
J2EE or .NET: A Managerial Perspective

Neil Chaudhuri
Research Fellow

Logistics Management Institute
McLean, VA 22102 USA

Keywords: software evolution, J2EE, .NET, project management, enterprise architectures, enterprise
systems, web services

Abstract

With the evolution of enterprise systems from the

traditional client-server paradigm, Sun Microsystems’ Java 2
Enterprise Edition (J2EE) and Microsoft .NET have emerged
as fierce competitors for recognition as the leading choice for
building enterprise solutions. After first engaging in a high-
level discussion of the architectures, this paper describes the
criteria by which project managers should choose between
them. It concludes with a discussion of what continued
evolution of the enterprise realm, namely towards the web
services realm, may mean for project managers.

Introduction

The only certainty in the information technology
industry is the rapid and constant evolution of software
technology. Nowhere is this more evident than in the realm
of enterprise systems, which evolved from client-server
systems as a means of physically and logically decoupling
the critical components of the architecture—namely the
presentation, middleware, and database tiers. Not
surprisingly, the size and complexity of enterprise systems
demand sophisticated solutions. Assembled from its
previously established technologies, Sun Microsystems’
Java 2 Enterprise Edition (J2EE) architecture enjoyed
prominence as the leading choice for building enterprise
solutions. Never to be outdone in its effort to maintain its
perch atop the information technology industry, Microsoft
Corporation unveiled an alternative enterprise-level solution,
.NET, which also represents the next generation of its own
previously established technologies. As these solutions
have evolved to meet the needs of the evolving enterprise,
software engineers on both sides have inundated the
literature with perspectives on which is technically superior.
To this point, however, project managers charged with
overseeing the development of enterprise systems have
been largely left out of the discussion and consequently
have been unable to engage in any meaningful process of
natural selection. This paper provides a comparative
overview of J2EE and .NET and describes the criteria by
which project managers should choose between them as the
solution for an enterprise-level development effort. Finally,
this paper suggests how the technologies themselves and
project managers’ understanding thereof may evolve over
time as the enterprise realm continues to evolve--primarily
towards web services.

Overview of the Architectures

J2EE

 It is the most basic quality of Sun’s J2EE
architecture that is the initial source of confusion for most
project managers. J2EE is not a product; rather, it is a

specification. With each successive specification since the
first was issued in 1999, various vendors allied with Sun
have built application servers that conform to it, and J2EE
applications are deployed to these servers [5]. Among the
more notable are IBM’s WebSphere, Oracle’s OC4J, and
BEA’s WebLogic Server, which is generally considered the
industry leader. During its lifetime J2EE has gained a
measure of credibility as a viable option in mission-critical
systems, for United Airlines and American Express are two
prominent examples among many organizations that have
successfully implemented J2EE solutions [7].

With regards to the technical details of J2EE, at its
core rests the Java programming language. Over nearly two
decades the object-oriented paradigm has become
preeminent among programming languages; and in turn
Java, another Sun specification, has become preeminent
among object-oriented languages. This played no small role
in the emergence of J2EE in the enterprise software realm.
An even more significant contributor to its marketability is the
portability of the Java code that comprises a J2EE
application. For example, because both servers meet the
J2EE specification, code deployed on WebLogic can be
deployed seamlessly on WebSphere should the need arise,
and both can operate on any platform (e.g. Windows, Linux,
etc.). Therefore, J2EE does not render an organization
vulnerable to the whims of a single vendor. This may be the
most powerful argument in favor of J2EE. However, there
are some caveats that to be explored a bit later.
 While literature concerning the J2EE architecture
has been prolific over the last few years, that concerning its
components has been even more so. The J2EE
specification consists of a potpourri of various technologies,
each with its own specification. Moreover, some of these
actually predate the first J2EE specification. Therefore, if the
age of the J2EE architecture as a whole is an argument for
its reliability, the claim is further fortified by the age of its
components. The most notable among these are the
following:

• Servlets and Java Server Pages (JSPs) for
generating web content

• Java Database Connectivity (JDBC) for storing
(or in the vernacular of enterprise architecture,
persisting) data in databases

• Enterprise JavaBeans (EJBs) for business logic
processing in the middle tier. This is the
centerpiece of the J2EE architecture.

