
Proceedings of the

ELISA workshop

Evolution of Large-scale Industrial Software Evolution

Tuesday, 23 September 2003

Royal Netherlands Academy of Arts and Sciences
Amsterdam, The Netherlands
co-located with ICSM 2003

Organised by: Tom Mens, Juan F. Ramil, Michael W. Godfrey, Brian Down

An official activity of the ESF RELEASE research network

TABLE OF CONTENTS

Full papers

Rationale Support for Maintenance of Large Scale Systems 1-12
Janet E. Burge, David C. Brown

Evolutionary Product Line Modelling 13-24
Serguei Roubtsov, Ella Roubtsova, Pekka Abrahamsson

Evaluating Clone Detection Techniques 25-36
Filip Van Rysselberghe, Serge Demeyer

Describing the Impact of Refactoring on Internal Program Quality 37-48
Bart Dubois, Tom Mens

J2EE or .NET: A Managerial Perspective 49-55
Neil Chaudhuri

Using Coordination Contracts for Evolving Business Rules 56-66
Michel Wermelinger, Georgios Koutsoukos, José Luiz Fiadeiro

Towards a Taxonomy of Clones in Source Code: A Case Study 67-78
Cory Kapser, Michael W. Godfrey

Using Software Trails to Rebuild the Evolution of Software 79-97
Daniel German

Meta-Model and Model Co-Evolution within the 3D Software Space 98-109
Jean-Marie Favre

MDS-Views: Visualizing Problem Report Data of Large Scale Software Using 110-122
Multidimensional Scaling

Michael Fischer, Harald Gall

Short papers

Linking the Effect of Typographical Style to the Evolvability of Software 123-127
Andrew Mohan, Nicolas Gold

Challenges of Highly Adaptable Information Systems 128-133
Stephen Cook, Rachel Harrison, Timothy Miles, Lily Sun

Design Erosion in Evolving Software Products 134-139
Jilles Van Gurp, Jan Bosch, Sjaak Brinkkemper

Observations on Automation in Cross-Platform Migration 140-146
Ben Wilson, Tony Van der Beken

Evolution of Legacy Systems: Strategic and Technological Issues, 147-153
based on a case study

Herman Tromp, Ghislain Hoffman
Supporting Software Maintenance & Evolution with Intentional Source-code Views 154-159

Kim Mens, Bernard Poll
Identifying Problems with Legacy Software: Preliminary Findings 160-167
of the ARRIBA Project

Isabel Michiels, Dirk Deridder, Herman Tromp, Andy Zaidman
A Case for Establishing Evolutionary Policies and their Support Mechanisms, 168-173
with Examples

Nazim H. Madhavji, Josée Tassé

Rationale Support for Maintenance of Large Scale Systems

Janet E. Burge and David C. Brown
Worcester Polytechnic Institute
Computer Science Department

Worcester, Massachusetts, 01609, USA
jburge@cs.wpi.edu, dcb@cs.wpi.edu

August 5, 2003

Abstract

Software maintenance has long been one of the most difficult and expensive phases of the software
life-cycle. Maintenance is especially difficult for large-scale systems. The more code involved, the
larger the chance that there may be unexpected interactions that may cause problems when updates and
corrections are made during maintenance. The large number of developers who were probably involved
at various points in the system’s creation means that it is likely to be difficult to answer questions about
the intent behind the design and implementation decisions. The designer’s, or developer’s, intent can
be captured as their Design Rationale. Unlike standard design documentation, which is a description of
the final design, Design Rationale (DR) offers more: not only the decisions, but also the reasons behind
each decision, including its justification, other alternatives considered, and argumentation leading to
the decision.

To drive and evaluate our research into using rationale for software maintenance, we are developing
the SEURAT (Software Engineering Using RATionale) system to support the software maintainer. This
system will present the relevant DR when required and allow entry of new rationale for the modifica-
tions. The new DR will then be verified against the existing DR to check for inconsistencies. There
are several types of inferences that should be made: structural inferences to ensure that the rationale is
complete, evaluation, to ensure that it is based on well-founded arguments, and comparison to rationale
collected previously for similar modifications to see if the same reasoning was used.

1 Introduction

1.1 Problem and Motivation

Software maintenance has long been one of the most difficult and expensive phases of the software life-
cycle. Maintenance costs can be more than 40 percent of the cost of developing the software in the first
place [18]. One reason for this is that the software lifecycle is a long one. Large projects may take
years to complete and spend even more time out in the field being used (and maintained). The panic
over the “Y2K bug” highlighted the fact that software systems often live on much longer than the original
developers intended. Compared to hardware, software is “easy” to modify during maintenance—software
maintenance changes can often be more extensive and more frequent than maintenance performed on less
mutable systems. The likelihood that these changes may add defects to the system is increased by the
fact that the combination of a long life-cycle and the typically high personnel turnover in the software
industry increases the probability that the original designer is unlikely to be available for consultation
when problems arise.

Tom Mens
1

Tom Mens

Maintenance is especially difficult for large-scale systems. The more code involved, the larger the
chance that there may be unexpected interactions that may cause problems when updates and corrections
are made during maintenance. The large number of developers who were probably involved at various
points in the system’s creation means that it is even more likely to be difficult to answer questions about the
intent behind the design and implementation decisions. This increases the probability that new decisions
made during maintenance will conflict with this original intent with adverse consequences.

All these reasons argue for as much support as can be provided during maintenance. Semi-automatic
systems, such as Reiss’s constraint-based system [27], working on the code, abstracted code, design arti-
facts, or meta-data, can already provide a lot of support. Design Rationale, however, provides an additional
opportunity for assistance during maintenance.

1.2 Approach

The designer’s, or developer’s, intent can be captured as their Design Rationale. Unlike standard design
documentation, which is a description of the final design, Design Rationale (DR) offers more: not only the
decisions, but also the reasons behind each decision, including its justification, other alternatives consid-
ered, and argumentation leading to the decision [22]. This additional information offers a richer view of
both the product and the decision making process by providing the designer’s intent behind the decision
[28]. This DR would then be available for use by the software maintainer to determine where software
changes should be performed and to determine the impact of these changes.

To drive and evaluate our research into using rationale for software maintenance, we are developing the
SEURAT (Software Engineering Using RATionale) system to support the software maintainer. This system
will present the relevant DR when required and allow entry of new rationale for the modifications. The
new DR will then be verified against the existing DR to check for inconsistencies. There are several types
of inferences that should be made: structural inferences to ensure that the rationale is complete, evaluation,
to ensure that it is based on well-founded arguments, and comparison to rationale collected previously for
similar modifications to see if the same reasoning was used. In the latter, the previous rationale could be
used as a guide in determining the rationale for the new modification. The system will also propagate, or
assist in propagating, any necessary changes to the existing DR as well as alerting the maintainer if the code
modifications are the same as those made earlier and then rejected. We have developed the requirements
for the SEURAT system based on earlier work on the InfoRat (Inferencing over Rationale) system [5] as
well as a preliminary study on using rationale for software maintenance [6].

Our work focuses on the use of DR, in order to explore and evaluate its potential. It is not intended to
be a fully-fledged programming and maintenance support system.

In this paper, we first describe related work in this area (Section 2), the representation for our software
design rationale (Section 3), and the argument ontology developed to support semantic inferencing (Section
4). This is then followed by a discussion of the inferencing supported by the system (Section 5), and the
proposed system (Section 6). We then conclude with a summary of our approach (Section 7).

2 Related Work

Design rationale research has typically focused on three aspects of rationale: DR representation, DR cap-
ture, and DR use. Design Rationale representations vary from informal representations such as audio or
video tapes, or transcripts, to formal representations such as rules embedded in an expert system [11]. A
compromise is to store information in a semi-formal representation that provides some computation power
but is still understandable by the human providing or using the information.

Tom Mens
2

Semi-formal representations are often used to represent argumentation. Argumentation notations pro-
vide a structure to indicate what decisions were made (or not made) and the reasons for and against them.
Argumentation formats date back to Toulmin’s representation [29] of datums, claims, warrants, backings
and rebuttals. This is the origin of most argumentation representations. More recent argumentation for-
mats include Questions, Options, and Criteria (QOC) [23], Issue Based Information System (IBIS) [11],
and Decision Representation Language (DRL) [21]. Each argumentation format has its own set of terms
but the basic goal is to represent the decisions made, the possible alternatives for each decision, and the
arguments for and against each alternative.

Argumentation has been used in rationale representations that were created specifically for software
design. Potts and Bruns [26] created a model of generic elements in software design rationale that was
then extended by Lee [21] in creating his Decision Representation Language (DRL), the language used in
SIBYL [20]. DRIM (Design Recommendation and Intent Model) was used in a system to augment design
patterns with design rationale [25]. This system is used to select design patterns based on the designers
intent and other constraints.

There are also many different ways to capture DR. One approach is to build the rationale capture into a
system used for the design task. Active Design Documents (ADD), a system that does routine, parametric
design [15], uses rationale already built into a knowledge base and associates it with the user’s decisions.
Some systems capture DR by integrating the system into an existing design tool. This is done by M-
LAP (Machine-Learning Apprentice System) [3]. In M-LAP, user actions are recorded at a low level and
formed into useful sequences using machine-learning techniques. This is also done in the RCF (Rationale
Construction Framework) [24]. RCF uses its theory of design metaphors to interpret actions recorded in a
CAD tool and convert them into a history of the design process.

Capturing rationale is often expensive and time consuming and can only be justified if there are com-
pelling uses for the rationale. Systems such as JANUS (Fischer, et. al., 1995), critique the design and
provide the designers with rationale to support the criticism. Others, such as SIBYL [20], verify the design
by checking that the rationale behind the decisions is complete. C-Re-CS [19] performs consistency check-
ing on requirements and recommends a resolution strategy for detected exceptions. InfoRat [5] performs
inferencing over the rationale to verify that the rationale is complete and consistent, and to also evaluate
that decisions made were well supported.

There has also been work on using design rationale in software design. DRIM (Design Recommen-
dation and Intent Model) was used in a system to augment design patterns with design rationale [25].
Co-MoKit [12] uses a software process model to obtain design decisions and causal dependencies between
them. WinWin [1] aims at coordinating decision-making activities made by various ”stakeholders” in the
software development process. Bose [2] defined an ontology for the decision rationale needed to maintain
the decision structure. The goal was to model the decision rationale in order to support decision main-
tenance by allowing the system to determine the impact of a change and propagate modification effects.
Chung, etc. al. [8] developed an NFR Framework which uses non-functional requirements to drive the
software design process, producing the design and its rationale.

3 Rationale Representation

We have generated an initial rationale representation, RATSpeak. We have chosen to represent our ratio-
nale in a semi-structured argumentation format because we feel that argumentation is the best means for
expressing the advantages and disadvantages of the different design options considered.

We chose to base RATSpeak on DRL [21] because DRL is the most comprehensive of the rationale
languages. Even so, it was necessary to make some change because DRL did not provide a sufficiently

Tom Mens
3

explicit representation of some types of argumentation (such as indicating if an argument was for or against
an alternative).

Claim

Claim Claim

Claim Claim

argument ontology

sub−Decisionsub−DecisionAlternativeAlternative

Decision Problem

or

Decision Problem

Alternative

supports
denies

Assumption

supports
denies

Requirement

satisfies
addresses
violates

arguments pre−supposes
pre−supposed−by
opposes
opposes−by

Figure 1: RATSpeak Argumentation Structure

RATSpeak uses the following elements as part of the rationale:
� Requirements - these are the requirements, both functional and non-functional. These can either be

represented explicitly in the rationale or stored as pointers to requirements stored in a requirements
document or database. For the purposes of our examples, we will show them as part of the rationale.
Requirements serve two purposes in RATSpeak, one is as the basis of arguments for and against
alternatives. This allows RATSpeak to capture cases where an alternative supports or violates a
requirement. The other purpose is so that the rationale for the requirements themselves can be
captured.

� Decision Problems - these are the decisions that must be made as part of the development process.
They tend to be expressed in the form of questions.

� Questions - these are questions that need to be answered before the answer to the decision problem
can be defined. These can be procedures or programs that need to be run or simple requests for
information. While questions are not a standard argumentation concept, they can augment the argu-
mentation by specifying the source of the information used to make the decisions, which would be
very useful during software maintenance.

� Alternatives - these are alternative solutions to the decision problems. Each alternative will have a
status that indicates if it is accepted, rejected, or pending.

� Arguments - these are the arguments for and against the proposed alternatives. They can either
be requirements (i.e., an alternative is good or bad because of its relationship to a requirement),
claims about the alternative, assumptions that are reasons for or against choosing an alternative, or
relationships between alternatives (indicating dependencies or conflicts). Each argument is given an
amount (how much the argument applies to the alternative, i.e., how flexible, how expensive) and an
importance (how important the argument is to the overall system or the specific decision).

� Claims - these are reasons why an alternative is good or bad. Each claim maps to an entry in an
Argument Ontology of common arguments for and against software design decisions. Each claim
also indicates what direction it is in for that argument. For example, a claim may state that a choice
is NOT safe or that an alternative IS flexible. This allows claims to be stated as either positive or
negative assertions.

Tom Mens
4

� Assumptions - these are similar to claims except that their truth is in doubt. Assumptions do not map
to items in the Argument Ontology.

� Argument Ontology - this is a hierarchy of common argument types that serve as types of claims that
can be used in the system. These are used to provide the common vocabulary required for semantic
inferencing.

� Background Knowledge - this contains Tradeoffs and Co-Occurrence Relationships that give rela-
tionships between different arguments in the Argument Ontology. This is not considered part of the
argumentation but is used to check the rationale for any violations of these relationships.

Figure 2 shows the relationships between the different rationale entities.

Decision

Problem

Alternative

Argument

Claim

Argument

Ontology

Assumption

Question

Requirement

Co−Occurrence

Relationships
Tradeoffs

sub−decision

is−alternative−for requires

requires−answer−to

is−argued−by is−about

requires−answer−to

is−reason−for
is−argued−by

is−reason−for

specified−in

sub−requirement

specify
relationships

between

Background Kn

Figure 2: Relationship Between Rationale Entities

4 Argument Ontology

One key element in the RATSpeak representation is the Argument Ontology. Our work on InfoRat showed
the importance of providing a common vocabulary to support inferencing over the content of the rationale
as well as its structure. To support this, we have developed an ontology of reasons for choosing one design
alternative over another. This ontology forms a hierarchy of terms with abstract reasons at the root and
increasingly detailed reasons out towards the leaves.

Tom Mens
5

RATSpeak provides the ability to express several different types of arguments for and against alterna-
tives. One type of argument is whether an alternative satisfies or violates a requirement. Other arguments
refer to assumptions made or dependencies between alternatives. A fourth type of argument involves claims
that an alternative supports or denies a Non-Functional Requirement (NFR). These NFRs, also known as
“ilities” [13] or quality requirements, refer to overall qualities of the resulting system, as opposed to func-
tional requirements, which refer to specific functionality. As we describe in [7], the distinction between
functional and non-functional is often a matter of context. RATSpeak also allows NFRs to be represented
as explicit requirements.

There have been many ways that NFRs have been organized. CMU’s Quality Measures Taxonomy
[10] organizes quality measures into Needs Satisfaction Measures, Performance Measures, Maintenance
Measures, Adaptive Measures, and Organizational Measures. Bruegge and Dutoit [4] break a set of design
goals into five groups: performance, dependability, cost, maintenance, and end user criteria. Chung, et. al.
[8] provide an un-ordered list of NFRs as well as specific criteria for performance and auditing.

For the RATSpeak argument ontology, we took a bottom-up approach by looking at what characteristics
a system could have that would support the different types of software qualities. This involved reviewing
literature on the various quality categories to look for how a software system might choose to address
these qualities. The aim was to go beyond the idea of design goals or quality measures to look at how
these qualities might be achieved by a software system. In maintenance, the maintainers are more likely
to be looking at the lower-level decisions and will need specific reasons why these decisions contribute to
a desired quality of the overall system. It is probable that decisions made at the implementation level are
likely to correspond to detailed reasons in the ontology, while higher level decisions are more likely to use
reasons at the more abstract levels.

After determining a list of detailed reasons for choosing one alternative over another, an Affinity Dia-
gram [17] was used to cluster similar reasons into categories. These categories were then combined again.
The more abstract levels of the hierarchy were based on a combination of the NFR organization schemes
listed earlier (the CMU taxonomy, and Bruegge and Dutoit’s design goals). Also, NFRs from the Chung
list were used to fill in gaps in the ontology.

Figure 3 shows the first two levels of the Argument Ontology.

Affordability Criteria
Development Cost
Deployment Cost
Operating Cost
Maintenance Cost
Upgrade Cost
Administration Cost

Adaptability Criteria
Extensibility
Modifiability
Adaptability
Portability
Scalability
Reusability
Interoperability

Maintainability Criteria
Readability
Supportability

Dependability Criteria
Security
Robustness
Fault Tolerance
Reliability
Safety
Availability

End User Criteria
Usability
Integrity

Needs Satisfaction Criteria
Verifiability
Traceability

Performance Criteria
Response Time and Throughput
Memory Efficiency
Resource Utilization

Figure 3: Top Levels of the Argument Ontology

Tom Mens
6

Each of these criteria then have sub-criteria at increasingly more detailed levels. As an example,
Figure 4 shows the sub-criteria for Usability. The ontology terms are worded to be part of an argument:
i.e., “ � alternative � is a good choice because it � ontology entry � ” where � ontology entry � includes
the appropriate verb (supports, provides, etc.) for the argument, e.g., “reduces development time”. The
SEURAT system will be designed so that this ontology will be easily extensible by the user to incorporate
additional arguments that may be missing from the ontology. With use, the ontology will continue to be
augmented and will become more complete over time. It is possible to add deeper levels to the hierarchy
but that will make it more time consuming for the developer to find the appropriate item when adding
rationale. Hence ontology depth is a tradeoff that must be made.

The ontology is also intended to be easily extended to incorporate domain-specific arguments that will
apply to the system under development. The arguments in SEURAT, including those given here, are only
a starting point.

Increases Physical Ease of Use
{provides | supports} effective use

of screen real-estate
minimizes keystrokes
{provides | supports} increased

visual contrast
is easy to read

Increases Cognitive Ease of Use
provides reasonable default values
provides user guidance
{encourages | supports} direct

manipulation
minimizes memory load on the user
provides feedback
{conforms to | utilizes} user

experience
increases visibility of function

to users
uses predictable sequences of

actions
increases intuitiveness
{provides | supports} an appropriate

metaphor

Increases Recoverability
supports undo of user actions
corrects user errors

Increases Acceptability
increases aesthetic value
avoids offensiveness

Provides User Customization
{provides | supports} customization
supports different levels of user

expertise

Supports Internationalization
reduces cultural dependencies
supports internationalization

Increases Accessibility
supports visual accessibility
supports auditory accessibility
supports mobility accessibility
supports cognitive accessibility

Figure 4: Usability Arguments

Similar hierarchies have been developed for the remainder of the categories in Figure 3. One thing to
note is that it is not a strict hierarchy—there are many cases where items contributing toward one quality
also apply to another. One example of this is the strong relationship between scalability and performance—
throughput and memory use, while primarily thought of as performance aspects, also impact the scalability
of the system. In this case, and others that are similar, items will belong to more than one category.

The argument ontology also includes a user-modifiable default importance for each item. These are
present so that SEURAT users can specify this information once if the importance value should hold for
an entire system. The importance is used in weighing the different arguments during inferencing. The
importance can be overridden for each claim or argument but is stored with the ontology to allow this
information to be global if desired.

Other relationships that need to be captured are tradeoffs and co-occurrences. These are cases where
two items in the ontology often either oppose each other in arguments or support each other in arguments.

Tom Mens
7

RATSpeak captures these as background knowledge stored as part of the rationale. This background knowl-
edge refers to the items in the argument ontology and stores the relationships between them.

5 Inferencing

Design Rationale is very useful even if it is only used in the traditional way as a form of documentation
that provides extra insight into the designer’s decision-making process. DR can provide even more useful
information about the design and modifications made to the design if there is a way to perform inferences
over it. Due to the nature of DR, the results may be in the form of warnings or questions (as opposed to
conclusions) that help the maintainer act carefully and consistently. In the following sections we describe
a number of different inferences that could be performed over rationale that was structured using the
RATSpeak representation.

There are two types of inferences that can be performed. Syntactic inferences are those that are con-
cerned mostly with the structure of the rationale. They look for information that is missing. Semantic
inferences require looking into the content of the rationale. The SEURAT system will include the follow-
ing syntactic inferences:

� Checking for selected alternatives with no supporting arguments;

� Checking for selected alternatives with more arguments against than for;

� Checking for decisions where no alternatives were selected;

� Checking for decisions where one alternative has more arguments than others (may indicate bias or
missing information).

Many of these inferences have been implemented as CLIPS [9] rules. Figure 5 shows a set of rules that
work together to check for selected alternatives with no supporting arguments.

Semantic inference was explored by the InfoRat [5] system, which used a common vocabulary of
reasons so that the content of the arguments could be compared. SEURAT will support the following
semantic inferences:

� Checking if the best supported alternative was not selected (based on the importance of the arguments
given);

� Checking if contradictory arguments were used (the same criteria used for and against an alternative);

� Checking consistency of argument abstraction (were some alternatives argued with more or less
detailed criteria);

� Checking abstraction levels;

� Checking for selected alternatives that violate requirements;

� Checking for requirements that were not satisfied or addressed;

� Checking for violations of tradeoffs and co-occurrences captured in the background knowledge;

� Reporting statistical information of frequency of specific arguments.

Tom Mens
8

; favorable arguments
(defrule checkFavorable

(alternative (name ?a))
(argument (name ?r))
(argues (argument ?r) (alternative ?a))
(or (argument (name ?r) (argtype supports))

(or (argument (name ?r) (argtype satisfies))
(argument (name ?r) (argtype addresses))))

=> (assert (favorable ?r ?a)))

; check for presupposed arguments
(defrule checkPresupposed

(argument (name ?r))
(alternative (name ?a))
(argues (argument ?r) (alternative ?a))
(argument (name ?r) (argtype presupposed)(alt ?a2))
(alternative (name ?a2) (status selected))

=> (assert (presupposed ?a)))

; if *any* arguments are favorable we want this to return false
(defrule checkNotSupported

(alternative (name ?a) (status selected))
(not (presupposed ?a))
(not (favorable ?r ?a))

=> (assert (notsupported ?a)))

Figure 5: Rules Checking for Unsupported Alternatives

;requirements traceability - violates
(defrule checkViolatedRequirements

(requirement (name ?q))
(decision (name ?d))
(alternativeFor (alternative ?a) (decision ?d))
(argues (argument ?r) (alternative ?a))
(argument (name ?r) (req ?q) (argtype violates))
(alternative (name ?a) (status selected))

=> (assert (violatesReq ?q ?d ?a)))

Figure 6: Rule Checking for Violated Requirements

Most of these inferences have been implemented as CLIPS rules. Figure 6 shows a rule that looks for
requirements that were violated.

In addition to the inferencing, SEURAT will also support querying information about the rationale.
This will let the maintainer see what portions of the design and/or implementation affect which require-
ments, functional or otherwise.

6 SEURAT: Software Engineering Using RATionale

We are in the process of building the SEURAT system in order to demonstrate how rationale can be used in
software maintenance. SEURAT will use commercial and open source development tools to store the de-
sign and implementation. These tools will then be augmented with the ability to store, view, and inference
over the rationale. Figure 7 shows a diagram of the proposed SEURAT system.

This diagram shows that the main user interaction will be through two off-the-shelf tools: an Interactive
Development Environment (IDE) that is used for writing and building source code and a UML design tool
used in capturing the software design. SEURAT will be initially aimed at Java development and will use

Tom Mens
9

Interactive

Development

Environment

(IDE)

UML

Design

Tool(s)

User

Argument

Editor

and

Analyzer

Rationale

Repository

Inference Engine

Argument

Ontology

Figure 7: Proposed SEURAT System

the Eclipse IDE [16]. Eclipse is Open Source and can be extended to integrate with a context sensitive
Argument Editor and Analyzer. There are a number of UML design tools that interface with Eclipse. One
of those will be selected so that it is possible to enter and display rationale as notations to UML diagrams.

The inferencing will take place upon user command and will be performed by the Inference Engine.
This will be developed using the Java Expert System Shell (JESS) [14], which is a CLIPS-based expert
system shell. The CLIPS inference rules already developed will be used here, as well as any additional
ones needed.

The rationale will be stored in a Rationale Repository. This will be done using a relational database.
The Argument Ontology will be stored in a similar database. SEURAT will start with a general ontology
that can be extended for the needs of a particular software system.

The SEURAT system will support a variety of uses for the rationale. For example, assume a software
maintainer is working on a deployed system that was initially developed to support a relatively small
number of users. This information appears in the rationale in two ways: an assumption that there would
be only a few users at a time and the importance given to the scalability criteria in the argument ontology.
SEURAT would be used to decrease the plausibility of the assumption and increase the importance of
scalability as an argument. SEURAT would then re-evaluate the decisions made and inform the user if
this results in selected alternatives that are no longer the best-supported. In addition, the maintainer could
use SEURAT to look for where the scalability argument and assumption appear in the rationale as clues to
where the software design and implementation need to be changed to allow additional users.

7 Summary and Conclusions

Several steps have been taken toward the development of SEURAT, the Software Engineering Using RA-
Tionale system. These include the development of a rationale representation, an argument ontology, and a
preliminary set of inferences that can be performed over the rationale in order to support software main-
tenance. The SEURAT system will integrate the capture and use of rationale with development tools that
could be used by the software maintainer to make modifications to the software.

Such a tool would be invaluable during the maintenance of large-scale software systems and will com-
plement other programming and maintenance environments. One of the chief difficulties in maintaining a
large system is knowing the reasons behind the choices made by the developers during design and imple-
mentation. The lack of this knowledge makes it difficult for the maintainer to do their job and increases

Tom Mens
10

the risk that defects are introduced during maintenance. The presence of rationale would serve as a form
of “corporate memory” by capturing design information that would be lost if the developers left the com-
pany or if they were inaccessible to the maintainers [25]. Further support will be provided by giving the
maintainer the ability to inference over the rationale to both view the reasons for the choices, evaluate the
choices made, and determine the potential impact of new decisions.

Acknowledgements

The authors would like to thank the anonymous reviewers for their useful feedback on the paper and
Mikhail Mikhailov, Tom Mens, and Juan Ramil for Latex assistance.

References

[1] B. Boehm and P. Bose. A Collaborative Spiral Software Process Model Based on Theory W. In Proc.
3rd International Conf. on the Software Process, pages 59–68, Reston, VA, 1994.

[2] P. Bose. A Model for Decision Maintenance in the WinWin Collaboration Framework. In Proc. of
the Conf. on Knowledge-based Software Engineering, pages 105–113, Boston, MA, 1995.

[3] M. Brandish, M. Hague, and A. Taleb-Bendiab. M-LAP: A Machine Learning Apprentice Agent
for Computer Supported Design. In Artificial Intelligence in Design Workshop Notes on Machine
Learning in Design, Stanford, CA, 1996.

[4] D. Bruegge and A. Dutoit. Object-Oriented Software Engineering: Conquering Complex and Chang-
ing Systems. Prentice Hall, 2000.

[5] J.E. Burge and D.C. Brown. Inferencing Over Design Rationale. In J. Gero, editor, Artificial Intelli-
gence in Design ’00, pages 611–629. Kluwer Academic Publishers, 2000.

[6] J.E. Burge and D.C. Brown. Discovering a Research Agenda for Using Design Rationale in Software
Maintenance. Technical Report WPI-CS-TR-02-03, WPI, 2002.

[7] J.E. Burge and D.C. Brown. NFRs: Fact or Fiction? Technical Report WPI-CS-TR-02-01, WPI,
2002.

[8] L. Chung, B.A. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Requirements in Software Engi-
neering. Kluwer Academic Publishers, 2000.

[9] CLIPS. CLIPS Reference Manual Volume I: Basic Programming Guide, Version 6.10. 1998.
http://www.ghgcorp.com/clips/download/documentation.

[10] CMU. Quality measures taxonomy. Technical report, CMU, 2002.
http://www.sei.cmu.edu/str/taxonomies/view qm.html.

[11] J. Conklin and K. Burgess-Yakemovic. A Process-oriented Approach to Design Rationale. In
T. Moran and J. Carroll, editors, Design Rationale Concepts, Techniques, and Use, pages 293–328.
Lawrence Erlbaum Associates, 1995.

[12] B. Dellen, K. Kohler, and F. Maurer. Integrating Software Process Models and Design Rationales. In
Proc. of the Conf. on Knowledge-based Software Engineering, pages 84–93, Syracuse, NY, 1996.

Tom Mens
11

[13] R.E. Filman. Achieving Ilities. In Proc. of the Workshop on Compositional Software Architectures,
Monterey, CA, USA, 1998.

[14] E.J. Friedman-Hill. Jess, The Java Expert System Shell. Sandia National Laboratories, Livermore,
CA, 1998.

[15] A. Garcia, H. Howard, and M. Stefik. Active Design Documents: A New Approach for Supporting
Documentation in Preliminary Routine Design. Technical Report 82, Stanford University Center for
Integrated Facility Engineering, 1993.

[16] IBM. Eclipse Technical Platfom Overview. 2003.
http://www.eclipse.org/whitepapers/eclipse-overview.pdf.

[17] K. Jiro. KJ Method: A Scientific Approach to Problem Solving. Tokyo: Kawakita Research Institute,
2000.

[18] F. P. Brooks Jr. The Mythical Man-Month. Addison Wesley, 1995.

[19] M. Klein. An Exception Handling Approach to Enhancing Consistency, Completeness and Correct-
ness in Collaborative Requirements Capture. Concurrent Engineering Research and Applications,
pages 37–46, 1997.

[20] J. Lee. SIBYL: A Qualitative Design Management System. In P. Winston and S. Shellard, editors,
Artificial Intelligence at MIT: Expanding Frontiers, pages 104–133. MIT Press, 1990.

[21] J. Lee. Extending the Potts and Bruns Model for Recording Design Rationale. In Proc. of the 13th
International Conf. on Software Engineering, pages 114–125, Austin, TX, 1991.

[22] J. Lee. Design Rationale Systems: Understanding the Issues. IEEE Expert, 12(3):78–85, 1997.

[23] A. MacLean, R.M. Young, V. Bellotti, and T.P. Moran. Questions, Options and Criteria: Elements of
Design Space Analysis. In T. Moran and J. Carroll, editors, Design Rationale Concepts, Techniques,
and Use, pages 201–251. Lawrence Erlbaum Associates, 1995.

[24] K. Myers, N. Zumel, and P. Garcia. Automated Capture of Rationale for the Detailed Design Process.
In Proc. of the 11th National Conf. on Innovative Applications of Artificial Intelligence, pages 876–
883, Menlo Park, CA, 1999.

[25] F. Pena-Mora and S. Vadhavkar. Augmenting Design Patterns with Design Rationale. Artificial
Intelligence for Engineering Design, Analysis, and Manufacturing, pages 93–108, 1996.

[26] C. Potts and G. Bruns. Recording the Reasons for Design Decisions. In Proc. of the International
Conf. on Software Engineering, pages 418–427, Singapore, 1988.

[27] S.P. Reiss. Constraining Software Evolution. In Proc. of the International Conference on Software
Maintenance, pages 162–171, Montreal, Quebec, Canada, 2002.

[28] S. Sim and A. Duffy. A New Perspective to Design Intent and Design Rationale. In Artificial In-
telligence in Design Workshop Notes for Representing and Using Design Rationale, pages 4–12,
Lausanne, Switzerland, 1994.

[29] S. Toumlin. The Uses of Argument. Cambridge University Press, 1958.

Tom Mens
12

Evolutionary Product Line Modelling

Serguei Roubtsov
∗

VTT Electronics
VTT Electronics, Kaitovayla 1,

P.O.Box 1100
FIN-90571 Oulu, Finland

ext-
Serguei.Roubtsov@vtt.fi

Ella Roubtsova
Eindhoven University of

Technology
Den Dolech 2, P.O.Box 513
5600 MB The Netherlands

E.Roubtsova@tue.nl

Pekka Abrahamsson
†

VTT Electronics
VTT Electronics, Kaitovayla 1,

P.O.Box 1100
FIN-90571 Oulu, Finland

Pekka.Abrahamsson@vtt.fi

ABSTRACT
A traditional product line approach struggles with complex-
ity and weak evolution support. We propose an evolutionary
software product line modelling approach based on control-
lable inheritance of product line members specifications. In-
stead of a predefined product line architecture we use hierar-
chies of implemented product specifications accompanied by
correctness control of product model transformations. An
industrial case study from the embedded systems domain
demonstrating a modelling technique is provided. The ap-
proach is supported by an appropriate tool prototype.

1. INTRODUCTION
The product line approach is an approach to software reuse.
In large-scale industrial systems it is used, for example, in
embedded systems domain. Embedded software product
lines such as consumers electronics applications are usually
characterized by a huge variety of slightly different product
line members [18].

The mainstream of approaches to software product line (SPL)
development [8, 4] applies different diversity management
techniques to a generic SPL architecture. This allows a de-
signer to produce new products reusing common SPL as-
sets [10] within the boundaries of such a generic architec-
ture. This approach is robust but also complicated and not
flexible enough in terms of evolution support.

On the other hand, a component-based development ap-
proach has its own worth in the SPL area [17, 5]. This
approach employs composition of reusable components as a

∗The work of S.A. Roubtsov is supported by The European
Economic Interest Grouping ERCIM (European Research
Consortium for Informatics and Mathematics.†The research is carried on within VTT Electronics Agile
Software Technologies project: http://agile.vtt.fi.

basis for product population [19] development. However, in
the absence of a reference SPL architecture, the main advan-
tage of the product line approach, i.e. controlled variability,
may be damaged.

