
MDS-Views: Visualizing Problem Report Data of Large Scale Software using
Multidimensional Scaling∗

Michael Fischer and Harald Gall
Distributed Systems Group, Vienna University of Technology

Argentinierstrasse 8/184-1, A-1040 Vienna, Austria
{fischer,gall}@infosys.tuwien.ac.at

Abstract

Gaining higher level evolutionary information about large software systems is key a in validating past and adjusting future
development processes. In this paper we address the visualization of problem reports by taking advantage of the proximity
introduced by changes required to fix a problem. Our analyses are based on modification and problem report data repre-
senting the system’s history. For computation of proximity data we applied a standard technique called multidimensional
scaling (MDS). Visualization of feature evolution is enabled through the exploitation of proximity among problem reports.
Two different views support the assessment of a system design based on historical data. Our approach uncovers hidden
dependencies between features and presents them in easy-to-evaluate visual form. Regions of interest can be selected inter-
actively enabling the assessment of feature evolution on an arbitrary level of detail. A visualization of interwoven features
can indicate locations of design erosion in the architectural evolution of a software system.

1. Introduction

Our work is focused on the evolution of software features since they are a natural unit to describe software from the
perspective of the application user and the software developer as well. A software design may erode during the project’s
lifetime and features which were initially implemented in separated modules become more and more interwoven [8]. Our
goal is to reveal this degeneration through the use of information collected during the implementation and maintenance phase.

In this paper we describe an analysis and visualization method for uncovering dependencies between sub-modules of
software products source tree. Our approach is based on standard techniques and tools and any future project can be adapted
easily to meet the data requirements for analysis. Existing projects often have no bug tracking system at all or the integration
with the revision control system does not track relevant data.

Modification Reports(MR) andProblem Reports(PR) contain an overwhelming amount of information about the reasons
for small or large changes to a software system. Groups of reports can be related to provide a clearer picture about the
problems concerning a single feature or a set of features. Hidden dependencies of structurally unrelated but over time
logically coupled files (i.e. files that most often are changed together although residing in separate modules or subsystems)
further exhibit potential to illustrate feature evolution and possible architectural shortcomings.

The approach presented here addresses this problem by grouping feature related PRs and presenting the results in visual
form. The input data for this process are selected from aRelease History Database(RHDB) [12] which contains MR, PR
and feature data. For every feature which shall be inspected the related PR information is selected from the RHDB. Now,
the distance between two PRs can be expressed as the number of files commonly modified to fix both problems. The more
files they have in common the shorter is the distance between the PRs. On the basis of this proximity data, groups of related
reports are formed by applying a technique calledMultidimensional Scaling(MDS) [14] on these data. Results of the MDS
process are visualized in a two or optional higher dimensional space. PRs belonging to the same feature are indicated by

∗This work is partially funded by the Austrian Ministry for Infrastructure, Innovation and Technology (BMVIT) and the European Commission under
EUREKA 2023/ITEA-ip00004 ’from Concept to Application in system-Family Engineering (CAFÉ)’.



the same symbol which has been selected to represent the feature. Groups of PRs can be selected interactively and saved for
further processing.

Grouping of PRs can reveal hidden dependences between features but can be also used to identify groups of commonly
modified program code. Results from this analysis can be used as evidence for a poor system architecture or as indication of
design erosion.

The remainder of this paper is organized as follows: Section 2 gives a brief overview of related work in the area of
visualization of large large scale software evolution. In Section 3 we introduce the data sources used. Section 4 describes
the feature extraction process and its results. Section 5 gives short introduction in grouping using multidimensional scaling.
Visualization of problem report data using different views to emphasize different relationships is discussed in Section 6. We
conclude in Section 7 with an outlook to future work.

2. Related Work

In [17] Taylor and Munro describe an approach based on revision data to visualize aspects of large software such as active
areas, changes made, or sharing of workspace between developers across a project by using animated revision towers and
detail views. Since their approach is purely base on revision history, additional important information such as problem reports
or feature data are not considered for visualization.

