
 Page 1

Observations on automation in cross-platform migration

Ben Wilson, Tony Van der Beken
Anubex

Veldkant 35C, Kontich Belgium

E-mail: ben dot wilson at anubex dot com, tony dot vanderbeken at anubex dot com

Abstract
There are numerous ways for organisations to migrate an
operational information system from one deployment platform
to another. This paper relates a number of experiences of
applying automated techniques to cross-platform migrations
of larger (> .5MLOC) information systems in real world
projects. The paper examines these experiences, considering
factors influencing the organisations’ decision for the
approach, the project-specific features and limitations of the
approach, and the effects of the approach on the
organisational context. This paper does not attempt to provide
an exhaustive comparison of the advantages and
characteristics of the different approaches that may be used,
but rather to consider a single approach in more detail, based
on the experience of the authors. It is our position that the use
of automated methods will increase as the risk-elimination
effects of the technique will ensure its rise in popularity, and
information systems increasingly outlive the platforms for
which they were developed.

1. Introduction
Calculating the actual number of time-proven, mission-critical
information systems with over a half million lines of program
code currently in operation worldwide is a nearly impossible
task. The term ‘legacy’ is often used to describe these
systems, and with the term a number of negative and
subjectively sensitive attributes typically spring to mind:
([3], [4], [9], [10]) hard to understand, insufficiently
documented, difficult to maintain, and unintuitively structured
are some of them. In the typical industry jargon, the term
‘quality’ ([5], [7], [8], [11]) is often quoted as a blanket term,
and can be used to refer to a combination of any number of
these attributes.

The notion of ‘poor quality’ can be used as an argument to
convince the organisation owning the information systems
into undertaking a revolutionary reengineering effort ([7], [8],
[9]). Typically such an effort involves understanding a
program’s functionality (perhaps aided with a ‘legacy
understanding tool,’ a ‘business rules extraction tool,’ or a
‘code slicing tool’); storing this information in some form of a
repository or representing the code in an easier-to-understand
format or a modelling tool; and rewriting or generating new

code with a 4GL or in a modern, object-oriented architecture
such as J2EE or .NET.

There are, however, many mature systems for which not all or
even none of the above attributes apply, and indeed the only
observation that can be made is that the systems were built
with leading-edge technology. And that the leading-edge
technology is old. Host-based, monolithic, character-based
systems on proprietary platforms that are hard to integrate are
also called ‘legacy systems.’ Too often, however, simply
because a system is built to run on technology in its teens, it
gets stigmatised with the same subjectively sensitive,
negative attribute of being ‘difficult to maintain.’

Organisations who either lack the monetary resources to re-
engineer or rewrite large amounts of code, or who see no
business benefit in doing so, typically look to the alternative
of replacing the system (or parts thereof) with COTS1. If no
suitable COTS alternative can be found to replace the
system’s functionality (or the remaining parts thereof) then
the organisation will be stuck with finding a solution that
remains their own.

This, in a nutshell, is where the industry for cross-platform
software migration tools lies. These tools serve to make the
transition from endangered or undesired component
technologies to the ones of the organisation’s choosing
optimally automated and cost-effective, simultaneously
enabling the organisation to retain what they see as an asset,
namely the functionality of their systems. While there are
many variants, the better tools enable this simultaneous
transition and retention without introducing runtimes foreign
to the technology being implemented and proprietary to the
tool vendor. Some vendors make this possible by coupling
their tools with a service to generate a 100 % functionally
identical and 100 % visually equivalent copy of the original
system that furthermore retains its ease of maintenance.

Anubex is a Belgian IT company, and has specialised for the
past ten years in building and deploying application
transformation and migration tools. During this time, we have
advised over fifty organisations on migration projects of
larger (.5-10 MLOC) information systems, and built over

1 COTS: Acronym for Commercial Off The Shelf software, or
a packaged system. The ‘approach’ that this acronym refers to
can be applied to the implementation of any packaged
software, however, regardless whether it is publicly or
commercially available.

Position paper featured in the 2003 International Workshop on Evolution of Large-scale Industrial
Software Applications (ELISA), Amsterdam; September 23, 2003

 Page 2

forty tools that automate various aspects of software
transformation for specific platforms and languages. In this
paper, we relate, based on our experience, our view on how
the overall perception of cross-platform migration is evolving,
how automated translation works in the context of a
manageable project, and how semi-automated transformation
and migration techniques impact organisations and
developers.

