it impossible for the interpreter to signal back additional

CHAPTER 5. TRACING SEMANTICS 61

information on the program’s evaluation, such as when it has encountered a
tracing annotation. We solved this problem by defining an interface between
the tracer and the interpreter: all transitions that are applied by the CESK§-
machine must be wrapped, so that the interpreter can piggy-back additional
information to the tracing machine.

We can use the same solution now as we used then: we wrap the low-
level instruction so that it can return more than just the resulting program-state.
This defines an interface between the low-level instructions and the tracing
machine. An extra requirement for for tracing an interpreter in our framework
now becomes apparent: the interpreter itself must satisfy the interface between
it and the tracing machine, but its actions that are placed into the trace during
the recording of the trace must also satisfy some interface.

In Figure 5.7 we present this interface that is used between the low-level
instructions and the tracing machine.

InstructionReturn = 1liStep(ProgramState)
| NiEvent(EventSignal)
FEventSignal = guardFailed(Control)

Figure 5.7: The interface between the low-level instructions and the tracer

InstructionReturn An instruction always returns an InstructionReturn when
it is applied, which can be either a 11iStep or an lliEvent.

lliEvent To provide flexibility to the interface, we use lliEvent structures.
These structures can not only be used to signal guard failures, but can also be
used in the future, if we want to make instructions signal back other kinds of
information.

1liStep Normal, non-guard, instructions, always return a lliStep containing
the program-state resulting from applying this instruction on some program-
state.

Guards Guard instructions can return either of both InstructionReturns. If
a guard does not fail, it returns a 1liStep with the program-state it was given
as input, i.e., it does nothing. If the guard fails, it returns an lliEvent with a
guardFailed as signal.

Guard’s control

A guardFailed not only signals the fact that a guard failed, but it also carries
back additional information. Recall that guard failures are essentially associ-

CHAPTER 5. TRACING SEMANTICS 62

ated to some location in the code, namely the location of where some condi-
tion needs to be checked. If this condition is invalidated when executing the
trace, the tracing machine must abort trace execution and switch back to nor-
mal interpretation of the code. However, interpretation should restart from
the point in the code where the condition is checked. In our CESK#-machine,
points in the program can be referred to through the control component of the
program-state, which, as stated in Section 4.3, is either an expression or a con-
tinuation. We therefore make guards, if they fail, signal back not only the fact
that they failed, but also the point in the program from where normal interpre-
tation must restart.

5.6.4 Guard instructions

We now present which guard instructions we apply in our framework and how
they are used. Afterwards, we redefine some of the transition rules of Section
4.5, namely those rules where we have to insert one of these guards. We define
four kinds of guards: guard-false, guard-true, guard-same-closure
and guard-same-nr-of-args. We also label each guard with a mnemonic.

Guard-false
guard-false is defined as follows.
gfls(c)

pS(67 p7 07 H’ #f7 0)
lliStep(ps(e, p, 0, Kk, #£, 0))

ps(e, p, 0, . v, 0) £
lliEvent(guardFailed(c))

Figure 5.8: The definition of guard-false

This kind of guard checks that some condition evaluates to # £. It is parametrized
with the argument ¢, which represents the location in the code to which the
condition that is checked by this guard corresponds. The guard checks the
contents of the value register. If this register contains the value # £, it does noth-
ing. If it does not contain this value, the guard fails. It signals back this fact
by returning a guardFailed containing the point in the program from which
interpretation should restart. This point can either be an expression or a con-
tinuation.

Guard-True

guard-trueisidentical to guard-false, except that we now return an lliEvent
if the value register does contain the value #£.

CHAPTER 5. TRACING SEMANTICS 63

ps(e, p, 0, K, #£, 0) gl

lliEvent(guardFailed(c¢))

pS(67 p7 U? H? v’ 6) m

LiStep(ps(e, p, 0, k, v, 0))

Figure 5.9: The definition of guard-true

Guard-same-closure

guard-same-closure checks whether the same function is applied when ex-
ecuting the trace as when recording it. Recall that there are two kinds of func-
tions in SLIPT. The first kind of functions are user-defined functions, which are
represented as clo structures containing an environment, the lexical environ-
ment of the function, and a lam structure, which contains a list of parameters
and a list of expressions, i.e., its body. The other kind of functions are native
functions. For two functions to be the same they must first be of the same type.
If they are both user-defined functions, their list of parameters and their bodies
must be identical. Checking the identity of two native function lies outside the
scope of this thesis. guard-same-closure is parametrized with two argu-
ments v and c. v represents the function that was applied while recording the
trace. This is then the function that should also be applied when executing the
trace. As with the previous two guards, ¢ is again the point in the program
from where interpretation should restart if the guard fails. If the functions
are the same, guard-same-closure does nothing, otherwise it signals this
guard failure.
gscl(v, c)
ps(e, p, 0, Kk, v,) ——=

lliStep(ps(e, p, 0, Kk, v, 0))

ps(e, p, 0, k, V', 0) geellv, o),

lliEvent(guardFailed(c¢))

Figure 5.10: The definition of guard-same-closure

Guard-same-nr-of-args

The final guard, guard-same-nr-of-args, checks whether the length of the
argument list in a call to apply during the recording of the trace is equal the
length of this list while executing the trace. To perform this check, the expected
length, i.e., the length of the list used when recording the trace, is passed as an

CHAPTER 5. TRACING SEMANTICS 64

argument to the guard. Again, the location in the code from where interpre-
tation should restart if the guard fails is also passed to the guard. The list of
arguments is located in the value register of the program-state.

ps(e, p, 0, K, val; : ... : valy,, 0) genae, o)
lliStep(ps(e, p, 0, K, val; : ... : val,, 0))
. . gsna(n, c)
ps(e, p, 0, kK, valy : ... : valy, 0)

lliEvent(guardFailed(c¢))
with k& not equal to n

Figure 5.11: The definition of guard-same-nr-of-args

5.6.5 Adding guards to existing transition rules

We update the definitions of the transition rules that are used by the LLI CESK#-
machine and which determine the control-flow of the program, to reflect the
fact that a guard must be placed in the trace when executing these transitions.
By placing a guard in these transitions, we make sure that the control-flow that
was used when recording the trace is not changed when executing the trace.

If-expressions

The first transition rules we need to alter are the rules that express how an if-
expression is evaluated. Concretely, we must change the rules that govern the
execution of the if-expression after the if-condition has already been evaluated,
because we need to know what the value of the if-condition is in order to know
which control-flow branch will be taken. The evaluation of an if-expression
whose condition has just been evaluated is divided over four rules, depend-
ing on the value of the condition and whether an alternative false-branch was
provided or not.

ps(ifk(el, (), p, 0, ¢ : K, #£, p': 0) :
renv()
gfls(er)
popk()

lLitv(*())

ps(ifk(el, (), p, o, &, v, p':0) :
renv()

gtru(*())

ps(ifk(el, €2), p, o, k, #£, p' : 0) :

CHAPTER 5. TRACING SEMANTICS 65

renv()

gfls(el)

ps(ifk(el, €2), p, o, Kk, v, p' : 0) :
renv()

gtru(es)
Figure 5.12: The new transition rules for evaluating an if-expression

For the first rule, where we consider the case that some condition was false
but that no false-branch was provided, the if-expression just evaluates to ' (),
i.e., we move the value ' () to the value register. In order to check that this
condition still evaluated to #£ during the execution of the trace, we insert a
guard-false instruction into the trace, right before we pop the continuation
from the continuation stack. The location of the code to where interpretation
must jump should the guard fail is the expression that must be evaluated if the
if-condition did not evaluate to # £, namely the true-branch of the if-expression.
The three other rules are similar to the first: they each state that the if-condition
evaluated to some value and that the corresponding branch was taken. For
these rules, we only have to place a guard that corresponds with the evaluated
condition, i.e., place a guard-false branch when the condition evaluated
to #f and a guard-true branch when it did not evaluate to #£f, and pass
to this guard the branch of the if-expression other than the one that has to
be evaluated. For the second rule, where the CESK#-machine takes the true-
branch but where no false-branch is provided, we pass the value ' () to the
guard. If that guard fails, the if-expression evaluates to ' (), which is exactly
in line with the expected semantics.

Function application

The second set of rules that need to be changed are the rules dealing with
function application, in order to catch issues that arise when dealing with
higher-order functions. We have defined two rules for function application:
one rule that expresses how user-defined SLIPT functions are applied and an-
other to states how native functions are applied. For both rules, we insert a
guard-same-closure instruction. In both cases, we pass to this guard the
function that is being applied and a ratork(i) continuation, where i is the
length of the argument list. If the closure guard fails, it jumps back to this
continuation and applies the correct function. Since this continuation needs to
know the number of arguments used, we pass this number to the continuation.

/

ps(ratork(i), p, o, k, clo(lam(pars, body), px), p' vy = ...t v;:0) :
gscl(clo(lam(pars, body), px), ratork(i))

renv()

CHAPTER 5. TRACING SEMANTICS 66

prfe(i)

stev(px')

stst(o”)

pshk(aplck())

where < p«’, 0’ > equals bindParams(pars, v; : ... : v;, p*, 0)

ps(ratork(i), p, o, ¢ : K, v, p' 1 v vy, 1 0)
gscl(v, ratork(i))
renv()
anat(i)

popk()

Figure 5.13: The new transition rules for evaluating a function application

Apply-expressions

The final rule that needs to be altered is the rule that handles expressions of the
form (apply rator rands).Weneed toinserta guard-same-nr-of-args
guard here that checks the number of arguments. We pass to this guard two ar-
guments: the expected number of arguments and the continuation from which
interpretation should restart.

ps(applyk(rator), p, o, K, vy : ... vy, 0) :
svav()
svev()

gsna(n, applyFailedk(rator, n))

Figure 5.14: The new transition rules for evaluating an apply-expression

The continuation that we pass, applyFailedk(rator, n) is a special continu-
ation that we have not previously defined yet. Its definition is shown in Figure
5.15.

ps(applyFailedk(rator, i), p, 0, K, V7 : ... : Uy, 0) Keplf,

ps(rator, p, o, ratork(i) : K, v i ..t Up, P UL 5 Uy 2 6)

Figure 5.15: Handling an applyFailedk(rator, i) continuation

This continuation takes an operator and the length of some argument list
as input and sets everything up so that this operator can be applied to the ar-

CHAPTER 5. TRACING SEMANTICS 67

gument list. It does this by making sure the value stack is properly set up,
pushing the correct continuation onto the continuation stack and then evaluat-
ing the operator.