Similar to the our working environment used to produce the results presented in this paper, Draheim and Pekacki propose
a framework for accessing and processing revision data via predefined queries and interfaces [9]. Linkage of their data model
with other evolutionary project information – such as problem report data as required for our analysis – and making them
accessible for external queries is beyond the scope of their work.

Mozilla has been already addressed, for example, by Mockus, Fielding and Herbsleb in a case-study about Open Source
Software projects [15]. They also used data from CVS and the Bugzilla bug-tracking system but, in contrast to our work,
focused on the overall community and development process such as code contribution, problem reporting, code ownership,
and code quality including defect density in final programs, and problem resolution capacity as well.

Bieman et. al [5] used change log information of a small program to detect change-prone classes in object oriented
software. The focus was on visualization of classes which experienced frequent changes together which they calledpair
change coupling. Instead of grouping coupled objects they used for visualization standard UML diagram together with a
graph showing the number of pair change couplings between change-prone classes.

3. Building a Release History Database

Our analysis is based on three main sources: (a) modification reports (MR); (b) problem reports (PR); and (c) basically the
executable program to extract feature information. Data in sufficient quantity and quality is offered via publicly accessible
resource from theMozilla project. The MR data are available via the projects Concurrent Versions System (CVS) [7], whereas
the PR information is offered via theBugzilla [1] bug tracking system. The source code package for building the executable
are released frequently and contain all necessary files to compile the program.

3.1. RHDB

We have downloaded the relevant MR and PR, filtered, validated and stored the these data in our Release History Database
(RHDB) [11, 12]. The nucleus of our RHDB is depicted in Figure 1. General information about objects - items or artefacts
- of the software’s program source and modification reports are stored incvsitemandcvsitemlog, respectively. The relation
between them was easy to establish, since the relevant information is contained in consistent form within the logs from the
CVS repository. Problem reports from the bug tracking system are stored in thebugreportentity. Crucial in the reconstruction
of the RHDB was the re-establishment of the linkage between modification reports and problem reports since no formal
mechanisms are provided by CVS to link this information. In the rebuild process we used the problem report IDs found in the
modification reports of CVS to link modification reports and problem reports. These IDs have been entered by the authors
of source code modifications as free text. Natural problems were: context not clear in which an ID was used, incorrect
report IDs (typos) or no ID at all. Whilst we were able to solve the first two problems with more or less effort, we didn’t
find a practicable solution for the third problem to reconstruct this information, e.g., from patch data. IDs in modification
reports are detected using a set of regular expressions. A match is rated according to the confidence value we have assigned

2



cvsitemlog

id
cvsitemid
revision
date

* 1*1*1
bugreport

id
bug_severity
short_desc
. . .

cvsitem

id
rcsfile
workfile

cvsitemlogbugreport

cvsitemlogid
bugreportid

ladd
ldel
. . .

. . .

Figure 1. “Nucleus” of the RHDB

to the expression and can behigh (h), medium (m), or low (l). The confidence is considered high if expressions such as
<keyword><ID> can be detected whilst a five digit number just appearing somewhere in the text of a modification report
without preceding keyword is considered low.

To verify the results from the reconstruction process we used patch information which are sometimes attached to problem
reports. These patches contain file name information which can be used to validate the results from the linkage reconstruction.
If a patch was found which confirms the linkage, the rating value is changed from (h) to (H), (m) to (M) and (l) to (L),
respectively – details can be found in [11].

3.2. Selection of problem reports

To improve results of this analysis process, we need to reduce the impact of PRs not directly related with fixing a specific
functional problem. We inspected the description of the largest reports and tried to find a criterion for the selection of
our data sets. Reports such as “license foo” (98089,7961), “printfs and console window info needs to be boiled away for
release builds” (47207,1135), or “Clean up SDK includes” (166917,888) - the numbers in parenthesis indicate the problem
report number and number of referenced files respectively - are considered as not relevant since they primarily concern
administrative problems. When the problem reports become smaller they are getting more interesting for the evalution of
coupling between features. While the following two reports are still concerned with administrative issues “libtimergtk s is
causing link problems” (11159, 300) and “repackage resources into jar files” (18433, 289), the remaining reports begin to
focus on programming and bug fix problems: “[meta] necko api revision bugs for embedding” (74221, 254), “[CSS] Rule
matching performance improvements” (78695, 234), “Investigate switching output to use DOM Serializer” (50742, 234),
“change nsCRT::mem* to mem*” (118135, 233). Thus, we have decided to use 255 as limit for the size of bug reports we
accept. This is an arbitrary limit and specific to our configuration. Fortunately, no “major” or “critical” classified PRs are
affected by this criterion.