2. Definitions and scope
The discourse on software transformation and migration is
made difficult by the lack of a clear consensus regarding the
use of terms, sometimes intermingled, to describe, variously,
the business goals, the technical deliverables, and the
methodologies used. The terms ‘legacy transformation,’
‘legacy modernisation,’ ‘legacy renovation,’ and ‘legacy
reengineering’ are used to describe families of these
‘approaches’ in which redevelopment [3], re-writing [5], EAI
([1] [11]), retro-documentation (more used in French-
speaking regions of the world) [6], replacement ([1], [5],
[11]), migration ([3], [10]), consolidation [1], wrapping
([3][11]), web-enablement [1], re-use [5], screen-scraping
[11], domain engineering [8], and componentisation [8] (to
give a few common examples) fall.

The narrower term ‘migration’ also suffers from a similar lack
of clarity. Migration can be either a business goal in itself or a
technical deliverable of a larger business goal (for example,
consolidation), and is furthermore embodied in multiple
reengineering methodologies that rely on automation in
different ways ([3], [10]). The term is also sometimes
avoided, with synonyms such as retargeting, replatforming,
and rehosting [7] being used.

For the purposes of this paper, we consider migration as the
restoration of value to a software application by removing its
dependency on undesired technologies or architectures,
through the conversion of the application’s pieces from one
technology to another, creating an otherwise identical
working system that uses new technologies in a native way.
This approach makes use of platform or language-specific
‘models’ that represent the application before the migration
and afterwards.

We define a platform-specific model as one where the bi-
directional transformation between it and the source code it
represents can occur an infinite number of times, without the
loss of any information. Migration is automated, then, through
the transformation of one platform-specific model into
another. It can rely on the use of either one or two meta-
models, traditionally referred to as grammars [2], depending
on whether the migration of the legacy application involves a
conversion of the code from one language to another or not.
This approach has the characteristics of a black box, meaning
that any manual alterations made to the code occur either
before the application is parsed or after the migrated code is
generated.

With the exception of any additional application tuning,
which may be necessitated to ensure the retention of the
performance of the system in its new environment, this is
where migration, as used in this paper, stops. Many legacy

strategies that bear the label ‘migration’ attempt to go further
([3], [10]), incorporating additional steps such as the
restructuring of ‘spaghetti’ code, the re-architecturing of an
application’s entities, the manual development of GUI
interfaces, or the full exploitation of object-orientation. While
it is not our intention to ignore the value of such additional
services, our observation is that the ROI argument to follow
the shortest possible path to achieve a clearly defined
business goal (in this case, the decommissioning of an
undesired technology component) is growing in importance.
This is especially the case as concerns decisions made for
larger software applications, and the approach may be
pursued even when the ‘quality’ of the code may be
questionable.

The overwhelming majority of organisations we advise
(100 % of them) consider automated migration for
administrative software applications. These applications run
the ‘core business’ of banks, insurance firms, government
institutions, or services companies; or the ‘back office’
applications for companies in the aerospace,
telecommunications, or manufacturing industries. Most of
these organisations started developing the applications
between fifteen and twenty years before their migration, and
in all cases except for one, used COBOL. (The sole exception
regarded a 3MLOC application written in BASIC for a
European airline company.)

At a technical level, the transformation projects being pursued
fall into one of two categories:

• Actual cross-platform migration from endangered or

proprietary hardware platforms to ‘open’ distributed
systems (mainly Unix or NT), or from endangered
development environments to modern development tools
and deployment platforms (mainly application servers
such as WebSphere, etc.);

• Retargeting applications from data access methods that
pre-date RDBMS (networked databases, hierarchical
databases, or (index) sequential files) to an RDBMS
product (mainly Oracle or DB2).

3. Justifying migration
Other studies ([4], [9]) have investigated common ‘drivers’
for software transformation projects. Some [5] have gone
further to analyse these drivers according to their justification
by internal considerations (such as cost reduction or
guaranteed operational continuity) or external considerations
(such as eBusiness initiatives or more strategic ‘future-
proofing’ of the applications).