5.7 Normal interpretation

We now define the semantics of the tracer. It is these semantics that determine
how the tracing compiler works: how traces are recorded and executed, how
normal interpretation proceeds and how guard failures are handled. The exe-
cution of a program in our tracing framework can be divided into three distinct
phases: normal interpretation, tracing and trace execution. The interpretation
phase corresponds to the phase where the CESK§-machine is interpreting the
program and where tracing does not come into play at all. The second phase
starts when the interpreter encounters a can-start-1loop annotation, caus-
ing the tracer to start tracing the actions of the CESK#-machine. In the final
phase, the tracer is executing a previously recorded trace. The formal seman-
tics of the tracer distinguish between these three phases. In the following three
sections, we present the formal semantics of the tracer that correspond with
these three phases. It is important to recall that the tracer itself never checks on
the program-state it is using. In other words, it has no way of knowing when a
specific annotation is encountered. It is the responsibility of the interpreter to
check for these annotations and to signal the correct response, i.e., either one
of the AnnotationSignals or False back to the tracer when necessary.

The interpretation phase in the program execution is the most straightfor-
ward one to describe, since it corresponds almost entirely to the execution of
the LLI CESK#-machine, which was already described in 4.5. We write step(s)
to indicate that the interpreter applies a single transition rule on the program-
state q.

ts(NI, tc, ¢, False) — (5.1)
ts(NI, te, ¢, False)
if step(c) = cesktStep(s’, 7, False)

Figure 5.16: Normal interpretation if no annotation is encountered

Rule 5.1 represents the most common case: the CESK#-machine does not
encounter any tracing annotation. It therefore returns False instead of a signal,
along with the new program-state and the set of low-level instructions it has
applied. Although the tracing machine is running in the normal interpretation
phase and it hence has no use for these instructions, the LLI CESK#-machine
does not know this and it would indeed be undesirable for the interpreter to
be aware of this fact, as it would break the single responsibility principle of
programming. It is only the task of the tracer to understand that while execu-
tion is running in the interpretation phase, the instructions that are returned by
the interpreter through the cesktStep struct are generally useless while in this

CHAPTER 5. TRACING SEMANTICS 68

phase and should be discarded. The new tracer-state is then just a copy of the
old one, where the original program-state is replaced by the new program-state
returned by the CESK6#-machine.

ts(NI, tc, ¢, False) — (5.2)
ts(NI, te, ', False)
if step(c) = cesktStep(s’, 7, CCL(val))
Figure 5.17: Normal interpretation if a can-close-loop annotation is en-
countered

Inrule 5.2, the CESK#-machine signals that it has encountered a can-close-1loop
annotation. Since we are not tracing currently, we again do not have to take any
significant actions. We only swap the old program-state for the new program-
state.

ts(NI, tc(False, TNs), ¢, False) — (5.3)
ts(TR, tc(tn(val, t; : ... : 1), TNs), ¢, False)
if step(c) = cesktStep(s’, t; : ... : tn,, CSL(val))
and if no trace for val has been recorded yet

ts(NI, te, s, False) — (5.4)
ts(TE, tc, <', tn(val, 7))
if step(c) = cesktStep(s’, t7 : ... : tn,, CSL(val))

and where 7 is the trace that has previously been recorded for val

Figure 5.18: Normal interpretation if a can-start-loop annotation is en-
countered

A more interesting case arises in rules 5.3 and 5.4, when the CESK§-machine
encounters a can—-start—-loop annotation with label val. In rule 5.3, we as-
sume that no trace has been recorded yet for the label val, so the tracer de-
cides to start tracing this label. It switches its execution-phase and updates its
tracer-context to indicate that it is now tracing. The tracer-context is updated
by replacing the field representing its current trace. This field now becomes a
trace-node consisting of the label that is traced, as well as the first few instruc-
tions that have just been executed by the interpreter and that were carried back
in the cesktStep. These instructions become the very first part of the trace.
Note that the program-state of the tracer-state must also be updated as this
program-state continues to be used by the interpreter as its actions are being
traced.

In rule 5.4, we assume the same conditions as in the third rule, except that
the tracer-context now does contain an already-recorded trace for the label
val. In this case, the tracer must start executing this trace, so it switches its
execution-phase to TF and updates the fourth field in the tracer-state. This
field is switched to the tracer-node containing the previously recorded trace

CHAPTER 5. TRACING SEMANTICS 69

for the label val. We again also have to update the program-state because this
state now serves as the input to all instructions that were recorded in the trace
T.

5.8 Trace recording

We present the formal semantics that govern the execution of the tracing ma-
chine when it is in the trace recording phase.

ts(TR, tc(tn(val, 7), TNs), ¢, False) — (5.5)
ts(TR, te(tn(val, 7:t7:...:ty), TNs), ¢, False)
if step(c) = cesktStep(s’, ¢ : ... : 1y, Fulse)

Figure 5.19: Trace recording if no annotation is encountered

Rule 5.5 of these semantics is similar to the rule 5.1 of the semantics pre-
sented in the previous chapter, except that the tracing machine is now record-
ing a trace: the interpreter has not encountered any annotation signal. In this
case, we again update the program-state of the tracer to feed it to the inter-
preter in the next step, but we also append the instructions that were executed
by the interpreter to the back of the trace we are already recording. We append
the instructions to the back of the trace because we are recording the instruc-
tions in chronological order: the first recorded instruction should come at the
start of the trace.

ts(TR, tc(tn(val, 7), TNs), <, False) — (5.6)
ts(TR, tc(tn(val, 7:¢s : ... 1 1y), TNs), ¢, False)
if step(s) = cesktStep(s’, t1 : ... : tn,, CCL(val’))

ts(TR, tc(tn(val, 7), TNs), ¢, False) — (5.7)
ts(TR, te(tn(val, 7:¢7: ... 2 ty), TNs), ¢, False)
if step(s) = cesktStep(s’, 1 : ... : tn,, CSL(wal"))

Figure 5.20: Trace recording if an annotation with a different label is encoun-
tered

In rule 5.6, the interpreter has encountered a can-close-1loop annotation
but with a label different from the label we are currently tracing. Because the
label is different, the annotation has no impact on the behavior of the tracer:
it continues tracing. As with the first rule, we do have to update both the
program-state and the trace currently being recorded. A tracing annotation
that uses another label than the one being traced is handled no different than
any other expression by the tracer.

Rule 5.7 is similar to rule 5.6, except that the interpreter has now come
across a can—start—-loop annotation.

CHAPTER 5. TRACING SEMANTICS 70

ts(TR, tc(tn(val, 7), TNs), ¢, False) — (5.8)
ts(NI, tc(False, tn(val, 7) : TNs), ¢’, False)
if step(c) = cesktStep(s’, ¢; : ... : t, CCL(wal))

ts(TR, tc(tn(val, 7), TNs), s, False) — (5.9)
ts(TE, tc(False, tn : TNs), ¢, tn)
where tn equals tn(val, 7:15 : ..t ty 1 A)
if step(c) = cesktStep(s’, t7 : ... : tn,, CSL(val))

Figure 5.21: Trace recording if an annotation with the label that is being traced
is encountered

In rule 5.8, the interpreter again sees a can-close-1loop annotation, but
this time, the annotation does use the same label as that of the trace already
being recorded. Since can-close-loop annotations form the end points of
traces, encountering such an annotation means that the recording of the trace
should stop. This is exactly what is done in this rule: the tracer stops recording
the trace, constructs a trace-node consisting of the trace and its label, and adds
this node to the other trace-nodes so that it can be executed at a later point in
time. Furthermore, the tracer must now start interpreting the program again,
so the execution-phase is switched. As always, we also update the program-
state.

Rule 5.9 is somewhat similar to rule 5.8 in that the interpreter again en-
counters an annotation carrying the same label as that of the trace currently
being recorded. This time however, the annotation is a can-start-loop an-
notation. We again have to stop tracing and add the trace to the list of other
trace-nodes. Before we store the trace away however, we first add a special
looping-instruction A to the end of the trace. This instruction serves to tell the
tracer that this trace loops: it started from a certain start point and came full cir-
cle when it again reached a trace start point with the same label, implying that
it looped back to the beginning. When the interpreter executes such a trace, the
presence of such a looping instruction enables the tracer to know that it must
restart the trace once it has reached the end. Now that the tracer has reached
the starting point of the trace again, and has completed its recording, the tracer
can start executing the trace it has just recorded instead of switching back to
normal interpretation. We therefore switch the execution-phase of the tracer-
state and replace the fourth field of the tracer-state by the trace-node we have
just created, so that we can start executing it.