4. Features

Since features are used in communication between users and developers it is important to know which features are affected
by (future) functional modifications of a software system. According to [13] a feature isa prominent or distinctive aspect,
quality, or characteristic[3, 4] of a software system or systems. For our purposes we will refer to the more practical definition
of a feature asan observable and relatively closed behavior or characteristic of a (software) part[16].

Goal of the feature extraction process is to gain the necessary information to map the abstract concept of features onto
a concrete set of files which implement a certain feature. To extract the required feature data we applied the software
reconnaissance technique [18, 19] within ourLinux (RedHat 8.0& SuSE 8.1) development environment. GNU tools [2] were
already used sucessfully in [10] to extract feature data.

We first created a single statically linked version ofMozilla with profiling support enabled. From several test-runs where
the defined scenarios (see Table 1) were executed, we created the call graph information using the GNU profiler. The call
graph information again was used to retrieve all functions and methods visited during the execution of a single scenario.
Since our analysis process works on the file level, we mapped function and method names onto this higher abstraction level.
In the next processing step, “feature data” were extracted from file name mappings using set operations, e.g., theXml feature
using the following expression:

Xml = (MathML∩XML)/(Core∪HTTP∪PNG∪ fBlank∪hBlank∪ChromeGIF).

3



Table 1. Scenario definitions with features

Scenario Description Feature Color Files
Core mozilla start / blank window / stop Core White 705
HTTP TrustCenter.de via HTTP1 Http DeepPink 28
HTTPS TrusterCenter.de via SSL/HTTP2 Https MediumGreen 6
File read TrustCenter.de from file - - -
MathML mathematic in Web pages3 MathMlExtension YellowGreen 13
About “about:” protocol About Gold 3
PNG sample image4 ImagePNG DarkOrange 10
XML XML Base5 Xml MediumOrchid 65
JPG JPEG Karlskirche6 ImageJPG Cyan 16
fBlank read blank html page from file7 Html DeepSkeyBlue 76
hBlank blank html page via HTTP8 - - -
ChromeGIF Mozilla logo9 ImageGIF SlateBlue1 4
Image - Image OrangeRed1 3

where the names represent the set of files extracted in the previous steps from the executed scenarios. Table 1 also lists the
names assigned to the features, the colors which are used later, and the number of files retrieved. E.g., for theAboutfeature we
determined to following set of files:content/base/src/nsTextContentChangeData.cpp , xpfe/appshell/
src/nsAbout.cpp , andxpfe/appshell/src/nsAbout.h . Finally, we imported these filename information into
the RHDB along with the release number of the program from which the data were retrieved. In our case it wasMozilla
version1.3awith the official freeze date 2002-12-10.

5. Introduction to multidimensional scaling

The goal of multidimensional scaling (MDS) is to map objectsi = 1, . . . , N to points‖xi − xj‖ ∈ Rk in such a way that
the given dissimilaritiesDi,j are well-approximated by the distances‖xi − xj‖ whereask is the dimension of the solution
space. MDS is defined in terms of minimization of a cost function calledStress, which is simply a measure of lack of fit
between dissimilaritiesDi,j and distances‖xi − xj‖. In its simplest case,Stressis a residual sum of squares:

StressD(x1, . . . ,xN ) =
(∑

i 6=j

(Di,j − ‖xi − xj‖)2
) 1

2

where the outer square root is just a convenience that gives greater spread to small values [6].
For our experiments we usedmetric distance scalingwhich is a combination ofKruskal-Shepard distance scalingand

metric scaling. Kruskal-Shepard distance scalingis good at achieving compromises in lower dimensions (compared to
classical scaling) andmetric scalinguses the actual values of the dissimilarities in contrast tonon-metric scalingwhich
considers only their ranks [6].