Our experience with COBOL-heavy environments in Europe
suggests that migration or transformation projects are mostly
justified by a combination of these predictably recurring
‘drivers’ together, but that in a quarter of the cases a single
overriding factor is sufficient to justify the project in its
entirety. Y2K compliance, obviously, has disappeared as a
driver.

Perhaps surprisingly for a business context, the driver of ‘cost
reduction’ is rarely used to justify a migration project on its
own. Examples of cost reduction drivers include eliminating

 Page 3

administrative overheads and extra technical support costs for
running processes over separate, non-integrated systems;
eliminating the need for middleware to connect proprietary
systems with open ones; reducing maintenance overheads by
adopting cheaper hardware or development platforms; or
other economies made through platform consolidation.

Examples of overriding, singular drivers that do get used to
justify migrations are the following:

• The technologies used present a physical technical

barrier in terms of performance, (storage) volume, or the
maximum number of concurrent users. Migration is seen
as urgent when these technical barriers prevent the
business’ natural growth;

• The technologies used by the application are outmoded
and the organisation is pressured by its clients to
modernise them. ISV’s are of course especially
vulnerable to these influences, but this driver has also
been found in the B2B insurance and services sectors;

• The migration of the application is a necessary step in
some other process. A common example involves
organisations implementing an ERP package to replace
business-generic functionality in a legacy application,
and that need business-specific application functionality
to be migrated in order to retain the integration of the
processes and data. In these cases, migration makes the
implementation of the ERP system possible;

• The supplier of the technology has announced the
termination of support. This can involve both hardware
and software suppliers.

Perhaps equally surprisingly, in none (0 %) of the cases have
any of the following been used either as primary or supporting
drivers:

• Pressure from clients or suppliers to integrate supply

chains;
• eBusiness;
• Migrating away from COBOL to a ‘more modern’

programming language.

In well over half of the cases, organisations that have real
migration needs do not initially consider automated migration
as a potential solution. The most common reasons for this are
the following:

• An unawareness of the availability of tools that cater for

their requirements in terms of source and target
technologies supported, or the belief that the creation of a
tool that fits their specific environment requirements is
not feasible or cost-effective;

• A belief that manual redevelopment of their systems
from scratch in newer technologies is desirable or
feasible, or resignation to the belief that the only cost-
effective solution is to outsource the redevelopment
offshore;

• The perception that a project which delivers a 100 %
functionally identical piece of software “does not take
the company forward;”

• A prior negative experience with a migration tool that
generated unmaintainable code.

Over 50 % of attempts to migrate applications with over
.5MLOC through manual redevelopment are abandoned after
two to four years as failures.

4. Wanted? 100 % migration
The figure of 100 % is often referred to in the justification
and planning phases of migration projects, and this in two
cases:

• How to justify a project that creates a 100 % functionally

identical target system;
• The evaluation of the quality of a migration tool by

measuring how close to 100 % of the objects or language
statements in the original technologies it migrates
automatically.

Deliberately creating a target system that is 100 %
functionally identical to the original system is sometimes seen
as a counterintuitive milestone. This limitation nevertheless
offers several benefits, all of which an organisation typically
comes to recognise during project execution:

• First and foremost, perhaps, it is incontestable. When

organisations undertake a tools-assisted migration of
their software applications, they rarely use tools of their
own making. Not having the expertise or experience to
build the tools needed, they look to licensing existing
ones from a tool vendor. Normally, the tool vendor
provides the services that go with the tool and can be
given the responsibility for guaranteeing the new system
works. A discrepancy in behaviour or in output is easily
demonstrated and gives the organisation procuring the
service added protection;

• It is the only way to avoid the difficult, expensive, and
time-consuming process of making specifications; it
prevents the danger of scope creep; and it facilitates the
testing phases of the project;

• It gives the organisation a clear, easy-to-understand
means of tracking the progress of the project;

• It relieves the strain on users to adapt to the new system
and limits the entire change management process to the
IT department;

• It is the fastest way for an organisation to transition from
old technology to new, and it is the fastest way for the
organisation to regain autonomous control and resume
normal incremental maintenance activities for the
system.

5. Migration Complexity
Regardless which life extending approach an organisation
pursues for its applications, at some point ‘analysis’ takes
place. For the sake of simplicity we will limit the discussion
to the approaches of continued incremental maintenance (the
‘do nothing’ approach), replacement with COTS, re-
engineering/re-writing, or automated migration. The
exception to the analysis rule involves certain language,
platform, or presentation extension technologies such as
emulators, wrappers, or (cross) compilers that serve at the
same time as a means and an end.

