
Meta-Model and Model Co-evolution
within the 3D Software Space

Jean-Marie Favre

Adele Team, Laboratoire LSR-IMAG
University of Grenoble, France

http://www-adele.imag.fr/~jmfavre

Abstract
Software evolution-in-the-large is a challenging issue.

While most research work concentrates on the evolution of
“programs”, large scale software evolution should be
driven by much higher levels of abstraction. Software
architecture is an example of such abstraction. The notion
of co-evolution between architecture and implementation
has been identified and studied recently. This paper claims
that other abstraction dimensions should also be taken into
account, leading to what we call the 3D software space.
This conceptual framework is used to reason about
evolution-in-the-large phenomena occurring in industry.
The meta dimension, which constitutes the core of the MDA
approach, is considered as fundamental. This paper makes
the distinction between appliware and metaware and put the
lights on meta-model and model co-evolution. Conversely
to the MDA approach which makes the implicit assumption
that meta-models are neat, stable and standardized, in this
paper meta-models are considered as complex evolving
software artefacts that are most often recovered from
existing metaware tools rather than engineered from
scratch. In fact, we identified the notion of meta-model and
model co-evolution in the context of the evolution of a multi-
million LOC component-based software developed by one
of the largest software companies in Europe.

1. Introduction

Understanding very large software products is a major
issue. Understanding their evolution is even more difficult
since many factors influence software evolution [1][2]. This
paper concentrates on evolution-in-the-large which is quite
different from evolution-in-the-small, that is evolution of
small programs over rather short periods of time (a few
months or years). Evolution-in-the-large is about the
evolution of multi-million LOC software over decades.

Evolution-in-the-large is indeed a very complex issue.
Considering software evolution at the level of statements
and functions is clearly not enough. A much higher level of
abstraction is required.

1.1. Architecture/Implementation co-evolution

Software architecture shoutld clearly play a central role
in the evolution since it provides a abstraction. However,
making explicit the architecture of software is not easy in
practice. Architectural Description Languages (ADLs)
failed to find their path to industry, in part because of their
poor support for software evolution. Software industry is
still code-centric. Most of the time the architecture is
implicit. To cope with this problem, a increasing amount of
research work focuses on architecture recovery and
architecture evolution (e.g. [3][4][5][6][7]). Recently the
concept of architecture and implementation co-evolution
has been identified by various authors (e.g.[9][10][11]).
Architecture and implementation are two levels of
abstraction. They are both subject to evolution. Since they
are linked they should ideally evolved in a synchronized
way to avoid the so called architectural drift and
architectural erosion. Maintaining some kind of
architectural description is useful to ease software
understanding, but another important idea is that the
architectural description should allow to drive or at least to
constrain the evolution of implementation.

Figure 1 provides a very intuitive view of the relationship
between the two abstraction levels. Modifying an entity at a
level of abstraction can both have an impact at this same
level, but also at the lower (or higher) level of abstraction.
In fact whenever two entities are linked by a relation,
changing one entity may have some impact on the other one.

Vertical
impact

Horizontal
impact

Changed
entity

ARCHITECTURE

IMPLEMENTATION

Levels of
Abstraction

Vertical
impact

Horizontal
impact

Changed
entity

ARCHITECTURE

IMPLEMENTATION

Levels of
Abstraction

Figure 1. Vertical vs. horizontal impacts

Horizontal impacts refer to impacts within a given
abstraction level (i.e. modifying a function may imply to
upgrade other functions). By contrast, vertical impacts
cross abstraction levels. For instance modifying a function
may have an upwards impact on an architectural
component. Removing a dependency between two
components may have many downwards impacts on
implementation entities. The nature of the impact obviously
depends on the nature of the entities and the nature of the
relation. The same is true for the action to be taken after
such an impact is detected.

Horizontal consistency must usually be ensured. For
example updating the impacted functions is usually
considered of paramount importance to ensure a consistent
behaviour of the implementation. Vertical consistency could
be much more loose leading to a large range of co-evolution
policies. For instance, upgrade could sometimes be
deferred, taking the risk of a temporary inconsistency and
deviation [9]. With no suitable policy, these inconsistencies
usually lead to irremediable erosion and the very common
situations where architectural artefacts are no longer
updated. In fact, the horizontal dimension has been studied
for long leading for instance to research on impact analysis
either at the implementation level or at the architectural
level (e.g. [8]). The term co-evolution is usually used
vertically when the evolution of two levels of abstraction
can be asynchronous.

1.2. Co-evolution along other dimensions

We discovered over the last years the existence of similar
phenomena along other abstraction dimensions. Co-
evolution is indeed a very common. This paper introduces
two other abstract dimensions and structure the set of
software artefact as a 3D software space. This conceptual
framework is very useful in the systematic identification of
co-evolution processes.

In particular the main objective of this paper is to put the
light on meta-model and model co-evolution. Though this
phenomenon occurs along the meta-dimension popularized
by the UML and MDA standards [12][13][14], the concepts
presented in this paper are by no means restricted to
software developed using modern techniques such as Model
Driven Engineering (MDE) [15][16][17][19] (In this paper
MDA refers to the OMG standard while MDE refer to the
approach which is more general). This paper shows that
meta-model and model co-evolution actually occurs with
current and legacy industrial practices.

In fact, the MDA approach assumes that meta-models
are neat, stable and standardized. In this paper on the
contrary meta-models are considered as complex evolving
software artefacts that are most often recovered from
existing tools rather than engineered from scratch. Simply

put, while the MDA and meta-related technologies are
typically oriented towards forward engineering, this paper
considers meta-models in the context of reverse
engineering.

1.3. Background

In fact, the concepts presented in this paper results from
our experience in various industrial settings. In particular,
we first identified the meta-model and model co-evolution
phenomenon in the context of a collaboration with Dassault
Systèmes (DS). DS is the world leader in CAD/CAM and
one of the largest software company in Europe. Our
collaboration with this company lasted 7 years. During this
period we dealt with many issues related with software
evolution including configuration management, software
architecture and reverse engineering [20][21]. We gained a
lot of expertise about evolution-in-the-large. In fact, DS
faces a wide range of issues related with very large scale
software evolution. More than 1200 software developers
work at the same time on the same software product leading
to tremendous requirements in configuration
management [20]. DS evolves a huge software, CATIA,
which is made of more than 70 000 classes, 800
frameworks, and 3000 DLLs. This leads to tremendous
requirements on software architecture [22][23]. In fact,
Dassault Systèmes is with Microsoft one of the pioneer of
component-based software development. In the mid 90’s
DS started to design and develop an in-house component-
technology called the OM and at the same time this
technology was used to develop CATIA components [21].
It will be shown in this paper that this is in fact a typical
example of meta-model and model co-evolution.

The rest of the paper is structured as following. In
Section 2 a simplified explanation of what is meta-model
and model co-evolution is provided. Section 3 gives an
overview of the conceptual framework referred as the “3D
software space”. The first dimension, called the meta-
dimension, is presented in section 4. Section 5 introduces
the “product engineering dimension”. Section 6 describes
the third dimension, the “representation dimension”.
Section 7 shows how evolution interacts with this 3D space.
Section 8 gives examples of observable meta-model/model
co-evolution phenomenon. Finally section 9 concludes the
paper.