5.9 Trace execution

We define the formal semantics that express how the execution of a trace should
be handled. For these rules, we write +(¢) to express that we apply the low-level

CHAPTER 5. TRACING SEMANTICS 71

instruction ¢ on the program-state . Recall that a guard instruction is consid-
ered to be the same as any other low-level instruction.

ts(TE, tc, s, tn(val, t: 7)) — (5.10)
ts(TE, tc, <, tn(val, 7))
if 1(s) = liStep(s’)

Figure 5.22: Trace execution if no guard fails

In rule 5.10, we explore the most common case: we apply an instruction
from the trace on the current program-state and this instruction returns a lliStep
containing the program-state resulting from applying this instruction. Other
than the four guard instructions, all instructions always result in this kind of
return type. For the resulting tracer-state, we must only update our program-
state as well as the trace that we are currently executing. After executing this one
instruction of the trace, we continue with the other instructions of the trace, so
that in the next step we may apply the subsequent instruction. If we wouldn’t
update the trace, we would keep applying the same instruction forever.

ts(TE, tc, ps(e, p, 0, k, v, 0), tn(val, ¢: 7)) — (5.11)
ts(NI, te, ps(c, p, 0, k, v, 0), False)
if 1(¢) = lliEvent(guardFailed(c))

Figure 5.23: Trace execution if a guard fails

Rule 5.11 expresses the case where some guard has failed. The rule states
that we should then switch our execution-phase to normal interpretation. Ad-
ditionally, as mentioned in Section 5.6, interpretation should restart from the
point in the program that corresponds with the guard failure. This point is
defined as either an expression or a continuation. All guards are aware of to
which point in the program they correspond, so when a guard fails, it can pass
this location as part of the guardFailed signal, as was mentioned in Section 5.6.
We therefore also replace the control component of the program-state by the
new control, i.e., the expression or the continuation passed in the guardFailed
structure. This ensures us that interpretation is restarted from the correct loca-
tion in the code.

ts(TE, tc, ps(e, p, 0, ¢ : Kk, v, 0), tn(val, ‘())) — (5.12)
ts(NI, te, ps(o, p, o, k, v, 0), False)

Figure 5.24: Trace execution if the end of a trace has been reached
In rule 5.12, we consider the case where we have reached the end of a non-

looping trace. Recall from Section 5.2 that we must then restart interpretation
from the point in the program corresponding to right after the ending point of

CHAPTER 5. TRACING SEMANTICS 72

the trace, i.e., the can-close-1loop annotation that ended the trace recording.
This ending point is easy to find: it is the continuation that currently resides at
the top of the continuation stack of the program-state. Because we also trace
the popk() and pshk(¢) instructions that are used by the CESK¢-machine, we
can be sure that the continuation stack is always kept up-to-date when execut-
ing the trace. This implies that when the end of the trace is reached, the same
pops and pushes have been applied to the continuation stack during the exe-
cution of the trace as were applied during the recording of this trace. This then
means that the continuation that was on the top of the continuation stack right
after recording of the trace was finished, whatever this continuation may be,
is now also located on the top of the stack. Jumping to the program location
corresponding to right after the can-close—-loop annotation that ended the
trace is then nothing more than placing the continuation that is present on the
top of the stack in the control component of the program-state.

ts(TE, te, ¢, tn(val, A:*())) — (5.13)
ts(TE, tc, s, tn(val, 7))
where 7 is the trace that has previously been recorded for val

Figure 5.25: Trace execution if the end of a looping trace has been reached

Rule 5.13 handles the case where we have reached the end of a trace that
loops. Recall from Section 5.2 that we place a special looping instruction at the
end of the trace when during the recording of the trace we notice that the trace
loops. Recall also from this Section that we said that a trace loops if during trace
recording we encounter a can-start-1loop annotation carrying the same la-
bel as that of the trace we are recording. If we have reached the end of such a
looping trace, we restart the trace: we look up the full trace belonging to the
label of the trace we are executing and we replace the current, empty, trace by
this new, full, trace.

Chapter 6

Extending the tracing
framework

In this chapter we introduce several non-trivial extensions to the tracing frame-
work that was presented in the previous chapter: we develop hot loop detec-
tion, guard tracing and trace merging in our framework. For each of these
extensions, we give a small overview highlighting the intent of the extension,
we then present an updated definition for the tracing machine and, if neces-
sary, the low-level instruction set and interface. Afterwards we provide the
formal semantics that specify how this extension is implemented. We develop
these new extensions by gradually extending the previously defined formal
semantics: each extension builds on top of the previous one. The creation of
these extensions serves as the validation of this thesis. We create this set of
extensions by extending the existing semantics, but we do not fundamentally
change the underlying formalisms. This proves that our framework is both
modular and powerful enough to allow for the development of additional fea-
tures, i.e., we can introduce these extensions without having to fundamentally
alter the existing semantics.

6.1 Hot loop detection

6.1.1 Overview

The first new extension we present is the detection of hot loops in a program’s
execution. A program loop is called “hot” if the loop is executed frequently
enough, for some definition of frequent. By extending our framework with
the capability for detecting hot program loops, we enable the tracer to more
carefully select which loops to trace. Tracing compilation has the most effect
when it is applied on those parts of the code where the program spends most
of its time. Usually, these parts correspond to the program loops that are exe-
cuted most frequently (Gal et al., 2009). Tracing parts of the program that are

73

CHAPTER 6. EXTENDING THE TRACING FRAMEWORK 74

executed only seldom generally does not result in any significant speed-up. It
may even cause performance to degrade, as tracing always causes a runtime
overhead in practice, and compiling and optimizing a trace is especially costly
(Gal et al., 2006). Tracing a loop should therefore be seen as an investment
which must be recouped: the compiler traces a loop in the hope that the time
that is now saved in subsequent executions of this loop offsets the costs that
had to be made for the tracing, compilation and optimization of the loop.
Loop hotness detection is a heuristic that is designed to aid the tracer in
deciding which loops to trace. It works by holding off on tracing a loop when a
can-start-loop annotation for a certain label is first seen untila can-start-1loop
annotation for this label has been encountered at least a fixed number of times.
Although as a heuristic it does not completely remove the possibility of trac-
ing uninteresting loops, it should at least cause the compiler to prioritize the
tracing of hot loops over less frequently executed loops. This loop hotness de-
tection heuristic is part of several tracing JIT compilers, including HotpathVM,
TraceMonkey and SPUR (Gal et al., 2006, 2009; Bebenita et al., 2010).

6.1.2 Extending the tracing machine

We first extend the tracing machine in order to develop the semantics for de-
tecting hot loops. The tracing machine is a state-machine operating on tracer-
states. A tracer-state is defined as a four-tuple consisting of respectively: an
EzecutionPhase, which expresses in which phase the tracing machine is cur-
rently executing the program, a TracerContext, which stores bookkeeping in-
formation related to tracing, as well as the traces that have already been recorded
completely, the program-state, on which the interpreter and the low-level in-
structions from the trace operate, and possible a trace-node, which represent
the trace that is currently being executed by the tracing machine, if the tracer
has been set to the trace execution phase. Until now, the tracer-context was
specified as a two-tuple consisting of a trace-node which associates the label
that is currently being traced with the trace that has been recorded so far for
this label, and a list of trace-nodes representing the traces that have already
been recorded completely.

Our implementation for this heuristic depends on counting the number of
times a can-start-loop annotation for a specific label is encountered, and
only starting tracing once this counter exceeds a fixed number. Hence there
must be some mechanism to find the number of times the CESKf#-machine has
seen a can-close-loop annotation for each label. In our implementation,
this is accomplished with the use of LabelCounters. A LabelCounter associates a
label with a counter. Since these LabelCounters are additional bookkeeping in-
formation which our compiler must keep track of, we store these LabelCounters
in the TracerContert. When the interpreter sees a can-start-loop annota-
tion, it updates the counter in the LabelCounter associated with the annota-
tion’s label. Finding the number of times a label has been seen is then accom-
plished by looking up its counter in the list of LabelCounters.

CHAPTER 6. EXTENDING THE TRACING FRAMEWORK 75

tc € TracerContext = tc(False + TraceNode, TNs, LCs)
lc € LabelCounter = lc(TraceKey, Integer)
LCs = LabelCounter : LCs

| €

Figure 6.1: The updated tracing machine for loop hotness detection

6.1.3 Semantics

Because this extension is built on top of the tracing machine and tracing se-
mantics that were defined in the previous chapter, we include this extension
by extending the tracing semantics. Loop hotness detection does not change
how execution of traces is accomplished nor how tracing itself is performed. It
only alters the way in which tracing is started, i.e., how we transition from the
normal interpretation phase of trace execution to the trace recording phase. We
therefore only have to update some of the evaluation rules that determine how
normal interpretation is performed by the tracing machine. Figure 6.2 shows
the evaluation rules for the tracing machine which have remained unchanged.
These rules were already used by the tracer for normal interpretation and must
not be updated in order to implement this heuristic. ts refers to a tracer-state,
tcto a tracer-context, ¢ to a program-state and tn to a trace-node.

ts(NI, te, ¢, False) — (6.1)
ts(NI, tc, ', False)
if step(c) = cesktStep(s’, 7, False)

ts(NI, te, s, False) — (6.2)
ts(NI, te, ', False)
if step(s) = cesktStep(s’, 7, CCL(val))

ts(NI, te, ¢, False) — (6.3)
ts(TE, tc, ¢', tn(val, 7))
if step(s) = cesktStep(s’, 7, CSL(val))
and where 7 is the trace that has previously been recorded for val

Figure 6.2: The normal interpretation rules which have not changed

Rule 6.1 handles the most common case during normal interpretation, where
the interpreter has not encountered an annotation. Rule 6.2 expresses that
when the interpreter encounters a can-close-loop annotation during nor-
mal interpretation, interpretation should just continue as before. Rule 6.3 states
that if a can-start-loop annotation is encountered for a label that has al-
ready been traced, the recorded trace must be executed.

CHAPTER 6. EXTENDING THE TRACING FRAMEWORK 76

Figure 6.3 shows the evaluation rules that are added to these previous rules
in order to implement loop hotness detection. In rule 6.4, the CESK#-machine
has encountered a can-start-loop annotation for a label that it has not yet
seen and hence for which no entry in the list of LabelCounters has been created
yet. The tracing machine makes a LabelCounter for this label, adds it to the
list and continues interpretation. Rule 6.5 specifies the case where the CESK6-
machine sees a can-start-1loop annotation for a label that is not yet hot: its
counter is still below the threshold that is required to start tracing. The label’s
counter is updated and interpretation continues as before. In rule 6.6, a label is
encountered that has turned hot, causing the tracing machine to start tracing.

ts(NI, tc(False, TNs, LCs), <, False) — (6.4)
ts(NI, tc(False, TNs, LCs), ', False)
if step(s) = cesktStep(s’, 7, CSL(val))
and if no LabelCounter for val exists yet
and if no trace for val has been recorded yet

ts(NI, tc(False, TNs, leg : ... : 1c(val, k) : ... : ley,), <, False) — (6.5)
ts(NI, tc(False, TNs, lcg : ... : lc(val, k+ 1) :...: ley,), ¢, False)
if step(s) = cesktStep(s’, 7, CSL(val))
and if k < Threshold
and if no trace for val has been recorded yet

ts(NI, tc(False, TNs, leg : ... : 1c(val, k) : ... : ley,), <, False) — (6.6)
ts(TR, tc(tn(val, 7), TNs, lc; : ... : 1c(val, k) : ... : lcy,), <, False)
if step(c) = cesktStep(s’, 7, CSL(val))
and if k >= Threshold
and if no trace for val has been recorded yet

Figure 6.3: The additional normal interpretation rules

6.2 Guard tracing

6.2.1 Overview

Guard tracing is a technique designed to mitigate the performance penalties
associated with guard failures. Under normal circumstances, a guard failure
causes the execution of a trace to be aborted, and causes the tracing compiler
to restart normal interpretation. This effectively creates a large hit to perfor-
mance, because the compiled and heavily-optimized trace must be abandoned
in favor of interpretation of the original, non-optimized, code. Additionally,
the very act of restarting interpretation is also responsible for a large perfor-
mance penalty (Bala et al., 2000; Chang et al., 2009).