As a result of the fragmented nature of J2EE, vendors may
produce servers that do not comply with the whole of the
J2EE specification but rather with portions thereof. Such
servers thus cannot support a complete J2EE application but
may still be very useful. A prominent example is Apache’s
Tomcat, an industry-leading, open-source web server that
only supports the servlet and JSP specifications. Hence it is
best suited for client-server applications, which remain
significant even with the emergence of the n-tier paradigm.

Yet despite its excellent performance to that end, Tomcat by
itself is quite ill-suited to enterprise architectures.

• Windows Forms (or WinForms) for
graphical user interfaces (GUIs) utilized on
client machines and based largely on the
popular Visual C++ and Visual Basic
technologies developed by Microsoft.2

.NET

 While it is designed to solve the same problems as
J2EE, Microsoft’s .NET architecture takes a starkly
contrasting approach to enterprise systems development.
The most obvious point of contrast is the status of .NET as a
product of Microsoft and Microsoft alone as .NET at its core
does not rest upon alliances with other vendors. Yet the
most significant point of contrast between .NET and J2EE is
that the former is virtually brand new. Technically, .NET has
been available since 2001, but it has undergone so many
modifications since that it is difficult to gauge its readiness as
a viable option for mission-critical solutions [3].1 However,
as the giant in the information technology industry, Microsoft
has a longstanding reputation, especially within the
American government, for producing working solutions.
Furthermore, its massive support structure is at the disposal
of those who choose to adopt a .NET solution. Therefore,
the longevity and stability of Microsoft Corporation goes very
far in offsetting the apparent lack thereof in its .NET
architecture.

• COM+ (or Enterprise Services) for business
logic processing in the middle tier and based
largely on the Component Object Model
(COM) technology developed by Microsoft [4]

From this list one can discern that .NET has hardly emerged
from a vacuum. Microsoft is clearly hoping to lure its vast
following to its latest innovation by creating next-generation
implementations of its prior successes—staples of the
industry like ASP, ADO, and COM—and assembling them
into its service-based, evolved .NET architecture.

Development and Deployment

J2EE

 With the completion of this brief overview of the
J2EE and .NET architectures, it is time to explore them in
more depth and consider how they compare in development
and deployment. The initial step in developing a J2EE
application is acquisition of an application server3, and the
best ones, like the aforementioned WebLogic Server, are
quite costly. There are cheaper alternatives—including the
open-source JBoss available at no cost—but these lack the
support mechanisms that can prove invaluable during the
course of a project. Ultimately, a leading application server
will prove the better value over time despite the heavy cost
upfront, but project managers should choose wisely. While
the portability of J2EE code across servers is a powerful
feature, it is offset by their cost. Indeed, as expensive as a
single server may be, to move to another would deplete all
but the most lavish budgets. This is simply another case
where the reality of the marketplace thwarts the idealism of a
technology.

 With regards to the technical details of .NET, at
the heart of the architecture rests not one but in fact several
programming languages. All of the so-called “.NET family of
languages” are object-oriented, so an organization need not
abandon the paradigm should it choose to pursue this
architecture. There are two prominent languages in the
family. The first is Visual Basic .NET (VB .NET), which is
based on the popular Visual Basic language that has
become familiar to countless developers over the last
several years. The second is C# (pronounced C sharp as in
music), a brand new language created by Microsoft.
Although the claim is that C# is the next generation in the
evolution of the popular C++ programming language, the
influence of Java is unmistakable. C# is the centerpiece of
the .NET family of languages, and it provides the most
effective use of .NET capabilities [1].
 The most significant consequence of committing to
a .NET architecture is restriction to the Windows platform.
Microsoft is often criticized for its reluctance to build products
that integrate seamlessly with those from other vendors, and
.NET does nothing to assuage the criticism. Yet the
Windows operating system represents the very means by
which Microsoft ascended to its perch atop the information
technology industry. Therefore with the incalculable number
of Windows-based systems in operation throughout the
world, many organizations would consider a restriction to
Windows no restriction at all. Even still, there is a series of
open-source initiatives towards moving .NET to other
platforms, but they are far from complete [1].

Despite their cost, J2EE application servers
provide so many services that they are valuable assets to
any development effort. Notable among these is a Java
Runtime Environment (JRE), the Sun-specified realm in
which all Java applications run. The JRE spares application
developers from low-level tasks like memory management
which can be excruciatingly difficult to implement. All
servers are also endowed with the standard J2EE
Application Programming Interfaces (API’s) for designing
code as well as proprietary API’s, which merit particular
attention in this discussion.