2. Language/Program/Tool co-evolution

Meta-related notions could be difficult to grasp at the
first sight, especially when applied in complex industrial
contexts. Before to introduce the 3D software space in a
systematic way, let us introduce the issue in terms of much
more narrow but much more intuitive concepts. For the sake

of clarity, the illustrating problem is based on well-known
programming-in-the-small concepts. Let us consider three
kind of entities: programs, (programming) languages, and
(language-dependent) tools (e.g. compilers). Three kinds of
relation can be considered: (1) language/program, (2) tool/
program, (3) tool/language. All these relations leads to co-
evolution issues as suggested below.

2.1. Language / program co-evolution

A program is closely linked with the language it is
written in. It is well known that a change in the language
could have a strong (downwards) impact on programs. This
leads to a wide range of upgrade and migration strategies.
When a new version of the language is made available,
developers have first to determine which programs are
impacted by the language modification. They could then
decided to upgrade impacted programs to ensure
consistency with the new language. Alternatively they
could delay the changes and continue to use the old
language version. They might to that for impacted programs
while using the new version to develop new programs. This
common situation reveals language and program co-
evolution. This phenomenon is usually not made explicit.

2.2. Tool / program co-evolution

Language dependent tools such as interpreters,
compilers also have a great influence on programs. The
availability of such primary tools is of fundamental
importance in practice. Secondary tools such as
documentation generators, metric and profiling tools are
also very appreciated in industrial settings, in particular in
the context of quality insurance processes. Developers may
have to adapt their programs to use a particular tool. This
could be to take advantages of a feature (e.g. adding tags in
comments to use a documentation generator like javadoc).
Sometimes this is to avoid a bug in the tool (e.g. removing
the use of C++ templates in a program because the compiler
on a given platform do not handle it properly). Tool
evolution leads to tool and program co-evolution issues.

2.3. Language / tool co-evolution.

Languages are abstractions. Tools are concrete
implementations supporting these languages. A change in a
language specification could have many impacts on many
tools. This leads to language and tool co-evolution.
Upgrading primary tools such as compiler and interpreters
is usually done first to get synchronized with the language.
By contrast, the modification of secondary tools such as
browsers are often delayed. Deviation from the language
specification is common for such tools.

2.4. Discussion

Summing up, programs, languages and tools are linked
by three kinds of relation. Each relation give rises to co-
evolution issues. At this point the reader might not be
convinced by the relevance of these issues. A few
observations must be made to relate the discussion to the
context of evolution-in-the-large.

One might argue that changes in languages and tools are
seldom when compared to changes in programs. This is
quite true but remember that the time scale considered in
this paper is expressed in terms of years or decades, not
weeks or months. Everything evolve in large companies.
Software architecture evolve. Tools evolve. Languages
evolve. While small projects apply versionning concepts to
programs, large scale projects also deal with language
versionning and tool versionning. Languages and tools are
consider as actual part of the software, which is very true.

It is also very important to stress that while the term
“language” might evoke to researchers a neat, standardized
and stable thing, “real-life” is industry is often quite
different. To a large extend, today software industry largely
relies on many ill-defined, proprietary and unstable
languages. The same is true for tools. The goal of this paper
is to model industrial practices as they are.

Taking into account legacy software and legacy practices
is an important requirements. In the early decades of
computer science, many large companies developed in-
house programming languages and made them evolved
incrementally while developing programs at the same time.
These are real-life language/program co-evolution
scenarios in which language evolution is driven by the
problems encountered in developing programs.

Note that in this context the language remains most of the
time implicit; there is no explicit description of the
language. As reported in [24], the exact grammar of
programming languages such as COBOL variants is often
unknown and has to be recovered from tools. This leads to
grammar reverse engineering [24]. Many legacy and
proprietary languages have actually evolved mostly through
patches in compilers or interpreters to add or remove special
features. Many language definitions, if ever existed,
deviated from tool evolution and became inconsistent. This
is language erosion, a real-life example of language/tool co-
evolution.

One might argue that this time is over, that modern
languages and tools are much more stable and well
engineered. This is unfortunately not true. In the last years
the boom in internet-based technologies gives rise to the
apparition of a very large number of languages such as
scripting languages with internet-based features. These
languages are more than ever linked with tool evolution
such as web servers. Evolution is rapid and chaotic.

Languages are ill-defined and unstable. The future could be
soon populated by legacy web applications raising serious
language/program co-evolution issues.

Modelling languages also evolve. This includes in
particular the continuous evolution the UML standard over
the years. Just like other languages, UML greatly evolves
(e.g. UML 1.0 to 1.5 and now 2.0) and presents symptoms
of language extension and language contraction. Quoting
Warmer about UML 2.0: “The evolution of UML is
absolutely required to make sure that UML will stay up to
date with the latest developments in the software industry.
The direction taken is guided by the user community, but it
requires a big effort “[26]. This evolution is accompanied
by strong co-evolution issues, not only with respect to the
large amount of UML diagrams that, but also with respect
to the production of large amount of commercial CASE
tools. In practice these tools are permanently out of sync.
They often deviate from the standard and subtle or most
often in important ways.

Component-based development is also getting very
popular and component technologies such as COM, .NET
or EJB are largely used. These technologies are based on
“component models” that defines new concepts and rules
that must be followed when developing component-based
programs. Though no specific syntax is provided
component models could be seen as virtual languages [25].
These languages are often ill-defined, unstable and they
greatly evolve because the notion of component is in
constant evolution. Once again, this leads to language/
program co-evolution issues. This point is illustrated in
Section 7 using Dassault Systèmes as a case study.

Co-evolution is a general phenomenon. It can be applied
to requirements, modelling languages, software
architecture, etc. The term program is therefore inadequate.
Since languages do not even need to be explicit, the same
apply to the term language. We use instead more general
concepts: models, meta-models and metaware. Roughly put
programming language are special cases of meta-models,
programs are special cases of models, and programming
tools are special case of metaware tools. These concepts and
their relationships are described in the remainder of this
paper in a systematic way using the 3D software space.

3. The 3D software space

The complex nature of software can be represented as a
3D software product space as depicted in Figure 2.
Figures 6, 8 and 9 on the next pages zoom on this space and
illustrate its content by means of simple examples. The
reader is invited to browse these figures paper to get an
overall idea of the content of this space.

Each dimension corresponds to a different kind of
abstraction. All dimensions are orthogonal as it will be
show in the next sections.

D1: The meta-dimension. This dimension constitutes
the core of the MDA standard. Four levels are
distinguished: instances, models, meta-models and meta-
meta models. Programs are at the model level (M1),
programming-language at the meta-level (M2). The
instance level (M0) and the meta-meta level (M3) are
included for the sake of completeness. Meta-model/model
co-evolution is linked to this dimension.

D2: The engineering product dimension. This
dimension aims to structure the software according to each
phase in the software life-cycle. It helps for instance to
make the distinction between requirement descriptions,
architectural documents, and implementation artefacts.
Architecture/implementation co-evolution phenomenum is
linked to this dimension.

D3: The representation dimension. There are many
different ways to represent a given entity ranging from very
abstract representations to concrete ones. For instance a
programmer might have a mental image of a software
architecture. The architecture might also be represented as a
boxes-and-arrows graph or as an graph stored in an XML
file. Concrete representations heavily depends on the tools
that manipulate it. It will be shown that language/tool co-
evolution is linked to this dimension.