We propose an SPL modelling method that provides inher-
itance of implemented product line members model specifi-
cations accompanied by correctness control of model trans-
formations. The method considers inheritance of product
behaviour specifications as inheritance of processes [2, 22].
The method combines the flexibility of component-based ap-
proaches with the rigorous correctness of architecture-based
techniques. As a result, a designer obtains an instrument
that allows him to model new product line members quickly
introducing new required functionality and avoiding design
bags.

The rest of the paper is organized as follows. Section 2
provides a brief discussion about existing SPL approaches
and raises the relevant problems. Section 3 describes a case
study from the domain of embedded systems. Section 4 ex-
plains our method and provides corresponding illustrations
using the case study. Section 5 describes the tool prototype,
which has been developed to support our method. The pa-
per is concluded in Section 6.

2. SOFTWARE PRODUCT LINES:
STATE-OF-THE-ART APPROACHES
AND PROBLEMS

Software product lines traditionally employ a top-down ar-
chitecture -based methodology of software system develop-
ment [8, 10, 4, 14, 9]. It starts by choosing a set of products
comprising a product line and then proceeds by identifying
what requirements are common to all products (commonal-
ities) and what product features make them different (vari-
abilities). On the basis of requirements analysis a common
product line architecture and a set of reusable components
are designed and implemented. Finally, actual products are
derived from these shared assets [4]. Commonalities be-
tween SPL members are captured by a generic architecture.
Variabilities are usually introduced into this architecture by
means of so-called variation points [6], which imply unre-
solved diversity in the generic and component architectures
that should be explicitly introduced and bound into a con-
crete product during possibly latest phases of product line

Tom Mens
13

members development [6] (Figure 1).

product n

Goal: Delay
design decisions
to the latest
stages of software
development

product-line common architecture
with - variation points

product 1

component set

Binding

reu
se

Figure 1: Traditional SPL modelling process.

So, a common SPL architecture with variability manage-
ment fulfils a double role. Firstly, it provides the reference of
integrity for SPL components reuse. Secondly, the diversity
of all product line members, existent or future, should cor-
respond to the variability already implicit in such a generic
architecture. The SPL architecture should provide correct-
ness of product modifications.

However, there are some disadvantages of such an architec-
ture -driven [19] approach.

The first problem is complexity. The entire development
process is divided into two concurrent parts - domain en-
gineering for reusable SPL assets and application engineer-
ing for product line members [14]. SPL development and
maintenance give rise to a lot of related tasks, which have
to be solved coherently [8, 4]. Among others design of
a reusable architecture is an especially complicated prob-
lem. How much commonality and variability should be in-
troduced into a common SPL architecture? It has to be
somewhat between minimal reuse (common requirements
only) and maximal reuse (all requirements, both common
and different). The more variability is introduced into the
architecture, the more benefits of reuse should be expected.
However, design of such a flexible architecture meets a truly
challenge [10, 4, 3].

The second problem is evolution support [25]. Require-
ments are changed, technology is improved. How can we
predict the features and, therefore, the architectures of fu-
ture product line members? Even architecture itself suffers
from erosion during a software product evolution process.
Research [12] shows how seemingly robust design decisions
taken early in the evolution of a single product may con-
flict with requirements that need to be implemented later
in the evolution. For product lines the problem increases
immensely (e.g., [27]).

The impact of above mentioned problems is high cost of

wrong architectural design decisions.

The alternative software reuse approach is an evolutionary
component-based software development process [26]. In the
SPL domain it is a product population approach [17, 19, 18,
5]. That approach uses lightweight [17] common architec-
ture and implements software component modifications and
component compositions instead of architecture-based vari-
ability management (e.q., [18]).

The benefits of evolutionary approaches are explicit. An
SPL grows when new product line members appear. A de-
sign process is flexible and incremental. Similar already
implemented products are reused to introduce the exten-
sions, which are required by a new product. However, in
the absence of a fixed common architecture the problems
of SPL integrity and product line members design correct-
ness rise sharply. Component modification and composition
rules are static, they do not guarantee that the entire sys-
tem behaviour comprises the behaviour of composition parts
in a correct manner. The evolutionary approach needs a
design methodology that can help designers collect useful
features of already implemented SPL members and avoid
incorrect design decisions while they introduce new prod-
uct functionality. In addition, SPLs are rather long-lived
software projects and need to be supported not only by a
reusable component set but also by some joint model to be
a reference of integrity.

In order to overcome outlined challenges we propose an
evolutionary software product line modelling method based
on the inheritance of product line members design speci-
fications and correctness control of model transformations.
Each implemented specification can become a predecessor
of a new product specification. At the same time, correct-
ness of behavioural inheritance with new extensions should
be proved (Figure 2).

product 2

product 1

...
product n

product 3

Evolution of
inherited
model
specifications

Correctness control
of model transformations

Figure 2: Evolutionary SPL modelling approach.

In our approach design specifications are implemented us-
ing UML (Unified Modeling Language) profile with defined
inheritance relations on specifications [23]. The profile de-
fines a special type of UML class diagrams, interface-role
diagrams, similar to CATALYSIS approach [11]. Compo-
nent system behaviour is specified in the profile using UML
sequence diagrams as it was first introduced in [7]. Pro-
cess semantics is used as a basis for inheritance relations on

Tom Mens
14

component behavioural specifications [2, 22].

Correctness control is provided by product model transfor-
mation checks using inheritance of processes. Applying of
backward derivation rules to produce parent product pro-
cess specifications from inheritor’s ones allows a designer
to prove correctness of inheritance or to find the points of
wrong design decisions.

In [21] the evolutionary SPL modelling technique is used
within the traditional architecture-centric SPL development
process. Now we advocate our modelling method as a self-
sufficient and robust alternative to the traditional one. The
previous theoretical results are extended by the notion of a
product process graph. The notion of inheritance of prod-
uct line members specifications is defined on the basis of a
process graph definition. In this paper we also discuss the
application of our method.

3. CASE STUDY: SCIENTIFIC SILICON
ARRAY X-RAY SPECTROMETER

We intend to emphasize applicability of our method. Our
case study is a product line representation of Scientific Sili-
con Array X-Ray Spectrometer (SIXA) Control Software [13,
9]1. This is an onboard satellite system that provides scien-
tific data in two measurement modes [13]: Energy Spectra
(EGY) and Single Event Characterization (SEC).

Despite some differences between EGY and SEC measure-
ment realizations there are also a lot of common require-
ments that makes it possible to regard this case study as an
example of an SPL. Following [9] we intend to model three
members of SIXA software product line:

◦ stand alone EGY Controller
◦ stand alone SEC Controller
◦ combined EGY and SEC Controller

The key aspects of SPL modelling have to be found in the
requirements, both functional and behavioural, to product
line members. Let us consider them subsequently.

3.1 Product line members functionality
The SIXA Controller fulfils the following functional require-
ments [13]:
- it receives measurement programmes from the ground via
a satellite computer,
- provides data measurement,
- collects and sends data back.

These requirements to the product line software can be de-
scribed in terms of four interconnected subsystems [13] re-
alizing main product features:

• Measurement Control subsystem. This subsystem pro-
vides Controller Commands interface with an onboard
satellite computer. External control commands and
measurement programmes come via this interface.

1We thank Prof. Eila Niemela and Tuomas Ihme from VTT
Electronics for sharing the insights into this case study

• Data Acquisition subsystem. It executes measurement
programmes received via its interface Control Data Ac-
quisition from Measurement Control subsystem.

• Data Management subsystem. It

– fills its internal buffer with data received from
Data Acquisition subsystem via interface Save Data.

– sends scientific data back to the ground via Satel-
lite Computer interface Controller Data Response
following commands from Measurement Control
subsystem via interface Control File Management.

• Satellite Computer that is regarded as an external sys-
tem. It uses Spectrometer interface Controller Com-
mands and receives scientific data via its own interface
Controller Data Response.

The described above SIXA spectrometer functionality is com-
mon for the entire SPL.

The variability is defined by the different measurement modes
that have to be implemented. EGY and SEC modes are
realized by different specific Data Acquisition subsystems
and corresponding interfaces Control Data Acquisition and
Save Data. There is also slightly different organization of
a data exchange process with the satellite computer: EGY
Controller Data Management subsystem sends data to the
satellite computer after measurement programme has been
fulfilled completely, whereas SEC Controller Data Manage-
ment subsystem can initialize data exchange when its inter-
nal buffer is full. So, this subsystem should be able to send
such a request to Satellite Computer.

EGY and SEC Controller has to provide functionality of
each stand alone mode whatever has been chosen by the
ground measurement programme.

3.2 Product line members behaviour
The behavioural requirements to the SIXA Spectrometer
software are defined by two data observation processes, one
process for each observation mode [13]. Both processes com-
prise two sequential sub-processes: data measurement and
data exchange. Using usual algorithmic notation the pro-
cesses can be described as it is shown in Fig. 3. (We omit
a few not significant technical details in order to draw a
more clear picture.) Each block in Fig. 3 corresponds to an
operation call that is performed by interacting SIXA Con-
troller software subsystems and supported by hardware sig-
nals. The blocks above the dashed line (Fig. 3) perform the
data measurement sub-processes, the blocks below this line
correspond to the data exchange sub-process.

The data exchange sub-process is common for EGY and SEC
modes: after sending to the ground the number of blocks
with scientific data to be transmitted it performs a cycle of
data blocks transmission.

The data measurement sub-processes are partially different.
The dark blocks in Fig. 3 depict the steps of the measure-
ment sub-processes which are different for EGY and SEC
modes. The EGY measurement sub-process is performed
subsequently for each of the predefined observation targets.

Tom Mens
15

This corresponds to the external cycle of the algorithm on
the left hand side in Fig. 3. The algorithm on the right
hand side does not contain this cycle because in SEC mea-
surement mode a single target is observed continuously. For
both modes a single target observation cycle lasts until an
observation time is expired. However, in SEC mode the ob-
servation process can be interrupted when Buffer Full mes-
sage is raised in the system.

The real SIXA spectrometer has more features to be mod-
elled [9], support of a hard disk in SEC mode, for example.
However, additional features can become part of future SPL
members generations. The case study is enough to give a
demonstration of how our method works.

Start EGY programme

Analog electronics_ON

Clear Data Buffer

Start EGY
Observation Time

Start EGY
Measurement

Send EGY Data

EGY Observ. Time
has been Finished?

Analog electronics_OFF

yes

no

All targets

have been observed?

yes

no

Ground Contact

Give Number of Blocks

Send Number of Blocks

Start Contact

Send Next Block

All blocks

have been sent?

yes

no

ContactOK

Start SEC programme

Analog electronics_ON

Clear Data Buffer

Start SEC
Observation Time

Start SEC
Measurement

Send SEC Data

Buffer Full?

Analog electronics_OFF

yes

no

yes

Ground Contact

Give Number of Blocks

Send Number of Blocks

Start Contact

Send Next Block

All blocks

have been sent?

yes

no

ContactOK

SEC Observ. Time
has been Finished?

no

Figure 3: Observation algorithms for SIXA Spec-
trometer. On the left hand side: EGY mode; on
the right hand side: SEC mode; measurement sub-
process is above − − −− line; data exchange sub-
process is below.

4. EVOLUTIONARY PRODUCT LINE
MODELLING METHOD

The method includes two parts: a product model specifica-
tion and the definition of inheritance of product line mem-
bers specifications with the derivations rules providing cor-
rectness of model transformations.

4.1 Product Model Specification
The product line member specification is a pair

PrSp = (IR, BS)

where IR is an interface-role specification and BS is a be-
havioural specification.

4.1.1 Interface-role specification
The interface-role specification describes static aspects of
product functionality. Roles can provide interfaces, which
the other roles can require [11]. Each such a pair of roles
interacting via the interface can model a piece of product
functionality, i.e. a product feature [4]. So, product func-
tional requirements can be mapped directly to interface-role
specifications.

On the other hand, roles with interfaces are quite similar
in nature to product components. Components interact by
playing roles. A designer is free to abstract from a con-
crete component implementation during role modelling [28].
However, one or several interacting roles can be mapped to a
product component architecture in such a way that compo-
nent boundaries should come across the interfaces provided
by roles [28, 21].

Interface-role specification is a tuple

IR = (R, I, PI, RI, RR), where :

• R is a finite set of roles. R = Rp ∪ Rd, Rp is a subset
of roles that provide interfaces; Rd is a subset of roles
that require interfaces. The same role can belong to
both subsets Rp and Rd.

• I is a finite set of interfaces provided by roles from Rp.
Each interface i ∈ I has finite set of operations OPi.
Each operation op ∈ OPi has finite set of result values
Resop.

• PI ⊆ {(r, i)| r ∈ Rp, i ∈ I} defines provided relations
between roles and interfaces.

• RI ⊆ {(r′, pi)| r′ ∈ Rd, pi ∈ PI} defines required rela-
tions between roles and interfaces. Each role requires
a finite set of provided interfaces.

• RR ⊆ {(r, r′)| r, r′ ∈ R} is a set of inheritance re-
lations on the set of roles. These relations are part
of inheritance relations between product line members
specifications and will be considered later (see section
4.2.1).

The interface-role specification of EGY Controller is shown
in Fig. 4. In all specification parts, where EGY Controller
specifics has to be introduced, the names have prefix ”EGY”.

Four roles-providers correspond to four subsystems in the
product requirements specification as well as five provided
interfaces represent specified earlier (section 3.1) system in-
terfaces.

Provided relations are presented by pairs (role-provider, in-
terface), for example, (Satellite Computer, IController Data

Tom Mens
16

Responce). For each such a pair each possible triple (role-
requirer, role-provider, interface) represents a required rela-
tion, for example, (EGYData Acquisition, EGYData Man-
agement, ISaved EGYData) (Fig. 4).

Operation names in Fig. 4 are the same as the names of
operations presented by blocks in Fig. 3. We only use a few
abbreviations.

We have chosen EGY Controller to be the first product in
the product line; hence its specification does not contain
inheritance relations.

Interfaces (I)
Roles-

requirers
(Rd)

Roles-
providers

(Rp)
Names of
interfaces

Operations
(Opi)

Result
values
(Resop)

SendNoOf
Blocks(integer)

void
EGY
Data

Management

Satellite
Computer

IController
Data

Responce
SendNext

Block(structure)
void

Analog_ON void
Start EGY

Observation
Time

void

Finish EGY
Observation

Time
void

Analog_OFF true
GroundContact void

Satellite
Computer

EGY
Measurement

Control

IController
Commands

ContactOK void

EGY
Measurement

Control

EGY
Data

Acquisition

IControl
EGYData

Acquisition

StartEGY
Measurement true

ClearData void

GiveNoOf
Blocks

voidEGY
Measurement

Control

IControl
File

Management StartContact void
EGYData

Acquisition

EGY
Data

Management ISaved
EGYData

SendEGYData
(structure) void

Figure 4: Interface-role specification IREGY of EGY
Controller

SatelliteCo
mputer

<<Role>>

EGYMeasurementControl
<<Role>>

IController
Commands

EGYDataAcquisition
<<Role>>

IControl
EGYDataAcquisition

EGYDataManagement
<<Role>>

IControlFile
Management

ISaved
EGYData

IControllerData
Responce

Figure 5: Interface-role diagram for EGY Controller

The interface-role specification is realized in the UML pro-
file [23] and presented by a UML class diagram [16], where
roles are UML classes with stereotype ¿RoleÀ and inter-
faces are classes with stereotype ¿InterfaceÀ. Interfaces
are depicted by cycles. Provided relations are presented by

UML realize-relations between roles and provided interfaces
and depicted by solid lines [16]. Required relations are the
same as UML dependency relations between roles and re-
quired interfaces. A required relation is depicted by a dashed
arrow directed from a role to a required interface [16].

The interface-role diagram of EGY Controller is shown in
Fig. 5.

4.1.2 Behavioural specification
The behavioural specification describes dynamic aspects of
product functionality, i.e. product behaviour. A grain of
product behaviour is presented by a pair of actions [22].
The first action of the pair is an operation call, the second
one is an operation return. It has to be noticed here that
operation calls and returns in the model specification are
not the same as ones in the implementation phase: each
modelled call and/or return can be implemented by one or
several methods (procedures and functions).

An action name for the operation call is a = r′.r.i.op , which
means ”role r′ calls operation op of interface i provided by
role r ”.

An action name for the operation return is a = r′.r.i.op :
resop , which means ”role r returns result resop responding
to operation call a = r′.r.i.op”.

As a result of product IR specification, action set APrSp

is introduced for the entire product specification. To refer
to the concrete actions of this set we apply on it a numeric
order relation giving natural numbers to all actions:

APrSp = {a1, a2, ...}
The quantity of actions ai ∈ APrSp is defined completely
by the quantity of operation calls and returns via required
relations ri ∈ RI between roles r′ ∈ Rd and r ∈ Rp.

Fig. 6 shows the action set for the EGY Controller speci-
fication. We omit interface names in action names for con-
venience. This is possible if operation names are unique for
each pair of interacting roles. There are thirteen operation
calls and same number of operation returns in this set.

Using action set APrSp we construct behavioural specifica-
tion BS of a product line member as a finite set of sequences
representing product behavioural patterns [22]:

BS = {S1, S2, ..., Sn},
where Si,∀i = 1, 2, ..., n is a sequence of actions
aj , ak ∈ APrSp,∀j, k = 1, ..., |APrSp|:

Si = {aj , ak, ...}
The last definition means that we can construct behavioural
pattern Si using any action from action set APrSp any num-
ber of times. We apply the restriction that one and only
one action representing operation return must appear after
(but not necessarily just after) the action that represents
the corresponding operation call.

Any sequence Si can contain any number nested in any
depth repeated subsequences or cycles [21]. For example,

Tom Mens
17

AEGY={a1,…a26}

a1 - SatelliteComputer.EGYMeasurementControl.Analog_ON
a2 - EGYMeasurementControl.EGYDataManagement.ClearData
a3 - EGYMeasurementControl.EGYDataManagement.ClearData:void
a4 - SatelliteComputer.EGYMeasurementControl.Analog_ON:void
a5 - SatelliteComputer.EGYMeasurementControl.StartEGYObservationTime
a6 - SatelliteComputer.EGYMeasurementControl.StartEGYObservationTime:void
a7 - EGYMeasurementControl.EGYDataAcquisition.StartEGYMeasurement
a8 - EGYDataAcquisition.EGYDataManagement.SendEGYData(structure)
a9 - EGYDataAcquisition.EGYDataManagement.SendEGYData:void
a10 - EGYMeasurementControl.EGYDataAcquisition.StartEGYMeasurement:true
a11 - SatelliteComputer.EGYMeasurementControl.FinishEGYObservationTime
a12 - SatelliteComputer.EGYMeasurementControl.FinishEGYObservationTime:void
a13 - SatelliteComputer.EGYMeasurementControl.Analog_OFF
a14 - SatelliteComputer.EGYMeasurementControl.Analog_OFF:void
a15 - SatelliteComputer.EGYMeasurementControl.GroundContact
a16 - SatelliteComputer.EGYMeasurementControl.GroundContact:void
a17 - EGYMeasurementControl.EGYDataManagement.GiveNoOfBlocks
a18 - EGYDataManagement.SatelliteComputer.SendNoOfBlocks(integer)
a19 - EGYDataManagement.SatelliteComputer.SendNoOfBlocks:void
a20 - EGYMeasurementControl.EGYDataManagement.GiveNoOfBlocks:void
a21 - EGYMeasurementControl.EGYDataManagement.StartContact
a22 - EGYMeasurementControl.EGYDataManagement.StartContact:void
a23 - EGYDataManagement.SatelliteComputer.SendNextBlock(structure)
a24 - EGYDataManagement.SatelliteComputer.SendNextBlock:void
a25 - SatelliteComputer.EGYMeasurementControl.ContactOK
a26 - SatelliteComputer.EGYMeasurementControl.CoontactOK:void

Figure 6: Set of actions AEGY for EGY Controller

sequence:

Si = {st1, aj , ...f1, ak, ...st2, am, ...st3, ap, ...f3, aq, ...f2, an}
contains three cycles, the first cycle goes form aj to ak, the
second one lasts from am to an. The third cycle ap, ...aq

is nested in the second one. Prefix ”st,” with the number
of a cycle denotes the action starting repetition and pre-
fix ”f,” with the same number denotes the action finishing
repetition.

{Si}
Sequence of actions

aj∈AEGY

EGYObservation

a1, a2, a3, a4, st1,a5, a6,
st2,a7, a8, a9, f2,a10, a11,
f1,a12, a13, a14, a15, a16,
a17, a18, a19, a20, a21, a22,
st3,a23, f3,a24, a25, a26

Figure 7: Behavioural specification BSEGY of EGY
Controller

Behaviour of EGY Controller is specified by requirements to
the EGY observation process which is described in section
3.2. Using this specification we have designed behavioural
specification

BSEGY = {EGY Observation}
containing single sequence EGY Observation (Fig. 7).

The behavioural specification is realized in the UML pro-
file [22] and presented by a set of UML sequence diagrams [16],

one diagram for each sequence Si. The precise definition of
a sequence diagram for this UML profile is given in [21].

The sequence diagram for EGY Controller is shown in Fig.
8. This diagram corresponds to the algorithm on the left
hand side in Fig. 3.

 :
SatelliteComputer

 :
EGYMeasurementControl

 :
EGYDataAcquisition

 :
EGYDataManagement

Analog_ON
ClearData

ClearData:void
Analog_ON:void

st,StartEGYObservation Time

StartEGYObservation Time:void

st,StartEGYMeasurement
SendEGYData(structure)

SendEGYData:void
f,StartEGYMeasurement:true

FinishEGYObservation Time

f,FinishEGYObservation Time:void

Analog_OFF

Analog_OFF:void

Ground Contact

GiveNoOfBlocks

SendNoOfBlocks(integer)
SendNoOfBlocks:void

GiveNoOfBlocks:void

StartContact

st,SendNextBlock(structure)

f,SendNextBlock:void

Ground Contact:void

StartContact:void

ContactOK
CoontactOK:void

Figure 8: Sequence diagram EGYObservation for
EGY Controller

4.2 Inheritance of Product Specifications
We regard inheritance of product line members as inheri-
tance of product behaviour. If, for example, product EGY
and SEC Controller inherits product EGY Controller, then
it inherits the possibility to observe energy spectra and ex-
tends it by the SEC spectra observation facility.

Let us use notation PrSpq −¤PrSpp to depict inheritance
of product PrSpq from product PrSpp.

In our approach behaviour is presented by product BS spec-
ification. So, product specification PrSpq inherits product
specification PrSpp if behavioural specification BSq inherits
behavioural specification BSp.

Behaviour specification BSq = {S1q , S2q , ..., Snq} completely
inherits BSp = {S1p , S2p , ..., Smp} if n ≥ m and each se-
quence Siq inherits corresponding sequence Sip .

If BSq inherits a subset of sequences of BSp we have the
case of partial inheritance.

Hence, to define the inheritance of product specifications
we need to define the inheritance of sequences presenting
product behaviour patterns.

Each sequence Si is defined by set of actions APrSp and

Tom Mens
18

this set is defined by set RI of required relations on product
interface-role specification IR. So, first we need to define
inheritance at the level of interface-role specifications.

4.2.1 Inheritance of interface-role specifications
Interface-role specification

IRq = (Rq, Iq, P Iq, RIq, RRq)

inherits interface-role specification

IRp = (Rp, Ip, P Ip, RIp, RRp)

if ∃(r′, r) ∈ RRq|r′ ∈ Rq, r ∈ Rp and ¬∃(r, r′) ∈ RRp|r′ ∈
Rq, r ∈ Rp

In other words, at least one role from IRq inherits at least
one role from IRp and none of the roles from IRp inherit
roles from IRq.

If role r′ inherits role r: r′ −¤r, then [22]:

• role-parent r is included in specification IRq;

• role-child r′ inherits all interfaces, provided by role-
parent and, hence, all its provided relations;

• role-child r′ inherits required relation of role-parent r

ri = (r, pi) ∈ RIp|pi = (r′′, i) ∈ PIp, r, r′′ ∈ Rp, i ∈ Ip,

if role-provider r′′ is also inherited by specification
IRq.

Inheritance of roles is defined in the UML profile [22] and
corresponds to the specialize-relation between UML classes
[16]. The relation is shown on the interface-role diagram by
a solid line with the triangle end −¤ directed from role-child
to role-parent [16].

As a result of inheritance, the child interface-role specifica-
tion comprises two parts:

IRq = (IRInh
q , IRNew

q), where

IRInh
q contains inherited roles, their provided interfaces and

provided relations, and, possibly, required relations; IRNew
q

is a new part, which contains new roles, interacting via new
interfaces; it realizes new product functionality and inherits
the functionality of a parent product. The only possibility
to utilize IRInh

q specification is to use its roles as parents in

inheritance relations with roles from IRNew
q specification.

Dealing with our case study a designer should first decide
how to order the chain of inheritance:

PrSpEGY andSEC −¤PrSpSEC −¤PrSpEGY

or

PrSpSEC −¤PrSpEGY andSEC −¤PrSpEGY .

In other words, what product should inherit EGY Controller
first, SEC Controller or EGY and SEC Controller? Despite
the fact that a usual composition way dictates the first vari-
ant, the second one is the right answer. If the first vari-
ant had been chosen, then role EGYData Acquisition from

IREGY specification should have been replaced by a new
role that fulfils another observation process and EGY data
acquisition functionality would have been lost for further
utilization.

The first inheritor EGY and SEC Controller has to utilize
functionality of EGY Controller and extend it by new SEC
Controller functionality. Fig. 9 a) shows inheritance rela-
tions between roles from IREGY and IREGY andSEC . Each
role from parent specification IREGY has a child role. So,
all provided interfaces and required relations are inherited
by product EGY and SEC Controller. The part IRNew of
interface-role specification IREGY andSEC is shown in Fig. 9
b). New functionality is realized by three new interfaces of
the child roles.

Child roles
(Rq)

Parent roles
(Rp)

Inherited
 interfaces Ip

EGY&SEC
SatelComputer

Satellite
Computer

IController
Data Responce

EGY&SEC
MeasureControl

EGY
Measurement Control

IController
Commands

EGY&SEC
Data Acquisition

EGY
Data Acquisition

IControl
EGYData Acquisition

IControl
File Management

EGY&SEC
Data

Management

EGY
Data

Management ISaved EGYData

a)

Interfaces (I)
Roles-

requirers
(Rd)

Roles-
providers

(Rp)
Names of
interfaces

Operations
(Opi)

Result
values
(Resop)

EGY&SEC
Data

Manag.

EGY&SEC
SatelComputer IBufferFull BufferFull void

EGY&SEC
Measurement

Control

EGY&SEC
Data

Acquisition

IControl
SECData

Acquisition

StartSEC
Measurement true

EGY&SEC
MeasureCont

rol

EGY&SEC
Data

Manag.

ISaved
SECData

SendSECData
(structure)

void

b)

Figure 9: a) Inheritance of roles and b) IRNew part
of EGY and SEC Controller specification

The interface-role diagram of EGY and SEC Controller is
shown in Fig. 10.

Third product SEC Controller inherits the second one. The
interface-role specification of EGY and SEC Controller al-
ready contains the functionality required for the third prod-
uct. A designer is free not to utilized by SEC Controller part
of this functionality dealing with EGY data acquisition.

Products-inheritors keep functionality of their predecessors
within inherited required relations. However, how can a
designer be aware that parent behaviour is not damaged
by new design decisions widening or narrowing parent func-
tionality? Such decisions should be supported by product
behaviour inheritance modelling, which we consider next.

Tom Mens
19

SatelliteComputer
<<Role>>

EGYMeasurementControl
<<Role>>

IController
Commands

EGYDataAcquisition
<<Role>>

IControl
EGYDataAcquisi...

EGYDataManagement
<<Role>>

IControlFile
Management

ISaved
EGYData

IControllerData
Responce

EGY&SECMeasureControl
<<Role>>

EGY&SECDataManag
<<Role>>

EGY&SECDataAcquisition
<<Role>>

IControl
SECDataAquisition

ISaved
SECData

EGY&SECSatelComputer
<<Role>>

IBuffer Full

IRInh

IRNew

Figure 10: Interface-role diagram of EGY and SEC
Controller

4.2.2 Inheritance of product behaviour
To define inheritance of product behaviour we apply process
semantics on behaviour specifications BS. We use a process
semantics of type

P = (A,P, T) [2], where :

- A is a finite set of actions.

- P = {p, p1, p2, ..., pF } is a finite set of abstract states from
initial state p to final state pF .

- T is a set of transitions. Transition t ∈ T defines a pair of
states (p′, p′′), such that p′′ is reachable from p′ as a result

of action a ∈ A: p′
a

=⇒ p′′.

Considering set of actions A as set APrSp from a product line
member specification, we construct a single process graph for
the entire product behaviour specification.

Process graph Gp = (N, E) is a directed (cyclic or acyclic)
graph [1] in which

• each node n∈N corresponds to the state from P; all
nodes, except the root and the final nodes, are un-
named;

• each edge e∈E corresponds to the action from APrSp

and is named as this action;

• the edges may carry the termination label ↓ to one
final node. This node corresponds to states pF .

• The process graph has one common root in start node
that corresponds to initial states p. Each initial state
p is considered as a result of start action that creates
instances of interacting roles [22]. Action start is im-
plicit but not shown in the process graph.

Process graph (Fig. 11) keeps parallel branches containing
alternatives of sequential, probably cyclic, paths between

Legend:
 states
 actions
 sequential pahts

 alternatives

 parallel branches

 cycles

start

final

...

Figure 11: Process graph type

start and final nodes. Each such a finite sequential path
corresponds to sequence Si from product behaviour speci-
fication BS. Two or several sequences beginning from the
same action and containing the same subsequence of actions
correspond to a single sequential sub-path in the process
graph beginning from start node. First two actions that
become different for two sequences running the same sub-
path produce alternative edges in the process graph. Parallel
branches model parallel processes. These branches are the
alternatives, which begin from start node and, in addition,
each pair of them corresponds to the subsets of sequences
from BS, which have disjoint sets of actions and are not
started by same roles [21].

For process graph construction we apply our own algorithm.
The algorithm provides control of crosscutting cycles which
may be designed by mistake for a single sequence or pro-
duced during the process graph construction. The early al-
ternative exit from a cycle body is not prohibited for the
process of type P .

The process graph for EGY Controller is shown in Fig. 13
a). It contains the only sequential path that corresponds
to single sequence EGY Observation from BSEGY specifi-
cation.

Behaviour specification BSEGY andSEC for EGY and SEC
Controller

BSEGY andSEC = {EGY Observation, SECObservation,
SECObservationBufferFull}

contains three sequences realizing the requirements to the
behaviour of second product. These requirements have been
described in section 3.2.

Sequence EGY Observation fulfils the same behaviour pat-
tern as the sequence from BSEGY specification. However,
inherited required relations are realized by new roles and,
therefore, actions from the second product behaviour speci-
fication (Fig. 12) have different names, for example,
b1 = EGY&SECSatelComputer.EGY&SECMeasureControl.Analog ON

instead of
a1 = SatelliteComputer.EGYMeasurementControl.Analog ON

and so on to actions b26 and a26 correspondingly (compare
Fig.7 and Fig.12).

Sequence SECObservation models the conventional SEC
mode measurement process, whereas sequence

Tom Mens
20

SECObservation BufferFull corresponds to Buffer Full
event in the system (section 3.2).

{Si}
BSEGY&SEC

bj∈AEGY and SEC

BSSEC

cj∈ASEC

EGY
Observation

b1, b2, b3, b4,
st1,b5, b6, st2,b7, b8,
b9, f2,b10, b11,
f1,b12, b13, b14,
b15, b16, b17, b18,
b19, b20, b21, b22,
st3, b23, f3,b24, b25,
b26

not
inherited

SEC
Observation

b1, b2, b3, b4, b27,
b28, st1,b29, b30,
b31, f1,b32, b33,
b34, b13, b14, b15,
b16, b17, b18, b19,
b20, b21, b22, st2,
b23, f2,b24, b25,
b26

c1, c2, c3, c4, c5,
c6, st1,c7, c8, c9,
f1,c10, c11, c12,
c13, c14, c15,
c16, c17, c18,
c19, c20, c21,
c22, st2, c23,
f2,c24, c25, c26

SEC
Observation
BufferFull

b1, b2, b3, b4, b27,
b28, b29, b30, b35,
b36, b37, b38, b13,
b14, b15, b16, b17,
b18, b19, b20, b21,
b22, st1, b23, f1,b24,
b25, b26

c1, c2, c3, c4, c5,
c6, c7, c8, c27,
c29, c29, c30,
c13, c14, c15,
c16, c17, c18,
c19, c20, c21,
c22, st1, c23,
f1,c24, c25, c26

Figure 12: Behavioural specifications BSEGY andSEC

for EGY and SEC Controller and BSSEC for SEC
Controller

The corresponding process graph for EGY and SEC Con-
troller is shown in Fig. 13 b). It contains three possible se-
quential paths from start to final node. These three paths
correspond to three sequences in BSEGY andSEC specifica-
tion (Fig. 12).

Behaviour specification BSSEC for SEC Controller

BSSEC = {SECObservation, SECObservationBufferFull}

contains two sequences, which comprise exactly the same
operations as ones for EGY and SEC Controller (Fig. 12).
However, corresponding actions have different names. The
process graph for SEC Controller is shown in Fig. 13 c). It
contains two sequential paths corresponding two sequences
from BSSEC . Sequence EGY Observation is not utilized.