While all application servers behave according to
the standard dictated by the J2EE specification, the
underlying implementations are not standard. Thus, the
inevitable idiosyncrasies across servers can cause the same
code to run faster on one than another. Server vendors
therefore provide their own APIs to optimize certain
operations like database accesses, and these can lend a
rather significant boost to performance. However, these

 The components of the .NET architecture are the
closest point of similarity to the J2EE architecture. The most
notable among these are the following:

• ASP .NET for web content and based largely
on the popular Active Server Page (ASP)
technology developed by Microsoft

• ADO .NET for data persistence and based
largely on the popular ActiveX Data Object
(ADO) technology developed by Microsoft

2 It should be noted that the Java programming language
has a similar mechanism in the form of the Abstract
Windowing Toolkit (AWT), Swing, and the new Standard
Widget Toolkit (SWT). Technically, however, this client-side
functionality rests outside the realm of J2EE. 1 According to .NET Magazine, TRX Travel Services, a

provider of reservation-processing services to the travel
industry, recently migrated its legacy systems to .NET with
excellent results primarily in the areas of scalability and
performance [6].

3 Throughout the course of the discussion on J2EE, the
terms application server and server will be used
interchangeably, and both will refer to platforms that meet
the J2EE specification.

 2

should be used only when absolutely necessary, for the
performance gain comes at the expense of portability. For
example, while OC4J database APIs may increase
performance by 40%, they will simply not function on
WebLogic, and the API-based code would have to undergo
an inevitably costly revision if a switch were made.
Therefore, heavy reliance on proprietary APIs will all but
shackle your organization to a particular vendor’s application
server, and this negates the single greatest advantage J2EE
has over .NET [1]. Project managers must weigh the
benefits of both approaches and choose which makes the
most sense for the application.

Integral to the services provided by J2EE servers
are deployment descriptors, Extensible Markup Language
(XML) files which allow critical functionality to be defined
without the need for any Java expertise. With only a mere
text editor, one can configure essential and otherwise
painstakingly difficult services like load balancing and
database connection pooling. Moreover, should the
requirements for these services change, only the
deployment descriptors have to be modified while the code
remains untouched. The time that is saved allows
developers to focus on the code supporting the business
logic of the application rather than that supporting low-level
services.

Should a J2EE solution employ EJB’s, which is
more than likely, deployment descriptors may provide two
vital services beyond those previously described. The first
concerns data persistence. Charged with this task is a
category of EJBs known as entity beans. One would think
that developers must endow their entity beans with
persistence code that utilizes the pervasive but at times
complicated Standard Query Language (SQL). Indeed,
developers have this option. However, should they so
choose, developers may in fact forego writing a single line of
persistence code and instead direct the application server to
manage persistence.4 This is achieved by editing proprietary
deployment descriptors and specifying data persistence
strategies therein. While time must be invested to determine
the precise manner in which a particular vendor demands its
descriptor to be modified, it is quite easily offset by the time
saved by not having to generate the Java and SQL code
necessary to manage persistence.5 Furthermore, the
application server will also provide its own optimizations to
the persistence strategies outlined in the descriptor. Hence,
every effort should be made to have the server manage
persistence, for time is saved and performance enhanced as
well.
 The other significant role that deployment
descriptors play in EJB development is in transaction
management. Simply put, transactions in the context of the
enterprise are a chain of operations—almost invariably
involving a database—that must all be successful for the
transaction as a whole to be considered successful. In that
case any database changes made during the course of the
transaction are made permanent, or committed in the
vernacular of enterprise architectures. If even one operation
fails, however, the entire transaction fails. In that case all