Each point of this space is represented in the subsequent
figures by a cell because it corresponds to a class of
software artefacts. Note that the name of each class is
conveniently formed by appending the corresponding
coordinates in reverse order D3-D2-D1. For instance CR-D-
M1 reads “Concrete Representation of Design Models” and
AR-A-M2 stands for Abstract Representation of
Architectural Meta-Models.

Figure 2. The 3D Software Space

D1
M3 Meta-Meta-Model

Meta-ModelM2

M1 Model

M0 Instance

MetaD1
M3 Meta-Meta-Model

Meta-ModelM2

M1 Model

M0 Instance

M3 Meta-Meta-Model

Meta-ModelM2

M1 Model

M0 Instance

Meta D2
R Requirements

ArchitectureA

D Design

I Implementation

EngineeringD2
R Requirements

ArchitectureA

D Design

I Implementation

R Requirements

ArchitectureA

D Design

I Implementation

Engineering D3
IR Implicit repr.

Abstract repr.AR

CR Concrete repr.

RepresentationD3
IR Implicit repr.

Abstract repr.AR

CR Concrete repr.

Representation

In fact, the density of the space is far from uniform.
Almost all software artefacts are stuck near to the origin,
where programs are. Industry is still code-centric. To
illustrate this phenomenon, gray scales are used in most
figures. Moreover each dimension will be described as a
pyramid in the next sections (see Figures 3, 5 and 7). Since
the 3 dimensions correspond to a different kind of
abstraction, the pyramid structure is well suited to model
reality. The width of the pyramids represents alternatives or
variants, while the depth represents the many software
entities that constitute each alternative.

4. The meta dimension (D1)

The meta-dimension is surely the most difficult
dimension to grasp but it is also the most powerful. It
constitutes the core of this paper. In this paper the MDA
standard is taken as a reference.

4.1. The meta-pyramid (D1)

The meta-pyramid is depicted in Figure 3. A few
examples are provided for each level. More examples can
be found in Figure 5 in which the meta dimension is
represented horizontally.

The most obvious level within the meta pyramid is the
model level (M1), so let us start by this level. This is the
level where regular programs are. This level corresponds to
what could be called appliware. Entities at this level
depends on the particular application domain considered
(e.g. banking, nuclear plant design, etc.). For instance the
concepts of “account” and “client” might be a part of the
banking model, while the concept of “reactor” might be part
of the nuclear plant model.

The model level is used to manage the set of all possible
real-world situations which are represented at the instance
level (M0). For instance “Tom” might be a client that owns
two accounts “a4099” and “a2394” with a respective
balance of $800 and $2000. A point at the instance level

describes a particular state of a software at a particular point
in time. It corresponds to a program state. Program
execution indeed corresponds to the evolution of this state.

Metaware by contrast is independent from application
domains. The meta-model level (M2) is used to manage the
production of software applications. It should describes
therefore all software engineering concepts such as
“classes”, “methods”, but also “modules”, “frameworks”,
“configuration”, “dynamic libraries”, etc. In simple words
meta-models capture the set of the concepts used to develop
software.

On the top of the pyramid, the meta-meta-model level
(M3) describes how the meta-models should be described
and managed. For instance the MDA standard proposes to
use the Meta Object Facilities (MOF) [31]. Simply put, the
MOF is a self descriptive subset of UML that allows to
describes arbitrary software meta-models (not only the
UML meta-model). The MOF is to meta-models what the
BNF is to grammars, a standardized way to represent them.
Though the meta-meta level is important, this paper
concentrates on the meta level for the sake of simplicity.
Similarly the term metaware will be used for both level M2
and M3, to avoid introducing the term metametaware.

4.2. Software = Appliware + Metaware

The meta pyramid depicts the realm of software. The
next sections will help in making this dimension more
concrete, but what is important to understand at this point is
that at each level M1, M2, M3 there is some piece of
software. Software at the level n+1 is used to build and
control software at the level n. Metaware is application-
independent software that help producing software
applications, that is appliware. A compiler is an example of
metaware tools. It is based on the meta-model of the source
programming language (e.g. the java meta-model for the
javac compiler).

We found distinction between metaware and appliware
very important to understand industrial practices. For

Figure 3. D1: the meta pyramid Figure 4. D1: the meta-actor pyramid

D1
M3 Meta-Meta-Model

Meta-ModelM2

M1 Model

M0 Instance

MOF

UML MM

Java MM

C# MM
Cobol MM

EJB MM

ACME Banking Apps

FOO Banking Apps Z Bookstore Apps

ACME Banking State 3pm Z Bookstore state 9pm

FOO Banking State 10am

alternatives

Software engineering
« known-how »

Real world

Applications

End users

Software
developers

Soft. engineering
experts

Metaware
experts

Z MM

of
entities

Metaware
« known-how »

D1
M3 Meta-Meta-Model

Meta-ModelM2

M1 Model

M0 Instance

MOF

UML MM

Java MM

C# MM
Cobol MM

EJB MM

ACME Banking Apps

FOO Banking Apps Z Bookstore Apps

ACME Banking State 3pm Z Bookstore state 9pm

FOO Banking State 10am

alternatives

Software engineering
« known-how »

Real world

Applications

End users

Software
developers

Soft. engineering
experts

Metaware
experts

Z MM

of
entities

Metaware
« known-how »

M
ETA

W
ARE

APPLI
W

ARE

instance, during our 7-years collaboration with Dassault
Systèmes we always stayed at the meta-level. We know
much about DS’ metaware. By contrast, we never saw
DS‘appliware [20]. In fact, we never saw a single line of
application code in 7 years. Metaware and appliware are
distinct parts of software. Software is metaware plus
appliware. Metaware is software that manage and control
software. As it will be shown in the next sections meta-
models are just the visible part of metaware. Appliware is
software that represents applications. Software covers the
three higher levels of the pyramid (M1,M2,M3). Level M1
corresponds to appliware, the world of applications. Level
M2 and M3 corresponds to metaware. Note that the lower
level M0 is about particular states of software execution,
which is usually not considered as software.

4.3. The meta/actor pyramid

In fact, one good way to grasp the distinction between
the various levels in the meta pyramid is to consider the
actors involved at each level. This leads to the meta/actor
pyramid depicted in Figure 4. The goal of the actors
working at the level n+1 is to help actors at the level n to do
their job by providing them software. As shown below,
raising from a level to the next one decreases the number of
people concerned by various orders of magnitude.

End-users are the instance level actors (M0). They
interact with software applications. They use appliware to
perform their job. Billions of people around the planet are
direct or indirect users of software applications. About
500 000 people use CATIA applications to do their jobs.

Appliware developers are developers of software
applications (M1). They produce appliware for the benefit
of M0 actors. They use metaware tools to do their job. The
number of developers is estimated to be about 6
millions [16]. The great majority of them work at the M1
level. Within the context of DS, more than 1200 software
engineers work on developing CATIA applications.

Metaware developers are the meta level actors (M2).
They produce metaware for the benefit of the M1 actors. In
practice, each large company includes a separated group of
people that define processes, work on quality and build/
integrate tools to manage applications development. They
are referred as “know-how providers” in [16]. Their number
is estimated to be around 100 000 for the globe [16]. In the
context of Dassault Systèmes, these tasks are handled by the
Tool Support Team (TST) [20]. This team, made of a few
dozens of people, work on metaware and build in-house
tools to support CATIA development.