As a result of inheritance of interface-role specifications ac-
tion set APrSpq of the inheritor contains two subsets:

APrSpq = ANew
PrSpq

∪AOld
PrSpq

; ANew
PrSpq

∩AOld
PrSpq

= ∅, where

- AOld
PrSpq

is a subset of actions, which are realized by inher-

ited required relations from IRInh
q ;

- ANew
PrSpq

is a subset of actions, which are realized by newly

designed required relations from IRNew
q .

b1

b2

b4

b3

b5

b6

b7

b8

b17

b18

b20

b19

b22

b23

b24

b25

b9

b10

b12

b11

b13

b14

b15

b16

b26

b27
b28

b29

b30

b17

b18

b20

b19

b22

b23

b24

b25

b31

b32

b34

b33

b13

b14

b15

b16

b26

b17

b18

b20

b19

b22

b23

b24

b25

b35

b36

b38

b37

b13

b14

b15

b16

b26

c1

c2

c4

c3

c5

c6

c7

c8

c17

c18

c20

c19

c22

c23

c24

c25

c9

c10

c12

c11

c13

c14

c15

c16

c26

c17

c18

c20

c19

c22

c23

c24

c25

c27

c28

c30

c29

c13

c14

c15

c16

c26

a1

a2

a4

a3

a5

a6

a7

a8

a17

a18

a20

a19

a22

a23

a24

a25

a9

a10

a12

a11

a13

a14

a15

a16

a26

a) b) c)

start

final

Figure 13: Process graphs for a) EGY Controller;
b) EGY and SEC Controller; c) SEC Controller

For example, EGY and SEC Controller has subset AOld
EGY &SEC

= {b1, b2, ...b26} and subset ANew
EGY &SEC of new actions pre-

sented in Fig. 14.

ANew
EGY&SEC={b27,…b38}

b27 - EGY&SECSatelComputer.EGY&SECMeasureControl.StartSECObservationTime
b28 - EGY&SECSatelComputer.EGY&SECMeasureControl.StartSECObservationTime:void
b29 - EGY&SECMeasureControl.EGY&SECDataAquisition.StartSECMeasurement
b30 - EGY&SECDataAquisition.EGY&SECDataManag.SendSECData(structure)
b31 - EGY&SECDataAquisition.EGY&SECDataManag.SendSECData:true
b32 - EGY&SECMeasureControl.EGY&SECDataAquisition.StartSECMeasurement:true
b33 - EGY&SECSatelComputer.EGY&SECMeasureControl.FinishSECObservationTime
b34 -
EGY&SECSatelComputer.EGY&SECMeasureControl.FinishSECObservationTime:void
b35 - EGY&SECDataAquisition.EGY&SECDataManag.SendSECData:false
b36 - EGY&SECMeasureControl.EGY&SECDataAquisition.StartSECMeasurement:false
b37 - EGY&SECMeasureControl.EGY&SECSatelComputer.BufferFull
b38 - EGY&SECMeasureControl.EGY&SECSatelComputer.BufferFull:void

Figure 14: Subset of new actions for EGY and SEC
Controller

Now let us give the definition of correct product behaviour
inheritance.

Firstly, we define renaming function RN , which we apply on
parent set of actions APrSpp producing subsets of inherited

AInh
PrSpp

and not inherited Anot Inh
PrSpp

parent actions:

AInh
PrSpp

∪Anot Inh
PrSpp

= RN(APrSpp); AInh
PrSpp

∩Anot Inh
PrSpp

= ∅
such that AInh

PrSpp
= AOld

PrSpq
.

For example, RN(AEGY) = AInh
EGY = AOld

EGY &SEC =

Tom Mens
21

{b1, b2, ..., b26}; Anot Inh
EGY = ∅.

SEC Controller does not inherit from EGY and SEC Con-
troller subset of actions Anot Inh

EGY &SEC=
{b5, b6, b7, b8, b9, b10, b11, b12}, which corresponds to the spe-
cific EGY measurement subsequence from EGY Observation
sequence (Fig. 12).

Secondly, let us define on graph of type Gp a pair of graph
transformation rules δ(Gp) and τ(Gp).

• Blocking rule δ(Gp). If subset B ∈ APrSp is defined
and action x ∈ B, action a /∈ B and δ is blocking ac-
tion, then process graph Gp is transformed as it follows
from Fig. 15 a). This rule allows cutting down alterna-
tive branches starting from actions x ∈ B. Applied to
a sequential path this rule cuts it down starting from
action x but blocking action is not removed [2].

• Hiding rule τ(Gp). If subset H ∈ APrSp is defined
and action y ∈ H, action a /∈ H and τ is silent ac-
tion, then process graph Gp is transformed as it follows
from Fig. 15 b). This rule allows shortening sequential
branches by means of deleting actions y ∈ H [2].

y ττττ

x

a

δδδδ δδδδ
a

final
δδδδxa a a

a a a

a)

b)

Figure 15: a) δ(Gp) and b) τ(Gp) graph transforma-
tion rules

Applying process algebra for process of type P [2] on process
graph representation we define conditions of complete and
partial inheritance of product specifications.

• Child PrSpq completely inherits parent PrSpp

if and only if RN(APrSpp)= AInh
PrSpp

and Anot Inh
PrSpp

= ∅
and

τ(δ(G
PrSpq
p)) = G

PrSpp
p

on condition that

– the action set of G
PrSpp
p is renamed using function

RN(APrSpp);

– for the transformation of the child process graph
subset B=ANew Alt

PrSpq
and subset H=ANew Seq

PrSpq
, where

ANew Alt
PrSpq

is a subset of ANew
PrSpq

containing actions,

which start alternative branches and ANew Seq
PrSpq

is

the rest of ANew
PrSpq

.

In other words, if the parent action set contains only inher-
ited actions we apply the renaming function on the parent
set of actions and using the blocking rule eliminate from the
child process graph all alternative branches that are started
by new actions. Next, we apply the hiding rule and eliminate
the rest of new child actions. If the resulting transformed
graph is equal to the parent graph with renamed actions,
then the child specification is a correct inheritor of the par-
ent specification.

In spite of seemingly tricky notation this definition has clear
rationale: alternatives started by new actions will run their
own branches to the final state (Fig. 11); they will never
return to parent behaviour and, therefore, have to be elimi-
nated during parent process graph derivation. New actions
running a sequential branch may be hidden to return to par-
ent behaviour within the same branch (sequence).

• Child PrSpq partially inherits parent PrSpq

if and only if AInh
PrSpp

6= ∅ and Anot Inh
PrSpp

6= ∅ and

τ(δ(G
PrSpq
p)) = δ(G

PrSpp
p)

on condition that

– action set from PrSpp is renamed using function
RN(APrSpp);

– for the transformation of the child process graph
subset B=ANew Alt

PrSpq
and subset H=ANew Seq

PrSpq
, where

ANew Alt
PrSpq

is a subset of ANew
PrSpq

containing actions,

which start alternative branches and ANew Seq
PrSpq

is

the rest of ANew
PrSpq

;

– for the transformation of the parent process graph
subset B=Anot Inh

PrSpp
.

In other words, child process graph transformation is the
same as that in the case of complete inheritance, but before
comparing, the parent process graph is transformed using
the blocking rule to eliminate not inherited parent actions
and, therefore, corresponding sequences. The hiding rule is
not applicable to the parent process graph because hiding
means shortening sequences from parent specification BSp

each of those must be inherited completely or not inherited
at all.

In our case study EGY and SEC Controller is a correct
complete inheritor of EGY Controller. Indeed, if we rename
parent actions {a1, a2, ..., a26} to {b1, b2, ..., b26} and hide
and block the new actions from the child set, the child pro-
cess graph is transformed to the parent one (actually, for
such transformation blocking of action b27 in Fig. 13 b) is
enough).

SEC Controller is a correct partial inheritor of EGY and
SEC Controller. To prove this we need to block not inherited
action b5 in Fig. 13 b) and rename the parent inherited
actions: b1 to c1 , b2 to c2 and so on (compare graphs in
Fig. 13 b) and c)). Graph transformation of the child graph
is not required because the specification of the inheritor does
not contain new actions.

Tom Mens
22

If a child specification is not a correct inheritor of a parent
specification, then transformed child or/and parent process
graphs contain not eliminated τ and δ actions. The rest of a
sequence (or sequences) starting by such an action becomes
unreachable [2]. All these sequences are easily transformed
back from the process graph and the positions of τ or/and
δ actions show the points of design errors. These errors are
actions, which cannot be realized within a given specifica-
tion. So, the roles performing such impossible actions can
be indicated. As a result, the method allows a designer not
only to prove correctness of inherited specifications but also
to find design bags.

5. TOOL SUPPORT
The described method comprises several formal techniques
and algorithms to be used during a modelling process. The
successful usage of the method requires appropriate tool sup-
port. We have developed a tool that provides an environ-
ment for design and reuse of component specifications in
the UML [24]. The tool is implemented as a Rational Rose
Add-In [20].

A familiar with Rational Rose designer performs with the
help of the tool the following sequential steps:

1. He/she chooses a parent product to inherit from. The
interface-role diagram of this product is drawn by the tool
in a Rational Rose class diagram window.
2. The designer extends the parent interface-role diagram by
new roles and interfaces using dialogs provided by the tool.
The interface-role diagram of the new product is produced.
3. The designer draws a set of sequence diagrams using
the set of actions derived by the tool from the interface-role
diagram of the new product.
4. The tool constructs the process graph corresponding to
the UML specification of the new product.
5. The tool defines action sets that have to be hidden and
blocked in the process graph of the new product to derive
the parent process graph, hides and blocks those actions and
compares the parent process graph with the process graph-
result of hiding and blocking.
6. If the process graph-result is not equal to the parent
process graph, then the sequence diagrams that represent
unreachable behaviour patterns are indicated by the tool.
The designer should correct the design of the new product.
7. If the process graph-result is equal to the parent process
graph, then the new product specification is correct and it
can be used in further product development phases.

The screen shot of a derivation dialog for EGY and SEC
Controller is shown in Fig 16. More details about the tool
are contained in [24].

6. CONCLUSION AND FUTURE WORK
The presented method provides evolutionary incremental
modelling of software product line members using inheri-
tance of their behaviour specifications. Correctness of model
transformations is proved by using a derivation technique
that allows a designer to produce the process graph of a
product-predecessor from the inheritor’s one or to find the
points of incorrect design.

An appropriate tool prototype has been developed to sup-

port the modelling. The tool applies techniques and algo-
rithms which accompany the method. Robustness of the
method and the tool is proved by the modelling of an indus-
trial case study.

In future work we intend to find out how our method appli-
cable to large-scale industrial systems. In this context the
problem of product requirements mapping to our specifica-
tions needs to be investigated. In large-scale applications
such successful direct mapping that we have shown in our
case study is not so apparent. A kind of a specifications
mapping technique is required. Recent researches (e.g., see
in [14]) apply UML use case and scenario diagrams to SPL
requirements engineering. In such a case, requirements can
be mapped to interface-role specifications directly: actors
iterating via use cases can be mapped to roles; use cases
itself can be realized as sets of required relations between
roles; scenario diagrams can be considered as prototypes of
sequence diagrams.

Mapping between our specifications and product component
architectures is also a significant problem. Component sys-
tems are usually described in Architecture Description Lan-
guages (ADLs) (see good overview [15]). Most of them
allow representing roles and interfaces as components and
connectors. Among others, ADLs with strong component
evolution support, such as Koala [18], are more close to our
approach. Moreover, Koala is a good practical example of an
ADL for component-based product population development.
Our specifications can be mapped to Koala’s configurations
in such a manner that roles would correspond to compo-
nents. Provided and required relations can be presented by
Koala’s provides and requires interfaces. Compositional ca-
pacity of a Koala component (combinations of components
are components again [18]) provides appropriate support for
inheritance of roles. Inheritance of interface-role specifica-
tions is supported by the ability of Koala’s configurations to
comprise other configurations.

7. REFERENCES
[1] Baeten J.C.M.,W.P. Weijland. Process Algebra. Cambridge

University Press, 1990.

[2] Basten T., W.M.P. van der Aalst. Inheritance of behaviour.
The Journal of Logic and Algebraic Programming,
46:47–145, 2001.

[3] Becker M. Towards a General Model of Variability in
Product Families. Workshop on Software Variability
Management. Editors Jilles van Gurp and Jan Bosch.
Groningen, The Netherlands.
http://www.cs.rug.nl/Research/SE
/svm/proceedingsSVM2003Groningen.pdf, pages 19–27,
2003.

[4] Bosch J. Design&Reuse of Software Architectures -
Adopting and Evolving a Product Line Approach.
Addison-Wesley, 2000.

[5] Bosch J. Maturity and Evolution in Software Product
Lines: Approaches, Artefacts and Organization. In Second
Conference Software Product Line Conference, SPLC2,
August 2002.

[6] Bosch J., M. Svahnberg and J. van Gurp. On the notion of
variability in software product lines. In Software
Architecture. Working IEEE/IFIP Conference, pages
45–54, 2001.

[7] Cheesman J., J. Daniels. UML Components. A simple
Process for Specifying Component-Based Software.
Addison-Wesley, 2001.

Tom Mens
23

Figure 16: Parent process derivation dialog in the tool

[8] P. Clements and R. Northrop. Software Product Lines -
Practices and Patterns. Pearson Education
(Addison-Wesley), ISBN 0-201-30977-7, 2000.

[9] Dobrica L.,E.Niemela. A strategy for analysis product line
software architectures. VTT Technical Research Centre of
Finland, ISBN 951-38-5599-6, 2000.

[10] P. Donohoe, editor. Software Product Lines - Experience
and Research Directions. Kluwer Academic Publishers,
2000.

[11] D’Souza D.F., A.C.Wills. Objects, Components and
Frameworks with UML. The CATALYSIS Approach.
Addison-Wesley , 1999.

[12] Gurp J. van , J.Bosch. Design Erosion: Problems and
Causes. Journal of Systems and Software, 61(2), Elsevier,
61:105–119, 2002.

[13] Ihme T. A ROOM Framework for the Spectrometer
Controller Product Line. Workshop on Object Technology
for Product Line Architecture, pages 119–128,
ESI–199–TR–034, 1999.

[14] MacGregor J. Requirements Engineering in Industrial
Product Lines. In International Workshop on
Requirements Engineering for Product Lines, REPL’02,
pages 5–11, Essen, Germany, 2002.

[15] N. Medvidovic and R.Taylor. A classification and
comparison framework for software architecture description
languages. Technical report, USC Center for Software
Engineering
http://sunset.usc.edu/ neno/papers/TSE-ADL.pdf.

[16] OMG. Unified Modeling Language Specification v.1.3,
ad/99-06-10 http://www.rational.com/
uml/resources/documentation/index.jsp, June 1999.

[17] R. van Ommering. Roadmapping a Product Population
Architecture. Workshop on Product Family Engineering,
Bilbao, Spane, 2001.

[18] R. van Ommering, F. van der Linden, J. Kramer, J.Magee.
The Koala Component Model for Consumer Electronics
Software. IEEE Computer, pages p78–85, March 2000.

[19] R. van Ommering, J.Bosch. Widening the Scope of
Software Product Lines - From Variation to Composition.
In Second Conference Software Product Line Conference,
SPLC2, pages 328–347, August 2002.

[20] Rational Rose 98i. Rose Extensibility Reference 2000.
http:// www.rational. comwww.se. fh-heilbronn.de/
usefulstuff/ Rational Rose 98i Documentation.

[21] Roubtsov S.A., E.E.Roubtsova. Modeling Evolution and
Variability of Software Product Lines Using Interface
Suites. Workshop on Software Variability Management.
Editors Jilles van Gurp and Jan Bosch. Groningen, The
Netherlands. http://www.cs.rug.nl/Research/SE
/svm/proceedingsSVM2003Groningen.pdf, pages 62–71,
2003.

[22] Roubtsova E. and R. Kuiper. Process Semantics for UML
Component Specifications to Assess Inheritance. Electronic
Notes in Theoretical Computer Science, 72,3 Elsevier
Science Publishers, Paolo Bottoni and Mark Minas,
http://www.elsevier.nl/gej-
ng/31/29/23/127/48/show/Products/notes/index.htt,
2003.

[23] Roubtsova E.E , L.C.M. van Gool, R. Kuiper, H.B.M.
Jonkers. A Specification Model For Interface Suites.
UML’01, LNCS 2185, pages 457–471, 2001.

[24] Roubtsova E.E., S.A.Roubtsov. UML-based Tool for
Constructing Component Systems via Component
Behaviour Inheritance. Proceedings of the Eighth
International Workshop on Formal Methods for Industrial
Critical Systems (FMICS 03) To appear in Elsevier
Electronic Notes in Theoretical Computer Science, 80
(2003) http://www.elsevier.nl/locate/entcs/volume80.html
, pages 139–154, 2003.

[25] Svahnberg M., Bosch J. Evolution in Software Product
Lines: Two Cases. Journal of Software Maintenance:
Research and Practice, Vol. 11, No. 6, 1999.

[26] Szyperski C. Component Software Beyond Object-Oriented
Programming. Addison-Wesley, New-York, 1998.

[27] W.Eixelsberger, M.Ogris, H.Gall, and B.Bellay. Software
recovery of a program family. International conference on
Software Engineering, Kyoto, Japan, 1998.

[28] Zhao L., Kendall E. Role Modelling for Component Design.
The 33rd Hawaii International Conference on System
Science, 2000.

Tom Mens
24

Evaluating Clone Detection Techniques

Filip Van Rysselberghe
Lab On Re-Engineering
University Of Antwerp

Middelheimlaan 1, B 2020 Antwerpen
Filip.VanRysselberghe@ua.ac.be

Serge Demeyer
Lab On Re-Engineering
University Of Antwerp

Middelheimlaan 1, B 2020 Antwerpen
Serge.Demeyer@ua.ac.be

Abstract

In the last decade, several researchers have investigated techniques to detect duplicated code in programs
exceeding hundreds of thousands lines of code. All of these techniques have known merits and deficiencies, but
as of today, little is known on where to fit these techniques into the software maintenance process. This paper
compares three representative detection techniques (simple line matching, parameterized matching, and metric
fingerprints) by means of five small to medium cases and analyses the differences between the reported matches.
Based on this experiment, we conclude that (1) simple line matching is best suited for a first crude overview of the
duplicated code; (2) metric fingerprints work best in combination with a refactoring tool that is able to remove
duplicated subroutines; (3) parameterized matching works best in combination with more fine-grained refactoring
tools that work on the statement level.

1. Introduction

Code cloning or the act of copying code fragments and making minor, non–functional alterations, is a well-
known problem for evolving software systems leading to duplicated code fragments or code clones. Of course, the
normal functioning of the system is not affected, but without countermeasures by the maintenance team, further
development may become prohibitively expensive [7, 18]. Fortunately, the problem has been studied intensively
and several techniques to both detect and remove duplicated code have been proposed in the literature.

As far as removal of duplicated code is concerned, the state of the art proposesrefactoringwhich is a technique
to gradually improve the structure of (object-oriented) programs while preserving their external behaviour [17].
Extract Methodwhich extracts portions of duplicated code in a separate method, is an example of a typical refac-
toring to remove duplicated code. However, quite often one must use a series of refactorings to actually remove
duplicated code, as inTransform Conditionals into Polymorphismwhere duplicated conditional logic is refactored
over the class hierarchy using polymorphism [7]. With refactoring tools like the refactoring browser [6] emerging
from research laboratories into mainstream programming environments1, refactoring is becoming a mature and
widespread technique.

Concerning the detection of duplicated code, numerous techniques have been successfully applied on industrial
systems. These techniques can be roughly classified into three categories. (i)string-based, i.e. the program
is divided into a number of strings (typically lines) and these strings are compared against each other to find
sequences of duplicated strings [8, 12]; (ii)token-based, i.e. a lexer tool divides the program into a stream of

1See http://www.refactoring.com/ for an overview of IDE’s supporting refactoring

1

Tom Mens
13

Tom Mens
25

tokens and then searches for series of similar tokens [2, 13]; (iii)parse–tree based, i.e., after building a complete
parse-tree one performs pattern matching on the tree to search for similar sub–trees [14, 15, 4]. On the first
International Workshop on Detection of Software Clones, a number of research groups recently participated in a
clone detection contest2 to compare the accuracy of different tools against a benchmark of programs containing
known duplication. The results of this experiment are currently being analysed by the participants.

Despite all this progress, little is known about the most optimal application of a given clone detection technique
during the maintenance process. For instance, which technique should one use in a problem assessment phase,
when one suspects duplicated code but isn’t sure how much and in which files? Or which technique works best in
combination with a refactoring tool, which has to know the exact boundaries of the code segment to be refactored,
including possible renaming of variables and parameters? To answer these questions, this paper compares three
representativeclone detection techniques—namely simple line matching, parameterized matching, and metric
fingerprints— by means of five small to medium cases. The reported matches as well as the process are analysed
with special interest in differences. Afterwards, our findings are interpreted in the context of a generic software
maintenance process and some suggestions are made on the most optimal application of a given technique.

The paper is structured as a comparative study, however due to the multiple aspects involved in the issue studied
a more extensive experiment is necessary in the near future. A brief overview of existing duplicated code detection
techniques is given in section 2. The experimental set-up, including the questions and cases driving the experiment
are discussed in section 3. The results of section 4 are interpreted in section 5 to evaluate where the given technique
might fit into the software maintenance process. Finally, section 6 summarises our findings in a conclusion.

2. Detection Techniques

The detection of code clones is a two phase process which consists of atransformationand acomparisonphase.
In the first phase, the source text is transformed into an internal format which allows the use of a more efficient
comparison algorithm. During the succeeding comparison phase the actual matches are detected.

Due to its central role, it is reasonable to classify detection techniques according to their internal format. This
section gives an overview of the different techniques available for each category while selecting a representative
for each category.

2.1. String Based

String based techniques use basic string transformation and comparison algorithms which makes them indepen-
dent of programming languages.

Techniques in this category differ in underlying string comparison algorithm. Comparing calculated signatures
per line, is one possibility to identify for matching substrings [12]. Line matching, which comes in two variants,
is an alternative which is selected as representative for this category because it uses general string manipulations.

Simple Line Matching is the first variant of line matching in which both detection phases are straightforward.
Only minor transformations using string manipulation operations, which can operate using no or very limited

knowledge about possible language constructs, are applied. Typical transformations are the removal of empty lines
and white spaces.

During comparison all lines are compared with each other using a string matching algorithm. This results in a
large search space which is usually reduced using hashing buckets. Before comparing all the lines, they are hashed
into one ofn possible buckets. Afterwards all pairs in the same bucket are compared.

2http://www.informatik.uni-stuttgart.de/ifi/ps/clones/

2

Tom Mens
13

Tom Mens
26

Duploc is a Smalltalk tool which implements such a simple line matching technique [8], however also a Java
version is available

Parameterized Line Matching is another variant of line matching which detects both identical as well as
similar code fragments. The idea is that since identifier–names and literals are likely to change when cloning a
code fragment, they can be considered as changeableparameters. Therefore, similar fragments which differ only
in the naming of these parameters, are allowed.

To enable such parameterization, the set of transformations is extended with an additional transformation that
replaces all identifiers and literals with one, common identifier symbol like ”$”. Due to this additional substitution,
the comparison becomes independent of the parameters. Therefore no additional changes are necessary to the
comparison algorithm itself.

Parameterized line matching is discussed in [9].

2.2. Token Based

Token based techniques use a more sophisticated transformation algorithm by constructing a token stream from
the source code, hence require a lexer. The presence of such tokens makes it possible to use improved comparison
algorithms.

Next to parameterized matching with suffix trees, which acts as representative, we include [13] in this category
because it also transforms the source code in a token-structure which is afterwards matched. The latter tries to
remove much more detail by summarising non interesting code fragments.

Parameterized Matching With Suffix Treesconsists of three consecutive steps manipulating a suffix tree as
internal representation.

In the first step, a lexical analyser passes over the source text transforming identifiers and literals in parameter
symbols, while the typographical structure of each line is encoded in a non-parameter symbol. One symbol always
refers to the same identifier, literal or structure. The result of this first step is a parameterized string or p-string.

Once the p-string is constructed, a criterion to decide whether two sequences in this p-string are a parameterized
match or not is necessary. Two strings are a parameterized match if one can be transformed into the other by
applying a one-to-one mapping renaming the parameter symbols. An additional encoding prev(S) of the parameter
symbols helps us verifying this criterion. In this encoding, each first occurrence of a parameter symbol is replaced
by a 0. All later occurrences are replaced by the distance since the previous occurrence of the same symbol. Thus,
when two sequences have the same encoding, they are the same except for a systematic renaming of the parameter
symbols.

After the lexical analysis, a data structure called a parameterized suffix tree (p-suffix tree) is built for the p-
string. A p-suffix tree is a generalisation of the suffix tree data structure [16] which contains the prev()-encoding
of every suffix of a P-string. Concatenating the labels of the arcs on the path from the root to the leaf yields the
prev()-encoding of one suffix. The use of a suffix tree allows a more efficient detection of maximal, parameterized
matches.

All that is left for the last step, is to find maximal paths in the p-suffix tree that are longer than a predefined
character length.

Parameterized matching using suffix trees was introduced in [2] with Dup as implementation example.

2.3. Parse-tree Based

Parse tree based techniques use a heavyweight transformation algorithm, i.e. the construction of a parse tree.
Because of the richness of this structure, it is possible to try various comparison algorithms as well.

3

Tom Mens
13

Tom Mens
27

Parse

Split

Measure

Compare

sourcecode

syntax tree

fragment

(sourcecode)

fingerprint

Figure 1. Detection steps for the metric fingerprint technique

The representing technique differs from [4] in that the latter uses sub–tree matching on the syntax tree.

Metric Fingerprints builds on the idea that you can characterise a code fragment using a set of numbers. These
numbers are measurements which identify the functional structure of the fragment and sometimes the layout.

The metric fingerprint technique can be divided in five steps, each with a well-defined task. However the
algorithm behind each task may differ between implementations. Figure 1 shows the basic steps in the detection
process.

Before we can characterise the functional structure of a code fragment with numbers, it’s wise to transform the
source code into a representation that allows us to calculate such measurements efficiently. This transformation
job is done using aparserwhich builds the syntax tree of the source code.

After parsing we end up with one large syntax tree. This tree is thensplit into interesting fragments. The choice
of the type of fragments used is difficult because it affects the detection results. Most of the time, however, method
and scope blocks are used as fragments since they are easily extracted from a syntax tree.

Afterwards the fragments are characterised through a set of measurements bymeasuringthe values for a set
of metrics, chosen in advance. This set of metrics can differ between various implementations, but most of the
time it specifies functional properties. However there are implementations in which layout metrics are used as
well. Cyclomatic complexity, function points, expression complexity (functional) and lines of code (layout) are
examples of possible measures.

Finally, these sets of numbers are compared to each other. Depending on the implementation, algorithms with
different levels of sophistication or power may be used. One possible approach calculates the Euclidean distance
between each pair of fingerprints, considering fragments within zero distance as clones.

Both [14] and [15] describe a possible implementation of metric fingerprints. In the first, the metric set consists
of 5 indirect metrics which are treated as a vector, while the latter uses 21 measures which are compared to each
other using a system of hierarchical categories (an overview of both techniques can be found in [19]).

3. Research Approach

The research process used during our experiment is based on the Goal-Question-Metric paradigm which states
that you should (1) outline a goal, (2) generate questions that verify whether the goal has been met and (3) select
measures to answer them [3].

4

Tom Mens
13

Tom Mens
28

3.1. Goal

Identify which clone detection techniques are more appropriate for specific tasks of the maintenance process.

3.2. Questions

The questions we selected, were chosen because each highlights features that are of importance during the
maintenance process. This way, these questions help us verifying whether our goal was accomplished.

Q1. How much configuration is needed to apply on another language?Before using a technique, you like to
know how much configuration has to be done to adapt it to your particular programming context. Especially
because it may limit the applicability of the technique, certainly in COBOL and C++ environments, where
lots of dialects exist.

Q2. What kind of matches are found? Depending on the maintenance task at hand, you may be looking for
specific kinds of duplication. For instance, during a problem assessment phase, maintainers want to obtain
an overall report of the amount of duplication existing in all program files. On the other hand, during
a restructuring phase, maintainers are interested in a duplication tool that detects only the programming
constructs that one can restructure using a particular tool. Therefore a refactoring tool, moving methods in
the class hierarchy, is interested only in duplicated method bodies.

Q3. How accurate are the results?For the clone detection problem, detection accuracy is difficult to define, but
in the context of duplicated code detection it is characterised by three quality measures:

- number of false positives (to be minimised): that is, the number of matches the technique incorrectly
identified as a piece of duplicated code.

- number of useless matches (to be minimised): that is, the number of matches which are not worth to
be removed by means of refactoring. Typically depending on the length of a match.

- number of recognisable matches (to be maximised): that is, the number of matches that are easily
recognised as interesting. For instance, in a program restructuring phase these are the matches that are
easily removed by the refactoring tool at hand.

Q4. How does it perform? When using a detection technique one wishes to balance the amount of usable in-
formation that one can derive, with the time and memory one invested. Therefore you need to establish
the performance of each technique and identify performance bottlenecks. This question addresses how the
execution time of each technique relates to its input.

3.3. Experimental set-up

The next step after selecting research questions, consists of constructing an experiment that answers these
questions. For the experiment reported in this paper following steps were conducted:

creation of reference implementations— Evaluating clone detection techniques differs from the evaluation of
clone detection tools, in that it is the algorithm that is evaluated instead of the implementation. Differences
in execution time between tools can for example be caused by the use of different programming languages or
the application of techniques such as parallel computing. Unlike [5], which evaluates the results of various
detection tools, this experiment focusses on the techniques themselves.

To evaluate each of these techniques, reference implementations of them were made in Java. Each of these
implementations tried to adhere as closely as possible to the original technique’s specification as given in [2]

5

Tom Mens
13

Tom Mens
29

for parameterized matching using suffix trees and [14, 15] for the metric fingerprint technique. For simple
line matching such a reference implementation was already available and the original Duploc-tool[8] was
used as an additional reference.

selection of cases— Five case were selected to evaluate the different techniques. These cases are representative
for different degrees of duplication. Their limited size (under 10 000 LOC) allows an in-depth study of the
duplication present as well as the reported matches. Section 3.4 describes each of the different cases.

application of the implementations — After selecting the cases, the different techniques were applied on each
of them.

comparison and collection of results— At the end, the different matches were studied and compared with the
different techniques. Data that was related to the execution of the different implementations like the execu-
tion time and its memory use, was studied as well.

3.4. Selected Cases

For the experiment, we selected five small to medium sized cases which are known to suffer from different
kinds of duplication, although we did not know the exact locations of the duplicated code beforehand. Therefore,
these cases are representative for various usage scenario’s or different amounts of clones. Moreover, all cases are
available on the web which allows replication of the experiment by other researchers studying duplicated code
detection techniques. Following cases were used:

- ScoreMasteris a Java application automatically generated for the Enhydra web–server. Because most of the
code has been generated automatically, it contains a high degree of duplication.

- TextEditis an example project that is distributed with Borland’s JBuilder to demonstrate GUI programming
in Java. Due to its educational nature it contains little duplication[20].

- Brahmsis music sequencing and notation software for linux written in C++ and was formerly known as
KooBase. The small amount of duplication present is of a different nature because the code was written
manually in an open source context[1].

- JMochais a Java beans benchmark developed by IBM[11].

- JavaParser of JMetricis, as indicated by its name, a Java parser generated by Java for the JMetric project. It
concerns a larger example of automatically generated code full of duplication[10].

4. Results

This section reports about the experiment by answering the questions listed under 3.2. A summary of these
answers is given by table 1.

How much configuration is needed to apply on another language?

Simple line matching, as it only utilises basic string manipulations, is a truly language independent technique
which isvery easy to configure. As a language independent technique, no modification is required to be applicable
on different languages.

All the remaining techniques on the other hand, do require configuration.
For parameterized matching the portability to another language is fair. Changing the lexer, which lies at the

basis of both techniques, suffices to port it. Because more changes in the lexer are necessary for the parameterized

6

Tom Mens
13

Tom Mens
30

line matching technique, its portability is slightly lower than that of the suffix tree technique. Both parameterized
techniques arefairly portable.

The metric fingerprint technique demandsmuch configuration effort as it is syntax dependentdue to the use of
a parser. Even in our very first attempt to analyse a program, we were confronted with this syntax dependence
because it failed due to a syntax error in the analysed code. The use of a parser limits the technique to syntactically
correct sources of one language and makes changing to other languages difficult.

What kind of matches are found?

A rough classification of the clones found yields:functional block duplicationandgeneral duplication.

Functional block duplicationcharacterises the duplication found by the metric fingerprint technique. Because
this technique characterises functional blocks such as methods or code blocks by a fingerprint, only code
fragments which share a functionally equivalent structure, are reported. The addition or removal of struc-
tures in a block violates this equivalence.

General duplicationis found by the three other techniques. Everything that was duplicated, including pre–
processor directives or comments, can be detected by them.

This last category can eventually be subdivided into the different fragments found by the corresponding tech-
niques:duplicated symbol blocksfor the suffix tree technique,duplicated lines blockfor parameterized line match-
ing andequal linesfor simple line matching. Duplicated in this context refers to the fact that parameter symbols
may have changed.

How accurate are the results?