database changes made during the course of the transaction
are nullified—or rolled back in the vernacular—and the
database returns to its original state before the transaction.
The concept of transactions is among the most powerful in
the enterprise realm, and not surprisingly it is also among
the most complex to develop. In a J2EE environment,
developers have the option to write code to do this; but as
with persistence, they may choose to edit deployment
descriptors to call upon the application server to manage
transactions. As neither task is trivial, it is quite a boon to
developers that they may leave the daunting tasks of
persistence and transaction management to the server while
concentrating their time and energy on the complex business
logic that drives enterprise applications.
 When developing an application of any kind, it is
necessary to consider carefully which brand of software—
known as integrated development environments (IDE’s)—will
be utilized to write the code that will support it. In the context
of J2EE, the situation with IDE’s is exactly as with
application servers. There are numerous options ranging
from free to rather costly, and the number of features
available in each is roughly proportional to its cost.
Moreover, most organizations would be better served by
investing in a leading IDE, for the features it provides will
ultimately balance any high costs upfront that may be
incurred. For example, while many IDEs like IntelliJ’s IDEA
provide developer-level functionality like automatic
generation of skeleton code, others like Together’s
ControlCenter also provide architect- and manager-level
functionality with Unified Modeling Language (UML)
generation and configuration management tools, which may
preclude the need for tools devoted to those tasks alone.
Yet no matter how sophisticated the IDE, J2EE applications
are so complex that development and deployment are hardly
ever trivial. A thorough understanding of the subtle points of
the architecture is required of all development teams if they
are to prevail, and project managers must therefore not
presume that investment in a leading IDE will by itself lead to
success.

.NET

 Development and deployment of .NET are in many
ways much simpler matters. Like J2EE, .NET enterprise
applications require investment in an application server from
Microsoft--most likely Windows Server.6 Otherwise, there is
far less financial investment required than is generally the
case for J2EE, for as is custom with Microsoft, the pieces of
the architecture are available for free download. Most
notable among these are the .NET Extensions to Microsoft’s
Internet Information Services (IIS) web server and the .NET
Framework. The former is a rather trivial matter; as the
name suggests, the .NET extensions simply augment the
capabilities of the prevalent IIS infrastructure. The latter
merits a more rigorous discussion.

Principal within the .NET Framework is the
Common Language Runtime (CLR), which is essentially the
equivalent of the Java Runtime Environment [3]. The
Framework also includes the APIs for developing code in all
of the .NET family of languages. The freedom in languages
offers great flexibility and tremendous potential for code
reuse, but managers should take heed. Having different
modules in the same project coded in different languages

4 It should be noted that although application servers can
manage fairly sophisticated persistence code, there are
instances when the code is just so complicated that
developers have no choice but to write it themselves.
Thankfully, these instances are rare.
5 It is true that switching to another application server would
demand the editing of another proprietary descriptor to
enable it to manage persistence, but the time loss is
probably insignificant when weighed with the benefits,
including not having to modify a single line of code.

6 It should be stressed that Windows Server is only required
when utilizing COM+ objects for systems which are truly
enterprise-level, the primary focus of this discussion [4].
Smaller systems do not require such an elaborate and
somewhat costly infrastructure.

 3

will likely result in a configuration nightmare. Moreover, it
will limit accessibility to the code base among the
development team. For example, a VB .NET developer will
be helpless should the need arise to modify C# code
developed by a colleague for the same project. Therefore,
project managers should only take advantage of the
language freedom provided by .NET in the planning stages
of a project and designate a single language as the
development standard.

Foremost among the manager’s responsibilities is
to determine if the system in question truly represents an
enterprise system. This may seem obvious, but it is
alarming how often this is overlooked. Part of the problem is
that the literature offers no single definition of what
constitutes an enterprise system. It would appear that the
consensus definition is an architecture comprised of more
than two tiers and where each tier may have multiple
components (e.g. multiple databases residing on different
machines). As one might imagine, such a system is terribly
complicated and naturally demands the enormous financial
and philosophical commitment required by both J2EE and
.NET. On the other hand, most systems are not enterprise
systems, so it is wasteful to engage in an inevitably rigorous
effort utilizing either technology. It is far more sensible
instead to utilize individual components of J2EE and .NET—
or perhaps even different technologies entirely like
ColdFusion. Ultimately, neither a J2EE nor .NET application
is trivial to build, so it behooves managers to ensure that the
problem is complex enough to merit a complex—and
expensive—solution.