The generation process of the dissimilarity matrix can be formally described as follows. A problem report descriptordi

of a problem reportpi is built of all artefactsan which refer to a particular problem report via their modification reportsmk

(linkage MR – PR; see Section 3):
di = {an|anRmk ∧mkRpi}.

The distance data for every pair of problem report descriptordi, dj are computed according to the formula below and fed

1http://www.trustcenter.de/
2https://www.trustcenter.de/
3http://www.w3.org/Math/testsuite/testsuite/General/Math/math3.xml
4http://www.w3.org/Math/testsuite/testsuite/General/Math/math3.png
5http://www.w3.org/TR/2001/REC-xmlbase-20010627/Overview.xml
6http://www.infosys.tuwien.ac.at/img/karlskirche.jpg
7file:///home/eu/robinson/WWW/blank.html
8http://intra.infosys.tuwien.ac.at:8092/˜robinson/blank.html
9chrome://global/content/logo.gif

4



1001/Http

1010/About

1003/Html

1004/Image

1007/ImageGIF

1008/MathMlExtension

1009/Xml

(a) 1999

1001/Http

1003/Html1007/ImageGIF

1008/MathMlExtension 1002/Https

1004/Image

1009/Xml

(b) 2000

Figure 2. Dependencies between features introduced by large problem reports

into theDissimilarity Matrix.

dist(di, dj) =

{
1 if pi 6Rpj ,
1
2 (1− n

min(si,sj)
) if piRpj

(1)

wheresi andsj denote the size of the descriptorsdi anddj respectively. The fraction12 is used to emphasize the distance
between unrelated objects and “weakly” linked objects. All values are scaled according to the maximum number of elements
the descriptors can have in common, i.e., they are scaled to the size of the smaller one.

An alternative way of specifying distances is to use edges and weights. We use a logarithmic function to emphasize the
connections with higher values, while connections with lower values are weakened. This has the effect that the nodes with
stronger connections are moved closer to each other than nodes with only a few connections. The weight for an edge between
two nodesvi andvj are computed by the following formula, whereasn specifies the current number of connection between
the two nodes andnmax the maximum number of connections between two nodes of this graph:

weight(vi, vj) = 10− b ln(n)
ln(nmax)

∗ 8 + 1.5c (2)

All weights are mapped by the above formula onto a range of[1..9] where 9 means the closest distance. Other integer values
not covered by the given range cause the visualization programxgvis[6] to hang or crash. Now we just need to define when
two problem reports are linked:pi andpj in the RHDB are linked via a software artefactan if a modification reportmk exists
such that

anRmk ∧mkRpi ∧mkRpj

or two modification reportsmk, ml exist such that

anRmk ∧mkRpi ∧ anRml ∧mlRpj .

6. Views

Visualization is a useful technique to present complex interrelationships. We use two different types of views to facilitate
the understanding of evolutionary processes in large software: a)feature-viewfocuses on the problem report based coupling
between the selected features; and b)project-viewdepicts the reflection of problem reports onto the structure of the project-
tree.

6.1. Feature view – projecting PRs onto features

This view focuses on the visualization of features and their dependencies via problem reports. The coupling between two
features is symbolized via edges whereas the number of references is expressed as line-width. Since a feature comprises

5



1001/Http

1002/Https

1007/ImageGIF

1008/MathMlExtension

1009/Xml

1003/Html

1004/Image

1010/About

1006/ImageJPG

1005/ImagePNG

(a) 2001

1001/Http

1002/Https

1009/Xml

1007/ImageGIF

1008/MathMlExtension

1003/Html

1006/ImageJPG

1010/About

1004/Image

1005/ImagePNG

(b) 2002

Figure 3. Dependencies between features introduced by large problem reports

several items (i.e., object of the project tree), a connection between two features may consists of several lines of different
width. They indicate the coupling of files through problem reports on feature level rather than file level. In fact, all entities
contributing to a feature are drawn on the same position, which supports the impression that features are compared.