Number of false matches—No false matchesare reported by both simple line matching and parameterized
matching using suffix trees. Simple line matching reports only equal lines which makes it impossible to
have false positives, while parameterized matching using suffix trees benefits from its P-string encoding that
enforces a strict one–to–one parameterization. Only positive matches (parameterized or exact) are found by
them

Parameterized line matching allows a non systematic renaming of the parameters which leads tofew false
matches. Such systematic renaming is necessary to ensure that two fragments share the same basis func-
tionality which characterises duplication. Figure 2 shows an example, discovered in TextEdit. The problem
especially seems to target GUI initialisation code. However reporting fragments consisting of a long se-
quence of matching lines instead of shorter ones, helps in keeping the number low. When we used this
technique for ScoreMaster and Brahms we did not receive any false matches, while one false match was
reported for TextEdit.

Even more false matchesare reported by the metric fingerprint technique. Applying metric fingerprints
with block-fragments resulted in over 200 false matches (cf. with 0 for the other 3 techniques) while only
two were found using methods as fragments. The characterisation of expressions which lacks accuracy
(see figure 3 for an example in ScoreMaster), is responsible for this problem. However it is our opinion that
adding better expression metrics, like “expression complexity”, reduces this problem’s impact. Furthermore,
less false matches are found when the granularity or size of the selected fragments is bigger. The number of
false matches for this technique thus depends on the way expressions are characterised and the length of the
fragments.

7

Tom Mens
13

Tom Mens
31

...
JButton jButton1 = new JButton();
JButton jButton2 = new JButton();
JButton jButton3 = new JButton();

...

...
FlowLayout flowLayout1 = new FlowLayout();
FlowLayout flowLayout2 = new FlowLayout();
GridLayout gridLayout1 = new GridLayout();

...

rename JButton to FlowLayout?

Figure 2. Example of a false match for parameterized line matching

{
 this.DO = GameDO.createVirgin();
}

{
 modifyDO(null, false);
}

?

Figure 3. Example of a false match for metric fingerprints

Number of useless matches— The use of a threshold like in both parameterized matching techniques, keeps the
number of useless matcheslow. Changing the threshold helped us in keeping the number of useless matches
below 20.

For the metric fingerprint techniquemore useless matchesare reported. Most of them are only one to four
lines long and are caused because two method calls with the same number of arguments always match.
For TextEdit for example, we found 133 useless matches on 138 reported matches (137 of them were valid
matches) when we used method granularity. Using a threshold would reduce the amount of useless matches,
especially in programs which contain many small methods or code blocks.

Simple line matching also reportsmany useless matches. For the same example as in the previous paragraph
we got 229 useless matches. The problem here is that any program already contains some exactly matching
lines by nature. As an example think of the “return;” statement you tend to write in your program. It is hard
to estimate the exact number of useless matches in general but usually it is larger than the amount for metric
fingerprints.

Number of recognisable matches— For the metric fingerprints technique the number ishigh. Each match that is
returned is afunctional blocklike e.g. scope blocks and method definitions.

Both parameterized matching techniques return alower number of recognisable matches. It is difficult to
decide which matches are important by just looking at the output because each match represents a chunk of
duplicated lines or symbols, which lacks context.

8

Tom Mens
13

Tom Mens
32

Figure 4. Performance of the different techniques

The number of recognisable matches for simple line matching iseven lower(reduced from 4 with param-
eterized matching to 2). All exactly matching lines are reported. Visualisation can be used to detect the
interesting duplicates. However the lack of parameterization makes it more difficult than the parameterized
techniques to detect altered duplicates.

How does it perform?

Because the actual performance of a technique depends on many factors like implementation and testing platform,
we started by calculating the theoretical time complexities. For both line matching techniques this results in a time
complexity of O(n2) because each line is compared with each other line resulting in an exponential complexity.
UsingΩ hash buckets as proposed in [8] reduces this complexity to O(n2

Ω). Parameterized matching using suffix
trees on the other hand, has a complexity of O(|Π|∗n) (with |Π| the number of parameter symbols) as was formally
proven by Baker in [2]. As a last technique we studied the time complexity of the metric fingerprint technique
which shows a time complexity of O(m2) when a simple comparison is used to compare them fragments.

Afterwards we compared these complexity formulas with the execution times we measured3 leading to a couple
of rather interesting observations. A first observation was the problem of page swapping. From a certain point (in
our experiment 10 000 LOC) the linearity of the suffix tree could no longer be maintained. The reason for this
was thepage swappingwhich was necessary to store the whole suffix tree in memory. Memory space is thus a
constraining factor when analysing large projects.

A second observation was the unexpectedly high performance of the parameterized line matching technique.
The execution time of this technique showed a very flat exponential tendency. Better memory use and shorter
comparisons due to shorter strings, are reasons for that performance.

Figure 4 shows how the execution time for each technique relates to the input size. It clearly shows our two
observations as well as an overview of each technique’s performance.

3Testing platform was a pentium 200Mhz with 64MByte RAM

9

Tom Mens
13

Tom Mens
33

Portability Duplication Matches: number of Scalability
False Useless Recognisable

Simple Line + + + + + general lines −−−− + +
Param. Line + + + general line block − + + ++ + + +
Suffix Tree ++ general token block + + ++ ++
Metric. Fing. functional entity −− (−−) −− (−−) + + + + + + + +

Table 1. Summary of the relation between each technique and the properties studied. The number of
symbols indicates the comparative degree of satisfaction of the property studied. Positive properties
are marked with +, negative with -. The additional symbols placed between brackets, denote the
additional impact when using block–granularity

5. Interpretation

A first observation we made, was the difference in scalability of the various techniques. By applying each tech-
nique on a common case, we were able to get in touch with the scalability of the different techniques, something
we could not derive from the theoretical time complexities alone. Who could ever imagine that the relative exe-
cution time of parameterized line matching increases much slower than its simple counterpart while an additional
transformation is applied?

During our experiment we were certainly puzzled by the major difference in execution time (2 minutes versus
8) for the suffix tree technique when advancing from 7500 LOC to 10710 LOC, certainly because a linear time
complexity was formally proven for this technique. As analysis of the memory showed, page swapping was the
reason for this behaviour. By experimenting we found that parameterized matching using suffix trees has problems
sustaining its theoretical linearity due to memory restrictions which in turn limits its scalability.

For the comparison of the output of the techniques, we also used a visualisation tool. Quite often this visual
comparison showed striking differences in the outputs. At one moment for example, we were really stunned by
the large amount of matches reported when we used block–fragments instead of method–fragments in the metric
fingerprint technique. However our amazement was of short notice because investigation of the various fragments
revealed a large number of false and useless matches. Comparison with other techniques supported this idea
immediately. Using block-granularity for metric fingerprints did not only cost much more time and memory, but
also resulted in a large amount of useless information.

After this we immediately compared the method-granularity with the remaining techniques. The number of
matches drew our immediate attention as metric fingerprints finds a number of very small (1 or 2 lines), yet
useless matches. However, the remaining large matches were duplicated methods, which usually are easy to
refactor. The limited amount of matches combined with their clear content makes the technique useful in a first,
coarse refactoring phase.

At first sight, the parameterized techniques and simple line matching seemed to report different duplicates,
while the difference in output between our two parameterized techniques was small. However, a second more
in-depth look at the reports revealed that sometimes very small matches were found by simple line matching
while the parameterized techniques found an entire fragment. A small amount of duplicates was not even found
by simple line matching because in each line at least one parameter symbol was altered. This indicates that
some very detailed duplication was missed. Applying parameterized matching resulted in more detailed and more
recognisable matches.

10

Tom Mens
13

Tom Mens
34

6. Conclusion

In this paper we have studied three duplicated code detection techniques, which are representative for the
techniques published in the literature. By means of five small to medium cases (some of them including generated
code, hence having lots of duplication) we compared the results, focussing on those portions where the techniques
performed differently. Based on this experiment, we make the following conclusions.

• Simple line matching(representative for the string-based techniques) gives a crude overview of the dupli-
cated code that is quite easy to obtain, hence is most appropriate during problem detection and problem
assessment.

• Parameterized matching(representative for the token-based approaches) provides a precise picture of a given
piece of duplicated code and is robust against rename operations. Therefore it works best in combination
with fine-grained refactoring tools that work on the level of statements (i.e.Extract Method, Move Behaviour
Close to Data, andTransform Conditionals into Polymorphism.

• Metric fingerprints(representative for the parse-tree based techniques) are very good at revealing duplicated
subroutines, irrespective of small differences, hence work best in combination with refactoring tools that
work on the method level (i.e.Remove MethodandPull up method);

These results are preliminary in nature and should be confirmed by other experiments. First of all, future
experiments should incorporate large and very-large (over a million lines of code) programs into the set of cases
to see whether our results still hold. Secondly, the same experiment should be done with other techniques to see
whether our findings indeed generalise across the given categories.

Despite these limitations, we have shown that the different clone detection techniques reported in the literature
each have specific advantages compared to the others. As such, each technique is more appropriate for a certain
maintenance task. In that sense, this paper laid the foundation for a more systematic way of detecting and removing
duplicated code.

7. Acknowledgements

We would like to thank Gerd Van Den Heuvel, whose master’s thesis provided the necessary means for con-
ducting the experiments described in this paper. We also would like to thank Stéphane Ducasse, Bart Du Bois and
Andy Zaidman for reviewing the paper. Matthias Rieger was helpful by providing us with an implementation of
Duploc.

References

[1] Brahms.http://brahms.sourceforge.net. by Sourceforge.
[2] B. Baker. On finding duplication and near-duplication in large software systems. InWorking Conference on Reverse

Engineering 1995, 1995.
[3] V. R. Basili and H. D. Rombach. The tame project: Towards improvement–oriented software environments.IEEE

Transactions on Software Engineering, 14(6):758 – 773, 1988.
[4] I. Baxter, A. Yahin, L. Moura, and M. S. Anna. Clone detection using abstract syntax trees. InInternational Conference

on Software Maintenance, 1998.
[5] E. Burd and J. Bailey. Evaluating clone detection tools for use during preventative maintenance. InSecond IEEE

International Workshop on Source Code Analysis and Manipulation(SCAM ’02), October 2002.
[6] J. B. D. Roberts and R. E. Johnson. A refactoring tool for smalltalk.Theory and Practice of Object Systems (TAPOS),

3(4):253 – 263, 1997.

11

Tom Mens
13

Tom Mens
35

[7] S. Demeyer, S. Ducasse, and O. Nierstrasz.Object-Oriented Reengineering Patterns. Morgan Kaufmann and DPunkt,
2002.

[8] S. Ducasse, M. Rieger, and S. Demeyer. A language independent approach for detecting duplicated code. InInterna-
tional Conference on Software Maintenance, 1999.

[9] G. V. D. Heuvel. Parameterized matching: a technique for the detection of duplicated code. Master’s thesis, University
of Antwerp, 2002.

[10] Jmetric.http://www.it.swin.edu.au/projects/jmetric/
products/jmetric. by School of Information Technologie at Swinburne University of Technology.

[11] Jmocha.http://www–124.ibm.com/developerworks/
opensource/jmocha/. by IBM.

[12] J. Johnson. Identifying redundancy in source code using fingerprints. InCascon, 1993.
[13] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: A multi-linguistic token-based code clone detection system for large

scale source code.IEEE Trans. Software Engineering, 28(7):654 – 670, 2002.
[14] K. Kontogiannis, R. Demori, M. Bernstein, M. Galler, and E. Merlo. Pattern matching for clone and concept detection.

Automated Software Engineering, 3(1), 1996.
[15] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the automatic detection of function clones in a software system

using metrics. InInternational Conference on Software Maintenance, 1996.
[16] E. McCreight. A space-economical suffix tree construction algorithm.Journal of the ACM, 32(2):262–272, 1976.
[17] W. Opdyke.Refactoring Object-Oriented Frameworks. PhD thesis, University of Illinois at Urbana-Champaign, 1992.
[18] D. Parnas. Software aging. InProceedings of The 16th International Conference on Software Engineering, 1994.
[19] F. V. Rysselberghe. Detecting duplicated code using metric fingerprints. Master’s thesis, University of Antwerp, 2002.
[20] Textedit.http://www.borland.com/jbuilder. by Borland.

12

Tom Mens
13

Tom Mens
36

Describing the impact of refactoring on internal program quality

Bart Du Bois
Lab On ReEngineering
Universiteit Antwerpen

Middelheimlaan 1, B-2020 Antwerpen, Belgium
bart.dubois@ua.ac.be

Tom Mens∗

Programming Technology Lab
Vrije Universiteit Brussel

Pleinlaan 2, B-1050 Brussel, Belgium
tom.mens@vub.ac.be

Abstract

The technique of refactoring – restructuring the source-code of an object-oriented program without changing its external
behavior – has been embraced by many object-oriented software developers as a way to accommodate changing require-
ments. The overall goal of refactoring is to improve the maintainability of software. Unfortunately, it is unclear how specific
quality factors are affected. Therefore, this paper proposes a formalism to describe the impact of a representative number of
refactorings on an AST representation of the source code, extended with cross-references. We elicitate how internal program
quality metrics can be formally defined on top of this program structure representation, and demonstrate how to project the
impact of refactorings on these internal program quality metric values in the form of potential drifts or improvements.

1 Introduction

Refactorings are software transformations that restructure an object-oriented program while preserving its behavior [9,
16, 17]. The key idea is to redistribute attributes and methods across the class hierarchy in order to prepare the software for
future extensions. If applied well, refactorings improve the design of software, make software easier to understand, help to
find bugs, and help to program faster [9].

However, the impact of a particular refactoring on the software quality varies. Some refactorings raise the level of abstrac-
tion (at the expense of increasing the program complexity), others may reduce the complexity (at the expense of decreasing
the performance, for example), etc. Therefore, our goal is to provide techniques and tools for software developers to help
them maintain and improve program quality through refactorings. The use of metrics in achieving this goal is advocated in
[6].

This paper takes a first step towards this goal, by proposing a formalism for describing the impact of refactorings on
program structure. Our representation of the program structure is borrowed from [13], which uses an abstract syntax tree
representation of the source-code, extended with cross-references to model type references, method calls, accesses, updates
and inheritance links. This abstract syntax tree representation allows us to reason about program structure in terms of nodes
interconnected with edges. The fact that dependencies between program entities are explicit in this representation makes it
easier to reason about the impact of refactorings from a quality perspective.

Object-oriented program quality metrics are typically used as internal quality factors [3]. Defining these metrics in terms
of the entities of the extended tree representation allows formal descriptions of structural changes on the tree (eg. refactorings)
to be projected into impacts on the particular metrics. In this way, the integration of the formal description of refactorings
and the formal definition of a representative set of object-oriented program quality metrics providesa-priori feedback on the
impact of any application of a particular refactoring on any particular internal program quality metric.

The goal of this mechanism is to construct (once and only once) refactoring impact tables. Such information facilitates
refactoring trade-offs, in that they make explicit which internal program quality metrics are affected when the refactoring

∗Tom Mens is a Postdoctoral Fellow of the Fund for Scientific Research - Flanders (Belgium)

Tom Mens
37

would be applied. In other words, the contribution of this work is to make explicit thequality drift caused by the application
of refactorings.

This paper is structured as follows. Section 2 proposes the refactorings and case study we have selected for our experi-
ments. Section 3 introduces our extended tree representation of the program structure. Section 4 shows how we can describe
the impact of refactorings on the program structure. Section 5 uses this to analyse the impact of refactorings on object-
oriented program quality metrics, and discusses the current limitations and their solutions. Section 6 discusses related work,
and section 7 concludes.

2 Preliminaries

2.1 Selected refactorings

Fowler’s catalogue [9] lists seventy-two object-oriented refactorings and since then many others have been discovered.
To demonstrate the possibility of reasoning about refactoring in terms of their impact on program structure, we apply our
formalism to a number of selected refactorings: ExtractMethod, EncapsulateField and PullUpMethod. These refactorings
are quite typical for the categories of refactoring strategies they belong to - respectively Composing Methods, Organizing
Data and Dealing with Generalization - which are among the most popular refactoring strategies in todays refactoring tools
[IntelliJ IDEA, Eclipse, Together]. Hence they may serve as representatives for the complete set of primitive refactorings.

ExtractMethod extracts part of a method and factors it out into a new method.
EncapsulateFieldencapsulates public attributes by making them private and providing accessors. In other words, for each
public attribute a method is introduced for accessing (getting) and updating (setting) its value, and all direct references to the
attribute are replaced by calls to these methods.
PullUpMethod moves identical methods from subclasses into a common superclass.

2.2 Source code example

The example that we will use for our experiments consists of a simple Java package containing 4 classes:Packet, Machine
and two subclassesWorkstationand PrintServer. It is part of the implementation of a Local Area Network simulation
(LAN). Although the code is in Java, other implementation languages could serve just as well, since we restrict ourselves to
representing core object-oriented concepts only. For more information about this example, see [13].

01 public package LAN {
02 public class Machine {
03 public String name;
04 public Machine nextMachine;
05 public void accept(Packet p) {
06 System.out.println(name
07 + " is accepting "
08 + nextMachine.name);
09 this.send(p); }
10 protected void send(Packet p) {
11 System.out.println(name
12 + " is sending "
13 + nextMachine.name);
14 this.nextMachine.accept(p); }
15 }

16 public class Packet {
17 public String contents;
18 public Machine originator;
19 public Machine addressee;
20 }

Tom Mens
38

21 public class PrintServer
22 extends Machine {
23 public void print(Packet p) {
24 System.out.println(p.contents); }
25 public void accept(Packet p) {
26 if(p.addressee == this)
27 this.print(p);
28 else super.accept(p); }
29 }

30 public class Workstation
31 extends Machine {
32 public void originate(Packet p) {
33 p.originator = this;
34 this.send(p); }
35 public void accept(Packet p) {
36 if(p.originator == this)
37 System.err.println("no dest");
38 else super.accept(p); }
39 }
40 }

We will describe the three refactor operations by example, and discuss their intuitive impact on quality.

ExtractMethod can be performed to extract the println-statement from methodsMachine.accept andMachine.send
to a separate methodlog(String). To do this, we have to introduce a new methodlog in theMachine class, with a single
parameter. We can then move the println-statement from theaccept or send method, and replace the String literal with a
reference to the parameter. Thereafter, we have to replace the println-statement in both theaccept andsend methods with a
method call to thelog method, passing to it the appropriate String literal. Intuitively, performing this refactoring generalises
the println-statement, which increases code reuse and reduces the impact of changes. When the output format needs changes,
we will only need to change thelog body, and not theaccept or send methods.

EncapsulateFieldcan be performed in order to shield the attributeMachine.nextMachine from direct references. This
causes the introduction of two methods in classMachine: a ’getter’ which accesses the attribute and returns it to the caller
and a ’setter’ which takes the new value of the attribute as a parameter and updates the attribute. The attribute itself is made
private. Intuitively, shielding the attribute from direct references reduces data coupling. This allows the attribute to change
its data format without affecting clients using the attribute value.

PullUpMethod can be applied toPrintServer.print(Packet), so that future subclasses ofMachine such as a File-
Server class can reuse this code. This requires the introduction of a method in superclassMachine, to which the body of the
PrintServer.print method will be moved, and the removal of the formerPrintServer.print method. Intuitively, pulling
up a method generalises specific behaviour, making it possible for subclasses to reuse and specialise the behaviour.

While the impact of these example applications of refactor operations is dependent on the situation in which they are
applied, the following section will explain how we can set up a formalism to describe this impact in a generic way, for all
situations.

3 Representing the program structure

The way in which we represent software is very straightforward: the source code is transformed into an abstract syntax
tree representation extended with cross-references.

3.1 Abstract syntax tree representation

The program syntax tree directly reflects the natural containment relationship. A system contains packages. A package
contains classes (or recursively another package). A class contains attributes and methods. A method contains expressions,
local attributes and parameters.

Tom Mens
39

All the nodes in the abstract syntax tree have a specific type:S(ystem),PA(ckage),C(lass),M (ethod),A(ttribute), (actual)
P(arameter or return value),L (ocal variable),E(xpression).

Figures of the AST of the example have been omitted as the concept is well known in the context of software engineering.

3.2 Abstract Syntax Tree extensions

On top of this abstract syntax tree representation, we need to superimpose extensions to represent cross-reference relation-
ships between software entities (such as class inheritance, method calls, attribute accesses and updates, type information).
These are represented byedgesbetween the corresponding tree nodes.

As for nodes, the superimposed edges have a specific type:i(nheritance), (method)c(call), (attribute or local variable)
a(ccess), (attribute or local variable)u(pdate) andt(ype). The enrichment of the AST representation provided by these
cross-references makes it easier to reason about code from the context of refactoring.

3.3 Program structure notation

We will now introduce a number of notations in terms of the program structure representation that are needed in the
remainder of the paper to enable us to describe the impact of refactor operations.

Let r be an AST node,Si a set,ν a node type, andε a regular expression of edge types which adheres to the standard
regular expression rules used in the popular UNIX grep-tool.

Si denotes the complement ofSi.

T (r) denotes the set of all nodes in the subtree with rootr.

ET (c, ε) denotes the set of all edges incident toT (c) of typeε, which are part of the Extended Tree.

ET (c, ε)inc denotes those edges ofET (c, ε) which only have their target node inT (c).

ET (c, ε)out denotes those edges ofET (c, ε) which only have their source node inT (c).

ET (c, ε)int denotes those edges ofET (c, ε) which have both their sourceand target node inT (c).

#S1 denotes the number of elements in setS1.

ν(S1) denotes the set of all nodes of typeν contained in the setS1.

S1
ε−→ S2 denotes the set of edges of typeε whose source node belongs to node setS1 and whose target node belongs to node

setS2.

target(S1
ε−→ S2) denotes the set of target nodes of the given edge set.

∆(Si) denotes the change inSi due to the application of a refactoring.

For example,#A(T(Machine)) denotes the number ofA-nodes (i.e., attributes) recursively contained in the subtree with
rootMachine. Table 1 describes the AST representation of theT(Machine)subtree, including our extension.

As another example,#ET (r, [au])out denotes the number ofa- andu-edges (attribute accesses and updates) from a node
in the subtree ofr to a node outside the subtree ofr.

Table 1 describes the structure of the AST extension for the subtree T(Machine) by counting the superimposed cross-
reference edges. Empty fields in the table indicate the impossibility of those occurences of those specific edges. For example,
i-edges will never occur inside a class tree since inheritance only makes sense between two different classes. We will de-
scribe the AST and its extension subsequently. These AST descriptions (as illustrated in Table 1) will play a vital role in the
formalism explained in the next section.

Tom Mens
40

ClassMachine contains two methods and three attributes (implicitthisattribute). Each of the two methods has one actual
parameter, and one local variable (temporary string-variable). The number of expressions is irrelevant for the purposes of
this paper, yet also provided on the left of Table 1.

ClassesWorkstation andPrintServer derive fromMachine, represented by two incoming inheritance references.
Attribute name and the local variable in each method are of typeString, which together with the two method parameters
of typePacket brings the number of outgoing type references to five. The only internal type reference is due to attribute
nextMachine of typeMachine. Each method ofMachine calls the addition operator twice, println once, and the other
method ofMachine, which together makes eight (2x4). Theaccept andsend method perform six and five internal accesses
respectively, and each a single outgoing access. No updates are performed. This summarises the AST extension on the right
of Table 1.

type ∆T (c)

M 2
A 3
P 2
L 2
E 24

typeε #ET (Machine, ε)int #ET (Machine, ε)inc #ET (Machine, ε)out

i 2 0
t 1 2 5
c 8
a 11 2
u 0 0 0

Table 1. Description of the AST (on the left, in terms of node types) and cross-references (on the
right) of class Machine.

4 Describing the impact of refactorings on program structure

In this section, the impact of our selected refactorings on program structure is described. We split up the effect description
in an impact on the AST representation, and an impact on its cross-references (from now on all together called the extended
tree representation).

ExtractMethod(setE:Set(E),m1:M, m2:String, c1:C)

First, ExtractMethod introduces a new methodm2 in classc1, for which possibly a number of actual parameters and a return
value are required. A return value form2 is necessary when exactly one (multiple is not allowed) local variable or actual
parameter ofm1 was updated by one of the expressions ofsetE. We calculate the number of new actual parameters of
m2 as the number of accessed local variables or actual parameters ofm1, even though Fowler [9] indicates not to create
actual parameters for those local variables or actual parameters ofm1 whose first reference is an update (and are therefore
immediately overwritten). The elaboration would contribute little to the overall goal of this paper and is left as an exercise
for the enthousiastic reader. Consequently, we introduce no new local variables for methodm2.

The set of expressionssetE is copied to the new methodm2, and replaced insidem1 by a method call tom2 (1 E-node),
with an actual parameter for each of then accessed local variables or actual parameters ofm1 (n E-nodes). In case a local
variable or actual parameter ofm1 was updated insetE, an extra expression is required to update that local variable or actual
parameter (1E-node). This summarises the impact on the AST of classc1 as described on the left in Table 2.

Second, the introduction of new actual parameters and return value for methodm2 causes the introduction of cross-
references to the types of those parameters, being either classc1 itself - introduces an internal type reference - or another
class - introduces an outgoing type reference. Naturally, ExtractMethod causesm1 to call m2 adding an extra internal call
reference. Passing the arguments for the method call and returning the return value causes an increase of the number of
internal access and update references, which summarises the right part of Table 2.

A superficial observation might lead to the interpretation that the application of ExtractMethod makes the program struc-
ture more complex in terms of our extended tree representation. Yet, these descriptions consist of both copying the expres-
sions to the new method and thereafter replacing the set of expressions. Multiple applications of ExtractMethod on identical
sets of expressions therefore only cause the former step to be performed once, while removing duplicate code by perform-
ing the latter step multiple types, as can be illustrated by extracting the println-statement from bothMachine.send and
Machine.accept in the example. Performing the last step multiple times removes code duplication.

Tom Mens
41

type ∆T (c1)

M 1
A 0

P #target(T (setE)
[au]−−−→ T (m1))

L 0

E 1 + #target(T (setE)
a−→ T (m1))

+#target(T (setE)
u−→ T (m1))

ε ∆ET (c1, ε)int ∆ET (c1, ε)out

t #target(T (setE)
[au]t−−−→ {c1}) #target(T (setE)

[au]t−−−→ T (c1))
c 1 0

a #target(T (setE)
a−→ T (m1)) 0

u #target(T (setE)
u−→ T (m1)) 0

Table 2. Impact of ExtractMethod(setE, m1, newMethod, c1) refactoring on class c1.

EncapsulateField(c1:C,attr:A,getter:String,setter:String)

First, EncapsulateField introduces asetterandgettermethod, which respectively updates and accesses the attributeattr inside
classc1. Therefore, two methods and two parameters (actual parameter for setter and return value for setter) are added. As
each new method consists of one expression (access or update), two expressions are added. This summarises the impact on
the AST of classc1, as described on the left in Table 3.

Second, the creation of the two new methods introduces a type edge from the actual parameter of thesetterand one from
the return value of thegettermethod to the type attribute, which can be either classc itself or another class. Then all former
accesses and updates to the attributeattr are replaced respectively by parameterless method calls to thegetterand method
calls to thesettermethod with the new value as an actual parameter. Finally, thegettermethod will update the return value
with an access to the attribute, and thesettermethod will update the attribute with an access to the actual parameter.

type ∆T (c)

M 2
A 0
P 2
L 0
E 2

ε ∆ET (c1, ε)int ∆ET (c1, ε)inc ∆ET (c1, ε)out ∆ET (c1, ε)

t 2 ∗#({attr} t−→ {c1}) 0 2 ∗#({attr} t−→ T (c1)) 0

c #(T (c1)
[au]−−−→ {attr}) #(T (c)

[au]−−−→ {attr}) 0 0

a −#(T (c1)
a−→ {attr}) + 2 −#(T (c)

a−→ {attr}) 0 −#(T (c)
a−→ {attr})

u −#(T (c1)
u−→ {attr}) + 2 −#(T (c)

u−→ {attr}) 0 −#(T (c)
u−→ {attr})

Table 3. Impact of EncapsulateF ield(c1, attr, getAttr, setAttr) refactoring on class c.

PullUpMethod(setM :Set(M), setC:Set(C),cs:C)

As PullUpMethod impacts subclassesci (with identical methodsmi) and superclasscs, we will describe each of them sepa-
rately and begin with the impact on the superclass.

First, PullUpMethod introduces a methodms in superclasscs with actual parameters and return value identical to those
of mi. The complete body of one of the identical methodsmi of subclassesci is copied to methodcs.ms, which includes the
local variables and expressions. This summarises the impact on the AST of superclasscs, as described at the top of Table 4.

Second, the copying of these expressions causes all cross-references to be copied as well, consisting of type references,
method calls, accesses and updates. This also means that former edges of the subclass method towards the superclass become
internal edges of the superclass, and former edges from the subclass method towards other classes to become outgoing edges
of the superclass. This impact is described at the bottom of Table 4.

The impact on any subclassci is identical, being the opposite of the impact on the superclass. The identical subclass
methodsmi are removed, causing all actual parameters, local variables and expressions to be removed as well. Analogue,
internal cross-references ofci.mi are erased. The remainder of Table 5 describes the transformation as explained for the
superclass.

Concluding, this section described the impact of the three refactorings on our extended AST representation of the source
code. In the next section, we will introduce the formalisation of object-oriented program quality metrics on top of the
extended tree representation.

Tom Mens
42

type ∆T (c)

M 1
A 0
P #P (mi)
L #L(mi)
E #E(mi)

ε ∆ET (cs, ε)int ∆ET (cs, ε)inc ∆ET (cs, ε)out ∆ET (cs, ε)

t #(T (mi)
t−→ {cs}) −#(T (mi)

t−→ {cs}) #(T (mi)
t−→ (T (ci)\T (cs))) −#(T (mi)

t−→ (T (ci)\T (cs)))

c #(T (mi)
c−→ {cs}) −#(T (mi)

c−→ {cs}) #(T (mi)
c−→ (T (ci)\T (cs))) −#(T (mi)

c−→ (T (ci)\T (cs)))

a #(T (mi)
a−→ {cs}) −#(T (mi)

a−→ {cs}) #(T (mi)
a−→ (T (ci)\T (cs))) −#(T (mi)

a−→ (T (ci)\T (cs)))

u #(T (mi)
u−→ {cs}) −#(T (mi)

u−→ {cs}) #(T (mi)
u−→ (T (ci)\T (cs))) −#(T (mi)

u−→ (T (ci)\T (cs)))

Table 4. Impact of PullUpMethod(setM, setC, cs) refactoring on superclass cs.

type ∆T (ci)

M −1
A 0
P −#P (T (mi))
L −#L(T (mi))
E −#E(T (mi))

ε ∆ET (ci, ε)int ∆ET (ci, ε)out ∆ET (ci, ε)

t 0 −#(T (mi)
t−→ T (ci)) #(T (mi)

t−→ T (ci))

c 0 −#(T (mi)
c−→ T (ci)) #(T (mi)

c−→ T (ci))

a −#ET (mi, a)int −#(T (mi)
a−→ T (ci)) #(T (mi)

a−→ T (ci))

u −#ET (mi, u)int −#(T (mi)
u−→ T (ci)) #(T (mi)

u−→ T (ci))

Table 5. Impact of PullUpMethod(setM, setC,cs:C) refactoring on any subclass ci.

5 Analysing the impact on object-oriented program quality metrics

We will now illustrate how we can use our previous results to analyse the impact of refactorings on object-oriented software
metrics. This is crucial to assess the impact of refactorings on program quality, since software metrics are typically used as
internal quality factors [8].

The general idea is quite simple: we can formally specify object-oriented program quality metrics in terms of the extended
AST of the program structure presented earlier. As such, the impact of a refactoring on the program structure, as denoted in
the impact tables provided in the previous section, can be directly translated into the impact of a refactoring on the object-
oriented program quality metrics. This formalism for defining metrics is analogue to the one provided in [14], where a
graph-based formalisation of object-oriented software metrics is introduced.

5.1 Selected metrics

As the list of object-oriented program quality metrics is virtually endless (i.e. [26] alone describes more than 200 com-
plexity metrics), and the page limit for this paper is not, we will focus on those program metrics which are most commonly
used, being Number of Methods, Cyclomatic Complexity, Number of Children, Coupling Between Objects, Response For
a Class and Lack of Cohesion among Methods. It can be argued that some of these metrics are not so much measures of
program quality but of program size. Yet, as previous work from the context of formalizing object-oriented program quality
metrics [2] uses similar primitives to calculate design quality metrics, we are confident that the current set provides a sound
sample for the specific purpose of demonstrating the feasibility of using our formalism to investigate the quality drift caused
by the application of refactorings. Moreover, [3] validated the Number of Children, Coupling Between Objects and Response
For a Class metrics as quality indicators by investigating the relationship with fault probability.

Definitions for these metrics are:

Number of Methodscalculates the number of methods of a class. It is an indicator of the functional size of a class.
Cyclomatic Complexitycounts the number of possible paths through an algorithm. It is an indicator of the logical complexity
of a program, based on the number of flow graph edges and nodes [7].
Number of Children measures the immediate descendants of a class [5]. It is an indicator of the generality of the class.
Coupling Between Objectsis a measure for the number of collaborations for a class [18]. It is an indicator of the complexity
of the conceptual functionality implemented in the class.
Response For a Classis the number of both defined and inherited methods of a class, including methods of other classes
called by these methods [5]. It is an indicator of the vulnerability to change propagations of the class.

Tom Mens
43

Lack of Cohesion among Methodsis an inverse cohesion measure (high value means low cohesion). Of the many variants
of LCOM, we use LCOM1 as defined by Henderson-Sellers [10] as the number of pairs of methods in a class having no
common attribute references. It is an indicator of how well the methods of the class fit together.