 Page 4

With the exception of migration, all of the strategies listed
above have in common that analysis is functionality-driven.
With COTS, a ‘gap analysis’ may be performed to highlight
original application functionality that is not supported in the
commercial product, and other analyses can be performed to
plan change management when internal processes of the
organisation have to be revised before the commercial
software package can be used. With re-engineering and re-
writing, code complexity, similarity, and redundancy can be
analysed in addition to the functionality of the application.

Analysis plays an important role in the planning of a
migration project too, however this analysis is not driven by a
need to understand either existing or intended functionality.
The focus of migration is in code and object translation, and is
predominantly a purely technical exercise. Because of this, an
understanding of the code’s functional purpose is not needed.

Such analysis can be automated or done manually. Some tool
vendors supply analysis tools as a companion part of their
toolkits, which automate the process and provide a more
mature solution. These analysis tools, much like the tools that
do the actual migration, extract the information they need
from the code itself. While there are many variants, a common
denominator is the extraction of information pertaining to the
size of the applications and their complexity. Vendors use this
information to forecast the amount of work that the migration
effort will entail and to draw up project plans. From a
commercial perspective, vendors may also use this
information to calculate the licence price that the migrating
organisation must pay to use the migration tool.

Bearing the above in mind, automated migration is an
exceptional part of application development for three reasons.
First, since the calculation of the complexity and the number
of lines of code in the original system is sufficient to calculate
the effort required in terms of man-days, automated migration
is exceptional since it uses a predictive LOC metric with
accuracy. Second, automated migration is exceptional since
functional or business analysis is not used to predict man-days
of programming effort and function point analysis does not
offer the project any direct benefits. And third, due to the
purely technical nature of the exercise, automated migration is
exceptional since the effort required in terms of man-days
does not accelerate in function of the size of the applications,
and as our experience shows, in some cases even decelerates.

The notion of complexity also warrants further clarification,
since complexity in this context is not calculated on the basis
of the relationships of the lines of code to each other, or from
the code’s structure or lack thereof. Complexity in migrations
is an indication of the number of occurrences in the source
code of the original system where a statement or object does
not have a one-to-one equivalent in the target technology.
These occurrences can be simple (for instance, a variable
name used in the original application is a reserved word on
the target environment) or complex.

An example of a frequently recurring, COBOL-related, cross-
platform incompatibility of a high complexity involves the
data access methods that are used on most legacy platforms.
While most basic data types like numeric or alphanumeric are
prevalent and equivalent in both legacy and modern

platforms, composite data types often pose difficulties.
COBOL makes it possible to access and store data at the
record level through powerful low-level pointers, and many
COBOL programs make use of this facility to store data in a
single file with the individual data elements organised
inconsistently. Modern RDBMS products restrict data access
to the field level, and manage the structure of records so that
each is guaranteed to have a consistent organisation. When a
COBOL application uses a REDEFINES clause in a File
Description, the lack of a one-to-one equivalent in the target
RDBMS environment prevents an automated translation of
the statement. Individual instances of this cross-platform
incompatibility can sometimes be dealt with fully
automatically. However, when a record is redefined with
incompatible data types (for instance, to store alphanumeric
data at a position in a record where previously numeric data
was stored) the translation must be manually prepared before
the automated translation process can continue.

The issue of cross-platform incompatibility leads to the
question of whether it is possible to create perfect tools that
automate the migration of 100 % of the objects and language
statements in the original technologies. It is perhaps good to
mention at this point that such ambitions are hardly the holy
grail of the automated migration industry. Typically, averages
of 95-99 % are achieved, and it is worth mentioning that a
tool, compatible with 95 % of the objects and language
statements of a development environment could automatically
migrate 100 % of one application and only 80 % of another.
At the same time, it is dangerous to compare tools on the
basis of coverage percentages only. Certain cross-platform
incompatibilities can be solved automatically with ease, but
the solution may come at the cost of being very difficult to
maintain. Except in circumstances where the target
technologies have been built specifically with backwards-
compatibility in mind, the likelihood of being able to
automate the migration process of 100 % of the objects and
language statements, and at the same time generate code that
is easily maintained, is low to non-existent.