CHAPTER 6. EXTENDING THE TRACING FRAMEWORK 77

The idea behind guard tracing is to start recording a trace from the point of
a guard failure. Whenever the same guard in the same trace then fails again,
execution can be switched from the first trace to the trace that was recorded for
that guard. Instead of having to restart interpretation, trace execution can then
keep continuing until the trace has come at an end or another guard fails for
which no trace has been recorded yet.

Guard tracing is a feature often included in contemporary tracing compil-
ers, such as the RPython and Dynamo compilers, SPUR and Tamarin-Tracing
(Schneider & Bolz, 2012; Bala et al., 2000; Bebenita et al., 2010; Chang et al.,
2009). Compilers that use this guard tracing mechanism often only start trac-
ing a guard when it fails often enough, similar to how labels were only traced
when they were considered to be hot in the previous section. Our guard tracing
extension that is presented in this section does not contain such a mechanism
however, tracing always starts immediately after a guard failure.

A trace that was recorded for a guard failure is called a guard trace. When a
guard failure occurs during the execution of a trace, and this causes the com-
piler to start recording a guard trace, we say that the first trace spawned the
guard trace.

6.2.2 Extending the tracing machine

Similar to the traces we defined in the previous chapter, guard traces are iden-
tified through trace-keys. Until now, trace-keys and labels both referred to the
same idea: an expression that can be used to give a unique name to each trace.
Trace-keys were used in the setting of the tracer-context, to keep track of which
loop was being traced, while labels were used to construct can-start-loop
and can-close-loop annotations. However, the difference between these
two was superfluous in practice because every label could be perfectly matched
onto a single trace-key and vice versa.

To introduce guard tracing, we first redefine the concept of a trace-key. We
specify two kinds of trace-keys: guard trace-keys which are used to identify
guard traces, and label trace-keys which are used for normal, non-guard traces.
A label trace-key is nothing more than a wrapper for a label. Similar to guard
traces, we name the kinds of traces that are identified by label trace-keys label
traces. Guard traces must be identified not only by a guard, but also by the label
of the trace in which that guard was located. Guard trace-keys therefore carry
both a label and a guard identifier. Such a guard identifier is created for each
guard in the trace so that if it fails, it is trivial to determine whether a guard
trace for this guard already exists. Guard trace-keys and label trace-keys can
carry the same labels, so a single label might appear in one label trace-key and
multiple guard trace-keys. However, as before, a label cannot appear in more
than one label trace-key.

tk € TraceKey = 1tk(Val)
| gtk(Val, GuardID)

CHAPTER 6. EXTENDING THE TRACING FRAMEWORK 78
gid € GuardID = Identifier

Figure 6.4: The updated tracing machine for guard tracing

Other than the trace-keys, no components of the tracing machine must be
updated.

6.2.3 Guard instructions

Because guards now carry special guard identifiers, we must change how guard
instructions are formed. Making a guard carry an identifier can be accom-
plished by making the identifier a parameter of the guard instruction. This
identifier is then created when the guard itself is created: when the guard is
inserted into a trace by the tracer during trace recording.

In Figure 6.5, we give an example of how guard-false is now imple-
mented. The implementation of the three other kinds of guards is identical.

ps(e, p, 0, Kk, #f, 0) ghsle,),

LiStep(ps(e, p, o, k, #£, 0))

ps(€7 p7 07 H) ’U7 0) M
lliEvent(guardFailed(c, gid))

Figure 6.5: The updated definition of guard-false

We must also update the interface used by low-level instructions, including
guard instructions. When a guardFailed signal is piggy-backed after execut-
ing an instruction, we include the guard identifier of the guard that just failed.
Note that we only have to change the definition for EventSignal.

EventSignal = guardFailed(Control, GuardID)

Figure 6.6: The updated definition of EventSignal

6.2.4 Semantics

To update the semantics of the tracing machine in order to include guard trac-
ing, we only alter the evaluation rules for trace recording and trace execution.
We do not have to change any semantics for normal interpretation of a pro-
gram, since guard tracing has no effect on this phase of a program’s execution.

CHAPTER 6. EXTENDING THE TRACING FRAMEWORK 79

Trace recording

Recording a guard trace is identical to recording a label trace, including in how
recording is terminated: we stop recording when we encounter a tracing anno-
tation that carries the label of the label trace that initially spawned the guard
trace. The updated evaluation rules for trace recording are therefore identi-
cal to the old rules, except that we now have to account for the fact that our
trace-key can take two different forms. For brevity however, we can fuse these
forms together. Figure 6.7 shows the updated evaluation rules for trace record-
ing. The trace-key tk in these rules can refer to a trace-key of either kind. We
also define a function label which, given a trace-key, extracts the label used in
that trace-key. Note that labels are components in trace-keys of both kinds, so
retrieving the label of a trace-key is always possible. Since we build this exten-
sion on top of the previous extension, loop hotness detection, the tracer-context
tc is a three-tuple consisting respectively of: the trace-node tn that is currently
being traced, the list of trace-nodes TNs of already recorded traces and the
list of label-counters LCs that indicate how many times a can-start-loop
annotation has been encountered for each label. The tracer-state ts is still
a four-tuple consisting of: the EzecutionPhaserepresenting the current phase
of program execution, the tracer-context, the program-state ¢ and the current
trace-node that is being executed. Because the rules that are presented here are
evaluation rules for the trace recording phase, the EzecutionPhaseis always set
to TR, while the trace-node being executed is always Fulse.

ts(TR, tc(tn(tk, 7), TNs, LCs), s, False) — (6.7)
ts(TR, te(tn(tk, 7: 17 :...: 1), TNs, LCs), ', False)
if step(c) = cesktStep(s’, t7 : ... : tn, False)

ts(TR, tc(tn(tk, 7), TNs, LCs), s, False) — (6.8)
ts(TR, tc(tn(th, 7:17 : ... 2 ty), TNs, LCs), ', False)

if step(s) = cesktStep(s’, ts : ... : t,, CCL(val’))
and if label(tk) = val

ts(TR, tc(tn(tk,), TNs, LCs), ¢, False) — 6.9)
ts(TR, te(tn(tk, 7:t7 :...: 1), TNs, LCs), ¢, False)
if step(s) = cesktStep(s’, 1 : ... : tn,, CSL(wal"))
and if label(tk) = val

ts(TR, tc(tn(tk,), TNs, LCs), ¢, False) — (6.10)
ts(NI, tc(False, tn(val, 7) : TNs, LCs), ¢', False)
if step(c) = cesktStep(s’, t; : ... : t,, CCL(val))

and if label(tk) = val

ts(TR, tc(tn(tk, 7), TNs, LCs), ¢, False) — (6.11)
ts(TE, tc(False, tn(tk, T:t; ... i1y : N): TNs, LCs), ¢', tn)

CHAPTER 6. EXTENDING THE TRACING FRAMEWORK 80

where tn equals tn(ltk(val), 7)
if step(c) = cesktStep(s’, t7 : ... : tn,, CSL(val))
and if label(tk) = val

Figure 6.7: The updated trace recording rules

A guard trace-key stores a guard identifier to identify the guard that caused
the creation of the associated guard trace. It also stores a label to make it pos-
sible to know when we should stop recording a guard trace-key. By captur-
ing the label in a guard trace-key, we can terminate tracing just like we stop
tracing for a label trace: when we encounter either tracing annotation carry-
ing the corresponding label. Recall that if recording is stopped because of a
can-start-loop annotation, we immediately start executing the recorded
trace. This still holds true when we add guard traces, but stopping the record-
ing of a guard trace because of a can-start-loop annotation causes the
tracer to start executing the label trace associated with the label of that an-
notation, instead of the guard trace that was just recorded.

Trace execution

The trace execution phase of a program’s execution must be updated to account
for the novel handling of guard failures. Figure 6.8 shows the rules that remain
unchanged. Rule 6.12 represents the most common case, where a normal in-
struction is executed and no event must be signalled. Rule 6.13 specifies that
if execution of a non-looping trace has reached the end, normal interpretation
must restart.

ts(TE, tc, s, tn(val, v : 7)) — (6.12)
ts(TE, tc, ¢', tn(val, 7))
if «(s) = lliStep(s’)

tS(TE7 tC, ps(e, Py O, (b R, U, 0)7 tn(tk’ ‘())) — (613)
ts(NI, tc, ps(o, p, o, k, v, 0), False)

Figure 6.8: The trace execution rules which have not changed

Figure 6.9 shows how we now handle guard failures during the execution
of a trace. When a guard fails, we check whether a guard trace for the corre-
sponding guard identifier already exists. Rule 6.14 states that if a guard trace
exists, we swap the trace that is currently being executed for this guard trace.
If there is no existing trace, we start tracing the guard. The guard trace-key
is constructed by combining the label of the trace we were executing with the
guard identifier carried back through the guardFailed signal. Similar to how
guard failures were handled previously, we also switch the control component

CHAPTER 6. EXTENDING THE TRACING FRAMEWORK 81

of the program-state by the control passed via the guard. This is expressed in
rule 6.15.

ts(TE, tc, <, tn(tk, v: 7)) — (6.14)
ts(TE, tc, s, tn(gtk(val’, gid), 7))
if ¢(¢) = lliEvent(guardFailed(c, gid))
and where 7’ is the trace that has previously been recorded for gid

ts(TE, tc(False, TNs, LCs), ps(e, p, 0, k, v, 0), tn(tk, t: 7)) — (6.15)
ts(TR, tc(tn(gtk(val, gid), <()), TNs, LCs), ps(c, p, o, k, v, 6), False)
where label(tk) = val
and if +(¢) = lliEvent(guardFailed(c, gid))
and if no trace exists yet for gid

Figure 6.9: The updated trace execution rules for handling guard failure

Note that we use the generic term ¢k to refer to the trace-key of a trace-node.
It is entirely possible that a guard failure during the execution of a guard trace
triggers the tracing machine to start recording a guard trace for that guard trace.
In that case, the label of the guard trace-key for the new trace is the same as
that of the guard trace-key for the trace that was aborted: the label of the label
trace that spawned the initial guard trace.