At the higher level of the pyramid, the number of people
dealing with meta-meta models (M3) is obviously even
lower. It might be something around a few thousands for the
whole planet because most of the time the meta-meta level

is not expressed. However, this could change in the future in
particular if the MDA and MOF find their place in industry.

5. The engineering dimension (D2)

Though it is an over-simplification, the waterfall
lifecycle clearly shows that software products are not only
made of programs: software also includes requirement
specifications, global design, detailed design, etc. This
leads to dimension D2.

5.1. The engineering pyramid (D2)

Dimension D2 aims at structuring software artefacts
following the a very basic engineering process. For the sake
of simplicity, only 4 levels are distinguished in the context
of this paper, namely the requirement level (R), the
architectural level (A), the design level (D), and the
implementation level (I). This view is obviously a huge
simplification of the software realm. The purpose is just to
cross this dimension with the other ones, so the model must
be simple enough to get understandable results. The next
figure shows the engineering product pyramid. Each level is
illustrated by different examples. More detailed examples
are provided in next sections.

5.2. The engineering / actor pyramid (D2)

Software lifecycles like the waterfall model not only
help in identifying the variety of software artefacts. They
also make it clear that various actors with different skills are
involved in the production of software. Though the
engineering/actor pyramid is not depicted, each level of the
D2 pyramid involves different actors: requirement
engineers, software architects, designers, and developers. A
typical project is formed by many developers, but only few
architects.

D2
Requirements

Architecture

Design

Implementation

Use
cases

UML class
diagrams

C# impl.
EJB
impl.

Cobol impl.

alternatives

R

A

D

I

Deployment
diagram

State
charts

DB impl.

of
entities

D2
Requirements

Architecture

Design

Implementation

Use
cases

UML class
diagrams

C# impl.
EJB
impl.

Cobol impl.

alternatives

R

A

D

I

Deployment
diagram

State
charts

DB impl.

of
entities

Figure 5. D2: the engineering pyramid

5.3. Crossing D1 and D2

Confusing the meta dimension and the engineering
dimension is quite common, especially when considering
the higher levels of abstractions. These two dimensions are
however truly orthogonal. For instance, there are
architectural models (A-M1), architectural meta-models
(A-M2), design model (D-M1), design meta-models (D-
M2) and so on. Figure 6 illustrates this property by means
of a very simplified yet consistent example. The banking
application of the virtual ACME company is considered.

In fact, Figure 6 is centred around column M1 (models)
because the engineering process we speak about is defined
on models. The reading of the figure should therefore start
from that column: other columns are derived from M1.
Column M2 acts as the key for the concepts instantiated in
column M1. That is, column M2 describes the various meta-
models in an informal way, using a UML-like class diagram
notation. In fact, boxes, lines and symbols are used to
described the meta-models (see column M3). On the
opposite side column I describes a particular state of the real

world as modelled for the purpose of the ACME banking
software. The reader is invited to carefully read Figure 6
which is expected to provided enough intuitive material to
grasp the idea.

5.4. Cross-links between levels and co-evolution

All the concepts presented in Figure 6 are connected.
However, for the sake of readability only a few links have
been drawn between the different cells. The nature of the
cross-links depends on the dimension considered.

Vertical cross-links correspond to tracability links
between the artefacts produced during the software life-
cycle. At the level of meta-model tracability links can just
be modelled as regular associations. We first applied this
approach to link software architecture and source code in
the context of java beans [18], and then in the context of
CATIA [22]. Maintaining these links is fundamental to
support co-evolution along the engineering dimension (D2),
and in particular architecture/implementation(A/I) co-
evolution. Tracability between models is considered as an
important issue in the MDA approach [14].

Figure 6. Crossing the meta-dimension (D1) with the engineering dimension (D2)

D3

D2
Use caseActor

Requirement

Node Executable

Subsystem

Components

Connectors

Functional Req.

Non Funct. Req.

Feature

Class Association

AssociationEnd

JavaClass

Statement

Package

Expression

JavaMethodJavaField

M2

class client implements Serializable {
private String name ;
private Vector Accounts ;
public String getName() {

return this.name ;
}
public void setName(String name) {

if (name == null)
throws new NullPointerException() ;

this.name = name

Client
*

accountsclient

name : string

1

balance : int

R1: all transfers must
secured

Cash
Machine

<<tcpip>>
Bank

Server

widthdraw

transferMoney
client

R2: clients can transfer
money either via cash
machines and internet

Account

…

R3: withdraw requires
previous identifiication

M1
Instances

D1

Symbol

Lines

Boxes

M0

Tue 24 Dec, 10pm
Tom wants to withdraw
100€ from the cash machine
located "12 rue de la
monnaie" at Bruxelles

tom : client

The XB12 feature is
running on the cash
machines. The cash
machine Cs29485 is
connected to the ACME
bank server executable
XP23Serv via a secure
connector.

balance= 24600

a231 : Account

balance= 300

a2204 : Account

name = "tom"

tom : Client

ACME bank
server

Cs29485

26400

300

"tom"

2

R

A

D

I

M3
Models Meta-models Meta-meta Models

Java objects References to objects

Appliware execution
Appliware Metaware

Software

Cs292385 Cs291285

D3

D2
Use caseActor

Requirement

Node Executable

Subsystem

Components

Connectors

Functional Req.

Non Funct. Req.

Feature

Class Association

AssociationEnd

JavaClass

Statement

Package

Expression

JavaMethodJavaField

M2

class client implements Serializable {
private String name ;
private Vector Accounts ;
public String getName() {

return this.name ;
}
public void setName(String name) {

if (name == null)
throws new NullPointerException() ;

this.name = name

Client
*

accountsclient

name : string

1

balance : int

R1: all transfers must
secured

Cash
Machine

<<tcpip>>
Bank

Server

widthdraw

transferMoney
client

R2: clients can transfer
money either via cash
machines and internet

Account

…

R3: withdraw requires
previous identifiication

M1
Instances

D1

Symbol

Lines

Boxes

Symbol

Lines

Boxes

M0

Tue 24 Dec, 10pm
Tom wants to withdraw
100€ from the cash machine
located "12 rue de la
monnaie" at Bruxelles

tom : client

The XB12 feature is
running on the cash
machines. The cash
machine Cs29485 is
connected to the ACME
bank server executable
XP23Serv via a secure
connector.

balance= 24600

a231 : Account

balance= 24600

a231 : Account

balance= 300

a2204 : Account

balance= 300

a2204 : Account

name = "tom"

tom : Client

name = "tom"

tom : Client

ACME bank
server

Cs29485

26400

300

"tom"

2

R

A

D

I

M3
Models Meta-models Meta-meta Models

Java objects References to objects

Appliware executionAppliware execution
AppliwareAppliware Metaware

Software

Cs292385 Cs291285

Horizontal cross links are different in nature: they relate
an entity to its model and conversely a model to its
instances. The modelling of these cross-links constitutes the
basis to support co-evolution along the meta-dimension and
in particular meta-model/model (M2/M1) co-evolution.