 Unlike J2EE, there are few choices for .NET IDE’s,
and there is a distinct leader in the field: Microsoft’s own
Visual Studio .NET.78 The tool is expensive, but like the best
J2EE development tools, it offers many services like
configuration management. Also, borrowing from its
successful past, Microsoft endows Studio with both the time-
tested drag-and-drop methodology for visually designing
applications and GUIs for specifying the properties of objects
like the location of a backend database. Moreover, each of
these operations results in automatically generated code.
Therefore, developers can design a user interface very
quickly, and they are spared having to generate the code
related to look-and-feel and other more trivial concerns and
may instead focus on the business logic. Lest one believe
that this is without its cost, however, one must be aware that
there are times when it is necessary to understand and
modify the generated code to optimize performance, and this
may not be an easy task.

Project Funding

Regardless of the project or the chosen solution, it
goes without saying that funding is the paramount concern of
project managers. Whether pursuing J2EE or .NET,
managers can expect to allocate substantial financial
resources to training, albeit for different reasons—J2EE
because of its numerous component specifications and their
rapid changes to meet the demands of the open-source
community and .NET because of its own rapid changes in its
effort to grow into a robust technology. Aside from training
costs, each solution also has similar infrastructural costs
associated with it. J2EE demands a large financial
investment in licenses for a leading IDE and application
server. .NET demands investment in Visual Studio to
support application development, Windows Server to support
COM+, and perhaps IIS to support web-based interfaces in
the unlikely event the organization does not already have it
[4].9 It is difficult to say whose infrastructure is more costly,
but it is important to note that these are one-time costs.
However, managers who choose .NET at this stage will very
likely incur recurring costs in the form of support requests to
Microsoft because of the unavoidable flaws in the immature
architecture [7]. Given all the variables, only a project
manager with knowledge of the existing capabilities of the
organization and the development team can decide which is
the cheaper alternative.

 As with J2EE, .NET applications contain
deployment descriptors, but they do not play a role nearly as
significant as that played by their counterparts. Also XML
files, .NET descriptors provide the expected services like
load balancing and database connection pooling, but
otherwise they lack the sophistication of J2EE descriptors.
.NET deployment descriptors do not endow COM+ with
persistence management capabilities, and this leaves the
responsibility for this in the hands of developers [8]. On the
other hand, .NET does indeed support declarative (i.e. non-
programmatic) transaction management, but it is in the form
of attributes placed physically in source code files rather
than in deployment descriptors or any other kind of
configuration files. Although .NET deployment descriptors
do not provide the same level of services as those in J2EE, it
is reasonable to expect that Microsoft will address this as
.NET matures over time.

Choosing Between the Architectures

 Understanding the manner in which J2EE and
.NET applications are developed and deployed provides the
foundation for a discussion of how project managers should
choose between them when planning the development
phase of a task. There are several critical points to consider,
and managers must understand and prioritize them in order
to make the right choice.

Existing Client Infrastructure

Establishing the Need for an Enterprise Solution

Project managers must also consider the existing
infrastructure of the client when choosing between the
architectures. Microsoft solutions in the past have gained
wide acceptance in the public sector of the United States.
Consequently, public sector clients may not even entertain
the possibility of a J2EE solution, and managers will have no
choice to make. It would seem logical that the transition to
.NET would be trivial, for Microsoft has claimed that legacy
objects utilizing older Microsoft technologies will integrate
seamlessly into .NET. This is technically true, but there is a
significant caveat. Legacy objects imported into .NET run
outside the CLR and thus have no access to its services
(most notably, as mentioned previously, memory

7 Throughout the course of the discussion on .NET, the
terms Visual Studio .NET, Visual Studio, and Studio will be
used interchangeably.
8 A notable .NET IDE is Web Matrix, a free, open-source
development tool that features many of the niceties of Visual
Studio. However, it is only useful for the development of
ASP .NET applications. Thankfully, web applications that
would utilize ASP .NET are so pervasive that the restriction
may prove negligible.

9 .NET enterprise applications may require investment in
Microsoft’s BizTalk server as well, which serves to integrate
the components of the system and is particularly valuable for
integrating legacy systems [4]

 4

management) [1]. Unmanaged legacy code, if poorly
written, will cause the application to stumble or even fail.
Ultimately, legacy objects will almost certainly have to be
rewritten as .NET objects [1]. Hence if a rewrite is required
anyway, and if the client is amenable to it, it may be
advisable to consider a J2EE solution, which as mentioned
previously will run on all platforms and thus make the
existing infrastructure of the client a non-issue. Whatever
the outcome, it is simply crucial that project managers
understand that moving from legacy Microsoft solutions to
.NET is not as simple a matter as it may seem.