From the discussion on complexity and cross-platform
incompatibility, it should be clear as well that the level of
automation has a direct impact on cost. This is for two
reasons: less automated translation means more man-hours to
implement manual solutions; and less automated translation
also means more time is spent on testing as humans tend to
make more mistakes than software.

But how important is this factor, and how does this weigh
against the drive of organisations to embrace ‘more modern’
languages and development environments? Surely a language
such as Java is more modern than COBOL, but at the same
time surely a COBOL-to-COBOL migration is cheaper than a
COBOL migration coupled with a language conversion to
Java, since there are more incompatibilities between the two
languages? And surely there must be a perception that an
application written in Java is better ‘future-proofed’ than one
in COBOL, but how does this weigh against the notion that
the Java program will be less intuitive for the original
developers to maintain than if it were kept in COBOL, due to
structural changes made to the code?

 Page 5

Actually, none of the organisations we have dealt with have
pursued the automated migration of a large-scale information
system with a language conversion from COBOL to Java.
However, organisations that we have dealt with who pursue a
migration of COBOL applications to, say, Oracle database
technology have a choice, since a variety of tools are available
that perform COBOL-to-COBOL retargeting, COBOL-to-
PL/SQL conversion and retargeting, and COBOL-to-Java
conversion and retargeting. When migrating COBOL
applications from legacy platforms to an Oracle database, and
given the choice to keep the applications in COBOL or to
convert them to PL/SQL or Java, 95 % of the organisations
opted to keep the applications in COBOL, and the other 5 %
chose to convert to PL/SQL.

How each justified their decisions is also something of a
surprise. The majority who chose to keep the COBOL did so
out of cost considerations. The minority who chose
conversion to the ‘more modern’ language, on the other hand,
also did so out of cost considerations.

The cost argument used by the majority of organisations
opting for COBOL-to-COBOL migration was that the cost to
retrain teams of COBOL developers to the ‘more modern’
language was greater than the potential ‘future proofing’
benefits of having the code in PL/SQL or Java. Coupled with
the fact that most organisations had other COBOL developers
in their employ who worked on other applications, these
organisations took this decision with the certainty that the
number of available COBOL developers, for the time being at
least, was higher than the number of available PL/SQL and
Java developers. The cost argument used by the minority was
a licensing issue, in which paying for COBOL runtime
licences for the hundreds or thousands of users of the system
was higher than the cost to retrain the COBOL developers.

This evidence suggests that organisations with large-scale
software applications are not capricious with their migration
choices, and stresses that the business angle weighs heavily in
the major investment decisions taken around them.

6. Project dynamics and fluid systems
The approach to migration as explored in this paper is able to
reduce or even eliminate many project elements that involve
users, such as user retraining or the analysis of user
requirements. Such economies are of course inherent to the
deliberate limitations of the approach, which actively seeks to
ignore these and a number of other issues.

On the other hand, it is rare to find a situation in which the
issues, ignored by the approach, do not surface at some point
during the project. This problem introduces a new issue that is
common to any approach taken to migration, and involves the
way in which it can balance the need for a system ‘freeze’
with the need of the existing system to evolve freely during
the project’s course.

In accordance with the strict enforcement of the 100 %
equivalence rule, all modifications must be done on the
existing system in production. In this case, the application of
the rule protects the tool vendor, since any modification of the
functionality pursued by the migrating organisation must be

proven to work on the original system prior to being taken
into consideration. Through the 100 % equivalence rule, then,
business disruption is not only minimized as concerns the
operational context of the system’s use, but also as concerns
its evolutionary maintenance throughout the transitory period.

To put the problem into perspective, it is necessary to
consider two facts: First, the duration of an average migration
project for applications as treated here is between five and six
months. Second, despite organisations recognising the
complications that modifications to the existing systems will
introduce to the migration project, it has been necessary in
100 % of the cases for the original system to be modified at
least once while migration is in progress. Such changes can
be necessitated by law or by regulation; or can be warranted
by other business needs.

The need for the original system to evolve freely during the
course of a project makes it impossible for all practical
purposes to impose any form of freeze on the code. The only
freeze that does takes place regards the system in its totality,
and is limited to the very last stage of the project in which the
final conversion of the data from the old environment to the
new one takes place. This phase normally takes place during a
weekend when the system is otherwise not in use. Since 24/7
system availability has been necessary in 0 % of the cases,
such a freeze has not been the cause of business disruption,
and the overhead of implementing of a real-time switchover
mechanism, while possible, has not yet been justified.