To reduce the amount of visible edges and to visualize only the most important ones, we used a threshold criterion of
10% of the number of references of the topmost problem report or 20 edges if the number of references is greater than
200. Likewise, in the graphical representation the number of problem reports two features have in common are not depicted.
These numbers are listed in Table 2 for all features. This means that every edge in the following figures (except for Figure 2.a)
represents at least 20 references. Due to the small set of files we identified for the featuresImageGIF, Image, andAboutand
the 10% limit, the coupling for this features may be not very indicative.

Figures 2 and 3 depict the results for the observation periods 1999, 2000, 2001, and 2002, whereas features are aligned
on a circle and colored according to Table 1. From 1998 till 1999 – the situation is depicted in 2.a – we found virtually no
coupling between features. The situation changed in the subsequent observation periods not dramatically but constantly. In
Figure 2.b the situation for the year 2000 is depicted and indicates that the focus shifted fromHttp to other features such as
Html, Xml, andMathMlExtension.

Consecutively, the situation changed substantially – as depicted in Figure 3.a – in year 2001. The partially connected graph
has turned into an almost fully connected graph and also the number of reported and fixed problems have more than doubled
(from 290 to 657). Except featureImagePNG, all features are affected by system-wide changes. In 2002 (see Figure 3.b) the
situation improved slightly since the number of reported problems dropped to 580.

6.2. Project view – projecting PRs onto project-tree structure

The goal of this view is the visualization of the reflection of problem reports onto the structure of the project-tree. Our
method is to assign weights - to both, the edges of the tree structure and the edges introduced through the coupling of
problem reports - and to search for groups in the resulting data set. Output of the optimization process is visualization using
a conventional drawing program, whereas the resulting graph is enhanced with feature information and distance data.

6.2.1 General description

Input data forxgvis and the drawing program, e.g.,xgvis, used for visualization are generated by a Java program. This
program accepts some arguments which allows to control the data selection and generation process. A critical step in the data
generation process is the selection of parameters for the weights since this has a direct impact on the final layout. For edges
of the project-tree we use aweightof 10. Connections via problem reports are weighted 1 for every connection between two
objects - a single report can affect several objects of different directories. This scheme gives more emphasize on the directory
structure compared to connections with 1 or 2 problem reports between nodes. In a first phase of the data generation process,
the objects of the project tree are assigned the respective nodes of the graph. The minimum child size parameterminchildsize

6



Table 2. Total number of “couplings” between features

Feature Period
Feature ...1 ...2 ...3 ...4 ...5 ...6 ...7 ...8 ...9 ..10<2000 2000 2001 2002 Total
...1/Http 0 20 10 7 0 2 2 0 7 4 24 63 155 129 367
...2/Https 0 2 1 0 0 0 0 2 0 0 1 69 61 130
...3/Html 0 6 0 1 46 16 29 1 87 116 140 122 463
...4/Image 0 0 15 5 0 3 2 5 5 54 31 95
...5/ImagePNG 0 0 0 0 0 0 0 0 3 5 8
...6/ImageJPG 0 0 0 0 0 1 0 22 11 34
...7/ImageGIF 0 17 36 0 15 61 75 38 188
...8/MathMLExtension 0 67 0 2 9 32 72 114
...9/XML 0 1 7 34 105 110 249
..10/About 0 2 1 2 1 6

specifies which nodes remain expanded or will be collapsed. Collapsing means that the object information is moved to the
next higher level. We used as default setting a value of 10. To simplify the resulting graph – the completeMozilla project
tree consists of more than 2500 subdirectories – we cut off unreferenced directories. With the compactification parameter
compactit is possible to determine the limit for callapsing directories entries. A limit of 1 means that only unreferenced
directories are collapsed/removed. The effect on the graph is that unreferenced leafes are suppressed.

In the following figures the project-tree, i.e., directory structure, is shown as gray nodes connected by black lines. The
root node is indicated with the name “ROOT” and features are indicated by colored boxes according to the colors given in
Table 1. Coupling between nodes as result of a common problem reports are indicated by pink lines. Broader lines and a
darker coloring means that the number of problem reports two nodes have in common is higher. Black lines indicate the
structure of the project tree. Since the optimization algorithm tries to place connected nodes close to each other, stronger
dependencies can be grasped easily.