Project Timetable

The factors discussed to this point offer no clear
choice between J2EE and .NET because they are a function
of circumstances unique to particular projects. However,
there are two critical factors where the better choice is much
more obvious. The first is the timetable for completion of the
project. If the project schedule is short, then .NET is almost
certainly the better choice. As discussed previously, Visual
Studio offers numerous advantages towards Rapid
Application Development (RAD). Even the most
sophisticated J2EE IDE's cannot compete with Studio in
mitigating the complexity of its component technologies and
deployment procedures. Moreover, J2EE has a significant
flaw in the context of RAD—the elaborate deployment
procedures associated with a large, intricate solution are
essentially the same as those associated with a small,
simpler solution. This makes it difficult to produce systems
quickly in J2EE, and .NET therefore has an apparent
advantage when time is a significant concern. Of course, it
should be noted that this advantage might be mitigated by
the expertise of the development team. If an organization
only has expert J2EE developers at its disposal, they will
almost certainly be able to deploy a J2EE application
quickly, and time lost training them in .NET will accrue no net
benefit [1]. Thus while .NET lends itself much better to RAD
than J2EE, the expertise of the development team can nullify
this advantage.

Project Complexity

The other factor where the choice between J2EE
and .NET is more obvious is the complexity of the project. If
the requirements for an application demand a sophisticated
solution (e.g. multiple servers, multiple backends), then
J2EE is the better option. One reason is the ease with which
J2EE integrates with multiple platforms. Another is the
robustness of EJB’s, which by means of deployment
descriptors offer persistence and transaction management
without the need for a single line of code. Of course, to use
all of the features J2EE offers requires significant knowledge
on the part of the development team, but when properly
implemented these features provide tremendous value to the
process. On the other hand, .NET has not yet proven that it
has grown enough to meet the needs of a truly complex
system [7]. Microsoft has always been somewhat reluctant
to enable seamless integration of its products with those of
other vendors, and an intricate enterprise system with many
components will almost certainly require integration of
products from multiple vendors. Moreover, as described
previously, .NET’s COM+ technology has yet to develop a
framework for persistence and transaction management
outside the code realm [8]. There is also the issue of
Microsoft’s poor reputation in the realm of security, which
while exaggerated by the pervasiveness of Microsoft
products is a significant concern in an enterprise where data
are regularly moving over the network. Finally, .NET has
only just begun to prove itself as a reliable solution for large-

scale, mission-critical systems, and as a result it is
impossible to predict just how it will respond to the demands
of a particular enterprise. However, Microsoft’s stature in the
industry all but guarantees that .NET shall have ample
opportunities to prove its mettle over time. Therefore, it is
only with time that .NET will establish itself as a proven,
robust enterprise solution.

Summary Remarks and the Future of
Enterprise Software Evolution

During the course of this discussion, a high-level

understanding of the components of the J2EE and .NET
architectures and the manner in which they are developed
and deployed laid the foundation for an examination of the
critical points project managers must consider when
choosing between them. The analysis led to the conclusion
that neither choice is clearly superior in all cases. Rather, as
each has its advantages over the other, the suitability of
either architecture is a function of the particular
circumstances surrounding the project. Understanding the
strengths and weaknesses of J2EE and .NET will enable
project managers to engage in a meaningful process of
natural selection and produce successful results for their
customers.

Of course, the very fabric of evolution is woven
with the threads of innovation. Thus while the enterprise
paradigm--and its implementation strategies in the form of
the J2EE and .NET architectures--represent the latest
innovation in software development, it is only natural to
wonder where evolution will take the industry in the future. It
would seem that there may already be an answer: web
services.