Rule 6.16 in Figure 6.10 specifies that if we reach the end of a looping trace,
no matter which kind of trace we are executing, we restart the loop by find-
ing the label trace associated to the label of the trace-key whose trace we are
currently executing. In other words, if we have reached the end of a looping
guard trace, we do not restart this guard trace itself, but rather the label trace
that spawned this guard trace.

ts(TE, tc, s, tn(tk, A:())) — (6.16)
ts(TE, tc, s, tn(ltk(val), 7))
where label(tk) = val
and where 7 is the trace that has previously been recorded for val

Figure 6.10: Trace execution if the end of a looping trace has been reached

6.3 Trace merging

6.3.1 Overview

Trace merging is a technique intended to reduce redundant tracing. I works by
merging traces when their underlying control-flow merges: instead of retrac-
ing a part of the program that has already been traced before, we isolate this

CHAPTER 6. EXTENDING THE TRACING FRAMEWORK 82

part and let both traces jump to this isolated trace when so required. To the best
of our knowledge, this concept has only previously been explored in Tamarin-
Tracing (Chang et al., 2009). It should be noted that the term ’trace merging’ is
used by some tracing compilers to refer to what is also called ’trace stitching’.
Trace stitching is very similar to the technique of guard tracing, which we pre-
sented in the previous section: whenever a guard fails often enough, a guard
trace is recorded. When this guard fails again, the guard trace is executed,
instead of reverting to normal interpretation of the program.

Listing 6.1 shows some example code of how control-flow can merge. What-
ever the valueof (= (random 2) 0) may be, once the if-expression has been
evaluated, the interpreter always executes the (displayln "control-flow
merged") expression. The control-flow graph of this function can be repre-
sented as in Figure 6.11.

(define (do-something)
(can-start—-loop 'do-something)
(if (= (random 2) 0)

(displayln "true-branch")

(displayln "false-branch"))
(displayln "control-flow merged")
(do—something))

Listing 6.1: A function where control-flow merges

Start of if-expression

True-branch False-branch

End of if-expression

Figure 6.11: The logical control-flow of Listing 6.1

If the tracing machine traces do-something, it starts from the can-start-loop
annotation, follows either the true- or the false-branch of the code, continues
with the evaluation of (displayln "control-flow merged") and stops
once the can-start-loop annotation is reached again in the next iteration.
Suppose that the true-branch was traced, but that once the trace is executed,
the guard corresponding with the (= (random 2) 0) condition fails. Be-
cause of the guard tracing feature that was developed in the previous section,
the tracer starts recording a guard trace from the point of this guard failure,

CHAPTER 6. EXTENDING THE TRACING FRAMEWORK 83

'._‘ ’_.

(a) The logical control- (b) The resulting traces with- (c) The resulting traces with
flow out trace merging applied trace merging applied

Figure 6.12: An example of how control-flow is translated into three traces

goes over the false-branch and the last displayln-expression and stops again
when the can—-start-1loop annotation is next encountered.

Both the original label trace as well as the new guard trace then contain a
part that is common to both: those instructions that were recorded after the
end of the if-expression. In our tracing framework, having this duplicated part
in both traces is redundant and undesirable: tracing always causes a certain
runtime overhead and should therefore be avoided unless the resulting trace
can sufficiently improve the performance of the compiler. It would therefore
be better not to retrace this part of the program, but to reuse the first trace.

The idea for trace merging is to detect when control-flow merges while trac-
ing. In that case, recording for the current trace is stopped and a new trace,
which is called a merge trace, is started for this part of the program. If the trac-
ing machine reaches the end of execution of the original trace, it continues exe-
cution in this new merge trace. If the first trace is executed, but a guard failure
causes the machine to start recording a guard trace, we apply the same princi-
ples. Once the machine discovers that control-flow merges, it stops recording
altogether and starts executing the merge trace. This ensures us that the part
of the program after the merge-point is not duplicated in two separate traces.

Figure 6.12 shows which traces are formed when tracing a program with a
certain logical control-flow. The red path represents the path that was taken
through the program before reaching the control-flow split, and subsequently
following the left branch of the control-flow. The blue path represents the other
branch of the control-flow. The green path represents the path through the
program immediately following the point where both branches of the control-
flow merge back. Without trace merging, two traces are created and the green
path appears in both. With trace merging, the green path is isolated into a
separate merge trace and execution jumps from these two traces to the merge
trace, as indicated by the dotted arrows.

CHAPTER 6. EXTENDING THE TRACING FRAMEWORK 84

Note that the trace that was created second before being merged is always a
guard trace, since a split in control-flow always results in the failure of a guard,
and hence the creation of a guard-trace. The first trace can be any kind of trace.
It should also be noted that we only handle the case where the control-flow
splits because of an if-expression. There are other possible locations where the
control-flow may split, such as when calling a higher-order parameter. How-
ever, the trace merging extension that we introduce here is not designed to
handle these cases, so they are ignored.

Trace explosion

The full potential of trace merging becomes evident when dealing with trace
explosion. Trace explosion refers to the phenomenon where an exponential
number of traces are created, because the number of underlying control-flow
branches explodes. Trace explosion affects runtime performance, since an ex-
ponential amount of traces have to be recorded and trace recording causes a
runtime overhead. It also increases the amount of memory required by the
system.
Consider the example program presented in Listing 6.2.

First if: First if:
. . 0 1
(define (trace-explosion)
(can—-start-loop 'trace-explosion)
(if (= (random 2) 0)
(displayln "First if: 0")
(displayln "First if: 1"))

(if (= (random 2) 0) Second if: Second if:
(displayln "Second if: 0") 0 1
(displayln "Second if "))

(if (= (random 2) 0)

(displayln "Third if: 0")
(displayln "Third if: 1"))
(Fraceexpiosion)) (@) The resulting gprq i Third if
Listing (6.2) A program causing trace traces without trace 0 1
explosion to arise merging

(b) The resulting traces
with trace merging

Figure 6.13: An example of how trace merging solves the issue of trace explo-
sion

When tracing this program without trace merging, a total of eight different
traces are created. The total number of traces is exponential in the number of
guards that are inserted in the trace. When using merge tracing however, we
can take advantage of the fact that control-flow merges after each if-expression,
so the number of traces remains linear. In fact, there are no parts of the program
that are duplicated over multiple traces.

CHAPTER 6. EXTENDING THE TRACING FRAMEWORK 85

Trace merging and trace optimization

In real-world tracing compilers, trace merging can be detrimental to the run-
time performance because of how it affects the optimizations that are applied
on the traces generated by the compiler.

Consider the program shown in Listing 6.3.

(define (trace-explosion)
(can—-start—-loop 'trace-explosion)
(define x #f)

(if (= (random 2) 0)
(set! x 0)

(set! x 20))

(if (= (random 2) 0)
(set! x (+ x 5))
(set! x (- x 5)))

(if (= (random 2) 0)
(set! x (+ x 1))
(set! x (- x 1)))

(displayln x)
(trace-explosion))

Listing 6.3: A program where trace merging may be detrimental

In this program, each branch of the control-flow results in a unique value
for the variable x. If no trace merging is applied, a unique trace is generated for
each control-flow branch. This means that each trace is able to determine what
the value of x will be in the displayln-expression at the end of the program,
allowing them to optimize the execution of this expression. When using trace
merging, this is no longer possible, since this information disappears when the
jumping from a trace to an intermediate merge trace.

6.3.2 Syntax

To detect the locations where control-flows merge, or inversely where control-

flow splits in two, we use a new set of annotations. The merges-control-flow
annotation signals that control-flow merges at this location, splits-control-flow
expresses a split in the control-flow.

e€ Fxp= ...
| (nerges—control-flow)

| (splits—control-flow)

Figure 6.14: The new definition of Ezp

Listing 6.4 shows how these annotations can be used in practice. We place
a splits—-control-flow annotation in our if-condition, which is the last ex-

CHAPTER 6. EXTENDING THE TRACING FRAMEWORK 86

pression that is evaluated before control-flow diverges into two branches. Once
the if-expression has been completely evaluated, the merges-control-flow
annotation signals that control-flow merges.

(define (do-something)
(can-start—-loop 'do-something)
(if (begin (= (random 2) O0)

(splits—control-flow))
(displayln #t)
(displayln #f))
(merges—control-flow)
(displayln "control-flow merged")
(do—-something))

Listing 6.4: An example of how the new annotations are used

In principle, these merging annotations have to be placed around each lo-
cation in the code where control-flow may diverge. Although this might seem
extremely cumbersome for the programmer, recall that the objective of our
tracing compiler is to perform meta-tracing. This implies that we are only in-
terested in performing trace merging on the traces generated by the control-
flow of the underlying user-program. In that case, we only need to place these
merging annotations around those parts of the input interpreter that handle
the control-flow of the user-program. In practice, this comes down to only a
handful of merging annotations at most.

6.3.3 Extending the tracing machine

To create these merge traces, we need some mechanism to identify them. We
can accomplish this similar to how we identify guard traces: by using a com-
bination of a trace’s label and an identifier, called a merge identifier. We extend
the tracing machine with a stack that stores these merge identifiers. Since we
now use three kinds of traces, label traces, guard traces and merge traces, we
define a third kind of trace-key mtk to serve as the trace-key for merge traces.

tc € TracerContext = tc(False + TraceNode, TNs, LCs, MergeIDStack)
tk € TraceKey = gtk(Val, GuardID)
| 1tk (Val)
| mtk(Val, MergeID)
gid € GuardID = Identifier
mid € MergelD = Identifier
1 € MergeIDStack = MergelID : MergelDStack

| €

Figure 6.15: The updated tracing machine for trace merging

CHAPTER 6. EXTENDING THE TRACING FRAMEWORK 87

6.3.4 Interface

Since we have introduced two new annotations, we also define two new an-
notation signals, MCF for merges-control-£1low annotations and SCF for
splits-control-£flow annotations. When the interpreter encounters either
of these two new annotations, it carries back the appropriate signal, as will be
formalized later on, when presenting the semantics of trace merging.