One marginal problem is the limited layout area in the two dimensional solution space - all nodes must be placed at least
somewhere within a single plane - the placement of nodes after the optimization is only indicative within a certain radius.
Naturally, this radius depends on the total number of nodes. By zooming-in, it is possible to give a better picture of otherwise
overlayed areas. An n-dimensional solution space could yield better results but is very difficult to visualize. It is also possible
that nodes are placed side by side, not because they share a common problem report, rather they have nothing in common with
other nodes so they could be attracted by them and moved to a different location. In general, the layout after the optimization
is one possible solutions. It also does not mean that a global minimum for the given distances has been achieved.

6.3. Project view results

The initial layout without any optimizationed clustering of the graph for three features –HTTP (DeepPink),HTTPS
(MediumGreen), andHTML (DeepSkyBlue) – after data extraction from the RHDB is depicted in Figure 4. Black lines
indicate the structure of the project tree, whereas pink lines indicate the coupling via problem reports.

A minimal set of three features -HTTP(DeepPink),HTTPS(MediumGreen), andHTML (DeepSkyBlue) - is depicted in
Figure 5. The root of the project tree is indicated by “ROOT”. Easy to see is the placement of HTML features on the right side,
andHTTP, HTTPSon the opposite side. One exception is.xpcom: it can be shifted to the left side during the optimization
process, but it is automatically moved back to its original position by the optimization program. This means the achieved
result is stable and this is an optimal solution for the given weights. Interesting to see is the arrangement of.security
and.netwerk since they were placed close together. In the original layout they were placed in oppositely directions (see
Figure 4). What can be deduced from the placement, is the coupling between certain very close together placed nodes such
as.layout.html.base and.intl.lwbrk , or .netwerk.base and.netwerk.protocol.http .

Figure 6 depicts all features we extracted fromMozilla. The root of the project tree has been shifted away from the
center and its structure has been completely mangled by the optimization procedure on the basis of the given weights. As the
previous figure already shows, it is also possible to assign distinct areas for the features, e.g., theHttp andHttpsarea by the
colors DeepPink and MediumGreen. Features in other areas are not that distinguishable as desired.

Figure 7 depicts a detailed view of the cluttered area of Figure 6 with its coupling between different levels of the project
structure. The positions of the nodes are slightly modified to have a better “viewing position” on the coupling. Since
the coupling lines connect nodes of the project tree not along the project tree path, it may indicate unstable interfaces or

7



ROOT

.layout

.layout.html

.layout.html.base

.layout.base

.extensions
.extensions.cookie

.db

.db.mork

.security

.security.manager

.security.manager.ssl.security.manager.boot

.intl

.intl.lwbrk

.editor.editor.libeditor
.editor.txmgr

.dom

.dom.src

.netwerk

.netwerk.protocol

.netwerk.protocol.http

.netwerk.base.netwerk.cache.netwerk.socket

.content

.content.base

.xpcom

.xpcom.proxy

Core

Http

Https

Html

Image

ImagePNG

ImageJPG

ImageGIF

MathMlExtension

Xml

About

Features:

Figure 4. Initial layout for features: Http, Https, Html

8



ROOT

.layout

.layout.html

.layout.html.base

.layout.base

.extensions

.extensions.cookie

.db

.db.mork

.security

.security.manager

.security.manager.ssl

.security.manager.boot

.intl

.intl.lwbrk

.editor

.editor.libeditor

.editor.txmgr

.dom

.dom.src

.netwerk
.netwerk.protocol

.netwerk.protocol.http
.netwerk.base

.netwerk.cache

.netwerk.socket

.content

.content.base

.xpcom

.xpcom.proxy

Feature Http & Https

Feature Html

Figure 5. Features: Http, Https, Html

9



ROOT

.layout

.layout.html

.layout.html.base

.layout.mathml

.layout.mathml.base
.layout.base

.extensions

.extensions.transformiix.extensions.transformiix.source

.extensions.transformiix.source.xml.extensions.transformiix.source.xml.dom

.extensions.transformiix.source.xslt

.extensions.cookie.modules

.modules.libpr0n

.modules.libpr0n.decoders

.db

.db.mork

.security

.security.manager

.security.manager.ssl

.security.manager.boot

.xpfe

.xpfe.appshell

.intl

.intl.lwbrk

.editor

.editor.libeditor

.editor.txmgr

.dom

.dom.src

.netwerk

.netwerk.protocol

.netwerk.protocol.http.netwerk.base

.netwerk.cache.netwerk.socket

.content

.content.html

.content.html.content

.content.html.document

.content.xsl

.content.xsl.document

.content.base

.content.shared

.content.xml
.content.xml.content

.xpcom

.xpcom.proxy

Figure 6. All features but no core

.extensions.transformiix

.extensions.transformiix.source
.extensions.transformiix.source.xml

.extensions.transformiix.source.xml.dom

.extensions.transformiix.source.xslt

.db.mork

Figure 7. Detailed view of Figure 6

10



ROOT

.layout

.layout.html

.layout.xul

.layout.xul.base

.extensions

.modules

.modules.plugin

.xpfe

.xpfe.components
.intl

.rdf

.htmlparser

.editor

.gfx

.gfx.src

.dom

.embedding

.embedding.browser

.netwerk

.netwerk.protocol

.content .xpcom

.widget

.widget.src

Figure 8. Core and features

11



weaknesses in the system design.
The core - indicated by white boxes - and all features are depicted in Figure 8 on a very coarse level. For this configuration

we selected all reports which were ratedmajoror critical. We also set the minimum sub-tree size to 250 (minchildsize) entities
and the minimum number of problem report references to 50 (compact). As result we received a graph with 25 nodes, 215
edges induced by problem reports. By changing the values forminchildsizeandcompactit is possible to generate an arbitrary
detailed graph of the while project. SinceMozilla has more than 2500 sub-directories a complete graph representation of the
whole project tree is far beyond the illustration capabilities of this medium. It is intuitive that the most critical sub-systems in
Mozilla are related with visualization which is also supported by our findings. The nodes with the highest density in severe
problem reports are.content (with 595 references),.layout.html (438),ROOT(366),.layout.xul.base (220),
and.layout (210). In fact,ROOTdoes not have any entities, but through the compactification of the project tree entities
from lower levels have been moved to higher levels. The same is true for the other nodes such as.com or .htmlparser ,
since all the entities are moved to higher levels until thecompactcriterion is met. Nodes with fewer connections are.dom
(161), .xpfe (121), .netwerk (119), .modules (118), .modules.plugin (106), .network.protocol (100),
.rdf (100),.htmlparser (96). Another interesting aspect is the spread of edges. In total 215 connections between nodes
are depicted. While some nodes are more focused on a single partner node, e.g.,.htmlparser with 15 edges, others have
a wider spread, e.g.,.xpfe with 21 edges. Since.layout.xul does not share a problem with any other node, we can
neglect this node and have 24 nodes sharing connections with others. For instance,.xpfe shares connections with 87.5%,
or .content with 95.8% of the possible nodes.

7. Conclusions and future work

The graphical representation of dependencies between features based on problem report data opens a new perspective on
the evolution of software systems through retrospective analysis by visualization. By intuition problem reports should have
a minimal impact on different features. Situations where this is not the case can be grasped easily through the graphical
representation, e.g., in case of overlapping or feature spreading. We have applied multi-dimensional scaling of problem
reports linked with files and directory structures for the visualization of features of Mozilla for the years 1999 until 2002.
The tool that we developed allows a domain expert to generate two specific views of relationships and dependencies of a large
software system: (1) thefeature viewenables a projection of problem reports onto the files that realize a particular feature,
thereby indicating otherwise hidden feature dependencies that have evolved over time (intentionally or unintentionally); (2)
theproject viewenables a projection of problem reports onto the directory and project structure of a system and, as a result,
depicts the logical coupling between modules, sub-modules, etc. introduced through changes over time.

First results using MDS are promising, thus we want to further explore this approach and test other large software systems
to compare, for instance, the spread of features in commercial and other open source software. Of further interest are the
exploration of higher dimensional solution spaces which should yield more optimized solutions. Withxgvis this is quite
difficult since the interactive selection and visualization works optimal only on two-dimensional data.