6. The representation dimension (D3)

The reader might have noticed that all the examples in
Figure 6, do not correspond to the same kind of
representations. In fact one can imagine many other
alternative representations for each cell. What is needed is
an additional dimension to represent these variations. This
leads to D3, the “representation dimension” (D3).

6.1. The representation pyramid (D3)

It is important to recognize that a single piece of
information can be represented in many different ways
ranging from implicit representations to very concrete ones.
The fact that a piece of data is not explicitly represented as
a sequence of bits does not mean that it does not exist. For
instance, most of the time, software architecture is not
explicitly represented. Software architects maintains some
mental images and this might be enough. To communicate,
box-and-arrows diagrams are often used. Other information
is also represented by means of natural languages. Or it is
simply part of the “implicit knowledge” of a given
company. These kind of representations are obviously not
adapted to automated processing. Very concrete
representations are required when tools support is needed.

The figure above depicts the representation pyramid.
Though there is a continuum of abstraction levels, only
three levels are named for the sake of simplicity: implicit
representation (IR), abstract representation (AR) and
concrete representation (CR). The lowest level is oriented
towards tool processing, while the highest level represents
implicit knowledge. Though the actor pyramid is not
depicted human actors would be at the top of the pyramid
while the many tools that process concrete representations
would be at the lower level.

The shape of the pyramid is justified by the fact that a
very large set of representation techniques can be used to
represent a particular software entity. This includes for
instance graph of objects in memory, tuples in a database,
XML files, etc. Concrete representations greatly vary
depending on the purpose of the tool considered. For
instance a compiler, a syntax editor and a test coverage tool
might represent the same program with very different
internal structures. That’s just a matter of concrete
representation.

Figure 8. D1+D3: Alternatives representations of a Java program (I-M) and a Java meta-model (I-MM)

: Class

name = "Client"

file ::= { <imports> }
{ classdecl | interfdecl }

classdecl ::= "class" <id>
["extends" <id> { "," <id> }]
["implements" <id> { "," <id> }]
<classbody>

interfdecl ::= "interface" <id>
["extents" <id> { "," <id> }]
<interfacebody>

…

Class

name

Interface

name

Implements

0..1
superclass CExtendsC

* subclasses

* *

IExtendsI

*

*
super

package bank ;
import java.io ;

class Account {
…

}
class Client implements Serializable {

…
}

Package

name
isSealed

* *

<package name = "bank" sealed = "false" >
<import packagename="java.io" />
<import packagename="java.lang" />
<class name="Bank.Account">

<cextendsc classname="java.lang.Object" />
<implements itfname="java.io.Serializable" />

</class>
…

</package>

<!ELEMENT package (import*,(class|interface)*)>
<!ATTLIST package name ID #REQUIRED >
<!ATTLIST package sealed PCDATA #REQUIRED >

<!ELEMENT import EMPTY>
<!ATTLIST import package ID #REQUIRED >

<!ELEMENT class (cextendsc,implements*)>
<!ATTLIST class name ID #REQUIRED >

<!ELEMENT interface (iextendsi*)>
<!ATTLIST interface name ID #REQUIRED >

<!ELEMENT cextendsc EMPTY>
<!ATTLIST cextencs ID #REQUIRED >
…

Imports

* clients

targets*

Create table PACKAGE (
name varchar,
sealed integer

)
Create table CLASS (

name varchar,
superclass varchar

)
Create table IMPLEMENTS (

classname varchar,
interfacename varchar

)
…

PACKAGE
name sealed
bank false
java.io true
java.lang true

IMPLEMENTS
classname interfacename
bank.Clent java.io.Serializable
…

CLASS
name superclass
bank.Account java.lang.object
bank.Client java.lang.object

…M1

M2

D1

D3UML/MDA Language Database XML

M
E

T
A

W
A

R
E

A
P

P
L

O
W

A
R

E

D2

: Package

name = "bank"
sealed = false

o : Class

name = "Object"

: Class

name = "Account"

: Interface

name = "Serializable"

Implements

superclass superclass

: Class

name = "Client"

: Class

name = "Client"

file ::= { <imports> }
{ classdecl | interfdecl }

classdecl ::= "class" <id>
["extends" <id> { "," <id> }]
["implements" <id> { "," <id> }]
<classbody>

interfdecl ::= "interface" <id>
["extents" <id> { "," <id> }]
<interfacebody>

…

Class

name

Interface

name

Interface

name

Implements

0..1
superclass CExtendsC

* subclasses

* *

IExtendsI

*

*
super

package bank ;
import java.io ;

class Account {
…

}
class Client implements Serializable {

…
}

Package

name
isSealed

* *

<package name = "bank" sealed = "false" >
<import packagename="java.io" />
<import packagename="java.lang" />
<class name="Bank.Account">

<cextendsc classname="java.lang.Object" />
<implements itfname="java.io.Serializable" />

</class>
…

</package>

<!ELEMENT package (import*,(class|interface)*)>
<!ATTLIST package name ID #REQUIRED >
<!ATTLIST package sealed PCDATA #REQUIRED >

<!ELEMENT import EMPTY>
<!ATTLIST import package ID #REQUIRED >

<!ELEMENT class (cextendsc,implements*)>
<!ATTLIST class name ID #REQUIRED >

<!ELEMENT interface (iextendsi*)>
<!ATTLIST interface name ID #REQUIRED >

<!ELEMENT cextendsc EMPTY>
<!ATTLIST cextencs ID #REQUIRED >
…

Imports

* clients

targets*

Create table PACKAGE (
name varchar,
sealed integer

)
Create table CLASS (

name varchar,
superclass varchar

)
Create table IMPLEMENTS (

classname varchar,
interfacename varchar

)
…

PACKAGE
name sealed
bank false
java.io true
java.lang true

IMPLEMENTS
classname interfacename
bank.Clent java.io.Serializable
…

CLASS
name superclass
bank.Account java.lang.object
bank.Client java.lang.object

…

PACKAGE
name sealed
bank false
java.io true
java.lang true

PACKAGE
name sealed
bank false
java.io true
java.lang true

IMPLEMENTS
classname interfacename
bank.Clent java.io.Serializable
…

IMPLEMENTS
classname interfacename
bank.Clent java.io.Serializable
…

CLASS
name superclass
bank.Account java.lang.object
bank.Client java.lang.object

…

CLASS
name superclass
bank.Account java.lang.object
bank.Client java.lang.object

…M1

M2

D1

D3UML/MDA Language Database XML

M
E

T
A

W
A

R
E

A
P

P
L

O
W

A
R

E

D2

: Package

name = "bank"
sealed = false

: Package

name = "bank"
sealed = false

o : Class

name = "Object"

: Class

name = "Account"

: Class

name = "Account"

: Interface

name = "Serializable"

: Interface

name = "Serializable"

Implements

superclass superclass

D3
Implicit repr.

Abstract repr.

Concrete rep.

Text

Objects

mental
image

XML
files

alternatives

DB tables

IR

AR

CR

Lines and boxes
. . .

. . .

Reification
of

entities

D3
Implicit repr.

Abstract repr.

Concrete rep.

Text

Objects

mental
image

XML
files

alternatives

DB tables

IR

AR

CR

Lines and boxes
. . .

. . .

Reification
of

entities

Figure 7. D3: the representation pyramid

6.2. Crossing D3 and D1-D2

Though this might not be obvious, the representation
dimension D3 is orthogonal both to the engineering
dimension D2 and the meta dimension D1. Due to space
constraint only small slices of the space could be provided.