Table 6 formalises these metrics on top of our source representation. This will allow us to project the impact of refactor-
ings on program structure - as described in the previous section - in the area of software quality.

Metric Formula Metric(Machine)

NOM #M(T (c)) 2
CC insufficient model information /
NOC #ET (class, i)inc 2
CBO target(ET (class, t)out ∪ ET (class, [au][tm])out ∪ ET (class, cm)out) 4
RFC AssumesetM = M(target(ET (class, i∗)out) ∪ {class}) 3

thenRFC = #(setM ∪ {m2|∃m1 ∈ setM ∧m2 ∈ target(ET (m1, c)out)})

LCOM #{{m1, m2}|m1, m2 ∈ M(T (c)) ∧m1 6= m2 ∧ target(T (m1)
[au]−−−→ T (c)) ∩ target(T (m2)

[au]−−−→ T (c)) = ∅} 0

Table 6. Formalization of selected metrics on top of our source representation, calculated for the
Machine class from the example of section 2.2.

The formalizations provided in Table 6 are defined in terms of our extended tree representation, which is a formal de-
scription of program structure. This allows an analysis of the impact of refactorings on internal program quality metrics, by
translating the structural changes to the program structure, as described in the impact tables of section 4, into changes on the
various metrics.

5.2 Analysing the impact of refactorings

For the purpose of clarifying whether the internal quality (represented by the metric) increases or decreases, we need to
analyse in which direction this drift could occur. Therefore, we categorise the effects on a metric value in the following three
categories (analogue to the work presented in [23]):

Impact Symbol Range of effect on metric value
nil 0 [0,0]
positive + [0,+∞[
negative -]-∞,0]

A nil impact represents a structural change whichwill never affect the value of the internal program quality metric. A
positiveimpact represents a structural change whichmight increasethe value of the internal program quality metric or leave
it unchanged, yet can never decrease it. Lastly, anegativeimpact represents a structural change whichmight decreasethe
value of the internal program quality metric or leave it unchanged, yet can never increase it.

In order to illustrate our technique of analysing the impact of refactoring on internal program quality metrics, we elaborate
on the most interesting metrics.

As the metric formalizations, denoted in Table 6, are constructed out of a number of different terms, we can analyse the
impact of a refactoring on the metric value by analysing its impact on these various terms. To do this, we split out the different
terms, and use the impact tables provided in section 4 to identify the impact category (nil, positive or negative).

Table 7 analyses the impact of the refactorings on the Coupling Between Objects metric value by clarifying the potential
influence of each refactoring on the different terms of the metric formalization (analogue tables are provided for Response For
a Class and Lack of Cohesion among Methods in tables 8 and 9). When the impact of a refactoring is positive for at least one
term, and negative for none (nil impacts allowed), the total impact of the refactoring on the metric value is a positive impact
(potentially cause the metric value to increase). Conversily, when the impact of a refactoring is negative for at least one
term, and positive for none (nil impacts allowed), the total impact of the refactoring on the metric value is a negative impact

Tom Mens
44

Refactoring ∆target(ET (c, t)out) ∆ET (c, cm)out ∆ET (c, [au][tm])out CBO impact

ExtractMethod + 0 0 +
EncapsulateField 0 0 0 0
PullUpMethod-Superclass + + + +
PullUpMethod-Subclass - - - -

Table 7. Analysis of factors which could cause drift of the CBO metric value.

Refactoring M(T (c)) ∆target(ET (c, i∗)out) ∆target(ET (c, c)out) RFC impact

ExtractMethod + 0 0 +
EncapsulateField + 0 0 +
PullUpMethod-Superclass + 0 + +
PullUpMethod-Subclass - 0 - -

Table 8. Analysis of factors which could cause drift of the RFC metric value.

Refactoring M(T (c)) ∆target(ET (c, [au])int) RFC impact

ExtractMethod + + +
EncapsulateField + 0 +
PullUpMethod-Superclass + + +
PullUpMethod-Subclass - - -

Table 9. Analysis of factors which could cause drift of the LCOM metric value.

(potentially causes the metric value to decrease). Two exceptions arise in the reasoning about the impact of a refactoring on
a metric value.

First, the selection of the target-nodes of a set of edges inside the metric formalization makes the analysis more complex.
It requires semantical reasoning about whether the removal of an edge from a set of edges setE also reduces target(setE).
This is an important issue as most of our metric formalizations explicitly depend on the target of a set of edges. I.e. while
EncapsulateField increases the number of type-edges departing from the class subtree, it does not affect the target of this set
of edges (the classes of which an instance was referenced). This semantic information is lacking from the impact tables as
they provide a quantititative description of the change to the cardinality of the entities of the extended tree representation. In
the next section, we will describe how to make the analysis of impacts in these situations more easy.

Second, when a refactoring has a different impact on the various terms of a metric value (positive for some, negative
for others), a deeper semantical analysis is required, possibly even up to the level of inspection of the specific source code
context. This limitation is also discussed in detail in the next section.

The result of this impact analysis is summarised in Table 10. We verified the impact catalogue by applying the refactorings
on the LAN example and comparing post- and pre-refactoring measurements, as done in [11]. The drift noticed in these
comparisons confirmed our formal analysis.

This impact catalogue can be used as an a-priori feedback on the efficiency of applying specific refactorings, from the
perspective of various internal program quality metrics. In example, the table clarifies that applying the Pull Up Method
refactoring has an impact which is opposite for the superclass and the subclass. While it potentially decreases the metric
values for the internal program quality metrics Number of Method, Coupling Between Objects, Response For a Class and
Lack of Cohesion among Methods of the subclass, it potentially increases these metric values of the superclass. This is
a detailed description for the fact that the quality drift on the superclass, caused by moving a method up the inheritance
hierarchy, is the inverse of the quality drift on the subclass. This allows us to envision that when we want to improve the
quality of the subclass, this could possibly cause a deterioration of the superclass quality.

The next section discusses the current limitations of using this technique to tackle the question of quality drift caused by
the application of refactoring, and elaborates on a their solutions.

Tom Mens
45

Refactoring NOM NOC CBO RFC LCOM

EncapsulateField + 0 0 + +
PullUpMethod subclass - 0 - - -
PullUpMethod superclass + 0 + + +
ExtractMethod + 0 0 + +

Table 10. Refactoring impact table indicating the impact of a particular refactoring on a particular
class quality metric

5.3 Limitations and solutions

Our technique for analysing the impact of refactorings on internal program quality metrics allows the clarification of
the drift of specific internal program quality metrics, as caused by the application of particular refactorings. While some
early results were presented which demonstrated the feasibility of applying this technique for a number of refactorings and a
number of internal program quality metrics, it is clear that the applicability of the technique has a number of limitations.

First, our representation for program structure is a limiting factor, as the impact analysis can only use the information
contained in this program representation. We found an example of an internal program quality metric on which the impact of
refactorings could not be analysed due to lacking model information (no control flow information in our program structure
representation). A solution to this problem could be to simply extend our model, yet this will inevitably make our model
more complex. Moreover, the metamodels used in related research on the formalization of metrics demonstrates that most
of the measures of the current metric suites can be operationally defined on a program structure representation similar to
ours [1, 4, 19, 13]. A detailed investigation of how this limitation reduces the number of internal program quality metrics on
which the impact can be analysed requires a deeper study on the operational definitions of currently known program quality
metrics.

Second, our formal descriptions of the structural changes on the program structure, expressed in terms of an extended
tree representation, lacks semantical information about the sources and targets of the cross-reference edges which are added
or removed during the refactoring. This information is currently implicitly contained in the informal description of the
refactorings. Therefore, one of the lessons we learned is that a complete formal description of the structural changes caused
by the application of a refactoring is required in order to automate the impact analysis process, i.e. using logic engines such
as Prolog. While necessary for the next step of analysis of a more extended set of refactorings, the scale of our current work,
serving the purpose of a proof-of-concept, did not require automated analysis.

Summarizing, we identified solutions for the two major limitations of our technique, which will simplify the analysis of
the impact of refactorings on internal program quality metrics, making it possible to automate the impact analysis process.
Such an automation is essential to cope with the massive amount of combinations between refactorings and internal program
quality metrics.

6 Related work

Formalisations of software metrics have been provided from the mathematical perspective [1, 4, 19, 13] and the formal
specifications perspective, in example Z [15] and OCL [2]. Our formalism is analogue to the mathematical approach of [1],
yet they do not provide a formal metamodel specification but rely directly on the cardinality of informally described model
features. We feel that the formal metamodel specification helps us in reasoning about program transformations. None of
these metamodels incorporated information not contained in the model for program structure presented in this work (except
information about modifiers such as abstract, final, public, protected, private).

In previous work, we introduced the existing research field of refactoring, and proposed an extensive list of directions for
future research [12]. Most recently, an extension to the UML 1.4 metamodel for the purpose of facilitating refactoring at the
UML level while remaining consistent with the source-code was proposed by members of our research group [25].

An experience report on metric collection during a refactoring phase is provided in [22]. A formalization of program trans-
formations is introduced in [13], which formed the basis of this work. The same graph-rewriting foundation for describing
refactorings is used in [24], which introduces a hierarchical representation for visualizing program structure.

Tom Mens
46

The work which lies most closely to ours is provided in [23], in which the impact of meta-pattern transformations on
an object-oriented metrics suite is provided. Our work is similar in that they are also interested in a-priori feedback on the
impact of source-code transformation, and therefore also provide an impact catalogue of source code transformations on
object-oriented metrics. Our work is different in that we focus on the impact analysis technique itself and therefore formalise
the process of analysing the impact of catalogued refactorings provided by Fowler on internal program quality metrics, while
they focus on the reengineering strategy of resolving design flaws through the application of meta-patterns.

A quantitative evaluation method to measure the maintainability enhancement effect of program refactoring is presented
in [11]. They analysed three phases in the process of program refactoring, of which their contribution is towards the phase
of validation of the refactoring effect. They analyse the effect of a number of refactorings on coupling metrics by pre- and
post-refactoring measurements.

Detection of refactoring-candidates using visualisation techniques is introduced in [21]. Automatic detection of transfor-
mations is described in [20], in which rules for candidate selection are defined in terms of metric thresholds.

7 Conclusion and Future Work

Our technique for analysing the impact of refactorings on internal program quality metrics allows the clarification of the
drift or improvement of specific internal program quality metrics, as caused by the application of particular refactorings.
The results presented in this work demonstrated the feasibility of applying this technique for a number of refactorings and
a number of internal program quality metrics. The limitations of our current approach were identified and solutions were
discussed to resolve them.

In this paper, we presented both a formalism for describing and a technique for analysing the impact of refactorings on
internal program quality metrics as indicators of quality factors. As a case study, the technique was applied to a number of
representative refactorings from the refactoring categories Composing Methods, Organizing Data and Dealing with Gener-
alization [9], and a number of commonly used internal program quality metrics (Number of Methods, Number of Children,
Coupling Between Objects, Response For a Class, Lack of Cohesion among Methods).

The resulting classification of the impact in positive or negative contributions to internal quality metrics delivers a-priori
feedback to software maintainers, enabling them to predict the quality drift caused by the application of (a series of) refac-
torings.

Our technique, improved by the suggestions to counter the limitations, remains to be applied to a more extended set of
refactor operations and object-oriented program quality metrics, to form a catalogue of the impact of refactorings on internal
quality metrics. Guided by this impact-catalogue on internal quality metrics, we plan experiments to gather empirical data
about the impact of refactoring on external program quality metrics (performance, mean time between repair,...).

8 Acknowledgements

This research is funded by the FWO Project G.0452.03 “A formal foundation for software refactoring”. We thank Pieter
Van Gorp, Hans Stenten, Serge Demeyer and Andy Zaidman for their useful comments on drafts of this paper.

References

[1] F. B. Abreu and R. Carapuca. Object-oriented software engineering: Measuring and controlling the development process. InProc.
4th Int’l Conf. Software Quality, October 1994.

[2] A. L. Baroni. Formal definition of object-oriented design metrics. Master’s thesis, Vrije Universiteit Brussel and Ecole des Mines de
Nantes, Belgium, 2002.

[3] V. R. Basili and W. L. Melo. A validation of object-oriented design metrics as quality indicators.IEEE Trans. Software Engineering,
22(10):751–761, October 1996.

[4] L. C. Briand, J. Daly, and al. A unified framework for coupling measurement in object-oriented systems.IEEE Trans. Software
Engineering, 25(1):91–121, 1999.

[5] S. R. Chidamber and C. F. Kemerer. A metrics suite for object-oriented design.IEEE Trans. Software Engineering, 20(6):476–493,
June 1994.

[6] D. Coleman, D. Ash, B. Lowther, and P. Oman. Using metrics to evaluate software system maintainability.IEEE Computer, pages
44–49, August 1994.

[7] J. C. Coppick and T. J. Cheatham. Software metrics for object-oriented systems. InProceedings of the 1992 ACM annual conference
on Communications, pages 317–322. ACM Press, 1992.

Tom Mens
47

[8] N. Fenton and S. L. Pfleeger.Software Metrics: A Rigorous and Practical Approach. International Thomson Computer Press,
London, UK, second edition, 1997.

[9] M. Fowler. Refactoring: Improving the Design of Existing Programs. Addison-Wesley, 1999.
[10] B. Henderson-Sellers.Object-Oriented Metrics: Measures of Complexity. Prentice-Hall, 1996.
[11] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya. A quantitative evaluation of maintainability enhancement by refactoring. InProc.

Int’l Conf. Software Maintenance, pages 576–585. IEEE Computer Society Press, 2002.
[12] T. Mens, S. Demeyer, B. Du Bois, H. Stenten, and P. Van Gorp. Refactoring: Current research and future trends.Language

Descriptions, Tools and Applications (LDTA), 2002.
[13] T. Mens, S. Demeyer, and D. Janssens. Formalising behaviour preserving program transformations. InGraph Transformation, vol-

ume 2505 ofLecture Notes in Computer Science, pages 286–301. Springer-Verlag, 2002. Proceedings First International Conference
ICGT 2002, Barcelona, Spain.

[14] T. Mens and M. Lanza. A graph-based metamodel for object-oriented software metrics.Electronic Notes in Theoretical Computer
Science, 72(2), 2002.

[15] I. Moore. Automatic inheritance hierarchy restructuring and method refactoring. InProceedings Int’l Conf. OOPSLA ’96, ACM
SIGPLAN Notices, pages 235–250. ACM Press, 1996.

[16] W. Opdyke.Refactoring Object-Oriented Frameworks. PhD thesis, University of Illinois at Urbana-Champaign, 1992.
[17] W. Opdyke and R. Johnson. Creating abstract superclasses by refactoring. InProc. ACM Computer Science Conference, pages

66–73. ACM Press, 1993.
[18] R. Pressman.Software Engineering A Practitioner’s Approach. McGraw-Hill, 2001.
[19] R. Reissing. Towards a model for object-oriented design measurement. In F. B. e Abreu, editor,Proc. 5th Int. ECOOP Workshop on

Quantitative Approaches in Object-Oriented Software Engineering, pages 71–84, 2001.
[20] H. A. Sahraoui, R. Godin, and T. Miceli. Can metrics help to bridge the gap between the improvement of oo design quality and its

automation? InProc. International Conference on Software Maintenance, pages 154–162, october 2000.
[21] F. Simon, F. Steinbr̈uckner, and C. Lewerentz. Metrics based refactoring. InProc. European Conf. Software Maintenance and

Reengineering, pages 30–38. IEEE Computer Society Press, 2001.
[22] E. Stroulia and R. V. Kapoor. Metrics of refactoring-based development: An experience report. InProc. of the 7th International

Conference on Object-Oriented Information System, pages 113–122. Springer Verlag, 2001.
[23] L. Tahvildari and K. Kontogiannis. A metric-based approach to enhance design quality through meta-pattern transformations. In

Proc. European Conference on Software Maintenance and Reengineering, pages 183–192. IEEE Computer Society Press, 2003.
[24] N. Van Eetvelde and D. Janssens. A hierarchical program representation for refactoring. InProc. of UniGra’03 Workshop, 2003.
[25] P. Van Gorp, H. Stenten, T. Mens, and S. Demeyer. Towards automating source-consistent UML refactorings. InProceedings of

UML 2003 – The Unified Modeling Language. Springer-Verlag, 2003.
[26] H. Zuse.Software Complexity. Walter de Gruyter, Berlin, 1991.

Tom Mens
48

J2EE or .NET: A Managerial Perspective

Neil Chaudhuri
Research Fellow

Logistics Management Institute
McLean, VA 22102 USA

Keywords: software evolution, J2EE, .NET, project management, enterprise architectures, enterprise
systems, web services

Abstract

With the evolution of enterprise systems from the

traditional client-server paradigm, Sun Microsystems’ Java 2
Enterprise Edition (J2EE) and Microsoft .NET have emerged
as fierce competitors for recognition as the leading choice for
building enterprise solutions. After first engaging in a high-
level discussion of the architectures, this paper describes the
criteria by which project managers should choose between
them. It concludes with a discussion of what continued
evolution of the enterprise realm, namely towards the web
services realm, may mean for project managers.

Introduction

The only certainty in the information technology
industry is the rapid and constant evolution of software
technology. Nowhere is this more evident than in the realm
of enterprise systems, which evolved from client-server
systems as a means of physically and logically decoupling
the critical components of the architecture—namely the
presentation, middleware, and database tiers. Not
surprisingly, the size and complexity of enterprise systems
demand sophisticated solutions. Assembled from its
previously established technologies, Sun Microsystems’
Java 2 Enterprise Edition (J2EE) architecture enjoyed
prominence as the leading choice for building enterprise
solutions. Never to be outdone in its effort to maintain its
perch atop the information technology industry, Microsoft
Corporation unveiled an alternative enterprise-level solution,
.NET, which also represents the next generation of its own
previously established technologies. As these solutions
have evolved to meet the needs of the evolving enterprise,
software engineers on both sides have inundated the
literature with perspectives on which is technically superior.
To this point, however, project managers charged with
overseeing the development of enterprise systems have
been largely left out of the discussion and consequently
have been unable to engage in any meaningful process of
natural selection. This paper provides a comparative
overview of J2EE and .NET and describes the criteria by
which project managers should choose between them as the
solution for an enterprise-level development effort. Finally,
this paper suggests how the technologies themselves and
project managers’ understanding thereof may evolve over
time as the enterprise realm continues to evolve--primarily
towards web services.

Overview of the Architectures

J2EE

 It is the most basic quality of Sun’s J2EE
architecture that is the initial source of confusion for most
project managers. J2EE is not a product; rather, it is a

specification. With each successive specification since the
first was issued in 1999, various vendors allied with Sun
have built application servers that conform to it, and J2EE
applications are deployed to these servers [5]. Among the
more notable are IBM’s WebSphere, Oracle’s OC4J, and
BEA’s WebLogic Server, which is generally considered the
industry leader. During its lifetime J2EE has gained a
measure of credibility as a viable option in mission-critical
systems, for United Airlines and American Express are two
prominent examples among many organizations that have
successfully implemented J2EE solutions [7].

With regards to the technical details of J2EE, at its
core rests the Java programming language. Over nearly two
decades the object-oriented paradigm has become
preeminent among programming languages; and in turn
Java, another Sun specification, has become preeminent
among object-oriented languages. This played no small role
in the emergence of J2EE in the enterprise software realm.
An even more significant contributor to its marketability is the
portability of the Java code that comprises a J2EE
application. For example, because both servers meet the
J2EE specification, code deployed on WebLogic can be
deployed seamlessly on WebSphere should the need arise,
and both can operate on any platform (e.g. Windows, Linux,
etc.). Therefore, J2EE does not render an organization
vulnerable to the whims of a single vendor. This may be the
most powerful argument in favor of J2EE. However, there
are some caveats that to be explored a bit later.
 While literature concerning the J2EE architecture
has been prolific over the last few years, that concerning its
components has been even more so. The J2EE
specification consists of a potpourri of various technologies,
each with its own specification. Moreover, some of these
actually predate the first J2EE specification. Therefore, if the
age of the J2EE architecture as a whole is an argument for
its reliability, the claim is further fortified by the age of its
components. The most notable among these are the
following:

• Servlets and Java Server Pages (JSPs) for
generating web content

• Java Database Connectivity (JDBC) for storing
(or in the vernacular of enterprise architecture,
persisting) data in databases

• Enterprise JavaBeans (EJBs) for business logic
processing in the middle tier. This is the
centerpiece of the J2EE architecture.

As a result of the fragmented nature of J2EE, vendors may
produce servers that do not comply with the whole of the
J2EE specification but rather with portions thereof. Such
servers thus cannot support a complete J2EE application but
may still be very useful. A prominent example is Apache’s
Tomcat, an industry-leading, open-source web server that
only supports the servlet and JSP specifications. Hence it is
best suited for client-server applications, which remain
significant even with the emergence of the n-tier paradigm.

Tom Mens
49

Yet despite its excellent performance to that end, Tomcat by
itself is quite ill-suited to enterprise architectures.

• Windows Forms (or WinForms) for
graphical user interfaces (GUIs) utilized on
client machines and based largely on the
popular Visual C++ and Visual Basic
technologies developed by Microsoft.2

.NET

 While it is designed to solve the same problems as
J2EE, Microsoft’s .NET architecture takes a starkly
contrasting approach to enterprise systems development.
The most obvious point of contrast is the status of .NET as a
product of Microsoft and Microsoft alone as .NET at its core
does not rest upon alliances with other vendors. Yet the
most significant point of contrast between .NET and J2EE is
that the former is virtually brand new. Technically, .NET has
been available since 2001, but it has undergone so many
modifications since that it is difficult to gauge its readiness as
a viable option for mission-critical solutions [3].1 However,
as the giant in the information technology industry, Microsoft
has a longstanding reputation, especially within the
American government, for producing working solutions.
Furthermore, its massive support structure is at the disposal
of those who choose to adopt a .NET solution. Therefore,
the longevity and stability of Microsoft Corporation goes very
far in offsetting the apparent lack thereof in its .NET
architecture.

• COM+ (or Enterprise Services) for business
logic processing in the middle tier and based
largely on the Component Object Model
(COM) technology developed by Microsoft [4]

From this list one can discern that .NET has hardly emerged
from a vacuum. Microsoft is clearly hoping to lure its vast
following to its latest innovation by creating next-generation
implementations of its prior successes—staples of the
industry like ASP, ADO, and COM—and assembling them
into its service-based, evolved .NET architecture.

Development and Deployment

J2EE

 With the completion of this brief overview of the
J2EE and .NET architectures, it is time to explore them in
more depth and consider how they compare in development
and deployment. The initial step in developing a J2EE
application is acquisition of an application server3, and the
best ones, like the aforementioned WebLogic Server, are
quite costly. There are cheaper alternatives—including the
open-source JBoss available at no cost—but these lack the
support mechanisms that can prove invaluable during the
course of a project. Ultimately, a leading application server
will prove the better value over time despite the heavy cost
upfront, but project managers should choose wisely. While
the portability of J2EE code across servers is a powerful
feature, it is offset by their cost. Indeed, as expensive as a
single server may be, to move to another would deplete all
but the most lavish budgets. This is simply another case
where the reality of the marketplace thwarts the idealism of a
technology.

 With regards to the technical details of .NET, at
the heart of the architecture rests not one but in fact several
programming languages. All of the so-called “.NET family of
languages” are object-oriented, so an organization need not
abandon the paradigm should it choose to pursue this
architecture. There are two prominent languages in the
family. The first is Visual Basic .NET (VB .NET), which is
based on the popular Visual Basic language that has
become familiar to countless developers over the last
several years. The second is C# (pronounced C sharp as in
music), a brand new language created by Microsoft.
Although the claim is that C# is the next generation in the
evolution of the popular C++ programming language, the
influence of Java is unmistakable. C# is the centerpiece of
the .NET family of languages, and it provides the most
effective use of .NET capabilities [1].
 The most significant consequence of committing to
a .NET architecture is restriction to the Windows platform.
Microsoft is often criticized for its reluctance to build products
that integrate seamlessly with those from other vendors, and
.NET does nothing to assuage the criticism. Yet the
Windows operating system represents the very means by
which Microsoft ascended to its perch atop the information
technology industry. Therefore with the incalculable number
of Windows-based systems in operation throughout the
world, many organizations would consider a restriction to
Windows no restriction at all. Even still, there is a series of
open-source initiatives towards moving .NET to other
platforms, but they are far from complete [1].

Despite their cost, J2EE application servers
provide so many services that they are valuable assets to
any development effort. Notable among these is a Java
Runtime Environment (JRE), the Sun-specified realm in
which all Java applications run. The JRE spares application
developers from low-level tasks like memory management
which can be excruciatingly difficult to implement. All
servers are also endowed with the standard J2EE
Application Programming Interfaces (API’s) for designing
code as well as proprietary API’s, which merit particular
attention in this discussion.

While all application servers behave according to
the standard dictated by the J2EE specification, the
underlying implementations are not standard. Thus, the
inevitable idiosyncrasies across servers can cause the same
code to run faster on one than another. Server vendors
therefore provide their own APIs to optimize certain
operations like database accesses, and these can lend a
rather significant boost to performance. However, these

 The components of the .NET architecture are the
closest point of similarity to the J2EE architecture. The most
notable among these are the following:

• ASP .NET for web content and based largely
on the popular Active Server Page (ASP)
technology developed by Microsoft

• ADO .NET for data persistence and based
largely on the popular ActiveX Data Object
(ADO) technology developed by Microsoft

2 It should be noted that the Java programming language
has a similar mechanism in the form of the Abstract
Windowing Toolkit (AWT), Swing, and the new Standard
Widget Toolkit (SWT). Technically, however, this client-side
functionality rests outside the realm of J2EE. 1 According to .NET Magazine, TRX Travel Services, a

provider of reservation-processing services to the travel
industry, recently migrated its legacy systems to .NET with
excellent results primarily in the areas of scalability and
performance [6].

3 Throughout the course of the discussion on J2EE, the
terms application server and server will be used
interchangeably, and both will refer to platforms that meet
the J2EE specification.

 2

Tom Mens
13

Tom Mens
50

should be used only when absolutely necessary, for the
performance gain comes at the expense of portability. For
example, while OC4J database APIs may increase
performance by 40%, they will simply not function on
WebLogic, and the API-based code would have to undergo
an inevitably costly revision if a switch were made.
Therefore, heavy reliance on proprietary APIs will all but
shackle your organization to a particular vendor’s application
server, and this negates the single greatest advantage J2EE
has over .NET [1]. Project managers must weigh the
benefits of both approaches and choose which makes the
most sense for the application.

Integral to the services provided by J2EE servers
are deployment descriptors, Extensible Markup Language
(XML) files which allow critical functionality to be defined
without the need for any Java expertise. With only a mere
text editor, one can configure essential and otherwise
painstakingly difficult services like load balancing and
database connection pooling. Moreover, should the
requirements for these services change, only the
deployment descriptors have to be modified while the code
remains untouched. The time that is saved allows
developers to focus on the code supporting the business
logic of the application rather than that supporting low-level
services.

Should a J2EE solution employ EJB’s, which is
more than likely, deployment descriptors may provide two
vital services beyond those previously described. The first
concerns data persistence. Charged with this task is a
category of EJBs known as entity beans. One would think
that developers must endow their entity beans with
persistence code that utilizes the pervasive but at times
complicated Standard Query Language (SQL). Indeed,
developers have this option. However, should they so
choose, developers may in fact forego writing a single line of
persistence code and instead direct the application server to
manage persistence.4 This is achieved by editing proprietary
deployment descriptors and specifying data persistence
strategies therein. While time must be invested to determine
the precise manner in which a particular vendor demands its
descriptor to be modified, it is quite easily offset by the time
saved by not having to generate the Java and SQL code
necessary to manage persistence.5 Furthermore, the
application server will also provide its own optimizations to
the persistence strategies outlined in the descriptor. Hence,
every effort should be made to have the server manage
persistence, for time is saved and performance enhanced as
well.
 The other significant role that deployment
descriptors play in EJB development is in transaction
management. Simply put, transactions in the context of the
enterprise are a chain of operations—almost invariably
involving a database—that must all be successful for the
transaction as a whole to be considered successful. In that
case any database changes made during the course of the
transaction are made permanent, or committed in the
vernacular of enterprise architectures. If even one operation
fails, however, the entire transaction fails. In that case all

database changes made during the course of the transaction
are nullified—or rolled back in the vernacular—and the
database returns to its original state before the transaction.
The concept of transactions is among the most powerful in
the enterprise realm, and not surprisingly it is also among
the most complex to develop. In a J2EE environment,
developers have the option to write code to do this; but as
with persistence, they may choose to edit deployment
descriptors to call upon the application server to manage
transactions. As neither task is trivial, it is quite a boon to
developers that they may leave the daunting tasks of
persistence and transaction management to the server while
concentrating their time and energy on the complex business
logic that drives enterprise applications.
 When developing an application of any kind, it is
necessary to consider carefully which brand of software—
known as integrated development environments (IDE’s)—will
be utilized to write the code that will support it. In the context
of J2EE, the situation with IDE’s is exactly as with
application servers. There are numerous options ranging
from free to rather costly, and the number of features
available in each is roughly proportional to its cost.
Moreover, most organizations would be better served by
investing in a leading IDE, for the features it provides will
ultimately balance any high costs upfront that may be
incurred. For example, while many IDEs like IntelliJ’s IDEA
provide developer-level functionality like automatic
generation of skeleton code, others like Together’s
ControlCenter also provide architect- and manager-level
functionality with Unified Modeling Language (UML)
generation and configuration management tools, which may
preclude the need for tools devoted to those tasks alone.
Yet no matter how sophisticated the IDE, J2EE applications
are so complex that development and deployment are hardly
ever trivial. A thorough understanding of the subtle points of
the architecture is required of all development teams if they
are to prevail, and project managers must therefore not
presume that investment in a leading IDE will by itself lead to
success.

.NET

 Development and deployment of .NET are in many
ways much simpler matters. Like J2EE, .NET enterprise
applications require investment in an application server from
Microsoft--most likely Windows Server.6 Otherwise, there is
far less financial investment required than is generally the
case for J2EE, for as is custom with Microsoft, the pieces of
the architecture are available for free download. Most
notable among these are the .NET Extensions to Microsoft’s
Internet Information Services (IIS) web server and the .NET
Framework. The former is a rather trivial matter; as the
name suggests, the .NET extensions simply augment the
capabilities of the prevalent IIS infrastructure. The latter
merits a more rigorous discussion.

Principal within the .NET Framework is the
Common Language Runtime (CLR), which is essentially the
equivalent of the Java Runtime Environment [3]. The
Framework also includes the APIs for developing code in all
of the .NET family of languages. The freedom in languages
offers great flexibility and tremendous potential for code
reuse, but managers should take heed. Having different
modules in the same project coded in different languages

4 It should be noted that although application servers can
manage fairly sophisticated persistence code, there are
instances when the code is just so complicated that
developers have no choice but to write it themselves.
Thankfully, these instances are rare.
5 It is true that switching to another application server would
demand the editing of another proprietary descriptor to
enable it to manage persistence, but the time loss is
probably insignificant when weighed with the benefits,
including not having to modify a single line of code.

6 It should be stressed that Windows Server is only required
when utilizing COM+ objects for systems which are truly
enterprise-level, the primary focus of this discussion [4].
Smaller systems do not require such an elaborate and
somewhat costly infrastructure.

 3

Tom Mens
13

Tom Mens
51

will likely result in a configuration nightmare. Moreover, it
will limit accessibility to the code base among the
development team. For example, a VB .NET developer will
be helpless should the need arise to modify C# code
developed by a colleague for the same project. Therefore,
project managers should only take advantage of the
language freedom provided by .NET in the planning stages
of a project and designate a single language as the
development standard.

Foremost among the manager’s responsibilities is
to determine if the system in question truly represents an
enterprise system. This may seem obvious, but it is
alarming how often this is overlooked. Part of the problem is
that the literature offers no single definition of what
constitutes an enterprise system. It would appear that the
consensus definition is an architecture comprised of more
than two tiers and where each tier may have multiple
components (e.g. multiple databases residing on different
machines). As one might imagine, such a system is terribly
complicated and naturally demands the enormous financial
and philosophical commitment required by both J2EE and
.NET. On the other hand, most systems are not enterprise
systems, so it is wasteful to engage in an inevitably rigorous
effort utilizing either technology. It is far more sensible
instead to utilize individual components of J2EE and .NET—
or perhaps even different technologies entirely like
ColdFusion. Ultimately, neither a J2EE nor .NET application
is trivial to build, so it behooves managers to ensure that the
problem is complex enough to merit a complex—and
expensive—solution.

 Unlike J2EE, there are few choices for .NET IDE’s,
and there is a distinct leader in the field: Microsoft’s own
Visual Studio .NET.78 The tool is expensive, but like the best
J2EE development tools, it offers many services like
configuration management. Also, borrowing from its
successful past, Microsoft endows Studio with both the time-
tested drag-and-drop methodology for visually designing
applications and GUIs for specifying the properties of objects
like the location of a backend database. Moreover, each of
these operations results in automatically generated code.
Therefore, developers can design a user interface very
quickly, and they are spared having to generate the code
related to look-and-feel and other more trivial concerns and
may instead focus on the business logic. Lest one believe
that this is without its cost, however, one must be aware that
there are times when it is necessary to understand and
modify the generated code to optimize performance, and this
may not be an easy task.