AnnotationSignal = CCL(Val)
| CSL(Val)
| MCF
| SCF

Figure 6.16: The new definition of AnnotationSignal

6.3.5 Handling merging annotations

The difficulty of implementing trace merging is twofold: while tracing, we
must identify the correct locations where control-flow merges and while ex-
ecuting a trace, we must jump from the execution of the trace to the execu-
tion of the correct merge trace. The first problem is solved by introducing the
two merging annotations. The second problem can be solved by using merge
identifiers to correctly identify each merge trace and by inserting instructions
into the trace that explicitly refer to the identifier of the merge trace to which
the tracing machine must jump. Referring to these merge identifiers is accom-
plished through the merge identifiers stack that is part of the tracing machine:
when the interpreter encounters a splits-control-flow annotation while
a trace is being recorded, an instruction is placed in the trace that pushes a
certain identifier on the stack when executed, and when the interpreter sees
amerges—-control-flow annotation, another instruction is inserted which,
when executed, causes the tracing machine to pop the topmost identifier, abort
execution of the current trace and jump to the merge trace that corresponds
with this identifier.

We have to use a stack of identifiers instead of storing just the identifier
that corresponds with the last splits-control-flow annotation because of
the fact that if-expressions can be nested, as shown in Listing 6.5. Evaluating
a nested if-expression results in the creation of multiple merge-traces, all of
which must be properly identified. By using a stack, we only have to pop
the merge identifiers stack to retrieve the merge identifier for the innermost
merge trace. The merge identifier for the outermost identifier can be found by
popping from this stack a second time.

CHAPTER 6. EXTENDING THE TRACING FRAMEWORK 88

(define (do-something)
(can-start—-loop 'do-something)
(define x (random 4))
(if (begin (< x 2)
(splits—control-flow))
(begin (if (begin (= x 0)
(splits—control-£flow))
(displayln 0)
(displayln 1))
(merges—control-£flow)
(displayln "smaller than 2"))
(begin (if (begin (= x 2)
(splits—control-flow))
(displayln 2)
(displayln 3))
(merges—control-£flow)
(displayln "greater than or equal to 2")))
(merges—control-flow)
(displayln "all control-flows have now merged")
(do-something))

Listing 6.5: A nested if-expression

It is important to understand that a merges-control-flow annotation is
always paired witha splits-control-flowannotation. The splits-control-flow
annotation generates and pushes to the stack a merge identifier at the last pos-
sible location in the program that is common to both traces, so that when an
identifier is popped from the stack in both traces, they always pop the same
identifier. Figure 6.17 shows a concrete example of how these merging an-
notations are translated to instructions in the trace. We use the pshm(mid)-
instruction to push mid onto the merge identifier stack, and popm() to pop the
first merge identifier and then immediately jump to the merge trace associated
with it. The label trace contains the trace for the first part of this program, be-
fore the control-flow splits. Suppose that (= (random 2) 0) evaluated to
#t while recording the trace. The label trace then contains a guard-true in-
struction. At the end of the label trace, a popm() instruction is placed, so that
mid is popped from the stack and execution continues in the corresponding
merge trace. Once the guard-true instruction fails during the execution of
the trace, the guard trace on the right is created. Similar to the label trace, the
popm() instruction at the end of the trace makes sure that the execution of both
traces merges.

CHAPTER 6. EXTENDING THE TRACING FRAMEWORK 89

pshm(mid)

(define (do-something)) . litv(#£)
(can-start-loop 'do-something) gtru((displayln #f), gid) opk()
(if (begin (= (random 2) 0) pop
(splits—-control-flow)) lito(#t) pshk(ratork(1))
(displayln #t)) lvar(displayln)
(displayln #f)) popk() "
(merges—control-flow) pshk(ratork(l)) pop ()
(displayln "control-flow merged") . (displayln) anat(1)
_ . var(displayln
(do-something)) popk() popm()
Listing (6.6) A SLIPT program with +(1)
. . ana
diverging control-flow
popm ()

(b) The guard
trace

(a) The label trace

Figure 6.17: A concrete example of how two traces are merged together

Instead of generating a unique merge identifier whenever the interpreter
seesa splits-control-flowannotation, we could have made themerges—-control-flow
annotation carry a label instead, similar to how can-close-loop and can-start-loop
annotations carry labels. It would be very likely then however, that a certain
merging annotation is encountered in multiple independent traces. If we place
a merging annotation in a commonly executed function, then this function is
likely to be inlined in multiple different traces. It would then be required to
add a mechanism that makes sure that independent traces do not execute the
same merge trace, because this would add unnecessary complexity to the trace
merging feature. To avoid this issue entirely, a new identifier is generated ev-
ery time a splits-control-flow annotation is encountered.

6.3.6 Low-level instructions interface

In the previous subsection, we introduced the pshm(mid) and popm() instruc-
tions. These instructions are used to manipulate the stack of merge identi-
fiers in the tracing-state. Recall however that all low-level instructions op-
erate on the program-state: they take a program-state as input and return
an InstructionReturn: either a new program-state or an EventSignal, to sig-
nal events such as guard failures. Since these instructions have to alter the
program-state instead of the tracing-state, we implement these instructions so
that they always return an EventSignal in which an appropriate signal is piggy-
backed. The tracing machine is then updated to properly interpret these sig-
nals.
We update the low-level interface in the following way:

CHAPTER 6. EXTENDING THE TRACING FRAMEWORK 90

InstructionReturn = 1liStep(ProgramState)
| liEvent(EventSignal)
EventSignal = guardFailed(Control)
| popSplitsCF
| pushSplitsCF (MergelD)

Figure 6.18: The updated interface for low-level instructions

pshm(mid) and popm() are then implemented as shown in Figure 6.19.

ps(e7 p7 O-) ’i’ U’ 9) m

lliEvent(popSplitsCF)

pshm(mid)
ps(e, p, 0, K, v,) ——>
lliEvent(pushSplitsCF (mid))

Figure 6.19: The implementation of the two new instructions

In essence, we make full use of the flexibility offered by the inclusion of
lliEvent in the low-level instruction interface.

6.3.7 Semantics
Normal interpretation

We now define updated semantics for the tracing machine. All three phases
of program execution must be updated: normal interpretation, trace recording
and trace execution. We do not have to change any existing rules for the normal
interpretation phase, but we do have two add two new rules to handle the
evaluation of the two new merging annotations. For brevity, we only show
these two new rules in Figure 6.20. The other evaluation rules for this phase,
to which we add these new rules, are specified in Subsection 6.1.3.

Rule 6.17 states that if the CESK#-machine encountersa splits-control-flow
annotation, we generate a new merge identifier and push it to the stack of
merge identifiers. Rule 6.18 specifies that a merges-control-flow annota-
tion is evaluated by popping the topmost merge identifier from the stack.

CHAPTER 6. EXTENDING THE TRACING FRAMEWORK 91

ts(NI, tc(False, TNs, LCs, p), s, False) — (6.17)
ts(NI, tc(False, TNs, LCs, o :), s’ False)
if step(s) = cesktStep(s’, t; : ... : t,, SCF)
and where « is a new merge identifier

ts(NI, tc(False, TNs, LCs, mid : u), ¢, False) — (6.18)
ts(NI, tc(False, TNs, LCs, u), <’, False)
if step(s) = cesktStep(s’, ¢ : ... : t,, MCF)

Figure 6.20: The normal interpretation rules for the two new annotations

Trace recording

The semantics for recording a trace are almost identical to the previous seman-
tics, except that we add three rules to handle the new merging annotations.
When the interpreter sees a splits-control-flow annotation, we gener-
ate a new merge identifier, push it to the stack, but continue tracing as before.
When we encounter a merges—control-flow annotation however, we first
check whether a merge trace for the identifier currently at the top of the stack
of merge identifiers already exists. If a merge trace for this identifier exists, we
stop recording, store the trace and start executing this merge trace. Otherwise,
we also stop recording and store the trace, but we start executing this merge
trace instead of continuing tracing.

ts(TR, tc(tn(tk,), TNs, LCs, p), s, False) — (6.19)
ts(TR, tc(tn(thk, 7:t7 : ...ty : pshm(a)), TNs, LCs, a: p), ', False)
where « is a new merge identifier
and if step(s) = cesktStep(¢’, t; : ... : L, SCF)

ts(TR, tc(tn(tk,), TNs, LCs, mid : u), s, False) — (6.20)
ts(TR, tc(tn(mtk(val, mid), ‘()), tn: TNs, LCs, pn), ', False)
if step(c) = cesktStep(s’, t; : ... : t,, MCF)
and where tn equals tn(tk, 7:¢5 @ ... : 1y 2 popm())
and if no trace exists yet for mid

ts(TR, tc(tn(tk, 7), TNs, LCs, mid :), s, False) — (6.21)
ts(TE, tc(False, tn(tk, 7:1; : ...t 1y : popm()) : TNs, LCs, p), <', tn)
Where tn equals tn(mtk(val, mid), 1)
and where 7’ is the trace previously recorded for mid

Figure 6.21: The updated trace recording rules

CHAPTER 6. EXTENDING THE TRACING FRAMEWORK 92

Trace execution

To update the semantics of our tracing machine for trace execution, we only

add two new rules to handle the two new EventSignals. When a pushSplitsCF (mid)
signal is returned, i.e., we have just executed a pshm(mid) instruction, we push

mid on the merge identifiers stack of the tracing-state and we continue execut-

ing the trace. When we receive a popSplitsCF signal, we pop the first merge
identifier from its stack and start executing the merge trace associated with this
identifier.

ts(TE, tc(False, TNs, LCs, p), s, tn(tk, v: 7)) — (6.22)
ts(TE, tc(False, TNs, LCs, mid : p), s, tn(tk, 7))
if 1(¢) = lliEvent(pushSplitsCF(mid))

ts(TE, tc(False, TNs, LCs, mid : pu), <, tn(tk, ¢: 7)) — (6.23)
ts(TE, tc(False, TNs, LCs, u), s, tn(mtk(val, mid), 7'))
if 1(¢) = lliEvent(popSplitsCF)
and where 7’ is the trace that has previously been recorded for mid

Figure 6.22: The updated trace execution rules

6.4 Validation conclusion

In this chapter, we grew our minimalistic tracing compiler from Chapter 5 into
a more extensive and useful application by adding three new, non-trivial, ex-
tensions: loop hotness detection, guard tracing and trace merging. To imple-
ment these features, we had to extend the syntax of SLIPT, the semantics of
the tracing machine and the interface between the interpreter and the tracer.
However, we did not have to fundamentally rewrite the semantics that were
defined in Chapter 5: we extended the components of our framework.