The Emergence of Web Services

 The concept of web services has dominated the
literature for some time, yet the prolific rhetoric has actually
served to obscure any legitimate understanding of what web
services truly represent. Perhaps the best source for an
accurate and complete definition of web services is the
World Wide Web Consortium (W3C), the standards body
that serves as the steward of XML and web services. The
W3C provides the following:

Definition: A Web service is a software system
identified by a URI, whose public interfaces and
bindings are defined and described using XML. Its
definition can be discovered by other software
systems. These systems may then interact with
the Web service in a manner prescribed by its
definition, using XML based messages conveyed
by internet protocols. [9]

The goal of web services is interoperability among software
systems regardless of their underlying frameworks,
implementations, platforms, or other idiosyncrasies. This is
achieved by communications in the form of XML-based
messages transported over networks by HyperText Transfer
Protocol (HTTP), both of which are open standards. One
can easily see why web services have generated such
fervor, for the prospect of integrating disparate systems
seamlessly by way of non-proprietary standards is an
exciting one.
 As the enterprise evolves rapidly towards web
services, project managers charged with producing
enterprise solutions must have their understanding evolve in
parallel. With J2EE and .NET the leading choices for

 5

Choosing Between the Architectures developing enterprise systems, this paper will now briefly
discuss the extent to which they support web service
development. Moreover, the purpose of this paper has been
to identify the criteria by which project managers should
choose between J2EE and .NET as the solution for an
enterprise-level development effort. In the interest of
completeness, therefore, this paper will also address any
additional criteria that must be considered when choosing
between J2EE and .NET as the solution for a web service
development effort.

 Web services clearly represent a remarkable
branch in the evolution of enterprise systems. Though the
enthusiasm has been tempered somewhat by the realities of
the marketplace, the web services paradigm shall remain a
vibrant one10. Therefore, as with all enterprise systems,
project managers must be able to engage in a legitimate
process of natural selection between J2EE and .NET when
deciding which will be the architecture for a web service
solution.

J2EE Web Services All of the criteria and considerations discussed
previously for a conventional enterprise system still apply
when it comes to web services. For example, J2EE’s
platform independence could be the deciding factor if the
platform to which a web service will be deployed is unknown
or likely to change. However, there is one signifcant
exception to the conclusions drawn previously. Earlier it was
suggested that J2EE can quite reasonably claim to be the
more proven and more robust solution for an enterprise
application. Yet when it comes to web services, the opposite
is true. As mentioned before, .NET surpassed J2EE by a
wide margin in its appraisal of the web services landscape,
and as a result .NET provided web service developers with a
great deal of support. J2EE has worked quickly to narrow
the gap, but the extent to which it will succeed will only
become apparent over time. Thus, with .NET being so far
ahead in the web services realm and generally, as discussed
previously, being the better choice when time is a factor for
any enterprise development effort, it would seem that for
now .NET is the better choice when developing web
services.

 It would seem that J2EE lacked foresight with
regards to the zeal generated by the web services paradigm.
As a result the most recent specfication lacks robust support
for web services. Transport protocols provide a glaring
example. Application servers do not support HTTP as a
native communication protocol, so web service requests
transported over HTTP must be bridged to another protcol to
activate J2EE web services [11]. Ultimately, outside of API’s
for processing XML utilizing standard interfaces, J2EE is
missing a great deal when it comes to web services, and
vendors are forced to provide proprietary extensions to fill in
the gaps.
 The upcoming J2EE specification due for release
in the fall of 2003 seeks to rectify many of these problems.
The new specification, for example, provides for exposing
EJB’s as web services for discovery and utilization by clients
[10]. Also included is more robust support for processing
XML-based messages sent over HTTP [10]. However, as
promising as all of this may be, it is all purely theoretical
since the specification has yet to be released. The rate at
which vendors produce application servers that meet the
specification remains to be seen. Moreover, the manner in
which IDE’s automate web service development to support
the new specification also is unknown. Therefore, J2EE
developers must currently rely on web service development
that is heavily proprietary, and at best they can only be
cautiously optimistic for the future.

Concluding Remarks

With the enterprise paradigm having evolved from
the client-server paradigm and in turn evolving in some
measure towards the web services paradigm, project
managers must contend with many complex issues when
choosing between J2EE and .NET. What makes their task
even more difficult is the rapid pace with which the
architectures themselves are evolving in an effort to become
more robust. This paper has attempted to articulate and
clarify the criteria that project managers must consider when
making their choice.

.NET Web Services

 In stark contrast to J2EE, .NET’s support for web
service development is quite possibly its best feature.
Indeed, .NET has from its beginnings demonstrated
tremendous foresight in the web services realm. For
example, Windows Server has native support for HTTP
communication [11]. Furthermore, reflecting Microsoft’s
commitment to XML, .NET features a rich library of API’s for
processing XML-based messages. Finally, as one would
expect from the powerful IDE, Visual Studio has a number of
features to automate the development both of web services
themselves and of clients for existing web services.