Project Funding

Regardless of the project or the chosen solution, it
goes without saying that funding is the paramount concern of
project managers. Whether pursuing J2EE or .NET,
managers can expect to allocate substantial financial
resources to training, albeit for different reasons—J2EE
because of its numerous component specifications and their
rapid changes to meet the demands of the open-source
community and .NET because of its own rapid changes in its
effort to grow into a robust technology. Aside from training
costs, each solution also has similar infrastructural costs
associated with it. J2EE demands a large financial
investment in licenses for a leading IDE and application
server. .NET demands investment in Visual Studio to
support application development, Windows Server to support
COM+, and perhaps IIS to support web-based interfaces in
the unlikely event the organization does not already have it
[4].9 It is difficult to say whose infrastructure is more costly,
but it is important to note that these are one-time costs.
However, managers who choose .NET at this stage will very
likely incur recurring costs in the form of support requests to
Microsoft because of the unavoidable flaws in the immature
architecture [7]. Given all the variables, only a project
manager with knowledge of the existing capabilities of the
organization and the development team can decide which is
the cheaper alternative.

 As with J2EE, .NET applications contain
deployment descriptors, but they do not play a role nearly as
significant as that played by their counterparts. Also XML
files, .NET descriptors provide the expected services like
load balancing and database connection pooling, but
otherwise they lack the sophistication of J2EE descriptors.
.NET deployment descriptors do not endow COM+ with
persistence management capabilities, and this leaves the
responsibility for this in the hands of developers [8]. On the
other hand, .NET does indeed support declarative (i.e. non-
programmatic) transaction management, but it is in the form
of attributes placed physically in source code files rather
than in deployment descriptors or any other kind of
configuration files. Although .NET deployment descriptors
do not provide the same level of services as those in J2EE, it
is reasonable to expect that Microsoft will address this as
.NET matures over time.

Choosing Between the Architectures

 Understanding the manner in which J2EE and
.NET applications are developed and deployed provides the
foundation for a discussion of how project managers should
choose between them when planning the development
phase of a task. There are several critical points to consider,
and managers must understand and prioritize them in order
to make the right choice.

Existing Client Infrastructure

Establishing the Need for an Enterprise Solution

Project managers must also consider the existing
infrastructure of the client when choosing between the
architectures. Microsoft solutions in the past have gained
wide acceptance in the public sector of the United States.
Consequently, public sector clients may not even entertain
the possibility of a J2EE solution, and managers will have no
choice to make. It would seem logical that the transition to
.NET would be trivial, for Microsoft has claimed that legacy
objects utilizing older Microsoft technologies will integrate
seamlessly into .NET. This is technically true, but there is a
significant caveat. Legacy objects imported into .NET run
outside the CLR and thus have no access to its services
(most notably, as mentioned previously, memory

7 Throughout the course of the discussion on .NET, the
terms Visual Studio .NET, Visual Studio, and Studio will be
used interchangeably.
8 A notable .NET IDE is Web Matrix, a free, open-source
development tool that features many of the niceties of Visual
Studio. However, it is only useful for the development of
ASP .NET applications. Thankfully, web applications that
would utilize ASP .NET are so pervasive that the restriction
may prove negligible.

9 .NET enterprise applications may require investment in
Microsoft’s BizTalk server as well, which serves to integrate
the components of the system and is particularly valuable for
integrating legacy systems [4]

 4

Tom Mens
13

Tom Mens
52

management) [1]. Unmanaged legacy code, if poorly
written, will cause the application to stumble or even fail.
Ultimately, legacy objects will almost certainly have to be
rewritten as .NET objects [1]. Hence if a rewrite is required
anyway, and if the client is amenable to it, it may be
advisable to consider a J2EE solution, which as mentioned
previously will run on all platforms and thus make the
existing infrastructure of the client a non-issue. Whatever
the outcome, it is simply crucial that project managers
understand that moving from legacy Microsoft solutions to
.NET is not as simple a matter as it may seem.

Project Timetable

The factors discussed to this point offer no clear
choice between J2EE and .NET because they are a function
of circumstances unique to particular projects. However,
there are two critical factors where the better choice is much
more obvious. The first is the timetable for completion of the
project. If the project schedule is short, then .NET is almost
certainly the better choice. As discussed previously, Visual
Studio offers numerous advantages towards Rapid
Application Development (RAD). Even the most
sophisticated J2EE IDE's cannot compete with Studio in
mitigating the complexity of its component technologies and
deployment procedures. Moreover, J2EE has a significant
flaw in the context of RAD—the elaborate deployment
procedures associated with a large, intricate solution are
essentially the same as those associated with a small,
simpler solution. This makes it difficult to produce systems
quickly in J2EE, and .NET therefore has an apparent
advantage when time is a significant concern. Of course, it
should be noted that this advantage might be mitigated by
the expertise of the development team. If an organization
only has expert J2EE developers at its disposal, they will
almost certainly be able to deploy a J2EE application
quickly, and time lost training them in .NET will accrue no net
benefit [1]. Thus while .NET lends itself much better to RAD
than J2EE, the expertise of the development team can nullify
this advantage.

Project Complexity

The other factor where the choice between J2EE
and .NET is more obvious is the complexity of the project. If
the requirements for an application demand a sophisticated
solution (e.g. multiple servers, multiple backends), then
J2EE is the better option. One reason is the ease with which
J2EE integrates with multiple platforms. Another is the
robustness of EJB’s, which by means of deployment
descriptors offer persistence and transaction management
without the need for a single line of code. Of course, to use
all of the features J2EE offers requires significant knowledge
on the part of the development team, but when properly
implemented these features provide tremendous value to the
process. On the other hand, .NET has not yet proven that it
has grown enough to meet the needs of a truly complex
system [7]. Microsoft has always been somewhat reluctant
to enable seamless integration of its products with those of
other vendors, and an intricate enterprise system with many
components will almost certainly require integration of
products from multiple vendors. Moreover, as described
previously, .NET’s COM+ technology has yet to develop a
framework for persistence and transaction management
outside the code realm [8]. There is also the issue of
Microsoft’s poor reputation in the realm of security, which
while exaggerated by the pervasiveness of Microsoft
products is a significant concern in an enterprise where data
are regularly moving over the network. Finally, .NET has
only just begun to prove itself as a reliable solution for large-

scale, mission-critical systems, and as a result it is
impossible to predict just how it will respond to the demands
of a particular enterprise. However, Microsoft’s stature in the
industry all but guarantees that .NET shall have ample
opportunities to prove its mettle over time. Therefore, it is
only with time that .NET will establish itself as a proven,
robust enterprise solution.

Summary Remarks and the Future of
Enterprise Software Evolution

During the course of this discussion, a high-level

understanding of the components of the J2EE and .NET
architectures and the manner in which they are developed
and deployed laid the foundation for an examination of the
critical points project managers must consider when
choosing between them. The analysis led to the conclusion
that neither choice is clearly superior in all cases. Rather, as
each has its advantages over the other, the suitability of
either architecture is a function of the particular
circumstances surrounding the project. Understanding the
strengths and weaknesses of J2EE and .NET will enable
project managers to engage in a meaningful process of
natural selection and produce successful results for their
customers.

Of course, the very fabric of evolution is woven
with the threads of innovation. Thus while the enterprise
paradigm--and its implementation strategies in the form of
the J2EE and .NET architectures--represent the latest
innovation in software development, it is only natural to
wonder where evolution will take the industry in the future. It
would seem that there may already be an answer: web
services.

The Emergence of Web Services

 The concept of web services has dominated the
literature for some time, yet the prolific rhetoric has actually
served to obscure any legitimate understanding of what web
services truly represent. Perhaps the best source for an
accurate and complete definition of web services is the
World Wide Web Consortium (W3C), the standards body
that serves as the steward of XML and web services. The
W3C provides the following:

Definition: A Web service is a software system
identified by a URI, whose public interfaces and
bindings are defined and described using XML. Its
definition can be discovered by other software
systems. These systems may then interact with
the Web service in a manner prescribed by its
definition, using XML based messages conveyed
by internet protocols. [9]

The goal of web services is interoperability among software
systems regardless of their underlying frameworks,
implementations, platforms, or other idiosyncrasies. This is
achieved by communications in the form of XML-based
messages transported over networks by HyperText Transfer
Protocol (HTTP), both of which are open standards. One
can easily see why web services have generated such
fervor, for the prospect of integrating disparate systems
seamlessly by way of non-proprietary standards is an
exciting one.
 As the enterprise evolves rapidly towards web
services, project managers charged with producing
enterprise solutions must have their understanding evolve in
parallel. With J2EE and .NET the leading choices for

 5

Tom Mens
13

Tom Mens
53

Choosing Between the Architectures developing enterprise systems, this paper will now briefly
discuss the extent to which they support web service
development. Moreover, the purpose of this paper has been
to identify the criteria by which project managers should
choose between J2EE and .NET as the solution for an
enterprise-level development effort. In the interest of
completeness, therefore, this paper will also address any
additional criteria that must be considered when choosing
between J2EE and .NET as the solution for a web service
development effort.

 Web services clearly represent a remarkable
branch in the evolution of enterprise systems. Though the
enthusiasm has been tempered somewhat by the realities of
the marketplace, the web services paradigm shall remain a
vibrant one10. Therefore, as with all enterprise systems,
project managers must be able to engage in a legitimate
process of natural selection between J2EE and .NET when
deciding which will be the architecture for a web service
solution.

J2EE Web Services All of the criteria and considerations discussed
previously for a conventional enterprise system still apply
when it comes to web services. For example, J2EE’s
platform independence could be the deciding factor if the
platform to which a web service will be deployed is unknown
or likely to change. However, there is one signifcant
exception to the conclusions drawn previously. Earlier it was
suggested that J2EE can quite reasonably claim to be the
more proven and more robust solution for an enterprise
application. Yet when it comes to web services, the opposite
is true. As mentioned before, .NET surpassed J2EE by a
wide margin in its appraisal of the web services landscape,
and as a result .NET provided web service developers with a
great deal of support. J2EE has worked quickly to narrow
the gap, but the extent to which it will succeed will only
become apparent over time. Thus, with .NET being so far
ahead in the web services realm and generally, as discussed
previously, being the better choice when time is a factor for
any enterprise development effort, it would seem that for
now .NET is the better choice when developing web
services.

 It would seem that J2EE lacked foresight with
regards to the zeal generated by the web services paradigm.
As a result the most recent specfication lacks robust support
for web services. Transport protocols provide a glaring
example. Application servers do not support HTTP as a
native communication protocol, so web service requests
transported over HTTP must be bridged to another protcol to
activate J2EE web services [11]. Ultimately, outside of API’s
for processing XML utilizing standard interfaces, J2EE is
missing a great deal when it comes to web services, and
vendors are forced to provide proprietary extensions to fill in
the gaps.
 The upcoming J2EE specification due for release
in the fall of 2003 seeks to rectify many of these problems.
The new specification, for example, provides for exposing
EJB’s as web services for discovery and utilization by clients
[10]. Also included is more robust support for processing
XML-based messages sent over HTTP [10]. However, as
promising as all of this may be, it is all purely theoretical
since the specification has yet to be released. The rate at
which vendors produce application servers that meet the
specification remains to be seen. Moreover, the manner in
which IDE’s automate web service development to support
the new specification also is unknown. Therefore, J2EE
developers must currently rely on web service development
that is heavily proprietary, and at best they can only be
cautiously optimistic for the future.

Concluding Remarks

With the enterprise paradigm having evolved from
the client-server paradigm and in turn evolving in some
measure towards the web services paradigm, project
managers must contend with many complex issues when
choosing between J2EE and .NET. What makes their task
even more difficult is the rapid pace with which the
architectures themselves are evolving in an effort to become
more robust. This paper has attempted to articulate and
clarify the criteria that project managers must consider when
making their choice.

.NET Web Services

 In stark contrast to J2EE, .NET’s support for web
service development is quite possibly its best feature.
Indeed, .NET has from its beginnings demonstrated
tremendous foresight in the web services realm. For
example, Windows Server has native support for HTTP
communication [11]. Furthermore, reflecting Microsoft’s
commitment to XML, .NET features a rich library of API’s for
processing XML-based messages. Finally, as one would
expect from the powerful IDE, Visual Studio has a number of
features to automate the development both of web services
themselves and of clients for existing web services.

It is unclear if natural selection by the marketplace
will ultimately determine a victor in the battle for the
enterprise between J2EE and .NET. Rather, it is far more
likely that the two will simply coexist in the ecosystem of
enterprise architectures. In fact, we can make only two
claims with any certainty: the rivalry will continue to make for
fascinating theater, and more importantly, the true victors will
be project managers and their development teams, all of
whom will reap the benefits of the evolved functionality that
will inevitably result from the competition.

 .NET has proven itself in industry to be an
effective architecture for web service development. The
aforementioned TRX Travel, for example, has utilized web
services to manipulate travel data and to create a generic,
reusable interface to its business logic layer [6]. Another
.NET web services success story is the Central Bank of
Costa Rica (CBCR), who recently ported its legacy
application to .NET [12]. Among the web services built by
CBCR are a service for messaging, a service for managing
financial setlements, and even a service for integrating Java-
based financial applications which exemplifies the very
interoperability that motivated the genesis of the web service
paradigm [12]. The ability to produce such a wide array of
web services so quickly has helped .NET to take the lead at
this stage in the evolution of web services.

10 As true interoperability among systems is an extremely
difficult goal to achieve, web services have come to
encounter resistance in several forms, including the rapid
evolution of standards (especially in the area of security of
XML-based messages), the deliberate pace with which
vendors adopt new standards, database concurrency issues
[13], and the performance cost of XML-based messaging.
The W3C must address these and other problems—and
vendors must adhere to its recommendations—if web
services are to continue to flourish.

 6

Tom Mens
13

Tom Mens
54

 7

Acknowledgements

The author would like to recognize the following individuals
who helped to improve this discussion: Geoffrey Simpson,
Mauricio Calabrese, Randa Khoury of the National Academy
of Sciences, and Jonathon Leete and Sam Stange of
Logistics Management Institute (LMI). The author would
also like to express his heartfelt gratitude to Vice-President
Dr. Susan Marquis and Program Director Robert Hutchinson
of LMI, whose continuous encouragement and support were
invaluable. Finally, the author wishes to express a special
note of thanks to John Kupiec of LMI for his mentoring
guidance, unwavering patience, and sage wisdom. This
paper would not have been possible without him.

References

[1] McAllister, Neil. New Architect: “The Great
Migration: The Rocky Road to J2EE and .NET.”
March 2003.

[2] Roman, Ed. TheServerSide.com: “A few tips on
deciding between EJB and COM.” Unknown date
of publication.

[3] Lowy, Juval. .NET Magazine. “Set a New Course
With .NET” December 2001.

[4] Sessions, Roger. Java 2 Enterprise Edition
(J2EE) versus The .NET Platform: Two Visions for
eBusiness. March 2001.

[5] Marinescu, Floyd. TheServerSide.com
(www.theserverside.com): “The State of The J2EE
Application Server Market: History, important
trends and predictions.” March 2001.

[6] Bustamante, Michèle Leroux. .NET Magazine:
“TRX Travel Services Goes Live With .NET.” May
2003.

[7] Hatem El-Sebaaly. UC Irvine Extension
(unex.uci.edu): “J2EE vs.Microsoft.NET: Choosing
an Enterprise System.” August 2002.

[8] MacHale, Robert. Microsoft Developers Network
(msdn.microsoft.com): “Distributed Transactions in
Visual Basic

 .NET.” February 2002.
[9] Champion, Michael; Ferris, Chris (eds.) et al.: Web

Services Architecture, W3C Working Draft,
November 2002.

[10] Varhol, Peter. JavaPro Magazine. “J2EE 1.4: A
Web Services Kit.” August 2003.

[11] Newcomer, Eric. .NET Magazine. “Decide
Between J2EE and .NET Web Services.” October
2002.

[12] Thé, Lee. .NET Magazine. “CBCR Ports Critical
App to .NET.” August 2003.

[13] Ambler, Scott. Lecture: “Agile Database
Techniques – Data Doesn’t Have to be a Four-
Letter Word Anymore.” August 2003.

Tom Mens
13

Tom Mens
55

Using Coordination Contracts for Evolving Business Rules∗

Michel Wermelinger
Dep. de Inforḿatica

Univ. Nova de Lisboa
2829-516 Caparica, Portugal

mw@di.fct.unl.pt

Georgios Koutsoukos,
Hugo Lourenço, Richard Avillez,

Jõao Gouveia, Lúıs Andrade†

ATX Software SA
Alameda Ant́onio Śergio, 7, 1C

2795-023 Linda-a-Velha, Portugal

Jośe Luiz Fiadeiro
Dep. of Computer Science

Univ. of Leicester
University Road

Leicester LE1 7RH, UK
jose@fiadeiro.org

Abstract

This experience paper reports on the use of coordination contracts in a project for a credit recovery
company. We have designed and implemented a framework that allows users to define several business
rules according to pre-defined parameters. However, some rules require changes to the services provided
by the system. For these, we use coordination contracts to intercept the calls to the underlying services and
superpose whatever behaviour is imposed by the business rules applicable to that service. Such contracts
can be added and deleted at run-time. Hence, our framework includes a configurator that, whenever a
service is called, checks the applicable rules and configures the service with the given parameters and
contracts, before proceeding with the call. Using this framework we have also devised a way to generate
rule-dependent SQL code for batch-oriented services.

Based on our experience, we feel that coordination contracts facilitate the evolution of the system
in order to accomodate new business rules that change the “normal” behaviour of the provided system’s
functionalities.

1 Introduction

This paper describes an architectural approach to system development that facilitates adaptation to change so
that organisations can effectively depend on a continued service that satisfies evolving business requirements.
This approach has been used in a real project in which ATX Software developed an information system for a
company specialised in recovering bad credit. The approach is based on:

• the externalisation of the business rules that define the dependency of the recovery process on the finan-
cial institution and product (e.g., house mortgage) for which the debt is being recovered;

• the encapsulation of parts of behaviour into so-called coordination contracts that can be created and
deleted at run-time, hence adapting computational services to the context (e.g., institution and product)
in which they are called.

∗Work partially supported by project AGILE (IST-2001-32747) funded by the European Commission; by project POSI/32717/00
(Formal Approach to Software Architecture) funded by Fundação para a Cîencia e Tecnologia; and by the research network RELEASE
(Research Links to Explore and Advance Software Evolution) funded by the European Science Foundation.

†E-mail: {hlourenco,ravillez,jgouveia,landrade }@atxsoftware.com

1

Tom Mens
13

Tom Mens
56

These two mechanisms have two different stakeholders as target. Business rules are intended for sys-
tem users, who have no technical knowledge, so that they can parameterise the system in order to cope with
requirements of new financial institutions and products. Coordination contracts are intended for system de-
velopers to add new behaviour without changing the original service implementation. This is made possible
by the ability of coordination contracts to intercept calls to the service’s methods and execute the contract’s
code instead.

Coordination contracts [1] are a modelling and implementation primitive that allows transparent intercep-
tion of messages and as such replace the service’s method by the code provided by the coordination contract.
Transparent means that neither the service nor its client are aware of the existence of the coordination contract.
Hence, if the system has to be evolved to handle the requirements imposed by new institutions or products,
many of the changes can be achieved by parameterising the service (data changes) and by creating new coor-
dination contracts (behaviour changes), without changing the service’s nor the client’s code. This was used,
for instance, to replace the default calculation of the debt’s interest by a different one. The user may then pick
one of the available calculation formulae (i.e., coordination contracts) when defining a business rule.

To be more precise, a coordination contract is applicable to one or more objects (called the contract’s
participants) and has one or more coordination rules, each one indicating which method of which participant
will be intercepted, under which conditions, and what actions to take in that case. In our approach to the
system we developed, all coordination contracts are unary, the participant being the service affected by the
business rule to which the coordination contract is associated. Moreover, each contract has a single rule. We
could have joined all coordination rules thatmay beapplicable to the same service into a single contract, but
that would lead to less efficiency and to more complex rule conditions. The reason is that once a contract
is in place, it will interceptall methods given in all the contract’s rules, and thus the rule conditions would
have to check at run-time if the rule is really applicable, or if the contract was put in place because of another
coordination rule.

We should also mention that in this project we used our environment to develop Java applications using
coordination contracts [3]. The environment is freely available from www.atxsoftware.com. The tool allows
writing contracts, and to register Java classes (components) for coordination. The code for adapting those
components and for implementing the contract semantics is generated based on a micro-architecture that uses
the Proxy and Chain of Responsibility design patterns [2]. This microarchitecture handles the superposition
of the coordination mechanisms over existing components in a way that is transparent to the component and
contract designer. The environment also includes an animation tool, with some reconfiguration capabilities,
in which the run-time behavior of contracts and their participants can be observed using sequence diagrams,
thus allowing testing of the deployed application.

The structure of the paper is as follows. The next section introduces some example business rules, taken
from the credit recovery domain, and shows how coordination contracts are used to change the default service
functionalities according to the applicable business rules. Section 3 sketches the framework we implemented,
describing how the service configuration is done at run-time according to the rules. Section 4 explains how
the same framework is used to generate rule-dependent SQL code to be run in batch mode. The last section
presents some concluding remarks.

2 Business Rules and Coordination Contracts

ATX Software was given the task to re-implement in Java the information system of Espı́rito Santo Cobranças,
a debt recovery company that works for several credit institutions, like banks and leasing companies. The goal
was not only to obtain a Web-based system, but also to make it more adaptable to new credit institutions or to
new financial products for which the debts have to be collected. This meant that business rules should be easy
to change and implement.

The first step was to make the rules explicit, which was not the case in the old system, where the conditions
that govern several aspects of the debt recovery process were hardwired in tables or in the application code
itself. We defined a business rule to be given by a condition, an action, and a priority. The condition is a

2

Tom Mens
13

Tom Mens
57

boolean expression over relations (greater, equal, etc.) between parameters and concrete values. The available
parameters are defined by the rule type. The action part is a set of assignments of values to other parameters,
also defined by the rule type. Some of the action parameters may be “calculation methods” that change the
behaviour of the service to which this rule is applicable. The priority is used to allow the user to write fewer
and more succint rules: instead of writing one rule for each possible combination of the condition parameter
values, making sure that no two rules can be applied simultaneously, the user can write a low priority, general,
“catch-all” rule and then (with higher priority) just those rules that define exceptions to the general case. As
we will see later, rules are evaluated by priority order. Therefore, within each rule type, each rule has a unique
priority.

To illustrate the concept of business rule, consider the agreement simulation service that computes, given
a start and ending date for the agreement, and the number of payments desired by the ower, what the amount
of each payment must be in order to cover the complete debt. This calculation is highly variable on a large
number of factors, which can be divided into two groups. The first one includes those factors that affect how
the current debt of the ower is calculated, like the interest and tax rates. This group of factors also affect all
those services, besides the agreement simulation, that need to know the current debt of a given person. The
second group covers factors concerned with internal policies. Since the recovery of part of the debt is better
than nothing, when a debt collector is making an agreement, he might pardon part of the debt. The exact
percentage (of the total debt amount) to be pardoned has an upper limit that depends on the category of the
debt collector: the company’s administration gives higher limits to more experienced employees.

As expected, each group corresponds to a different business rule type, and each factor is an action pa-
rameter for the corresponding rule type. The condition parameters are those that influence the values to be
given for the action parameters. As a concrete example, consider the last group in the previous paragraph.
The business rule type defines a condition parameter corresponding to the category of the debt collector and
an action parameter corresponding to the maximum pardon percentage. A rule (i.e., an instance of the rule
type) might then beif category = ‘‘senior’’ or category = ‘‘director’’ then maxPar-

don = 80%. The priorities might be used to impose a default rule that allows no pardon of the debt. The
lowest priority rule would then beif true then maxPardon = 0% .

However, a more interesting rule type is the one corresponding to the calculation of the debt (the first
group of factors for the agreement service). The debt is basically calculated as the sum of the loan instalments
that the ower has failed to pay, surcharged with an amount, called “late interest”. The rules for calculating
this amount are defined by the credit institution, and the most common formula is: instalment amount * late
interest rate * days the payment is late / 365. In other words, the institution defines a yearly late interest rate
that is applied to the owed amount like any interest rate. This rate may depend only on the kind of loan (if
it was for a house, a car, etc.) or it may have been defined in the particular loan contract signed between the
institution and the ower. In the first case, the rate may be given as an action parameter value of the rule, in the
second case it must be computed at run-time, given the person for whom the agreement is being simulated. But
as said before, the formula itself is defined by the institution. For example, there are instutions that don’t take
the payment delay into account, i.e., the formula is justinstalment amount * late interest rate .
For the moment, these are the only two formulas the system incorporates, but the debt recovery company
already told us that in the forseeable future they will have to handle financial institutions and products that
have late interest rates over different periods of time, e.g., quarterly rates (which means the formula would
have the constant 90 instead of 365).

In these cases, where business rules impose a specific behaviour on the underlying services, we add an
action parameter with a fixed list of possible values. Each value (except the default one) corresponds to a
coordination rule that contains the behaviour to be superposed on the underlying service (which implements
the default behaviour, corresponding to the default value of the parameter). However, from the user’s perspec-
tive, there is nothing special in this kind of parameter; the association to coordination rules is done “under the
hood”. For our concrete example, the late interest rule type would have as condition parameters the institution
and the product type, and as action parameters the interest rate (a percentage), the rate source (if it is a general
rate or if it depends on the loan contract), and the rate kind (if it is a yearly rate or a fixed one). The last two
parameters are associated to coordination rules and the first parameter (the rate) is optional, because it has to

3

Tom Mens
13

Tom Mens
58

be provided only if the rate source is general. Two rule examples are

• if institution = ’Big Bank’ and productType = ’car loan’

then rate = 7%, source = ’general’, kind = ’fixed’ ;

• if institution = ’Big Bank’ and productType = ’house loan’

then source = ’contract’, kind = ’yearly’ .

As for the coordination rules, we need one for each computation that differs from the default behaviour,
which is implemented directly in the service because it is assumed to be the case occurring most often. For the
example, we need a rule to fetch the rate from the database table that holds the loan contract information for
all processes handled by the debt recovery company, and another rule to calculate the late interest according
to the fixed rate formula.

Continuing with our example, the service has (at least) the following methods:

• void setRate(double percentage) , which is used to pass the value of therate action parameter
to the service;

• double getRate() , which is used by clients of the service, and by the next method, to obtain the rate
that is applicable;

• double getInterest() , which uses auxiliary methods implemented by the same service to calcu-
late the late interest to be paid. Its implementation isreturn getInstalment() * getRate() *

getDays() / 365; .

Given these methods, the coordination rules are as follows:

Fixed Rate This rule intercepts thegetInterest() method unconditionally, and executes:
return getInstalment() * getRate() .

Contracted Rate This rule intercepts thegetRate() method under the condition!calculated , and exe-
cutes:r = the rate obtained by consulting the database; setRate(r); calculated = true .

The second rule requires the coordination contract to have a local boolean attributecalculated , initialized
to false. The idea is that, no matter how often the service’s clients call thegetRate() method, the database
lookup will be done only for the first call, and the rate is stored into the service object, as if it were given
directly by a business rule.

The next section explains how the three parts (business rules, coordinations contracts, and services) work
together at run-time in order to ensure that the correct (business and coordination) rules are applied at the right
time to the right services.

3 Architectural Framework

The architecture of the configuration framework, and the steps that are taken at run-time, are shown next.

Application Service
1. Service Request //

8. Call Operation
��

Factory
7. Return Service

oo

2. Create Service
ssgggggggggggggggggggggggggggg

3. Configure
��

Processing Service Service
Configurator

4. Evaluate Rules
��

5. Set Parameters
oo

6. Create Contract
ssggggggggggggggggggggggggggg

Contract

9. Intercept Call

OO

XML Meta and Instance Files

4

Tom Mens
13

Tom Mens
59

The process starts with the creation of an application service object to handle the user’s request, e.g., the
request for the simulation of the agreement. This object contains the necessary data, obtained from the data
given by the user on the web page, and will call auxiliary processing services. Each service is implemented
by a class, whose objects will be created through a factory (step 1 in the figure). After creating the particular
instance of the processing service (step 2), the factory may call the service configurator (step 3), if the service
is known to be possibly subject to business rules. The configurator consults two XML files containing infor-
mation about the existing business rules. The one we called meta file defines the rule types (see Fig. 1 on page
6 for an example), while the instance file contains the actual rules (see Fig. 2 on page 7). The configurator
first looks into the meta file to check which business rules are applicable for the given processing service. For
each such rule, the meta file defines a mapping from each of the rule type’s condition (resp. action) param-
eters into getter (resp. setter) methods of the service, in order to obtain from (resp. pass to) the service the
values to be used in the evaluation of the conditions of the rules (resp. the values given by the action part of
the rules). There is also the possibility that an action parameter is mapped to a coordination contract. With
this information (which of course is read from the meta file only once, and not every time the configurator is
called), the configurator calls the necessary getters of the service in order to obtain the concrete values for all
the relevant condition parameters. Now the configurator is able to evaluate the rules in the instance file (step
4), from the highest to the lowest priority one, evaluating the boolean expression in the if part of each rule
until one of them is true. If the parameter values obtained from the service satisfy no rules’ condition, then
the configurator raises an exception. If a suitable rule is found, the configurator reads the values of the action
parameters and passes them to the service (step 5) by calling the respective setters. If the action parameter is
associated to a coordination contract, the configurator creates an instance of that contract (step 6), passing to
the contract constructor the processing service object as the participant. At this point the configurator returns
control to the factory, which in turn returns to the application service a handler to the created (and configured)
processing service. The application service may now start calling the methods of the processing service (step
8). If the behaviour of such a method was changed by a business rule, the corresponding contract instance will
intercept the call and execute the different behaviour (step 9).

Of course, the application service is completely unaware that the processing service has been configured
and that the default behaviour has changed, because the application just calls directly the methods provided
by the processing service to its clients. In fact, we follow the strict separation between computation and
configuration described in [4]: each processing service has two interfaces, one listing the operations available
to clients, the other listing the operations available to the configurator (like the getters and setters of business
rule parameters). The application service only knows the former interface, because that is the one returned by
the factory. This prevents the application service from changing the configuration enforced by the business
rules.

The user may edit the XML instance file through a tool we built for that purpose to browse,edit and create
business rules. The tool completely hides the XML syntax away from the user, allowing the manipulation
of rules in a user-friendly manner. Furthermore, it imposes all the necessary constraints to make sure that,
on the one hand, all data is consistent with the business rules metadata (i.e., the rule types defined in the
XML meta file), and, on the other hand, that a well-defined XML instance file is produced. In particular, the
tool supplies the user with the possible domain values for required user input, it checks whether mandatory
action parameters have been assigned a value, facilitates the change of priorities among rules and guarantees
the uniqueness of priorities, allows to search all rules for a given institution, etc. You may notice from the
presented XML extracts that every rule type, rule, and parameter has a unique identifier and a name. The
identifier is used internally by the configurator to establish cross-references between the instance and the meta
file, while the name is shown by the rule editing tool to the user.ThevalueType attribute of a parameter is
used by the rule editor to present to the user (in a drop-down list) all the possible values for that parameter.

Notice that the user is (and must be) completely unaware of which services are subject to which rule types,
because that is not part of the problem domain. The mapping between the rules and the service classes they
affect is part of the solution domain, and as such defined in the XML meta file. As such, each rule type has
a conceptual unity that makes sense from the business point of view, without taking the underlying services
implementation into account.

5

Tom Mens
13

Tom Mens
60

<service class="ComputeDebt">
<ruleType name="Late Interest" id="LateInterest">

<condition>
<conditionGroup>

<conditionParameter name="Financial Institution"
id="Inst" type="string">

<valueType name="Institution" />
<getter name="getInstitutionCd" returnType="String" />
<SQL>

<expr>AT_LATE_INTEREST_CALC.INSTITUTION_CD</expr>
<from>AT_LATE_INTEREST_CALC</from>

</SQL>
</conditionParameter>
<conditionParameter name="Credit Type"

id="CredType" type="string">
<valueType name="CreditType" />
<getter name="getCreditType" returnType="String" />
<SQL>

<expr>ST_PROCESS_CONTRACT.CREDIT_TYPE_CD</expr>
<from>ST_PROCESS_CONTRACT,AT_LATE_INTEREST_CALC</from>
<join>ST_PROCESS_CONTRACT.PROCESS_NBR =

AT_LATE_INTEREST_CALC.PROCESS_NBR</join>
</SQL>

</conditionParameter>
<!-- the current phase of the recovery process -->
<conditionParameter name="Phase" id="Phase" type="string">

<valueType name="ProcPhase" />
<getter name="getProcessPhase" returnType="String" />
<SQL>

<expr>AT_LATE_INTEREST_CALC.ACTUAL_PHASE_CD</expr>
<from>AT_LATE_INTEREST_CALC</from>

</SQL>
</conditionParameter>
<!-- other condition parameters -->

</conditionGroup>
</condition>
<!-- the action parameters would be given here -->

</ruleType>
</service>

Figure 1: An extract of the XML meta file

6

Tom Mens
13

Tom Mens
61

<service class = "ComputeDebt" name = "ComputeDebt">
<ruleType id = "LateInterest">

<!-- other rules with higher priority -->

<rule name = "Big Bank, judicial phases" id = "3" priority = "3">
<conditionset type = "AND">

<comparison id = "Inst" serviceValue = "0916"
userValue = "Big Bank" operator = "equal"/>

<conditionset type = "OR">
<comparison id = "Phase" serviceValue = "0005"

userValue = "External judicial phase" operator = "equal"/>
<comparison id = "Phase" serviceValue = "0007"

userValue = "Internal judicial phase" operator = "equal"/>
</conditionset>

</conditionset>
<!-- the values for the action parameters come here -->

</rule>

<!-- remaining rules, with less priority -->
</ruleType>

</service>

Figure 2: An extract of the XML instance file

4 Batch-oriented Rule Processing

The approach presented in the previous section is intended for the interactive, web-based application services
that are called on request by the user with the necessary data. These data are passed along to a processing
service. The configurator queries the processing service for the data in order to evaluate the conditions of the
rules.