Introducing these extensions is empirical proof that our semantics are pow-
erful enough to model real-world, state-of-the-art tracing compilers and that
our framework can be extended with even more features in the future. By pro-
viding formal semantics for each of these additions, we enable future research
where we formally reason over the impact that these mechanisms have on trac-
ing compilation.

Chapter 7

Conclusion

7.1 Summary

Trace-based just-in-time (JIT) compilation is a technique where hot program
paths are identified at runtime, recorded into a trace, and subsequently com-
piled and optimized. The next time this path is selected, the compiled trace is
executed instead of the original code. Meta-tracing JIT compilation is a variant
of this approach in which the compiler does not trace a user-program directly,
but traces the execution of a language interpreter while it evaluates the user-
program. To enable meta-tracing, language implementers must place annota-
tions at certain locations in their interpreter.

We have presented a minimalistic meta-tracing JIT compiler for SLIPT. We
formally defined SLIPT by specifying its syntax and creating two execution
models. The first model was a CESK@#-machine, which was later refactored
into a low-level instruction (LLI) CESK#-machine that uses traceable low-level
instructions to execute its input programs.

We transformed this LLI CESK§-machine into a meta-tracing compiler by
introducing a formal model describing the execution of a tracing machine, im-
plemented as a state-machine operating on tracer-states, and attaching this ma-
chine to the LLI CESK#-machine. To attach both entities to each other, we con-
structed an interface between the CESK#-machine and the tracing machine.
This interface allows the tracing machine to interact with the CESK#-machine
and record its actions. We created another interface between the low-level in-
structions used by the LLI CESK§-machine and the tracing machine, in order
to correctly model the execution of traces and the handling of guard failures.
These interfaces also create a clean division between the parts of the frame-
work that deal with interpreting a SLIPT program, and those that deal with all
tracing functionalities.

To validate this framework, we added several extensions to the compiler:
loop hotness detection, guard tracing and trace merging. The fact that we could
extend our model with additional, non-trivial features that were not originally

93

CHAPTER 7. CONCLUSION 94

planned on being included in the framework, indicates that it should be feasi-
ble to add other features to our compiler as well in the future.

7.2 Contributions

This thesis makes the following contributions:

¢ It presents a minimalistic meta-tracing compiler. We define a minimal-
istic meta-tracing compiler as a compiler containing no more than the
following features:

- Capable of modelling all aspects of a program’s execution: the record-
ing and execution of traces, as well normal interpretation of the pro-
gram without any tracing whatsoever

— Capable of handling guard instructions and aborting the execution
of traces when necessary

- Capable of handling the hints used by language developers in their
interpreters to enable meta-tracing of these interpreters

All of these features have been implemented without adding any non-
essential new features, in order to reduce complexity. This was accom-
plished by building a meta-tracing compiler from the ground up, starting
from an ordinary SLIPT interpreter and developing the compiler around
this interpreter. This allows us to define our compiler as a machine that
records the actions performed by another machine, the interpreter. Record-
ing the interpreter’s actions happens via an interface between the inter-
preter and the tracing machine.

Furthermore, this approach also allows us to make only as few changes
to the interpreter as possible. We only had to wrap the return values of
the interpreter’s transition rules, so that the interpreter conforms to the
interface, and introduce guard instructions into a handful of transition
rules.

* Our compiler is configurable. Because interpretation of a program is sep-
arated from tracing, we can switch one interpreter for another. Although
we have described our compiler in the context of an interpreter for the
SLIPT programming language, it is entirely possible to switch out the
current interpreter for any other, even for an interpreter that executes a
completely different programming language. All that is required from
an interpreter is that it conforms to a specific interface and that its actions
can be reified in the form of (low-level) instructions, so that they can be
traced. These instructions themselves must also adhere to a particular in-
terface. Previous work in formalizing tracing compilation did not contain
this characteristic, because the execution semantics of their programming
language were too tightly coupled with the semantics for recording and
executing traces.

CHAPTER 7. CONCLUSION 95

* Our compiler is extensible. By carefully deciding how the interface be-
tween the interpreter and the tracer, as well as the interface between the
low-level instructions of a trace and the tracer, is constructed, we allow
for flexibility in our framework. Both interfaces define signals that can
be sent by respectively the interpreter or the low-level instructions. It is
likely that introducing a new feature requires the interpreter or the low-
level instructions to send signals other than those that have been defined
in our framework. Extending the set of allowed signals is straightfor-
ward however, as was proven during the development of trace merging.
As our validation indicates, if both interfaces are flexible enough, new ex-
tensions can be introduced to the compiler while only having to update
a subset of the previously defined execution rules.

* Our compiler is executable. We have not only provided formal semantics
for all parts of our framework, we have also implemented our full frame-
work, consisting of both CESK#-machines, the low-level instruction set,
the interfaces and the tracing-machine, in Racket. Furthermore, we tested
our meta-tracing compiler by using it to execute an interpreter, written in
SLIPT, for SLIP, thereby effectively meta-tracing these SLIP programs.

In contrast with the frameworks developed by Guo & Palsberg (2011) and
Dissegna et al. (2014), our framework is not bound to one particular execution
model. Furthermore, unlike their frameworks, it adequately covers not only
the execution of traces, but also how traces are recorded and how normal in-
terpretation proceeds, when no tracing is going on whatsoever.

7.3 Future work

7.3.1 Optimizations

Although we have added three extensions to our framework, loop hotness de-
tection, guard tracing and trace merging, we did not add any optimizations
that can be applied on a trace. Some features may have particular side-effects
when they are combined with certain optimizations. The inclusion of trace
merging for example, may affect how much a trace can be specialized. Without
trace merging, two separate traces would be created when control-flow splits
and these traces would never merge. This allows the compiler to specialize
both branches with respect to the actions taken during the part of the program
where control-flow was split. With trace merging, the compiler cannot make
such specializations because the merge trace must contain instructions that are
valid for the traces that result from both branches of the control-flow.

The introduction of several commonly applied optimizations would allow
us to evaluate new features of our framework in more detail.

CHAPTER 7. CONCLUSION 96

7.3.2 Direct versus meta-tracing

In this thesis, we presented a meta-tracing compiler. In the context of the
framework that we demonstrated, this specifically meant that the language
developer was required to add tracing or merging annotations to certain parts
of the language interpreter. We effectively moved the responsibility for invok-
ing certain features of the compiler, such as when to start or stop tracing, from
the compiler itself to the programmer. Although it may seem infeasible for de-
velopers to be aware of where each annotation must be placed, this does not
present any real problems in practice, because only the language developers
who create their interpreter on top of our compiler are required to posses this
knowledge. Practice has also proven that only a small amount of annotations
are needed when meta-tracing user-programs on top of a language interpreter.

When using direct tracing, the issue of requiring programmers to know
where to place each annotation becomes relevant again. When the input to a
tracing compiler is a regular user-program, as with direct tracing, instead of
a language interpreter, as with meta-tracing, many more annotations must be
placed if one wishes to trace all relevant program paths. It is undesirable to
expect all programmers to know where to correctly place each annotation.

We expect that we can convert our meta-tracing compiler to a direct trac-
ing compiler by only updating the interpreter to which the compiler is bound,
e.g., the LLI CESK#-machine. Instead of sending only tracing signals when this
interpreter encounters tracing annotations, this interpreter itself would be re-
quired to detect when the program loops or when control-flow splits or merges,
and send the correct signal to the tracer.

7.3.3 Additional features

During the development of this compiler, other features were also considered
to further validate our framework. Additional extensions included a heuristic
that aborted a trace when it became too long, and a mechanism to differentiate
between different kinds of loops, e.g., loops that always ran for only a fixed,
small number of iterations or loops which were executed an undetermined
number of iterations. Some of these features were partly or completely added
to the executable version of our framework, but no formal semantics were con-
structed for specifying their implementation. Since it was possible to add these
new extensions to our executable compiler, we expect it to be straightforward
to also include them in our formal framework.

7.4 Overall conclusion

We have successfully created a formal execution model for a meta-tracing JIT
compiler from scratch. This compiler is minimalistic: it contains only those fea-
tures that are absolutely essential for the process of meta-tracing compilation,

CHAPTER 7. CONCLUSION 97

such as modelling the recording and execution of traces, normal interpreta-
tion, guard failures and the handling of annotations. Our compiler works by
explicitly recording the actions of a separate interpreter through an interface.
This configuration allows us switch from tracing the actions of one execution
model to another, as long as these models correspond to the defined interface.
As a validation of our framework, we added three non-trivial extensions to our
formal model: detection of hot loops, guard tracing and trace merging. This in-
dicates that it should be possible to add even more features to our compiler.