An interesting perspective for future work is the coupling of this visualization approach with architecture recovery systems.
One possible application could be to gain insight into the impact of problem reports on architectural styles and patterns. A
pattern search process might identify all implementations of a socket connection. The location information is augmented
with information from the RHDB and visualized using MDS. More work will be devoted to visualization capabilities such
as highlighting or selection of diverse areas for detailed inspection of problem reports. Furthermore, we will investigate the
optimization algorithms as to allow placing related features as close to each other as their proportional computed strength
indicates.

8. Acknowledgments

We thank theMozilla developers for providing all their data for this case study to analyze the evolution of an large Open
Source Software project.

References

[1] Bugzilla Bug Tracking System.
http://www.bugzilla.org/ .

12



[2] GNU’s Not Unix! - the GNU Project and the Free Software Foundation (FSF).http://www.gnu.org/ .
[3] Merriam Webster’s Collegiate Dictionary. Merriam-Webster, Incorporated, 10th edition edition, 1996.
[4] The American Heritage Dictionary of the English Language. Houghton Mifflin Co, 4th edition edition, 2000.
[5] J. Bieman, A. Andrews, and H. Yang. Understanding change-proneness in OO software through visualization. InProceedings of

11th International Workshop on Program Comprehension. IEEE, 2003.
[6] A. Buja, D. F. Swayne, M. Littman, N. Dean, and H. Hofmann. XGvis: Interactive Data Visualization with Multidimensional Scaling.

Tentatively accepted for publication in the Journal of Computational and Graphical Statistics, 2001.http://www.research.
att.com/areas/stat/xgobi/papers/xgvis.pdf .

[7] P. Cederqvist et al.Version Management with CVS, 1992.http://www.cvshome.org/docs/manual/ .
[8] S. Demeyer, S. Ducasse, and O. Nierstrasz.Object-oriented Reengineering Patterns. Morgan Kaufmann, 2002.
[9] D. Draheim and L. Pekacki. Process-centric analytical processing of version control data. InProceedings of the International

Workshop on Principles of Software Evolution (IWPSE), Helsinki, Finland. IEEE Computer Society Press, September 2003.
[10] T. Eisenbarth, R. Koschke, and D. Simon. Aiding Program Comprehension by Static and Dynamic Feature Analysis. InProceedings

of the International Conference on Software Maintenance. IEEE Computer Society Press, November 2001.
[11] M. Fischer, M. Pinzger, and H. Gall. Analyzing and Relating Bug Report Data for Feature Tracking. In10th Working Conference

on Reverse Engineering (WCRE), Victoria, Canada, November 2003.
[12] M. Fischer, M. Pinzger, and H. Gall. Populating a Release History Database from Version Control and Bug Tracking Systems.

In Proceedings of the 2003 International Conference on Software Maintenance (ICSM 2003), Amsterdam, Netherlands, September
2003.

[13] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-oriented domain analysis (foda). Technical report,
Software Engineering Institute, Carnegie Mellon University, 1990.

[14] J. B. Kruskal and M. Wish. Multidimensional Scaling.Quantitative Applications in the Social Sciences, 11, 1978.
[15] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case studies of open source software development: Apache and Mozilla.ACM

Transactions on Software Engineering and Methodology (TOSEM), 11(3):309–346, 2002.
[16] E. Pulverm̈uller, A. Speck, J. O. Coplien, M. D’Hondt, and W. DeMeuter. Feature Interaction in Composed Systems. InFeature

Interaction in Composed System, 2001.
[17] C. M. B. Taylor and M. Munro. Revision towers. In1st International Workshop on Visualizing Software for Understanding and

Analysis. IEEE, 2002.
[18] N. Wilde, J. Gomez, T. Gust, and D. Strasburg. Locating user functionality in old code. InInternational Conference on Software

Maintenance, pages 200–205, 1992.
[19] N. Wilde and M. C. Scully. Software Reconnaissance: Mapping Program Features to Code.Journal of Software Maintenance:

Research and Practice, 7(1):49–62, January 1995.

13