However, like most information systems, the debt recovery system also has a substantial part working
in batch. For example, the calculation of the debt is not only needed on demand to project the future debt
for the simulation agreement service, it is also run every night to update the current debt of all the current
credit recovery processes registered in the system. In this case, the debt calculation is performed by stored
procedures in the database, written in SQL and with the business rules hard-wired.

Hence, when we have a large set of objects (e.g., credit recovery processes) for which we want to invoke
the same processing service (e.g., debt calculation), it is not very efficient to apply the service to each of these
objects individually. It is better to apply a “batch” strategy, reversing the configuration operation: instead
of starting with an object and then choosing the rule that it satisfies, we take a rule and then select all the
objects that satisfy it. This is much more efficient because we may use the same configured processing service
instance for objects A and B if we are sure that for both A and B the same rule is chosen.

We thus have the need to be able to determine for a given rule the set of objects that satisfy it. Pragmatically
speaking, we need a way of transforming the if-part of a rule into an SQL condition that can be used in a
SELECT query to obtain those objects. Therefore we extended the rule type information in the XML meta
file, adding for each condition parameter the following information:

• an SQL expression that can be used to obtain the parameter value;

• the list of tables that must be queried to obtain the parameter value;

• a join condition between those tables.

7

Tom Mens
13

Tom Mens
62

Fig. 1 on page 6 shows a fragment of the meta information for the debt calculation service. There we see, for
example, that in order to obtain the value of the product type parameter we have to write the following query:

SELECT ST_PROCESS_CONTRACT.CREDIT_TYPE_CD
FROM ST_PROCESS_CONTRACT,AT_LATE_INTEREST_CALC
WHERE ST_PROCESS_CONTRACT.PROCESS_NBR = AT_LATE_INTEREST_CALC.PROCESS_NBR

Using this information we can now take a rule condition and transform it into a SQL fragment. As an
example, consider the rule condition (for the same service) in Fig. 2 on page 7: it is applicable to all recovery
processes of “Big Bank” that are in the internal judicial phase (i.e., the company’s lawyers are dealing with
the process) or the external one (i.e., the case has gone to court). We may compose the information for each
of the rule parameters in order to obtain a single SQL fragment for the rule condition. This fragment contains
the following information:

• the list of tables that must be queried in order to evaluate the rule condition;

• an SQL condition that expresses both the join conditions between the several tables and the rule condi-
tion itself.

For our example, the meta file specifies thatInst andPhase , the two parameters occurring in the condi-
tion, only require the tableAT LATE INTEREST CALCto be queried. As for the rule condition, the meta file
specifies thatAT LATE INTEREST CALC.INSTITUTION CDcorresponds to the usage of theInst parameter,
andAT LATE INTEREST CALC.ACTUALPHASECDto thePhase condition parameter. By a straightforward
replacement of these names in the boolean expression of the rule condition, we get the following SQL expres-
sion: ((AT LATE INTEREST CALC.INSTITUTION CD = ’0916’) AND

((AT LATE INTEREST CALC.ACTUALPHASECD = ’0005’) OR

(AT LATE INTEREST CALC.ACTUALPHASECD = ’0007’)))

The SQL representation of a rule is conveyed by an instance of classSQLRule , which is contained in the
service configurator, because the XML files are accessed by the latter.

public class ServiceConfigurator {
public class SQLRule {

public String getId() { ... }
public String getName() { ... }
public String getWhere() { ... }
public String getFrom() { ... }

}
}

Each processing service class provides a static method for obtaining all of its rules in this “SQL format”.
This method simply calls a method of the service configurator, passing the service identification, which returns
all rules for that service in decreasing order of priority. In the example below we show how we can generate
a specialized query for a rule. In this example we first obtain all the service rules in “SQL format” and then
generate a query that returns the first object that satisfies the condition of the third rule.

ServiceConfigurator.SQLRule[] SQLrules = ComputeDebt.getSQLRules();

ServiceConfigurator.SQLRule rule = SQLrules[2];
System.out.println("Rule : " + rule.getId() + " - " + rule.getName());
String sql = "SELECT TOP 1 AT_LATE_INTEREST_CALC.PROCESS_NBR " +

" FROM " + rule.getFrom() +
" WHERE " + rule.getWhere() +
" AND PROCESSED = false";

System.out.println(sql);

8

Tom Mens
13

Tom Mens
63

The output generated is the following:

Rule : 3 - Big Bank, judicial phases

SELECT TOP 1 AT_LATE_INTEREST_CALC.PROCESS_NBR
FROM AT_LATE_INTEREST_CALC
WHERE ((AT_LATE_INTEREST_CALC.INSTITUTION_CD = ’0916’)
AND ((AT_LATE_INTEREST_CALC.ACTUAL_PHASE_CD = ’0005’)
OR (AT_LATE_INTEREST_CALC.ACTUAL_PHASE_CD = ’0007’)))
AND PROCESSED = false

Similar queries are generated for each rule and each query is executed. In this way we obtain, for each
rule, one object satisfying its condition. This object is basically a representative of the equivalence class of all
objects that satisfy the given rule conditions. Now, step 1 of the run-time configuration (section 3) is executed
for each object. In other words, we execute the same call as if it were an application service, but passing one
of the already created objects as data. The steps then proceed as usual. This means that after step 7, we obtain
a service instance that has been configured according to the rule corresponding to the given object.

The generation of the SQL code for the batch version of a service proceeds as follows, for eachi from
1 to n (wheren is the number of rules for that service). First, generate the SQL query to select all objects
satisfying the condition of thei-th rule. This is done as shown above, but without theTOP 1qualifier. Second,
call a special method on thei-th service instance. This method will generate the SQL code that implements
the service, based on a template that is customized with the action parameters that have been set by the
configurator on the service.

In summary, the SQL code that will be executed in batch is made up ofn “modules”, one for each rule.
Each module first selects all objects to which the rule is applicable, and then executes the parameterized
SQL code that corresponds to the Java code for the interactive version of the service. The modules are run
sequentially, according to the prioritization of the rules.

This raises a problem. If some object satisfies the conditions of two or more rules, only the one with the
highest priority should be applied to that object. To preserve this semantics, each batch service uses an auxil-
iary table, initialized with all objects to be processed by the service; in the case of the debt calculation service,
it is theAT LATE INTEREST CALCtable. This table has a boolean column calledprocessed , initialized to
false. As each batch module executes, it marks each object it operates on as being processed. Hence, when
the next module starts, its query will only select objects that haven’t been processed yet. In this way, no two
rules will be applied to the same object.

The last, but not least, point to mention are coordination contracts. As said above, one service instance has
been created for each rule, and configured accordingly. This means that coordination contracts may have been
superposed on some service instances (step 6). Hence, the SQL code generated from those service instances
cannot be the same as for those that haven’t any coordination contracts. The problem is that services are
unaware of the existence of contracts. The result is that when the code generation method of a service object
is called (step 8), the service object has no way to know that it should generate slightly different code, to
take the contract’s behaviour into account. In fact, itmustnot know, because that would defeat the whole
purpose of coordination contracts: the different behaviours would be hard-wired into the service, restricting
the adaptability and flexibility needed for the evolution of the business rules. Since the Java code (for the
web-based part of the system) and the SQL code (for the batch part) should be in the same “location”, to
facilitate the maintenance of the system, the solution is of course for each contract to also generate the part
of the code corresponding to the new behaviour it imposes on the underlying service. For this to be possible,
the trick is to make the code generation method of the service also subject to coordination. In other words,
when a contract is applied to a service object, it will not only intercept the methods supplied by the service to
its clients, it will also intercept the code generation method (step 9) in order to adapt it to the new intended
behaviour.

9

Tom Mens
13

Tom Mens
64

5 Concluding Remarks

This paper reports on the first industrial application of coordination contracts, a mechanism we have developed
for non-intrusive dynamic coordination among components, where “dynamic” means that the coordination
may change during execution of the system.

One of the key requirements of the debt recovery system ordered to ATX Software was the flexibility
of adaptation to new client institutions and new financial products. This flexibility was achieved by two
means. The first is the definition of parameterised business rule types. The condition parameters can be
combined in arbitrary boolean expressions to provide expressivity, and priorities among rules of the same type
allow to distinguish between general vs. exceptional cases. The second means are coordination contracts to
encapsulate the behaviour that deviates from the default case. At run-time, from the actual data passed to
the invoked service, a configurator component retrieves the applicable rules (at most one of each rule type),
parameterises the service according to the rules, and creates the necessary contract instances. The contracts
will intercept some of the service’s functionalities and replace it by the new behaviour associated to the
corresponding business rule.

The architectural framework we designed can be used both for interactive as well as batch application
services. The difference lies in the fact that the batch application service has to get one representative data
object for each rule, and only then can it create one processing service for each such data. The application
service then asks each of the obtained configured services to generate the corresponding SQL code. Coordi-
nation contracts will also intercept these calls, in order to generate code that corresponds to the execution of
the contract in the interactive case.

This approach has proved to work well for the system at hand. On the one hand it guarantees that the
system will automatically (i.e., without programmer intervention) behave consistently with any change to the
business rules. On the other hand, it makes possible to incorporate some changes to existing rule types and
create new rule types with little effort, because coordination contracts can be added in an incremental way
without changing the client nor the service code. Furthermore, the code of the services remains simple in the
sense that it does not have to entangle all the possible parameter combinations and behaviour variations.

The main difficulty lies in the analysis and design of the services and the rules. From the requirements, we
have to analyse which rules make sense and define what their variability points (the parameters) are. As for
the services, their functionality has to be decomposed into many atomic methods because coordination rules
“hook” into existing methods of the contract’s participants. As such, having just a few, monolithic methods
would decrease the flexibility for future evolution of the system, and would require the coordination rule to
duplicate most of the method code except for a few changes.

The approach is also practical from the efficiency point of view. The overhead imposed by the configura-
tor’s operations (finding the rules, passing action parameter values, and creating coordination contract objects)
does not have a major impact into the overall execution time of the application and processing services. This
is both true for the interactive and batch parts of the system. In the former case, the user does not notice
any delay in the system’s reply, in the latter case, the time of generating the SQL procedures is negligible
compared to the time they will execute over the hundreds of thousands of records in the database. Moreover,
the execution time of the generated SQL code is comparable to the original batch code, that had all rules
hard-wired.

To sum up, even though we used coordination contracts in a narrow sense, namely only as dynamic and
transparent message filters on services, and not for coordination among different services, we are convinced
that they facilitate the evolution of a system that has to be adapted to changing business rules.

6 Acknowledgments

We thank the anonymous reviewers for their helpful comments.

10

Tom Mens
13

Tom Mens
65

References

[1] L. Andrade, J. L. Fiadeiro, J. Gouveia, and G. Koutsoukos. Separating computation, coordination and
configuration.Journal of Software Maintenance and Evolution: Research and Practice, 14(5):353–369,
2002.

[2] J. Gouveia, G. Koutsoukos, L. Andrade, and J. L. Fiadeiro. Tool support for coordination-based software
evolution. InProc. TOOLS 38, pages 184–196. IEEE Computer Society Press, 2001.

[3] J. Gouveia, G. Koutsoukos, M. Wermelinger, L. Andrade, and J. L. Fiadeiro. The coordination develop-
ment environment. InProc. of the 5th Intl. Conf. on Fundamental Approaches to Software Engineering,
volume 2306 ofLNCS, pages 323–326. Springer-Verlag, 2002.

[4] M. Wermelinger, G. Koutsoukos, J. Fiadeiro, L. Andrade, and J. Gouveia. Evolving and using coordinated
systems. InProc. of the 5th Intl. Workshop on Principles of Software Evolution, pages 43–46. ACM, 2002.

11

Tom Mens
13

Tom Mens
66

Toward a Taxonomy of Clones in Source Code: A Case Study

Cory Kapser and Michael W. Godfrey
Software Architecture Group (SWAG)

School of Computer Science, University of Waterloo�
cjkapser, migod � @uwaterloo.ca

Abstract

Code cloning — that is, the gratuitous duplication of
source code within a software system — is an endemic prob-
lem in large, industrial systems [9, 7]. While there has been
much research into techniques for clone detection and anal-
ysis, there has been relatively little empirical study on char-
acterizing how, where, and why clones occur in industrial
software systems. In this paper, we present a preliminary
categorization scheme for code clones, and we discuss how
we have applied this taxonomy in a case study performed on
the file system subsystem of the Linux operating system. Our
case study yielded several interesting results, including that
cloning is rampant both within particular file system imple-
mentations and across different ones, and that as many as
13% of the 4407 functions that are more than six lines long
were involved in a clone-pair relationship.

1 Introduction

Code duplication, or code cloning, is generally believed
to be common in large industrial systems [9, 17, 20, 18,
15, 2, 7]. Various problems are associated with code dupli-
cation, including increased code size and increased main-
tenance costs. While clone detection is an area of active
research, and several tools exist to facilitate code clone de-
tection, there has been relatively little empirical research on
the types of clones that are found, or where they are found.

A code clone pair is a pair of source code segments that
are structurally or syntactically similar. One of the seg-
ments is usually a copy of the other, perhaps with minor
changes. Code cloning occurs when developers create two
identical or similar code artifacts inside a software system.
For example, developers may copy and paste code. Several
methods exist for detecting code clones in software, such as
simple string matching [9], using statistical fingerprints of
code segments [12], function metrics matching [17, 20, 18],
parameterized string matching [2, 15], and program graph
comparison [7]. Problems related to clone cloning will be
discussed in Section 2.

In the following case study, we begin to profile the code
cloning activity within a large software system that is in
widespread use in industry, the Linux operating system ker-
nel. In doing so, we hope to gain more insight into how
and why developers duplicate code, in an effort to aid the
development of code clone detection techniques and code
clone elimination strategies. We categorize different types
of cloning activity using attributes such as location and size
based on manual inspection of code clones found in the sys-
tem. We then provide empirical analysis of these categories,
and validation on our results using two different clone de-
tection techniques. In this study we produce a taxonomy of
code cloning which will help others examine code cloning,
and we present a case study of a real software system.

The rest of the paper is structured as follows: in Section
2, we describe code cloning in more detail, as well as our
study subject. In Section 3, we describe the tools we used
and the methodology of our study. In Section 4, we de-
scribe the code clone categories we observed in the Linux
file-system. In Section 5, we describe the empirical results
we obtained. Section 6 describes related work, and Section
7 summarizes our work and indicate some future research.

2 Background

In this section, we provide background on code cloning
as a problem in large software systems. We give examples
of reasons why code cloning occurs, as well as several ex-
amples of problems caused by code cloning.

In addition, we give an overview of our candidate soft-
ware system for this case study, the Linux kernel file-system
subsystem. We will provide a brief description of the Linux
file-system subsystem, as well as give reasons for choosing
the file-system subsystem for our case study.

2.1 Code Cloning

Code cloning is considered a serious problem in indus-
trial software [9, 12, 13, 8, 1, 17, 20, 18, 2, 15, 7]. It is
suspected that 5 to 10% of many large systems is duplicated

Tom Mens
67

code [9, 3], and it has been documented to exist at rates of
over 50% in a particular COBOL system [9]. Code cloning
occurs for a variety of reasons[12, 20, 18, 15, 2, 7]: the short
term cost of forming the proper abstractions may outweigh
the cost of duplicating code; this occurs when the devel-
oper is aware of the existence of code that already performs
functionality similar to, or the same as, the functionality re-
quired. Developers may duplicate code because they are
under time constraints; these constraints may be imposed
by deadlines, or by LOC performance evaluation. Another
likely and reasonable circumstance where developers dupli-
cate code is they do not fully understand the problem, or the
solution, but they are aware of code that can do some or all
of the required functionality.

Several problems can develop as a result of code copy-
ing. The size of the source code, and ultimately the size
of the object code, may become significantly larger as a
result of excessive code cloning[2, 12]. Cloning code can
lead to unused, or “dead”, code in the system, which can
cause problems with code comprehensibility, readability,
and maintainability [12]. Duplication of code may also in-
troduce improperly initialized variables, which may lead to
unpredictable behavior of a system, especially if a two clone
segments share a common variable. Cloning may be an in-
dication of poor design [12]. Code duplication may indicate
design problems such as improper or missing inheritance, or
insufficient procedural abstraction[7]. Copying code may
also result in copying bugs within the code as well.These
effects contribute to “software aging” [12]; over time the
program becomes hard to change and possibly less reliable
and more inefficient.

2.2 Case Study Subject: Linux File System

Linux is a Unix-like operating system, written by Linus
Torvalds with assistance from a distributed team of pro-
grammers across the Internet. Linux aims towards POSIX
and Single UNIX Specification compliance. The version of
the Linux kernel we used for this study was 2.4.19, the most
recent stable version at the time of the writing.

We chose the Linux File System as the study subject
for our project because we hypothesized that many of the
supported file systems would contain clones among them
due to the similarity of their basic functionality. In ad-
dition, we know in advance that several components of
the file subsystem that were created with heavy influence
from existing file system types, namely ext2/ext3 and
autofs/autofs4.

The Linux file system subsystem is organized as a lay-
ered design, with the upper most layer being the Virtual File
System (VFS). The VFS provides a standard interface for
the operating system to use when interacting with various
file systems types. The underlying file system types, such

as ext2 and intermezzo, provide function pointers for
the VFS to use when interacting with the file system.

Because the various file systems must interact with, or
provide service to, the same upper layer, and are provid-
ing similar functionality, we expected to see at least some
cloning between file systems. After a preliminary inspec-
tion we expected to see a lot of cloning between ext2 and
ext3; jffs and jffs2; fat and msdos and umsdos
and vfat; autofs and autofs4. These systems were
either closely related in functionality or were known to have
evolved directly from the same code base.

The Linux file system subsystem consists of the
VFS infrastructure plus 42 file system implementations:
adfs, affs, autofs, autofs4, bfs, coda,
cramfs, devfs, devpts, efs, ext2, ext3,
fat, freevxfs, hfs, hpfs, inflate fs,
intermezzo, isofs, jbd, jffs, jffs2,
lockd, minix, msdos, ncpfs, nfs, nfsd,
nls, ntfs, openpromfs, partitions,
proc, qnx4, ramfs, reiserfs, romfs,
smbfs, sysv , udf, ufs, umsdos, vfat.
There are a total of 538 .c and .h files, and 279,118 lines
of code (including comments and blank lines).

3 Study Methods

In this section, we describe the two methods we used to
gather code clone information from the system. First, we
describe parameterized string matching, as implemented by
the tool CCFinder. Second, we describe our approach to
metrics-based clone detection, for which we used Under-
stand for C/C++ to obtain the raw metric information, as
well as a set of Python scripts that we created to perform
the clone analysis. Finally, we describe our methodology
for performing categorization and analysis.

3.1 Clone Detection

In this study we have primarily used the tool CCFinder,
developed by Toshihiro Kamiya et al [15]. The tool uses a
parameterized matching algorithm to search for code clones
within C/C++, Java, and COBOL files. This type of clone
detection is good at finding clones with name substitution
and line structure changes; the former can cause problems
for line by line matching algorithms. Baker introduced a
similar algorithm in [2].

The tool CCFinder begins by performing a lexical anal-
ysis of the source code, resulting in the creation of a list of
tokens as part of the syntax of the given programming lan-
guage. The tokens of all the files are concatenated into a
single string. As part of the code transformation, all white
space is removed from the string and comments as well.

Tom Mens
68

Next, several language specific transformation rules are ap-
plied. Then type, variable, and constant identifiers are re-
placed by a special identifier (such as $P).

Once the source code has been transformed into this ab-
stract token stream, an exact match algorithm is performed
to find maximal matching strings within the transformed
code. This is done by constructing a suffix tree and locating
matching substrings within the tree, as proposed by Baker
[2, 3]

After the exact matches have been found, parameter
matching is performed. That is, starting from the beginning
of a pair of exactly matched transformed strings, CCFinder
begins parameter matching of the parameters on each line.
As the parameters are matched, if a conflict is found but a
sufficiently large number of lines have been matched, the
clone is reported, and parameter matching begins again af-
ter the line creating the conflict.

Once the clone detection phase is complete, the detected
clones are mapped back onto their source files. Then, this
information is used as input in the GeminiE user interface,
where clone classes are generated and the results of the
clone detection are presented. These clone classes are gen-
erated based on the fact that the clone relation is an equiva-
lence relation [15, 14]. The clone relation exists when two
code segments match according to parametric matching. A
clone class is the equivalence class of the clone pair rela-
tion, i.e., it is the maximal set of clones for which the clone
relation holds [15].

The results of the clone detection process are presented
in several ways in a graphical user interface [22]. The in-
terface provides a scatter plot showing the user the matches
between files, highlighted source code, and clone class met-
rics. Users can browse the detected clones pair by pair or by
clone class. For a small number of files, the scatter plot can
provide useful information, but when a large number of files
is present with many lines, i.e., 200,000 or more, significant
clones become difficult to detect through visual inspection
of the scatter plot. For this study, we found that we made
the most use of the tool by browsing the clone pairs individ-
ually, and by browsing the clones classes.

Before using the clone pairs extracted by this tool, we
filtered out many of the clones we felt were meaningless, to
improve the accuracy and relevancy of our results. Mean-
ingless clones are segments or code that match but are not
necessarily cloned code, or clones that were of no impor-
tance if they are duplicated code. For example, the inner
block of structure definitions and lists of function declara-
tions would we often considered meaningless clones. These
clones were often unrelated and only appeared because of
the detection process in parameterized string matching. Af-
ter the initial extraction of clone pairs, we were presented
with 5000 clone pairs, and 1809 clone classes. We deleted

1996 clones in an effort to remove at least a significant num-
ber of meaningless clone pairs. This left us with 1604 clone
classes, a decrease of only 200 clone classes. We do not
claim to have removed all of the meaningless clones, but
we believe that we have removed a significant number of
them.

3.2 Metrics-Based Clone Detection

Metrics-based clone detection methods use groups of
metrics to generate “fingerprints” for each function in the
source code. These metrics are often gathered using both
the program source, as in the case of number of lines of
comments, and from an Abstract Syntax Tree, as in the case
of cyclomatic complexity. Metrics-based clone detection
was introduced by Mayrand et al. in [20] and Kontogian-
nis et al. in [18]. Further studies using function metrics as a
basis of clone detection include [4, 6, 5, 8, 1, 17, 21].

In our case study we used the following set of metrics:

1. Line counts: total number of lines, count lines blank,
count of lines of code, count lines of declarations,
count lines of executable code, count lines of com-
ment.

2. Count number of parameters, number of global vari-
ables used.

3. Count number of parameters or global variables modi-
fied.

4. Cyclomatic complexity.

5. Maximum level of nesting.

These metrics are different than those used in other stud-
ies such as [20, 18] but as stated in [1], in large systems the
choice of metrics does not significantly affect the results.
We have used a subset of those metrics used in previous
work [20, 18]. From this we would expect that our returned
pairs be less precise, and more false positives to be present,
but this is not the case. Upon visual inspection of several
hundred of the clone pairs, false matches were very rare,
confirming that the choice of metrics does not affect the re-
sults.

As in [1, 8] we searched for functions that had identi-
cal metric fingerprints. This corresponds to ExactCopy and
DistrinctName classes which were defined in [20]. As in
[1, 8], we did not use function name as a parameter.

To perform function matching based on metrics, we gath-
ered our metrics using the tool Understand for C/C++. We
then wrote a small program that performed the function
matching grouping functions together one metric at a time.
Function comparisons based on metric fingerprints can be
done in �������
	�� time where n is the number of functions
and m is the number of metrics.

Tom Mens
69

3.3 Classifying and Evaluating Clones

To classify the clone pairs, we used the results from the
clone detection using CCFinder. Because of the large vol-
ume of information presented to us, caused by the large
wealth of information given to CCFinder, it was difficult to
see any interesting trends that might occur amongst related
files. This is because the clones were distributed among
many files and many of the clone pairs appeared as blocks
of code and it was difficult to get a feel for the cloning ac-
tivity as a whole within the file system. To remedy this, we
researched the file systems included with the Linux kernel
to evaluate the relationships between them, and to pinpoint
places where cloning activity is likely to have occurred. We
also found some interesting relationships between several
file systems, which we did not expect, by graphically dis-
playing the amount of clone-pairs occurring between each
file-system.

After narrowing down where we would begin to look,
we manually viewed a large percentage of the clone pairs
found in that area of the system. As we saw trends, we
identified types of clones and began classifying many of the
clone pairs that fell into these various categories. Once we
had created many of the clone categories we have now, we
browsed clones within the entire file system to find if there
were clone categories we had not yet seen.

When we had a set of clone categories that we were sat-
isfied with, we wrote scripts to place the clone pairs into
the categories we had created. The criteria we based these
scripts on were as follows: for functions to be classed as
clones, 60% of their code must be common between the
two. Initialization clones must start within the first 5 lines
of a function and end within the first half of the code. Fi-
nalization clones must start in the last half of the function
and end in the last 5 lines. Blocks of code not in the same
function must not be in any of the above clone types. All
clone types are exclusive, so a clone pair that is part of a
cloned function relationship can not also be an initialization
clone.

After categorization, and for any other empirical results
we have presented, we performed manual inspection of a
large percentage of the clone pairs in the given experiment
to ensure that they were within the criteria that we specified
and that they were accurately found as clones.

3.4 A Basis for Comparison

As a way to compare the results given to us from the
two methods of clone detection, we manipulated the data
extracted from one to be close in form to the other. Because
full function matches were a smaller subset of CCFinder’s
returned clone pairs, we used only the function matches

found by CCFinder to compare to the function matches
found by metric based detection.

In doing so, we defined a criterion for which to decide
when a function was matched with another based on the
code segments matched between the two. For two functions
to match, more than 60% of their individual code must be
common between the two. This may be in the form of a sin-
gle segment of code duplicated between the two, or several
individual code segments.

Another issue to consider in comparing the two meth-
ods was the minimum size of code segments that could be
classed as a clone pair. We found that five lines often found
function matches that were too small for CCFinder to find,
because we had set CCFinder to find code segments of a
minimum size of 30 tokens. Several values of minimum
line numbers were tried, five, six, and seven and the results
of these are described in Section 5.3.

4 A Taxonomy of Clones

In the following subsections we present a taxonomy of
the types of clones we found during this case study using
the clone pairs from CCFinder; in the following section we
analyze our findings.

The categories of clones are described using the follow-
ing template: the first paragraph describes the structure of
the clone; the second paragraph describes problems caused
by this type of clone; the third paragraph describes reasons
why these clones may be introduced into the software; and
the fourth paragraph describes a possible solution to that
form of cloning activity.

4.1 Duplicated blocks within same function

Characterized as repeated blocks of code within the same
function, these blocks are of non-trivial size (such as 5 to
127 lines of code) and each copy expresses the same se-
mantic idea, generally with very few variables changed (of-
ten only one). We found that this type of clone occurs often
in the Linux file-system subsystem.

The major problem that this can cause is increased code
size; in particular it can cause functions to grow long and
unreadable. In addition, this type of cloning may lead to un-
intended diverging evolution of the code blocks if a devel-
oper changes one block, and not another. A bad initializa-
tion or ’value changed’ type of error can very easily happen
in this type of code, because it is likely variables are shared,
intentionally or unintentionally, by the individual blocks.

Situations where this typically occurred was in control
structures such as switch and if/else statements. The
cause of this may be that some developers do not antici-
pate a condition that may require a similar block, so they

Tom Mens
70

do not think to make the block a function from the start.
Also, making the function that encapsulates the functional-
ity of this clone block may appear to be too much work, be-
cause of the number of local variables involved in the code
block. Another reason may be time: it is very fast to just
copy and paste the block just a few lines down, and the de-
veloper “knows” the code works, so it is a quick and dirty
solution. Performance may also be an issue, if many local
variables are required to be passed, stack creation and de-
struction may be time consuming.

A solution to this problem, as with many code clones,
would be to create a new function or macro to represent the
block, and call the function where these clones occur. Pa-
rameters to the function would be the few changed variables
that occur in the code block. One would expect this change
to be simple and straightforward to implement.

4.2 Similar functions, same file

This type of clone occurs when a programmer has two
functions performing very similar tasks, with minor vari-
ations. These types of clones are often characterized by
changing only a few function calls, variable initializations,
constants, or other minor things. We consider any functions
which both match 60% of their code to be cloned functions.

Consequences of this type of clone are increased code
size. Also fixing bugs may be harder because same error
may be spread across several functions, as well as the func-
tions may evolve on separate paths as various maintainers
update them.

Developers are likely to do this when the effort required
to parameterize the code block and create a more general
function appears to be too great when compared to sim-
ply copying the code. Also cloning the function may ac-
tually make the program conceptually simpler, because the
function names can be specific and meaningful. This type
of cloning we do not consider extremely harmful because
clones are not physically far apart, but it is recommended
that such cloning activity should be documented as it may
not be apparent to future maintainers which functions are
clones of each other.

Solutions for this can be very simple, or quite complex.
Possible solutions would be to introduce function pointers
to the parameter list, adding more parameters for initializa-
tion, etc.

4.3 Functions cloned between files within the
same directory

This type of clone occurs when the same functionality is
required among multiple files. The majority of code dupli-
cation that occurs within a directory (excluding duplication
with the same file) is related to duplicated functions, more

than 80% of clone pairs that occurred within the same di-
rectory (but not in the same file) were related to the dupli-
cation of functions. It often occurs with no changes at all
to the cloned segment of code, or minor changes such as
the function name and some variable or function calls. At
times, several constants may be changed, global variables
accessed and in these cases a solution is harder to find.

Consequences of this type of clone are code size in-
crease, and increased difficulty in error finding and cor-
recting. The copied code segments are no longer localized
in the same file and easily identified, but may be scattered
across as many as four or five files. At times, this type of
code duplication may contribute to source code that is eas-
ier to read. Functions will be easier to understand because
they will not include extra logic and flows of control which
would be required to restructure a function to encompass
the more general functionality required of it to eliminate
duplicates. This case is less frequent however, and quite of-
ten the use of function pointers or some minor conditional
operations would create a function which may perform the
desired task.

A simple solution to this is to create a common file to use
as a library, and migrate the function definitions and proto-
types of the cloned functions to this file. This will work best
in the case of exact copies, or clones with minor changes.

4.4 Functions cloned across directories

This type of clone may occur when the same function-
ality is common among several different components in the
software. As with functions cloned within a subsystem, it
may entail no changes at all to the cloned segment, or mi-
nor changes such as the function name and some variable or
function calls. We often saw this type of clone for generic
kinds of tasks such as parsing options or outputting errors.

Consequences of this type of clone are code size in-
crease, and may increase labor for error fixing. Also, it may
be the case that one developer created one component, and
is unaware of the clones existing in the rest of the system.
In this case, when an error is found, repairs may not even
have a chance to be propagated to the rest of the clones.

This type of cloning may occur when a new subsystem is
being created, and the design and implementation is based
on previous work of another subsystem.

Creating a set of library function may be the easiest solu-
tion, but if the function is cloned only between several files,
the effort put into creating a new library, and maintaining it,
to be shared by all components may be more work than it is
worth.

Tom Mens
71

4.5 Cloned files (possibly with some changes)

This type of clone occurs when a new problem arises
with requirements that are very similar to those of an exist-
ing software system, and the source code is readily avail-
able. For example, when new file system is introduced to
the system, it may be possible to copy another’s file, and
make only minor changes. We saw a very good example
of this when we compared ext2 and ext3, in particular
buffer.c in both systems. This is a very rare occurrence
from what we have seen in the file-system subsystem, but
in other systems such as this SCSI subsystem this type of
cloning activity seems to be much more frequent [10].

Consequences of this type of cloning can be much more
severe than function cloning, because the clone has now in-
troduced a large number of lines of code that are common
between the two files, and must be changed together, es-
pecially when bug fixing. Because it is likely that there
will be some alterations to some of the code, it may not
be clear where or how to change the cloned file when re-
flecting changes that have been made to the original code.
Also, this is one of the worst-case scenarios for code size
increase. In addition, it is possible that side effects (such
as inefficient device usage and settings) can occur if the de-
veloper does not fully understand the code that he/she has
copied. This may lead to inefficiencies in the code and in-
stability. This type of cloning will occur when speed of
development may be a factor, or a developer may not com-
pletely understand the problem at hand. We have also seen
this when drivers are made for related hardware, although
not part of this study.

Solutions to this problem may not be as simple as other
cloning types. Because the two files are used on different
products or include different features, they may need evolve
separately from this point on. As well, changes that have
been made to the duplicated code may make it difficult to
re factor both subsystems completely just to remove to code
duplicates. That said, a workable solution may be to try to
take the common invariant code and place it into a common
library file which both subsystems could use. This solution
may lead to a slightly more complex architecture.

4.6 Blocks across files

This type of cloning is similar to the first one but it occurs
in different files within the same directories or across file
systems. Often, in the case of cloning blocks across direc-
tories, we see that the cloned block is in fact the remains of
what appears to be a cloned function. The function is often
changed to suit the developers own personal style and also
to meet the specific needs of his/her own project. Based on
our observations, we would argue that most clones that oc-
cur across files start out as whole function clones and then

are manipulated to fit the current project goals until what
remains are scattered blocks of code which can still be cap-
tured as code duplicates.

The main problem with this kind of clone is when the
developer wants to modify or change these blocks of code
or when they find bugs, it will be very difficult to fix and
change these blocks everywhere else, and it is possible
that the developer may be completely unaware of the other
clones. If any logic on which this block depends changes,
then all the blocks may be harmed, and it may be difficult
to find all the blocks affected.