It is unclear if natural selection by the marketplace
will ultimately determine a victor in the battle for the
enterprise between J2EE and .NET. Rather, it is far more
likely that the two will simply coexist in the ecosystem of
enterprise architectures. In fact, we can make only two
claims with any certainty: the rivalry will continue to make for
fascinating theater, and more importantly, the true victors will
be project managers and their development teams, all of
whom will reap the benefits of the evolved functionality that
will inevitably result from the competition.

 .NET has proven itself in industry to be an
effective architecture for web service development. The
aforementioned TRX Travel, for example, has utilized web
services to manipulate travel data and to create a generic,
reusable interface to its business logic layer [6]. Another
.NET web services success story is the Central Bank of
Costa Rica (CBCR), who recently ported its legacy
application to .NET [12]. Among the web services built by
CBCR are a service for messaging, a service for managing
financial setlements, and even a service for integrating Java-
based financial applications which exemplifies the very
interoperability that motivated the genesis of the web service
paradigm [12]. The ability to produce such a wide array of
web services so quickly has helped .NET to take the lead at
this stage in the evolution of web services.

10 As true interoperability among systems is an extremely
difficult goal to achieve, web services have come to
encounter resistance in several forms, including the rapid
evolution of standards (especially in the area of security of
XML-based messages), the deliberate pace with which
vendors adopt new standards, database concurrency issues
[13], and the performance cost of XML-based messaging.
The W3C must address these and other problems—and
vendors must adhere to its recommendations—if web
services are to continue to flourish.

 6

 7

Acknowledgements

The author would like to recognize the following individuals
who helped to improve this discussion: Geoffrey Simpson,
Mauricio Calabrese, Randa Khoury of the National Academy
of Sciences, and Jonathon Leete and Sam Stange of
Logistics Management Institute (LMI). The author would
also like to express his heartfelt gratitude to Vice-President
Dr. Susan Marquis and Program Director Robert Hutchinson
of LMI, whose continuous encouragement and support were
invaluable. Finally, the author wishes to express a special
note of thanks to John Kupiec of LMI for his mentoring
guidance, unwavering patience, and sage wisdom. This
paper would not have been possible without him.

References

[1] McAllister, Neil. New Architect: “The Great
Migration: The Rocky Road to J2EE and .NET.”
March 2003.

[2] Roman, Ed. TheServerSide.com: “A few tips on
deciding between EJB and COM.” Unknown date
of publication.

[3] Lowy, Juval. .NET Magazine. “Set a New Course
With .NET” December 2001.

[4] Sessions, Roger. Java 2 Enterprise Edition
(J2EE) versus The .NET Platform: Two Visions for
eBusiness. March 2001.

[5] Marinescu, Floyd. TheServerSide.com
(www.theserverside.com): “The State of The J2EE
Application Server Market: History, important
trends and predictions.” March 2001.

[6] Bustamante, Michèle Leroux. .NET Magazine:
“TRX Travel Services Goes Live With .NET.” May
2003.

[7] Hatem El-Sebaaly. UC Irvine Extension
(unex.uci.edu): “J2EE vs.Microsoft.NET: Choosing
an Enterprise System.” August 2002.

[8] MacHale, Robert. Microsoft Developers Network
(msdn.microsoft.com): “Distributed Transactions in
Visual Basic

 .NET.” February 2002.
[9] Champion, Michael; Ferris, Chris (eds.) et al.: Web

Services Architecture, W3C Working Draft,
November 2002.

[10] Varhol, Peter. JavaPro Magazine. “J2EE 1.4: A
Web Services Kit.” August 2003.

[11] Newcomer, Eric. .NET Magazine. “Decide
Between J2EE and .NET Web Services.” October
2002.

[12] Thé, Lee. .NET Magazine. “CBCR Ports Critical
App to .NET.” August 2003.

[13] Ambler, Scott. Lecture: “Agile Database
Techniques – Data Doesn’t Have to be a Four-
Letter Word Anymore.” August 2003.

	Development and Deployment
	J2EE

	Choosing Between the Architectures
	Establishing the Need for an Enterprise Solution
	The Emergence of Web Services
	Acknowledgements

	References

	[8]MacHale, Robert. Microsoft Developers Network