When assessing the impact of a modification on the existing
system during the migration, there are two parameters that are
the most important to consider. These are, first, whether or
not the source concerned has been converted AND manual
work has been done on the converted source; and second,
whether or not the modification involves a change to the data
structure.

The simplest scenario is if the modification does not involve a
change in the data structure and no manual work has
happened yet on the converted source. In this case, the source
is merely converted again.

The scenario with a slightly higher complexity occurs when
the modification does not involve a change to the data
structure, but manual work has already been done on the
converted source. This scenario introduces a version conflict,
as illustrated in the figure below:

S1

Original Source

S2'

Migrated
Modified Source

S1'+

Migrated, Tuned
Original Source

S2

Modified Source

S1'

Migrated Original
Source

automated
migration

automated
migration

manual
modification

manual
modification

Figure 1: The version conflict in the migration of fluid systems

 Page 6

As shown in Figure 1, source S1 is converted to the new
environment and manual work has been done, resulting in a
production-ready candidate S1’+. When modifications are
subsequently made to S1 on the original system, resulting in
S2, the creation of S2’+ must result from the comparison of
the differences between S1’+ and S2’. Very often, the
modifications do not affect one another and S2’+ can be the
result of the straightforward merge between S1’+ and S2’. In
other cases, additional manual work and testing must be done.

Scenarios that involve the modification of the original
system’s data structure are significantly more complex. This
is largely due to the method inherent to this form of migration,
which combines incremental elements of ‘chicken little’ [4]
during the construction and testing of the new system with a
‘big bang’ in the event of going live. As a result, the ‘test
data’ being used in the tuning and testing of the migrated
programs prior to going live plays an important role in the
migration process, and the definition of the test data
environment must always be kept up to date. For this reason,
the creation of the test data environment is always one of the
first steps done in any project.

When the data structure in the original system is modified,
this implies that the test data on the target system together
with the data dictionary and DDL statements must be updated.
Any application sources that are affected by the change must
be reconverted. This process can be the cause of numerous
version conflicts, as depicted in Figure 1.

7. Migration impacts
Even when bearing in mind that the goal of migration is the
creation of a 100 % functionally identical target system, and
that doing so benefits the organisation since change
management is limited to the IT department, change
management in the IT department can be heavy nevertheless.
While migration of course impacts the IT department, it is the
transition to a new environment that causes the most
disruption, and it is the automated migration approach that
actually minimises the extent of it.

Or at least, it can. Our experience shows a clear correlation
between the level of direct involvement of the organisation in
the migration project and their overall level of satisfaction
with the project’s final outcome. This factor persists in all
projects, and is not influenced by the involvement of third-
party migration service providers. This factor is especially
pronounced when the maintainers of the system play an active
role in the performing of manual work. Maintainers who get
involved are more autonomous and confident in their abilities
to resume maintenance over the new system once the project
is finished.

In environments where large, 15-20 year-old applications are
maintained in-house, developers typically posses three critical
competencies:

• A knowledge of the business;
• A knowledge of the application code and its structure;
• A knowledge of the development and deployment

technologies used.

Armed with these three competencies, developers have the
capacity to support the applications that support or enable the
business. Automated migration makes it possible to
economise and retain the first two of these, with both being
actively used both during the course of the project and
afterwards. As concerns the last point, the transition to new
technologies can cause disruption since new skills must be
acquired. There is rarely the luxury of time, since the
migration projects of the organisations we advise normally
take up to six months to complete.

Automated transformation and migration is arguably the best
way for maintainers to acquire new skills and adapt to new
technologies, and although organisations do not always see
the benefits initially, real-world examples confirm it to be so.
Some developer-related benefits of migration are the
following:

• Since the bulk of the code is converted by a piece of

software, the code is translated and generated
consistently. This relates not only to code formatting
conventions such as capitalisation and indentation, but
also to the consistent translation of the statements the
maintainers are already familiar with and the retention of
comments. Subsequent application maintenance is easier
since the code still ‘belongs’ to the developers;

• Learning the new environment is easier since developers
can compare the code ‘before and after;’