Figure 8 on the previous page illustrates the variety of
concrete representations both for a java program (M1) and
a java meta-model (M2). At both levels, the same
information is represented in different ways. Since all
alternative representations are more or less at the same level
of abstraction with respect to D3, this example illustrates
the width of the representation pyramid but not its height.

The continuum from implicit representations to very
concrete ones is illustrated in Figure 9 for the metaware
column (M2). This small slice of the software space
illustrates in particular the notion of conceptual meta-
model, specification meta-model and implementation meta-
model as well as metaware tool. Due to limitation space,
Figure 9 illustrates the height but not the width of D3
pyramid: only one possible representation is selected when
going down from one level to the next one.

A very simple example of meta-model (a small subset of
the java language) has been selected for the sake of clarity.
In practice the approach has to be applied on much more
complex meta-models, such as proprietary architectural
meta-model (e.g. [20][27])1.

The implicit knowledge a java programmer could have
about the java language would fit on the top of the pyramid.
A programmer might know for instance that java provides
simple inheritance between “classes”, yet a “class” may
implement multiple “interfaces”. This is the implicit part of
the metaware. Just implicit knowledge.

At the other extremity of the spectrum, we found very
concrete metaware artefacts managed by metaware tools. In
the case of a programming language, metaware tools
include all tools that parse, analyse, interpret, and
manipulate programs: interpreters, compilers, browsers,
etc. Obviously, each tool have an embedded knowledge of
the language it manipulates. This knowledge is represented
somehow in the code of the tool. This observation is
consistent with what Lammel and Verhoef report in [24].

As show in Figure 9, the role of meta-models is central
to metaware. Meta-models makes the bridge between
concrete metaware items and informal metaware
knowledge. Meta-models constitute the conceptual part of
the metaware. In the academic world, the term meta-level
usually evokes this part, because meta-models are neat
abstractions to reason about. Unfortunately our experience

1. For a full understanding of the various steps described in Figure 9 it is
assumed that the reader has both a knowledge of java and the
understanding of the refinement process as described in [30]. .

shows that this part is often missing in industry. Though the
term meta-level might not evoke anything in large
companies, metaware does exist. It takes however the form
of software development tools. Many of these tools are
complex and often proprietary [20]. Recovering meta-
models is important in particular since meta-models capture
the application independent part of the company know-
how [32].

Finally it should be noted that the distinction made
between conceptual meta-model, specification meta-model
and implementation meta-model is indeed based on the

Class

name

Interface

name

Implements

0..1
superclass CExtendsC

* subclasses

* *

IExtendsI

*

*
super

Package

name
isSealed

* *

Package

name : String
isClass : boolean
isInterface : boolean

Class

superclass

0..1

*

name : String

interfaces

*

1

Class

-shortname : String
-isClass : boolean

-retrieveInterfaces() : List
+getName() : String
+isClass() : boolean
+isInterface() : boolean
+getSuperclass() : Class
+getInterfaces() : List
+getPackage() : Package

-super

0..1
post : result = isClass

post : result = not isClass

class Class {
private String shortname ;
private boolean isClass ;
private Class super ;
private Vector retrieveInterfaces() { … }
public String isClass() { return isClass ; }
public boolean isInterface() { return ! IsClass ; }
public Class getSuperclass() { return super ; }
public String getName() { return name+getPackage().getName(); }
…
Class() { .. }

}

post : result = super

D3

Conceptual meta-model

Specification meta-model

Implementation meta-model

Tool derived from
the meta-model

Textual language
specification

Programming
knowledge

class
inheritance

interface

Optimizing
compiler
jcv0.2.4

context c:Class
inv i1: c.superclass->isEmpty

= c.name="java.lang.Object"
inv i2: c.name.startsWith(c.package.name)

context Class
inv i3 : isClass xor isInterface
inv i4 : isInterface implies superclass->isEmpty
inv i5 : superclass->notEmpty implies

superclass->isClass
inv i6 : c.interfaces->forall(i | i.isInterface)

post : result = shortName.concat(package.name)

Class

name

Interface

name

Implements

0..1
superclass CExtendsC

* subclasses

* *

IExtendsI

*

*
super

Package

name
isSealed

* *

Package

name : String
isClass : boolean
isInterface : boolean

Class

superclass

0..1

*

name : String

interfaces

*

1

Class

-shortname : String
-isClass : boolean

-retrieveInterfaces() : List
+getName() : String
+isClass() : boolean
+isInterface() : boolean
+getSuperclass() : Class
+getInterfaces() : List
+getPackage() : Package

-super

0..1
post : result = isClass

post : result = not isClass

class Class {
private String shortname ;
private boolean isClass ;
private Class super ;
private Vector retrieveInterfaces() { … }
public String isClass() { return isClass ; }
public boolean isInterface() { return ! IsClass ; }
public Class getSuperclass() { return super ; }
public String getName() { return name+getPackage().getName(); }
…
Class() { .. }

}

post : result = super

D3

Conceptual meta-model

Specification meta-model

Implementation meta-model

Tool derived from
the meta-model

Textual language
specification

Programming
knowledge

class
inheritance

interface

Optimizing
compiler
jcv0.2.4

Class

name

Interface

name

Interface

name

Implements

0..1
superclass CExtendsC

* subclasses

* *

IExtendsI

*

*
super

Package

name
isSealed

* *

Package

name : String
isClass : boolean
isInterface : boolean

Class

superclass

0..1

*

name : String

interfaces

*

1

Class

-shortname : String
-isClass : boolean

-retrieveInterfaces() : List
+getName() : String
+isClass() : boolean
+isInterface() : boolean
+getSuperclass() : Class
+getInterfaces() : List
+getPackage() : Package

-super

0..1
post : result = isClass

post : result = not isClass

class Class {
private String shortname ;
private boolean isClass ;
private Class super ;
private Vector retrieveInterfaces() { … }
public String isClass() { return isClass ; }
public boolean isInterface() { return ! IsClass ; }
public Class getSuperclass() { return super ; }
public String getName() { return name+getPackage().getName(); }
…
Class() { .. }

}

post : result = super

D3

Conceptual meta-model

Specification meta-model

Implementation meta-model

Tool derived from
the meta-model

Textual language
specification

Programming
knowledge

class
inheritance

interface

Optimizing
compiler
jcv0.2.4

context c:Class
inv i1: c.superclass->isEmpty

= c.name="java.lang.Object"
inv i2: c.name.startsWith(c.package.name)

context Class
inv i3 : isClass xor isInterface
inv i4 : isInterface implies superclass->isEmpty
inv i5 : superclass->notEmpty implies

superclass->isClass
inv i6 : c.interfaces->forall(i | i.isInterface)

post : result = shortName.concat(package.name)

Figure 9. D3: Metaware

application of the principles introduced by Fowler [30].
These levels are usually applied on models to develop
appliware through successive refinement. We found
however these concepts very useful to categorize existing
meta-models. In fact, reading Figure 9 from bottom to top
clearly suggests a forward engineering process, while
reading the figure from top to bottom leads to a reverse
engineering process. While D2 is centred around appliware
engineering, D3 is centred around metaware engineering.