References

Abrams, P.S. (1970). An apl machine (Doctoral dissertation, Stanford University,
Stanford, CA, USA). Retrieved from http://www.slac.stanford.edu/
pubs/slacreports/reports07/slac-r-114.pdf (AAI7022146)

Ancona, D., Ancona, M., Cuni, A., & Matsakis, N. D. (2007). Rpython: A
step towards reconciling dynamically and statically typed oo languages. In
Proceedings of the 2007 symposium on dynamic languages (pp. 53-64). New
York, NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/
1297081.1297091 doi: 10.1145/1297081.1297091

Aycock, J. (2003, June). A brief history of just-in-time. ACM Comput. Surv.,
35(2), 97-113. Retrieved from http://doi.acm.org/10.1145/857076
.857077 doi: 10.1145/857076.857077

Bala, V., Duesterwald, E., & Banerjia, S. (2000, May). Dynamo: A transparent
dynamic optimization system. SIGPLAN Not., 35(5), 1-12. Retrieved from
http://doi.acm.org/10.1145/358438.349303 doi: 10.1145/358438
.349303

Baumann, S., Bolz, C. E, Hirschfeld, R., Kirilichev, V., Pape, T., Siek, J., & Tobin-
Hochstadt, S. (2015). Pycket: A tracing jit for a functional language. In Icfp.
(accepted for publication)

Bebenita, M., Brandner, F.,, Fahndrich, M., Logozzo, F., Schulte, W., Tillmann,
N., & Venter, H. (2010). Spur: A trace-based jit compiler for cil. In Proceed-
ings of the acm international conference on object oriented programming systems
languages and applications (pp. 708-725). New York, NY, USA: ACM. Re-
trieved from http://doi.acm.org/10.1145/1869459.1869517 doi:
10.1145/1869459.1869517

Bolz, C. E (2012). Meta-tracing just-in-time compilation for rpython (Doc-
toral dissertation, Universitits-und Landesbibliothek der Heinrich-Heine-
Universitat Diisseldorf, Diisseldorf, Germany). Retrieved from http://
cfbolz.de/stuff/cfbolz-meta-tracing.pdf

Bolz, C. F, Cuni, A., FijaBkowski, M., Leuschel, M., Pedroni, S., & Rigo, A.
(2011). Allocation removal by partial evaluation in a tracing jit. In Proceedings

98

REFERENCES 99

of the 20th acm sigplan workshop on partial evaluation and program manipulation
(pp- 43-52). New York, NY, USA: ACM. Retrieved from http://doi.acm
.org/10.1145/1929501.1929508 doi: 10.1145/1929501.1929508

Bolz, C. E, Cuni, A., Fijalkowski, M., Leuschel, M., Pedroni, S., & Rigo, A.
(2011). Runtime feedback in a meta-tracing jit for efficient dynamic lan-
guages. In Proceedings of the 6th workshop on implementation, compilation, opti-
mization of object-oriented languages, programs and systems (pp. 9:1-9:8). New
York, NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/
2069172.2069181 doi: 10.1145/2069172.2069181

Bolz, C. F, Cuni, A., Fijalkowski, M., & Rigo, A. (2009). Tracing the
meta-level: Pypy’s tracing jit compiler. In Proceedings of the 4th work-
shop on the implementation, compilation, optimization of object-oriented languages
and programming systems (pp. 18-25). New York, NY, USA: ACM. Re-
trieved from http://doi.acm.org/10.1145/1565824.1565827 doi:
10.1145/1565824.1565827

Bolz, C. E, Leuschel, M., & Schneider, D. (2010). Towards a jitting vm for prolog
execution. In Proceedings of the 12th international acm sigplan symposium on
principles and practice of declarative programming (pp. 99-108). New York, NY,
USA: ACM. Retrieved from http://doi.acm.org/10.1145/1836089
.1836102 doi: 10.1145/1836089.1836102

Bolz, C. F, Pape, T, Siek,]., & Tobin-Hochstadt, S. (2014, Jun). Meta-tracing
makes a fast racket. In Dynamic languages and applications (dyla).

Chang, M., Smith, E., Reitmaier, R., Bebenita, M., Gal, A.,, Wimmer, C., ...
Franz, M. (2009). Tracing for web 3.0: Trace compilation for the next
generation web applications. In Proceedings of the 2009 acm sigplan/sigops
international conference on virtual execution environments (pp. 71-80). New
York, NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/
1508293.1508304 doi: 10.1145/1508293.1508304

Deaver, D., Gorton, R., & Rubin, N. (1999). Wiggins/redstone: An on-line
program specializer. In Proceedings of the ieee hot chips xi conference.

D’'Hondt, T. (2015, February 17). Programming language engineering. Re-
trieved 2015-05-21, from http://soft.vub.ac.be/~tjdhondt/PLE/
introduction.html

Dissegna, S., Logozzo, F., & Ranzato, F. (2014). Tracing compilation by abstract
interpretation. In Proceedings of the 41st acm sigplan-sigact symposium on prin-
ciples of programming languages (pp. 47-59). New York, NY, USA: ACM. Re-
trieved from http://doi.acm.org/10.1145/2535838.2535866 doi:
10.1145/2535838.2535866

REFERENCES 100

Felleisen, M. (1988). The theory and practice of first-class prompts. In Proceed-
ings of the 15th acm sigplan-sigact symposium on principles of programming lan-
guages (pp. 180-190). New York, NY, USA: ACM. Retrieved from http://
doi.acm.org/10.1145/73560.73576 doi: 10.1145/73560.73576

Felleisen, M., & Friedman, D. P. (1987). A calculus for assignments in higher-
order languages. In Proceedings of the 14th acm sigact-sigplan symposium on
principles of programming languages (pp. 314-). New York, NY, USA: ACM.
Retrieved from http://doi.acm.org/10.1145/41625.41654 doi: 10
.1145/41625.41654

Fijalkowski, M. (2013, February 28). 10 years of pypy. Retrieved 2015-
04-07, from http://morepypy.blogspot.be/2013/02/10-years-of
-pypy.html

Gal, A, Eich, B, Shaver, M., Anderson, D., Mandelin, D., Haghighat, M. R,, ...
Franz, M. (2009). Trace-based just-in-time type specialization for dynamic
languages. In Proceedings of the 30th acm sigplan conference on programming lan-
guage design and implementation (pp. 465-478). New York, NY, USA: ACM. Re-
trieved from http://doi.acm.org/10.1145/1542476.1542528 doi:
10.1145/1542476.1542528

Gal, A., Probst, C. W,, & Franz, M. (2006). Hotpathvm: An effective jit com-
piler for resource-constrained devices. In Proceedings of the 2nd international
conference on virtual execution environments (pp. 144-153). New York, NY,
USA: ACM. Retrieved from http://doi.acm.org/10.1145/1134760
.1134780 doi: 10.1145/1134760.1134780

Guo, S.-y., & Palsberg, J. (2011, January). The essence of compiling with traces.
SIGPLAN Not., 46(1), 563-574. Retrieved from http://doi.acm.org/10
.1145/1925844.1926450 doi: 10.1145/1925844.1926450

Hayashizaki, H.,, Wu, P, Inoue, H., Serrano, M.]J., & Nakatani, T. (2011,
March). Improving the performance of trace-based systems by false loop
filtering. SIGARCH Comput. Archit. News, 39(1), 405-418. Retrieved from
http://doi.acm.org/10.1145/1961295.1950412 doi: 10.1145/
1961295.1950412

Homescu, A., & Suhan, A. (2011, October). Happyjit: A tracing jit compiler for
php. SIGPLAN Not., 47(2), 25-36. Retrieved from http://doi.acm.org/
10.1145/2168696.2047854 doi: 10.1145/2168696.2047854

Inoue, H., Hayashizaki, H., Wu, P, & Nakatani, T. (2011). A trace-based java jit
compiler retrofitted from a method-based compiler. In Proceedings of the 9th
annual ieee/acm international symposium on code generation and optimization (pp.
246-256). Washington, DC, USA: IEEE Computer Society. Retrieved from
http://dl.acm.org/citation.cfm?id=2190025.2190071

REFERENCES 101

Might, M. (2015). Writing an interpreter, cesk-style. Retrieved 2015-05-21, from
http://matt.might.net/articles/cesk—-machines/

Mitchell, J. G., Perlis, A. J., & Van Zoeren, H. R. (1967). Lc2: A language
for conversational computing. In Symposium on interactive systems for exper-
imental applied mathematics: Proceedings of the association for computing ma-
chinery inc. symposium (pp. 203-214). New York, NY, USA: ACM. Re-
trieved from http://doi.acm.org/10.1145/2402536.2402558 doi:
10.1145/2402536.2402558

Pall, M. (2013, November 29). Re: How does luajit’s trace compiler work? Re-
trieved 2015-04-08, from http://www.freelists.org/post/luajit/
How-does-LuaJITs-trace-compiler-work, 1l

Paska, M. (2012, August). Installing and using pypy standalone compiler with
parlib framework (Tech. Rep. No. DCSE/TR-2012-09). University of West
Bohemia, Pilsen. Retrieved from http://www.kiv.zcu.cz/site/
documents/verejne/vyzkum/publikace/technicke-zpravy/
2012/tr-2012-09.pdf

Sangiorgi, D. (1998, October). On the bisimulation proof method. Mathemati-
cal. Structures in Comp. Sci., 8(5), 447-479. Retrieved from http://dx.doi
.org/10.1017/50960129598002527 doi: 10.1017/50960129598002527

Schneider, D., & Bolz, C. F. (2012). The efficient handling of guards in the de-
sign of rpython’s tracing jit. In Proceedings of the sixth acm workshop on virtual
machines and intermediate languages (pp. 3—12). New York, NY, USA: ACM. Re-
trieved from http://doi.acm.org/10.1145/2414740.2414743 doi:
10.1145/2414740.2414743

Smith, R. B., & Ungar, D. (1995). Programming as an experience: The inspi-
ration for self. In Proceedings of the 9th european conference on object-oriented
programming (pp. 303-330). London, UK, UK: Springer-Verlag. Retrieved
from http://dl.acm.org/citation.cfm?id=646153.679530

Thomassen, E. W. (2013). Trace-based just-in-time compiler for Haskell with
RPython (Unpublished master’s thesis). Norwegian University of Science
and Technology, Norway.

Ungar, D., & Smith, R. B. (1987, December). Self: The power of simplicity.
SIGPLAN Not., 22(12), 227-242. Retrieved from http://doi.acm.org/
10.1145/38807.38828 doi: 10.1145/38807.38828

Van Horn, D., & Might, M. (2010). Abstracting abstract machines. In Proceed-
ings of the 15th acm sigplan international conference on functional programming
(pp. 51-62). New York, NY, USA: ACM. Retrieved from http://doi.acm
.org/10.1145/1863543.1863553 doi: 10.1145/1863543.1863553

REFERENCES 102

Wu, P, Hayashizaki, H., Inoue, H., & Nakatani, T. (2011). Reducing trace se-
lection footprint for large-scale java applications without performance loss.
In Proceedings of the 2011 acm international conference on object oriented pro-
gramming systems languages and applications (pp. 789-804). New York, NY,
USA: ACM. Retrieved from http://doi.acm.org/10.1145/2048066
.2048127 doi: 10.1145/2048066.2048127

Yermolovich, A., Wimmer, C., & Franz, M. (2009). Optimization of dy-
namic languages using hierarchical layering of virtual machines. In Proceed-
ings of the 5th symposium on dynamic languages (pp. 79-88). New York, NY,
USA: ACM. Retrieved from http://doi.acm.org/10.1145/1640134
.1640147 doi: 10.1145/1640134.1640147