• The retraining of developers is never on the ‘critical
path’ of the project, and developer retraining is never
rushed as a result of it being a prerequisite for the project
to begin, as is the case in fully manual redevelopment
projects;

• Libraries and languages are pre-deployed by the
migration tool. Through this, developers do not have to
achieve reasonable professional proficiency in the target
environment, and then go through a difficult process of
agreeing on a development ‘house standard’ in the new
technology before the project can start;

• By working with a tools vendor with extensive
experience in both the source and target technologies,
training materials and programs can be tailored to take
advantage of the skills the developers already posses.
Such targeted training is normally impossible to find
externally. Our experience shows that training time of
developers can be reduced by up to 50 % in comparison
to following standard, vendor-approved, entry-level
courses when the training can be tailored in this way.

The most lasting impact on the organisation of a migration
project, of course, is that an application’s anticipated lifespan
is doubled, and that the applications preserved get a new lease
of life. Especially if migration is partial and business-generic
parts of the original legacy system are replaced by COTS, the
migration to new technology of core applications can bring an
organisation’s appreciation of their uniqueness as a business
into sharper relief.

This added realisation can impact the way that subsequent
maintenance decisions of the system are handled, and mark
the transition of business-specific application functionality to
a new level of maturity in which an organisation makes a
conscious choice to continue investing in its growth for many

 Page 7

years to come. The awkward position the system occupied
prior to the migration as being simultaneously a business-
enabling asset and a technical liability is thankfully put in the
past.

Conclusion
In this paper, we have examined automated migration from a
number of different angles, exploring the utility of the
approach through the limitations that serve as its defining
characteristics. The choice to deliberately limit the target
system to feature 100 % functional and visual equivalence as
a deliberate milestone on the road to ultimate modernisation is
perhaps the most prominent feature of this approach. When
applied consistently, this limitation can affect, as explained
here, the way in which organisations justify implementing the
approach, the relationship between complexity and the cost of
the approach, the ability of systems to evolve freely during the
transitory period, and the way in which the organisational
context is impacted through the approach’s application.

The fact that many organisations opt for an approach that
deliberately limits the scope of the project deliverables opens
a number of potential relatively unexplored research
directions. It is our opinion that research is lacking, which
considers the viability of achieving modernisation for larger
software systems in terms of sequentially applied steps that
are applied to a system on the whole. Such research has the
potential to benefit organisations that are under pressure to
achieve clearly understood business objectives and realise
ROI in increasingly shorter timeframes.

Bibliography
[1] Aberdeen Group: Legacy Applications: From Cost
Management to Transformation, March 2003.

[2] J Bézivin, S Gérard: A preliminary identification of MDA
components. Date unknown.

[3] J Bisbal, D Lawless, B Wu, J Grimson: Legacy
Information System Migration: A Brief Review of Problems,
Solutions, and Research Issues. Technical Report TCD-CS-
1999-38, Computer Science Department, Trinity College
Dublin, May 1999

[4] M Brodie, M Stonebraker: Migrating Legacy Systems,
Morgan Kaufmann Publishers, Inc. 1995.

[5] D Good: Legacy Transformation, Club de Investigación
Tecnológica, August 2002.

[6] D Good: Proceedings of the Club de Investigación
Tecnológica Legacy Transformation Workshop, San Jose
Costa Rica. February 2003. Available at
www.cit.co.cr/Presentations/DeclanGood.ppt

[7] M Olsem: STSC Reengineering Technology Report,
Document No: TRF-RE-9510-000.04, Software Technology
Support Center. October 1995.

[8] A van Deursen, B Elsinga, P Klint, R Tolido: From
Legacy to Component: Software Renovation in Three Steps,
Cap Gemini and the CWI. 2000

[9] I Warren: The Renaissance of Legacy Systems, Method
Support for Software System Evolution, Springer
Verlag.1999.

[10] B Wu, D Lawless, J Bisbal, R Richardson, J Grimson, V
Wade, D O’Sullivan: The Butterfly Methodology: A
Gateway-free Approach for Migrating Legacy Information
Systems. Proceedings of the third IEEE Conference on
Engineering of Complex Computer Systems (ICECCS97),
September 8-12, 1997. pp.200-205, IEEE Computer Society.

[11] F Zoufaly: Issues and Challenges Facing Legacy
Systems. November 1, 2002. Available at
http://www.developer.com/mgmt/article.php/1492531.