7. Evolution: entering the fourth dimension

As depicted in Figure 10, evolution can be introduced in
the conceptual framework by adding a fourth orthogonal
dimension representing time.

This modelling put emphasis on the fact that every
classes of software artefacts evolve. Everything evolve or
will evolve soon or later. Large companies with a long
background about software development know that. Along
the years and decades they accumulate know-how about
evolution-in-the-large. However, stability is still a very
common yet implicit assumption made in many research
projects. We are not aware for instance of much research
work concerning meta-model evolution.

Co-evolution phenomena can easily represented by
crossing one abstraction dimension with the time
dimension. A pair of cells X and Y leads to co-evolution
that will be noted X/Y-CoE. Figure 11 depicts how
evolution interact with the engineering dimension revealing
for example architecture/implementation co-evolution (i.e.
A/I-CoE). The figure also suggests that the rate of changes
greatly vary between software artefacts. For instance, the
architecture of a software is expected to be much more
stable that its implementation.

Figure 12 add time to the meta-dimension. Notice that
instance evolution (M0-E) corresponds to program
execution. The rate of change is therefore extremely high,
especially when compared with higher level of abstractions.
Similarly models (e.g. programs) are much more unstable
than meta-models (e.g. languages).

The conceptual framework is useful to structure ideas
but it is sometimes too abstract to get a real feeling of what
happen in practice. Let us illustrate the concept of meta-
model and model co-evolution (M2/M1-CoE).

8. Example of M2/M1 co-evolution in industry

From our collaboration with Dassault Systèmes we can
draw various conclusions about large scale software
development and evolution. Most conclusions could also
apply to other industrial contexts as well.

(1) Evolution-in-the-large is often achieved through ad-
hoc processes, tools and concepts. This should not be
surprising because many problems are discovered on the
run. Pragmatic solutions are incrementally elaborated in a
“as-needed” mode and sometime in “panic” mode to solve
unexpected issues. For instance, in [20] we describe how
ADELE, the configuration management tool developed by
our team, was adopted at large by Dassault Systèmes and
how the huge requirements in collaborative development
lead to “hot” periods. Large companies where thousands of
developers work on the same software cannot stop their
development process when they find problems. They have
to find solutions.

(2) Architecture is fundamental to evolution-in-the-large
but its explicit representation with ADLs raises more
problems than it solves. Industry is code centric and most
architectural facts should be extracted from the code.
Initially one of our goals was to study what kind of ADLs
could be applied to support the evolution of CATIA
[23][28]. We soon discover however that a much better
approach was to provide architectural recovery and
software exploration tools [22][29].

(3) The notion of software architecture is really more
complex than the academic vision tend to explain and its
exact nature really depends on the company culture and
know-how [23]. In particular, we didn’t found a single
definition of architecture really helpful in practice. We

D1
D2

D3

MMM

MM

M

I

D

A

R

CR

AR

IR

I

D4Evolution dimension
time

D1
D2

D3

MMM

MM

M

I

D

A

R

CR

AR

IR

I

D4Evolution dimension
time

Figure 10. Entering the fourth dimension

Meta dimension

M2

M1

M0I

D1
M3

D4 Instance
evolution

Model
evolution

Meta-model
evolution

Meta-meta-model
evolution

Meta dimension

M2

M1

M0I

D1
M3

D4 Instance
evolution

Model
evolution

Meta-model
evolution

Meta-meta-model
evolution

Engineering dimensionD2

A

D

I

D4 Implementation
evolution

Design
evolution

Architecture
evolution

Requirements
evolution

R
Engineering dimensionD2

A

D

I

D4 Implementation
evolution

Design
evolution

Architecture
evolution

Requirements
evolution

R

A

D

I

D4 Implementation
evolution

Design
evolution

Architecture
evolution

Requirements
evolution

R

Figure 12. Crossing D1 and D4Figure 12. Crossing D1 and D4Figure 11. Crossing D2 and D4

found on the contrary that many of the architectural
concepts used at-large within DS were beyond traditional
concepts. For instance we identified the business
architecture. It describes how software can be sold in parts.
This structure is quite complex at DS.

(4) The company “know-how” is in part immaterial
knowledge shared among the company, but in part
materialized by in-house metaware tools. These tools
support appliware development and constrain appliware
evolution by enforcing specific processes and in-house
quality standards. These tools are either bought and then
customized, or developed internally by the tool support
team. Over the last decades DS has developed a huge
amount of metaware to support for instance configuration
management, testing, component-based-development, etc.
This range from sophisticated tools to hand-craft tools .

(5) The distinction must be made between metaware and
appliware, between M2 and M1, between models and meta-
models, especially in the context of software architecture.
Too often these levels are confused in this context; in large
part because architecture if a fuzzy notion. The distinction
must be made between architectural models (A-M1), which
are application dependent, and architectural meta-models
which represent reusable know-how about building
software (A-M2). This difference is illustrated in Figure 6
in the respective cells. Hofmeister and her colleagues
describe reusable architectural know-how resulting from
Siemens experience in [20]. This book is organized around
4 meta-models presented on the front and back covers of the
book. Extracts of the architectural meta-models we
recovered from DS’ metaware can be found in [22][23].

(6) Everything evolve in large companies. In particular
the notion of architecture and the architecture of
applications. To be more precise both architectural meta-
model evolution (A-M2-E) and architectural model
evolution (A-M1-E) take place. In the first case this is the
architectural know-how which evolves, in the second case
this is the architecture of particular applications. This leads
to architectural meta-model/model co-evolution issues (A-
M2/M1-E). That is, without entering into the
implementation details (I), one can observe that both
architectural concepts and their occurences in software
applications evolve.

(7) The evolution of the architectural concepts can have
a strong impact on the architecture of the application, but
also the other way around. For instance in the mid 90’s DS
decided to develop a component technology similar to
Microsoft’ COM but with also a set of unique features to
cope with DS specific needs [21]. This technology evolved
at the same time as the applications built using it. DS know-
how about component-based architectures greatly evolved
with the experience gained in developing large set of
components (about 8000 today). Note that when the

concepts underlying the component technology change,
component-based applications may or may not be impacted.
For instance sometimes an architectural concept reveals to
be harmeful after a long period of use without noticable
problem. This was the case for instance for a feature
included in the DS component technology. This feature
greatly simplified component developement but it later
revealed to be responsible of significant decreases in
performance when used at-large. DS then decided to
remove it from the set of features available to develop
software. From a conceptual point of view this corresponds
to a removal of an element from the architectural meta-
model. Components using this feature had to be identified
to be upgraded. Sometimes, external events make it
necessary to improve the architectural meta-model. For
instance a few years ago DS decided to make its component
technology available to partners such as Boeing. Before this
DS used a visibility model based on the traditional public/
private distinction to control dependencies between
software entities. This was enough within the context of DS,
but not enough for externalisation because more levels had
to be added to better control external dependencies. From a
conceptual view, this modification just imply at the level of
meta-model to change the type of the “visibility” meta
attribute, as well as to update the constraints associated with
this attribute in the meta-model. From a concrete point of
view, the metaware tool that control dependency
management was modified and the level of visibilty had to
be assigned for each software entity concerned. From a
conceptual point of view, this modification consiste in
updating in architectural models the value of the visibility
attribute of each entity concerned.

(10) Metaware tools developed within large companies
are often built in an incremental and in ad-hoc way,
following the needs of the company. These tools are often
hand-craft using for example unix scripts to automate
transformations. As shown in the previous example some
transformations occur only a few time and building a tool
from scratch could be too costly. One important issue in this
context is to facilitate the production of metaware.
Declarative meta-progamming or using meta-model driven
environment are very promizing approaches in this context.

9. Conclusion

Software evolution is too often confused with program
evolution. Software is much more than programs. Just like
programs, languages follow Lehman’s laws of continuing
changes: in order for a language to continue to be useful
(and used) in the real world it must change continuously.
Languages are integral part of software. Languages, tools
and programs evolve in parallel.

While architecture and implementation co-evolution has

been identified as a natural process during evolution-in-the-
large, this paper has unveiled the existence of meta-model
and model co-evolution, which is a generalisation of
language/program co-evolution. We shortly described for
instance the architectural meta-model/architectural model
co-evolution problem as it occurs in industry.

These complex issues has been studied thanks to the
provision of conceptual framework. The framework is
based on the fact that software artefacts can be classified
along a three abstraction dimensions. The meta-dimension
is based on the four layers and includes models and meta-
models. The engineering dimension distinguishes software
artefacts according to the phase in which they are produced.
The representation dimension makes it possible to model
artefacts that range from implicit and fuzzy knowledge to
very concrete representations used by tools.

Emphasis has been put on the need to make the
distinction between metaware and appliware. Appliware is
the set of applications, while metaware is software that help
in developing and controlling appliware. In fact, software is
metaware plus appliware. Software evolution should not be
restricted to appliware evolution, metaware also evolves.

Some experts predict that the MDA standard could have
a strong influence on the future of software engineering
[17][14]. However, failure is still possible. Historically,
most approaches looking only towards the future have
failed. Roughly put, while ADLs were designed to make the
architecture explicit (and failed), Model Driven
Engineering is designed to make explicit models and meta-
models. This is certainly the way to go, but this raises some
questions. Will software engineers accept to draw UML
models if evolution is not supported in a very effective way?
What about extracting models and meta-models from
existing software? What about model and meta-model co-
evolution in the context of the MDE? Could we assume that
“standard” meta-model will not evolve in the long run?
What about reverse engineering of meta-models from
legacy and proprietary metaware?

We see Model Driven Engineering as a very promising
approach. But we also believe that this approach will fail if
evolution is poorly supported and if legacy software is not
taken into account. Metaware evolution and metaware
reverse engineering are open research issues as well as
effective tool support for meta-model/model co-evolution.

10. References

[1] T. Mens, J. Buckley, M. Zenger, A. Rashid, “Towards a Taxonomy
of Software Evolution”, USE 2003

[2] M. Felici, “Taxonomy of Evolution and Dependability”, Workshop
on Unanticipated Software Evolution, USE’2003.

[3] L. O’Brien, C. Stoermer, C. Verhoef, “Software Architecture
Reconstruction: Practice Needs and Current Approaches”, SEI
Technical Report CMU/SEI-2002-TR-024, 2002

[4] A.E. Hassan, R.C. Holt, “Architecture Recovery of Web
Applications”, ICSE 2002

[5] S. Boucetta, H. Hadjami, F. Kamoun, “Architectural Recovery and
Evolution of Large Legacy Systems”, IWPSE 1999

[6] Q. Tu, M.W. Godfrey, “An Integrated Approach for Studying
Architectural Evolution”, IWPC 2002

[7] J.B. Tran, M.W. Godfrey, E.H.S. Lee, R.C. Holt, “Architectural
Repair of Open Source Software”, IWPC 2002

[8] J. Zhao, H. Yang, L. Xiang, B. Xu, “Change impact analysis to
support architectural evolution”, Journal of Software Maintenance
and Evolution, 14:317–333, 2002

[9] R. Wuyts, “A Logic Meta-Programming Approach to Support the
Co-Evolution of Object-Oriented Design and Implementation”, PhD,
Vrije yiversity of Brussel, 2001.

[10] K. Mens, T. Mens, M. Wermelinger, “Supporting unanticipated
software evolution through intentional software views”, USE 2002

[11] T. D’Hondt, K. De Volder, K. Mens, R. Wuyts, “Co-evolution of
Object-Oriented Software Design and Implementation”, Proc. Int’l
Symp. Software Architectures and Component Technology: The
State of the Art in Research and Practice, Kluwer, 2000

[12] OMG, “MDA: the OMG Model Driven Architecture”, http://
www.omg.org/mda/

[13] OMG, "Model Driven Architecture - A Technical Perspective",
ormsc/01-07-01, 2001

[14] A. Kepple, J. Warmer, W. Bast, “MDA Explained - The Model
Driven Architecture: Practice and Promise”, Addison Wesley, 2003

[15] S. Kent, “Model Driven Engineering”, LNCS 2335, 2002
[16] X. Blanc, P. Desfray, “Model Driven Engineering”, in french, to

appear in 2003
[17] J. Bézivin, X. Blanc, “MDA: Towards an Important Paradigm

Change in Software Engineering”, in french, Développeur
Référence, http://www.devreference.net/Develop, July 2002

[18] V. Marangozova, “Linking the Software Architecture with Source
Code”, Master, in french, University of Grenoble, June 1998

[19] Softeam, “Guarantee permanent Model/Code consistency: Model
driven Engineering versus "Roundtrip engineering", 2000

[20] J.M. Favre, J. Estublier, R. Sanlaville, “Tool Adoption Issues in Very
Large Software Company”, 3rd Workshop on Adoption Centric
Software Engineering, ACSE 2003

[21] J. Estublier, J.M. Favre, R. Sanlaville, "An Industrial Experience
with Dassault Systèmes' Component Model", Book chapter in
Builiding Reliable Component-Based Systems, I. Crnkovic, M.
Larsson editors, Archtech House publishers, 2002

[22] J.M.Favre and al., "Reverse Engineering a Large Component-based
Software Product", CSMR'2001

[23] R. Sanlaville, “Software Architecture: An Industrial Case Study
within Dassault Systèmes”, PhD dissertation, in french, Univeristy of
Grenoble, 2002

[24] R. Lammel, C. Verhoef, “Semi-automatic grammar recovery”,
Software Practice and Experience, 2001

[25] J. Estublier, J.M. Favre, “Component Models and Component
Technology”, Book chapter in Builiding Reliable Component-Based
Systems, Archtech House publishers, 2002

[26] J. Warmer, “The Future of UML”, available from www.klasse.nl
[27] C. Hofmeister, R. Nord and D. Soni. Applied Software Architecture.

Addison-Wesley Publisher, 2000.
[28] Y. Ledru, R. Sanlaville, J Estublier, “Defining an Architecture

Description Language for Dassault Systèmes”, 4th International
Software Architecture Workshop, 2000.

[29] J.M. Favre, "GSEE: a Generic Software Exploration Environment",
9th International Workshop on Program Comprehension,
IWPC'2001

[30] M. Fowler, “UML distilled: A brief guide to the standard modelling
language”, Addison Wesley, 1999

[31] OMG, “Meta Object Facilities (MOF) Specification, Version 1.4”,
April 2002

[32] P. Desfray, “MDA – When a major software industry trend meets our
toolset, implemented since 1994”, Softeam white paper, 2001