The solution for this problem is relative to the size and
number of clones that occurs across files. In certain contexts
it might be proper to leave the clones as it is, such as in the
case of if or case statement, sometimes making function
calls may break the understanding of the logic of the code.
In other cases a common library should be made.

4.7 Initialization and finalization clones

This type of clone occurs within the same file or across
file systems when initializing data parameters or cleaning
up at end of function; we have found that the main portion of
the function can perform quite different tasks. This usually
occurs when using the same data types or when performing
the same tasks such as memory allocation and de-allocation
or variable initialization. Finalization clones often encom-
pass exit conditions and logging.

Problems with this type of clone are much less severe
than other clone types, and in many cases are unavoidable.
Certainly increased code size may be an issue, but other
problems related to code duplication do not seem as large
of a concern.

Solutions to this sort of problem may be the use of
macros or functions, but this seems too complex for some-
thing that is of such little issue.

5 Case Study Results

In this section, we discuss cloning activity in terms of
clone pairs, not numbers of lines cloned. We consider that
discussion about the number of lines that have been cloned
can be misleading and confusing. In the case of clones
within the same file, many clone pairs may overlap each
other, in contrast to clone pairs outside of the directory,
which in many cases do not intersect. The latter will seem-
ingly have a larger number of cloned lines than the former,
but in fact the degree of the cloning activity might actually
be higher in the former.

In regards to the total number of lines cloned, allowing
for lines to be counted more than once did not prove to be

Tom Mens
72

any more beneficial than discussing clone pairs, so we chose
the former for simplicity.

The Linux file system contains 42 different file-system
implementations in C. There are 538 .c and .h files, with
a total of 279,118 lines of code. We detected 3116 clone-
pairs after filtering, giving us 33,707 unique lines, or 12% of
the source code, that were involved in code cloning activity.
The average length of the clone pairs is 13.5 lines, with a
median of 12 lines, an upper quartile of 15 lines and lower
of 8 lines. The minimum length is 1 line and the maximum
is 123 lines.

5.1 Families of Systems Based on Duplication

As illustrated in Figure 2, several families of file–
systems, or groups where code is similar, become appar-
ent. The most notable is the shared code between ext2
and ext3. Here we see 85 clones common between the
two file systems. After investigating the code, the reasons
are very obvious. Ext3 is based on ext2, and it appears
the development of ext3 started by copying all of ext2
into a new folder.

Two unexpected results appeared when viewing this
chart. The intermezzo file-system seems to be highly
related to the main file-system code. By inspecting the
code, we see that much of what was cloned involved get-
ting and setting the path, and various navigation codes.
The intermezzo was inspired by coda, although re–
engineered and restructured, and we see some significant
evidence of this by 11 clones appearing between the two.
We also see that the JFFS file-system has cloned much
from the inflate fs. Here we see that most of the clones
in this case are grouped into one file, although they are taken
from many files within inflate fs.

5.2 Frequency of Clone Types

As can be seen in by Figure 1, the major cloning trend is
to duplicate code from within the same subsystem. 78%
of code duplication occurs from within the same direc-
tory. Some notable exceptions to this trend are ext2/ext3
and AUTOFS/AUTOFS4. In these cases, ext3 was cre-
ated based on ext2, and AUTOFS4 was created based on
AUTOFS.

This result is significant. It suggests that problems asso-
ciated with code duplication such as copying bugs in most
cases will be restricted to within a single subsystem. This
also gives developers good reason to focus their efforts on
eliminating code duplication within subsystems first before
doing system wide repair.

Reasons for this are probably the most obvious ones. The
developer is most familiar with his/her own code, so is most
likely to use code from within their own system. As well,

because it is within the same system, it is more likely that
relevant and similar code exists in this system.

Table 1 shows the number of clones that occur in the
same file, in the same directory but not in the same file, and
in different directories. From this table, we can see that the
average size of a clone pair (the number of lines of code) is
nearly the same, but the number of clones that occur in the
same file is more than double the number of clones in the
same directory but different files, or in different directories.
We saw this again when analyzing the cloning activity on
the 3D bar charts as described above.

Table 2 summarizes the frequency of the various types
of clones. In this table, one should note that when we say
that a function has been cloned, we mean that more than
60% of the code between two functions has been cloned.
The number of duplicated functions in this table refers to
the number of duplicated function pairs, or in other words
pairs of functions that are in a clone relationship. In this
table, count refers the number of occurrences of that type of
clone, for example in the table we see 589 blocks of code
were cloned in the same function, and 244 functions were
cloned in the same file.

From Table 2, we see that over 30% of the clone pairs
that occur within the same file are blocks of code duplicated
within the same function. We also see that 244 function
pairs occur within the same file. This number can be decom-
posed somewhat. From these pairs, there are 293 unique
functions that take part in a code clone relationship. 341
clone pairs combined form this group of clones, of which
173 clone pairs encompass more that 60% of the functions
which have been cloned.

Within the same directory, we see that there are 653 func-
tion pairs that are in a clone relationship. 658 clone pairs
contribute to this, making more than 80% of the clone pairs
occurring in the same directory but not in the same file part
of a function clone relationship. 166 unique functions were
cloned, meaning that many of these function pairs are part
of larger clone classes.

Outside of a directory, there are 129 function pairs,
with 156 unique functions. 175 pairs contribute to these
full function matches. From this result, we see that func-
tion cloning decreases significantly, even though the actual
amount of cloning activity does not drop so dramatically.
We also see that functions are less likely to appear in clone
classes when cloned across directories.

In Table 3 we see that the metrics–based clone detection
validates our results that are based on parameterized string
matching. Regardless of the constraint of minimum lines of
functions, in all three cases, cloning of functions was most
often found within the directory but not the same file, fol-
lowed distantly by cloning of functions in the same file, and
then cloning functions from outside the directory, just as

Tom Mens
73

Figure 1: Number of Clone Pairs Between File Systems

Figure 2: Number of Clone Pairs Between File Systems (excluding themselves)

Tom Mens
74

Clones in Same File Clones in Same Directory Clones in Different Directories
of clone pairs 1628 806 682
Average LOC 12.7 14.5 14.3

Max LOC 63 71 123
Min LOC 2 4 1

Table 1: Profiles of cloning locality — All clones

Type Count Average Length
Same File

Blocks in Same Function 589 13
Duplicated Functions 244 26
Initialization Clones 28 14
Finalization Clones 82 13
Cloned Blocks 588 13

Same Directory
Duplicated Functions 658 16
Initialization Clones 2 14
Finalization Clones 11 10
Cloned Blocks 135 14

Different Directories
Duplicated Functions 129 27
Initialization Clones 6 12
Finalization Clones 45 11
Cloned Blocks 456 14

Table 2: Frequency of various clone categories — Parametric String Match

what can be seen in the previous section. It is interesting
to note how quickly the number of functions drops off as
the minimum number of lines of a function is increased. A
large portion of the functions that we lose are false matches,
although some are not.

Initialization clones and finalization clones were not as
frequent as were first expected they might be. The clones
we did find, however were significant. We expect to find
more of these clones in other parts of the Linux kernel, in
particular driver source code. A surprising result is that ini-
tialization clones appear to occur much less often than fi-
nalization clones. After inspection of code block clones, we
see that when code for initializing a function is copied, of-
ten local variables are added to the cloned list or removed
from it. This makes it difficult to classify many of the ini-
tialization clones automatically. Therefore, we take the fre-
quency of initialization clones as an underestimate. Better
approaches to automatically find this class of clone need to
be investigated further.

Cloned blocks of cloned code are difficult to character-
ize completely, as there are many circumstances leading to
the cloning of these blocks. However, we have found that

locality does correlate somewhat to the structure and rea-
sons of this type of clone. In the cases of clones in the same
file and same directory, these clones are often the product
of copying blocks contained within a control structure, such
as if/else statements. In some cases however, they are
what remains of what was once a initialization clone or a
finalization clone.

When we inspect clone blocks across directories, it is of-
ten the case that the blocks are the remains of copied func-
tions, changed enough that the functions no longer can be
classed as cloned functions technically, but by manual in-
spection these functions are still clearly in a form of clone
relation. These blocks raise interesting questions about the
evolution of clones.

In many cases, clone blocks represent function pairs
where 60% or more of one function has been copied to an-
other, and additional states have been added. These function
pairs, which we call partial-match function pairs, represent
an interesting form of code cloning. It would be difficult for
this form of function cloning to be detected by metrics based
clone detection algorithms, but they are certainly function
clones. In many cases, one function is entirely copied, and a

Tom Mens
75

Metric Match String Match
Minimum Function Length (LOC) 5 6 7 N/A

Same File 141 110 108 244
Same Directory 1157 1152 619 658

Different Directory 116 80 38 129

Table 3: Number of function clones found in metrics based clone detection and parameterized string match

significant number of statements have been appended to the
end. In total, these partial function matches accounted for
72 same file clone blocks, 22 same directory clone blocks,
and 109 different directory blocks.

This case study shows that the taxonomy is not complete.
The presence of so many cloned blocks may be an indica-
tion that more categories of clones exist, and further inves-
tigation must be done.

5.3 Metrics vs. Parametric String Matching

In Table 4, we see the summary of results in compar-
ing the function pairs found by the metrics method to those
found by the parametric method. The first row presents
the number of function clones found in both the metrics
based clone detection and the string matching algorithm at
the same time. Then second and third row show the num-
ber of function clones found by each detection method ex-
clusively. In all cases, we see that between 708 and 716
function pairs were found by both methods. These function
pairs are in most cases very clearly clones of one another.
Also, in all cases, between 353 and 361 function pairs were
only found by the parameterized string based approach. In
these cases, the functions tend to be longer than average,
their average length being 30 lines of code. Often, lines
have been added and removed, or fan in or fan out metrics
have changed. This shows us that using exact match criteria
may not always be sufficient in searching for function pair
clones.

In the cases of functions pairs found only by metrics
we see two things. First, functions of sizes five LOC and
six LOC are often too small to be detected when using a
minimum criteria of 30 tokens in the parameterized string
approach. Secondly, small functions of sizes five, six and
seven LOC are often hard for parameterized string matching
to detect clones in when there are enough tokens present.
This is because if one token violates the parametric match,
then there is little chance that enough tokens were already
matched to make a clone that is large enough to report, and
there is also little chance of enough tokens remaining in the
function to find another clone. Often a function call that
takes a different number of parameters or changed mathe-
matical operators can cause the parameterized string match-

ing to miss matches in small functions.
In general, we found when using our metrics-based

clone detection tool, it was better at finding small function
matches than CCFinder, but CCFinder was better at find-
ing large function matches. When using CCFinder with
the Gemini GUI, we found that it was difficult to grasp the
total cloning activity in the system, but when clone pairs
were grouped by the taxonomy we have presented, inter-
esting cloning activity becomes more evident. We found
that metrics-based clone detection finds very close matches,
but CCFinder is able find function matches which exhibit
more change. As a preliminary result, we found that pa-
rameterized string matching presented more interesting and
useful clones to use than using ExactMatch metric-based
clone detection. Future work will investigate the compari-
son of these two approaches but allowing more flexibility in
the metrics-based matching.

6 Related Work

There are several types of clone detection techniques that
have been developed. Metrics-based clone detection tools
which detect clones of full blocks of code such as functions
based on various metrics extracted from them have been de-
veloped by Mayrand et al. [20] and Kontogiannis et al. [18].
Parameterized string matching is discussed by Baker et al.
[2, 3] and Kamiya et al. [15]. Baxter et al. [7] have devel-
oped a clone detection tool by performing subtree matching
on abstract syntax trees. Program dependence graphs have
been used by Krinke et al. [19] and Komondoor et al. [16]
in detecting duplicated code. Johnson [13, 12] proposed us-
ing a fingerprinting algorithm on substrings of the source
code. Kontogiannis et al. define two other methods to de-
tect clones in [18]:dynamic pattern matching which finds
the best alignment between two code fragments, and statis-
tical matching between abstract code descriptions patterns
and source code. Balazinska et al. [4, 6, 5] uses metrics
based clone detection to quickly find candidate clones and
uses an algorithm based on Kontaogiannis et al.’s dynamic
pattern matching algorithm.

Clone detection case studies on the Linux kernel have
been reported in [10, 8, 1]. In [8], Casazza et al. use met-

Tom Mens
76

Minimum Number of Lines 5 6 7
Function pairs found by both 716 716 708

Found in Parametric Only 353 353 361
Found in Metrics Only 698 626 57

Table 4: Comparison of # of function clones found by the two clone detection algorithms

rics based clone detection to detect cloned functions within
the Linux kernel. They performed analysis across the ma-
jor subsystems, and then on the architecture dependent code
of the memory management subsystem and the kernel core.
To evaluate the degree to which cloning occurs, they define
a common ratio between two files, which is the percentage
of functions in one file which are cloned in another with re-
spect to the number of functions in the first. As noted in
[1], this common ratio must be used with great care and ab-
solute values need to used as well. The conclusions of this
study were that in general the addition of similar subsystems
was done through code reuse rather than code cloning, and
more recently introduced subsystems tended to have more
cloning activity. Antoniol et al. [1] did a similar study, eval-
uating the evolution of code cloning in the Linux. They too
used function metrics clone detection as their technique and
their conclusions were the same, adding that the structure
of the Linux kernel did not appear to be degrading due to
code cloning activity. In [11] a preliminary investigation of
cloning among Linux SCSI drivers was performed.

Kamiya et al. [15] performed tests on JDK to search for
clones within the system, and they studied the cloning be-
havior between Linux, FreeBSD, and NetBSD. While [15]
observes that clones in JDK seem to occur in near direc-
tories or files based on visual inspection of the scatter plot
their tool presents, no quantitative data analysis is discussed
concerning this point. None of the above studies have dis-
cussed the types of clones they have found, or discussed the
locality of code cloning in detail other than comparing the
level of cloning amongst subsystems.

A work similar to this also tries to categorize clones for
the purpose of software maintenance. In [4], Balazinska et
al. create a schema for classifying various cloned methods
based on the differences between the two functions which
are cloned. The results produced in [4] are used by Balazin-
ska et al. in [6, 5] to produce software aided re engineering
systems for code clone elimination. This differs from our
work in that our classification scheme is based on locality
as well as clone type, and copied functions are only one type
in our case, although in [4] they break this down into 18 cat-
egories. One of our main research goals is to determine how
much developers clone and from where. This question is not
answered by the clone classification scheme in [4]. In addi-
tion, this work ignores code clones which are not function

clones.

7 Summary and Conclusions

This preliminary study began as in-depth evaluation of
cloning in a large software system. In this study we
found that the Linux file-system subsystem has a significant
amount of code duplication within it, the majority being
localized within each individual file-system type, or sub-
subsystem, similar to the activity in JDK noted in [15]. We
also defined a preliminary taxonomy by which non-function
and function clones can be categorized. This will be used
in future research when characterizing cloning in all of the
Linux kernel.

Our first goal, to begin to produce a finely grained anal-
ysis of code cloning in a large scale software system has
begun, and future work will attempt to characterize more
subsystems, in particular the driver subsystem where source
code and functionality is vastly different from the Linux
file-system subsystem. This work will provide support for
generalizing these results, as well as more insight into the
growth of the Linux kernel as documented in [11].

During our study, we found that 3D visualization pro-
vides much convenient information. From the 3D bar charts
we were able to see very quickly related groups of sub-
systems, and also which subsystems were trouble spots for
cloning activity. Further investigation on the scalability of
the graph is needed, but at the current time we would sug-
gest that including the ability to visualize clone detection
results in such a way may be a very useful addition to main-
tenance environments involving clone detection.

8 Future Work

Research on this topic is ongoing. We intend to continue
this study, to fully characterize the Linux kernel in terms of
code clone activity. We will also investigate how other sub-
systems compare to these results. From preliminary testing,
many may be quite similar.

We will also evaluate our taxonomy throughout the
course of this study.

Tom Mens
77

Additionally, we will study how code clones evolve over
time, in particular, we would like to test the hypothesis that
many code block clones start out as function clones, and as
time goes on, the functions evolve away from one another.
We will also investigate the possibility of using previous
releases for detecting clones in current releases.

Acknowledgments

We would like to thank Dr. Ettore Merlo for his on going
help and advice.

References

[1] G. Antoniol, U. Villano, E. Merlo, , and M. Di Penta. Ana-
lyzing cloning evolution in the linux kernel. In Information
and Software Technology 44(13), 2002.

[2] B.S. Baker. A program for identifying duplicated code.
In Proceedings of Computing Science and Statistics: 24th
Symp. Interface, pages 49–57, 1992.

[3] B.S. Baker. On finding duplication and near-duplication in
large software system, 1995.

[4] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and
K. Kontogiannis. Measuring clone based reengineering op-
portunities. In Proceedings of the Sixth International Soft-
ware Metrics Symposium, pages 292–303, 1999.

[5] Magdalena Balazinska, Ettore Merlo, Michel Dagenais,
Bruno Lague, and Kostas Kontogiannis. Partial redesign of
java software systems based on clone analysis. In The Pro-
ceedings of the 6th. Working Conference on Reverse Engi-
neering, pages 326–336, 1999.

[6] Magdalena Balazinska, Ettore Merlo, Michel Dagenais,
Bruno Lague, and Kostas Kontogiannis. Advanced clone
analysis to support object-oriented system refactoring. In
Proceedings of the 7th. Working Conference on Reverse En-
gineering, pages 98–107, 2000.

[7] Ira D. Baxter, Andrew Yahin, Leonardo M. De Moura,
Marcelo Sant’Anna, and Lorraine Bier. Clone detection us-
ing abstract syntax trees. In ICSM, pages 368–377, 1998.

[8] G. Casazza, G. Antoniol, U. Villano, E. Merlo, and M. Di
Penta. Identifying clones in the linux kernel. In First IEEE
International Workshop on Source Code Analysis and Ma-
nipulation, pages 92–100. IEEE Computer Society Press,
2001.

[9] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer.
A language independent approach for detecting duplicated
code. In Hongji Yang and Lee White, editors, Proceed-
ings ICSM’99 (International Conference on Software Main-
tenance), pages 109–118. IEEE, 1999.

[10] Michael W. Godfrey, Davor Svetinovic, and Qiang Tu.
Evolution, growth, and cloning in Linux: A case study.
A presentation at the 2000 CASCON workshop on

’Detecting duplicated and near duplicated structures in
largs software systems: Methods and applications’, on
November 16, 2000, chaired by Ettore Merlo; available
at http://plg.uwaterloo.ca/˜migod/ papers
/cascon00-linuxcloning.pdf.

[11] Michael W. Godfrey and Qiang Tu. Evolution in open source
software: A case study. In Proceedings of the 2000 Interna-
tional Conference on Software Maintenance, 2000.

[12] J. H. Johnson. Substring matching for clone detection and
change tracking. In Proceedings of the International Confer-
ence on Software Maintanence, pages 120–126, 1994.

[13] J.H. Johnson. Identifying redundancy in source code using
fingerprints. In Proceedings of CASCON 93, pages 171–183,
1993.

[14] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. A
token-based code clone detection tool - ccfinder and its em-
pirical evaluation. Technical report, 2000.

[15] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue.
Ccfinder: A multilinguistic token-based code clone detec-
tion system for large scale source code. In Transactions on
Software Engineering 8(7), pages 654–670. IEEE Computer
Society Press, 2002.

[16] Raghavan Komondoor and Susan Horwitz. Using slicing to
identify duplication in source code. Lecture Notes in Com-
puter Science, 2126:40–??, 2001.

[17] K Kontogiannis. Evaluation experiments on the detection of
programming patterns using software metrics. In Proceed-
ings of Working Conference on Reverse Engineering, pages
44–55. IEEE Computer Society Press, 1997.

[18] K. Kontogiannis, R. De Mori, R. Bernstein, M. Galler, and
E. Merlo. Pattern matching for clone and concept detection,
1996.

[19] Jens Krinke. Identifying similar code with program depen-
dence graphs. In Proc. Eigth Working Conference on Reverse
Engineering, pages 301–309, 2001.

[20] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the au-
tomatic detection of function clones in a software system us-
ing metrics. In Proceedings of the International Conference
on Software Maintenance, pages 244–253. IEEE Computer
Society Press, 1996.

[21] Qiang Tu and Michael Godfrey. An integrated approach for
studying software architectural evolution. In Proceedings
of 2002 International Workshop on Program Comprehension
(IWPC-02), 2002.

[22] Yasushi Ueda, Toshihiro Kamiya, Shinji Kusumoto, and Kat-
suro Inoue. Gemini: Maintenance support environment
based on code clone analysis. In Proceedings of the Eighth
IEEE Symposium on Software Metrics, pages 67–76. IEEE
Computer Society Press, 2002.

Tom Mens
78

Using software trails to rebuild the evolution of
software

Daniel German
Department of Computer Science

University of Victoria
dmgerman@uvic.ca

Abstract

This paper describes a method to recover the evolution of a software sys-
tem using its software trails: information left behind by the contributors to
the development process of the product, such as mailing lists, Web sites,
version control logs, software releases, documentation, and the source code.
This paper demonstrates the use of this method by recoveringthe evolution of
Ximian Evolution, a mail client for Unix. By extracting useful facts stored
in these software trails, and correlating them, it was possible to provide a
detailed view of the history of this project.

1 Introduction

Investigating and recovering the evolution of a software project requires a combi-
nation of skills: it is necessary to understand the software product, its features, its
components and how these have evolved; it is necessary to find, recover, and cata-
log valuable facts about the history of the project; it is also required to look at the
developing team, in order to better understand the softwareprocess they have used,
their interrelations and communication, their decision taking and their skills; it also
required to start piecing together all this information, proposing potential hypoth-
esis that are then proved or disproved. One can equate the work of a “software
evolutionist” to the morphing of a software architect, a historian, an ethnologist, an
anthropologist, a paleontologist, and a private investigator.

In rare cases, the evolution of a software product is recorded by an insider. This
software evolutionist has access, presumably, to all the personnel and available
information, and has the potential to accurately record its history as it unfolds.
Unfortunately few software projects have this type of resident historian, and it
is usually an outsider who has to the work. This external software evolutionist
could track the project for some time, looking from the outside at how the project
continually evolves. Sometimes her work is done post-mortem, looking at the
remnants of the project, like an anthropologist looking for clues of how an ancient
civilization functioned.

An outsider evolutionist depends on the available information of a project to
tell its history. This paper defines “software trails” as pieces of information left
behind by the contributors of a software project. Examples of software trails are

1

Tom Mens
13

Tom Mens
79

configuration management systems logs, email messages, documentation, record-
ings of conversations, product releases, and of course, the source code and other
required files themselves.

Software trails have the potential of keeping a “community” memory of the
software development. Linus Torvalds, for example, has repeatedly said that he
would not have a telephone conversation to discuss the development of the Linux
kernel, because he wants every decision to be recorded for posterity. The open
source community recognizes that, given the volatility of core developers and an
unforeseen future, keeping this information can provide important facts critical for
the long term survival of a project, taking it from one set of developers to the next
one and from one maintainer to another. Arguably, the best open source success
stories tend to keep very detailed software trails. These trails can be used for
two purposes: to educate future developers on the characteristics of the product,
and to assist in recovering the history and evolution of the product. Closed source
software projects are also interested in keeping this memory, as they know that their
developing teams evolve with time and they cannot be dependent on one person
maintaining this information in her head.

From the point of view of the software evolutionist, the software trails left
behind by a project are a gold mine, ready to be exploited. This comes at a cost:
the amount of information available can be overwhelming. It is necessary to assist
the software evolutionist in the process of recovering, cataloging and correlating
the information available, in order to help her look at the “big picture”, but at the
same time, provide enough detail about a particular event inthe history of a project.

2 Recovering the evolution of a project from its software
trails

This paper proposes a method of recovering the evolution of a software system by
analyzing the software trails left behind during its development. For example, how
the version control management system logs, messages in its electronic mailing
lists and the defect control system logs can be correlated to retrieve important de-
cisions and events, and to trace how the software has evolved since its conception.
This method is composed of four steps:

1. Define Schema: Create a schema that represents the information available in
the software trails, including any relationships between them. For example,
that a developer has a list of different email addresses used to post to the
mailing lists; that a particular defect was fixed by a given developer with a
given set of software changes; that a software change includes a delta of the
change, and a version number; etc.

2. Gather Software Trails: Retrieve the available software trails and map them
into this schema. Often the logs of these trails are not easy to parse nor
translate. In some cases heuristics need to be developed and applied.

3. Extend Information: The available software trails can be extended by fur-
ther analysis, enhancing them by extracting new facts or creating new rela-
tions as it is found appropriate. For example, many open source developers

2

Tom Mens
13

Tom Mens
80

do not use configuration management software, and the developer usually
states informally (in the version control log) that a given set of changes cor-
responds to a defect fix; the version control log has to be parsed in order to
find something that “might look” like its corresponding defect number.

4. Analyze: The final step is to look through this data and try to find interesting
events in its development that can tell the history of the project. This is a
difficult problem. As the software evolves and grows bigger, its available
information grows at the same time, making it difficult for the evolutionist
to find the “more” relevant information that tells an interesting fact about the
history of the project.

Given the informal nature of some of this trails (and the fact that it is a re-
verse engineering process, where the evolutionist has no certainty on what were
the actual events, and she is just merely trying to reconstruct them from the trails
available) the experience and insight of the evolutionist and amount of time that she
invests in the analysis of the information available will have an important impact
in the quality of the results.

In order to demonstrate the above methodology, this paper uses the software
trails of Ximian Evolution to recover its evolution. Evolution is a mail client
(similar in scope to Microsoft Outlook) that is starting to gain popularity in the
Unix world (Ximian was bought by Novell in August, 2003). Evolution developers
have left software trails in mailing lists, Web sites, its CVS repository logs (CVS
is one the most widely used version control systems), documentation, inside and
outside the code, and Bugzilla, its bug tracking system.

3 Methodology

The following software trails were used in the recovery of the evolution of Evolu-
tion:

• Version source code releases. As of May, 2003 there have been 37 different
releases. These come in the form of tar files that contain all the necessary
files to build and run the product. They are made available forthe people who
are interested in recompiling the product to suit their particular installation.
Five of these releases are considered major (0.0, 1.0, 1.1.1, 1.2.0, and 1.3.1).
Evolution has adopted a numbering scheme similar to the Linux kernel, us-
ing odd numbers in the second component of a release label (such as 1, or 3
in 1.1.1 and 1.3.1 respectively) to denote “unstable” releases that are consid-
ered to be riskier (buggier) than the stable ones (like 1.0 and 1.2.0). Source
code releases can be seen as a coarse grain view of the evolution of a project.
A collection of scripts and tools such as “exuberant ctags” and “stripcmt”
were used for fact extraction (similar to the fact extraction in [GT00]).

• CVS logs. CVS keeps track of who modifies which file, and the correspond-
ing delta associated with the modification. This change is known as a “file
revision”. CVS keeps information such as who made the revision, when the
actual diff of the revision, number of lines added, and number of lines re-
moved. softChange [GM03] was used to recover the information from these

3

Tom Mens
13

Tom Mens
81

logs and to enhance it. For instance, CVS does not keep track of which files
are modified at the same time. softChange analyses the logs, and rebuilds
these groups of files, which are then called Modification Requests (MRs). A
modification request is a request by a contributor to commit a group of files
at the same time. The belief is that if two files are part of the same MR, it
is because they are somehow interrelated. Contrary to source code releases,
CVS logs provide a very fine grained view to the evolution of the project. A
snapshot of the CVS log was taken on May 21, 2003.

• Mailing lists. Evolution maintains at least two mailing list, but some of
the information related to it can also be found in the GNOME mailing lists.
GNOME (GNU Network Object Model Environment) is a free software col-
lection of libraries and end-user applications that provide a graphical “desk-
top” for Unix systems. The project started in 1996 as a volunteer effort, and
has evolved into a large system that involves paid and non-paid contributors,
and it is currently shipped with almost every Linux distribution. GNOME
is the parent project of Evolution. Mailing lists tend to serve as a record of
important decisions related to a project. Another use of mailing lists is to
announce the availability of new releases (including a summary of the new
features found in it).

• ChangeLogs. The main source of documentation is the ChangeLog. As the
GNU ChangeLog standards indicate, the ChangeLog explains how earlier
versions of software were different from the current version.

For the purpose of this paper, softChange was extended to generate relational
data, which was then imported into a postgresql database (the dump of the
database measures 0.5 Gbytes, although some tables contain redundant information
to help speed up queries –a copy of the database is available on request and it is
available for download atview.cs.uvic.ca/evolution, along with the rest
of the data used in this analysis). The analysis of the data was done ad-hoc, writing
SQL queries. The results of these queries were then plotted using gnuplot.

4 Evolution

During the beginning of 1999, Bertrand Guiheneuf started working on a new mail
client for the GNOME project [Gui00]. One of his goals was to create a better
mail client than Balsa (then GNOME mail client) and to use Bonobo (GNOME
CORBA implementation) to display the different content types in email messages.
He decided to start the project by implementing a mail storage library, which he
called camel. In Guiheneuf’s view, Balsa was not good enough. He planned,
however, to phase in the development of camel by incorporating its storage library
into Balsa (and other potential mail clients) using CORBA [Gui99].

The GNOME Mailer project was formally started in April 16, 1999 with a
mail message from the GNOME project leader Miguel de Icaza that discussed
the need for a more powerful mail client [dI99a]. One important issue that de
Icaza addressed in this message was why not to further develop an already started
project (such as Balsa). His answer was “there is too much baggage in existing

4

Tom Mens
13

Tom Mens
82

mail applications that we do not want to carry into the future”. This message was
probably triggered by Guiheneuf’s posting (two weeks before). de Icaza proceeded
to outline the main architecture that this client should have (which was further
refined in [dI99b]):

• Storage. This module was to be composed of two parts: a) it will include a
library to understand and interact with a variety of mail storage formats and
sending email protocols (imap, pop, spool mail, UNIX mailbox, MH); and
b) contain a query engine to filter, move and delete mail.

• The Folder and Summary Display would be the main GUI to email mes-
sages and folders.

• The Message Display would be responsible for displaying a particular mail
message.

• The Message Composition would implement an editor that would allow the
user to create and edit mail messages.

• Interface with the calendar and addressbook (which in de Icaza’s opinion
needed to be redesigned).

De Icaza, following Guiheneuf’s ideas (and the trend of GNOME in general),
proposed to use CORBA for communication between these modules and other ap-
plications that would help display different content types in the message display (at
the time, there was a move towards making most GNOME applications CORBA
aware). This module list would also serve as a way to divide the work into pieces in
which different developers could concentrate and work as independently as possi-
ble. A mailing list was created for the project, and during the month of April 1999
more than 500 messages were exchanged, most of them related to requirements
analysis for the new project.

Guiheneuf would become the first maintainer of the new GNOME Mailer, con-
tinuing the development of camel as its storage module. In August 1999, the name
Evolution was proposed by him, and it was quickly accepted by the GNOME com-
munity1.

In October 1999, Miguel de Icaza created Helixcode (now Ximian), a commer-
cial venture aimed at continuing the development of GNOME, planning to generate
income by selling services around it. Ximian proceeded to take under its wing the
development of Evolution and has committed several employees to work on it.

In 4 years Evolution has grown into a powerful product that is starting to
be widely used in the open source community. Evolution recently received the
“2003 LinuxWorld Open Source Product Excellence Award” in the category of
“Best Front Office Solution”. One of the objectives of Evolution is to provide
a free software product with functionality similar to Microsoft Outlook or Lotus
Notes[Per01]. Table 1 lists the main events in the history of the project.

1Guiheneuf proposed e-volution, which was quickly altered to evolution. The name was later
changed to Evolution and finally to its current official name Ximian Evolution.

5

Tom Mens
13

Tom Mens
83

Milestones Date
Coding of camel starts 1999-01-01
Evolution starts 1999-04-16
Ximian is established 1999-10-01
Version 0.0 2000-05-10
Version 1.0 2001-11-21
Version 1.1.1 2002-09-09
Version 1.2.0 2002-11-07
LinuxWorld “Best
Front Office Solution” award 2003-01-23
Version 1.3.1 2003-02-28

Table 1: Main milestones of the project

4.1 Releases

Figure 1 shows the growth in the size of the source code releases of Evolution. It
was discovered that the total size of the release (sum of the size of all files) and the
total size of the source code (sum of the size of all source code files) did not show
a clear correlation. Further investigation demonstrated that the main culprit for the
increase of the size of the release is its internationalization (translation files with
extensions .po and .gmo). The latest version, for example, totals 64 MBytes of
which 37 Mbytes (57%) are internationalization files, compared to only 11 Mbytes
of source code (17%). Evolution is currently translated into 34 different languages
(this does not include regional variants; for example, Evolution includes interna-
tionalization files for Portuguese and its Brazilian variant). Another surprise is to
discover that the next largest contributor to the size of a release is ChangeLogs: 4.6
Mbytes (7%). ChangeLogs will be revisited in section 4.3.2.

 0

 10

 20

 30

 40

 50

 60

 70

00/07 01/01 01/07 02/01 02/07 03/01

S
iz

e
(in

 M
B

yt
es

)

Month

Size of version
Size of source code
Size of translations

Size of ChangeLogs
Major releases

Figure 1: Size of releases over time. The plot shows also the total sizes (in Mbytes)
for source code, internationalization files, and ChangeLogs. Together these 3 types
of files account for more than 80% of the size of the latest version.

The number of files shows a different picture. The average proportion of source
files in the releases is 46% (6.16 std deviation). In contrast, the proportion of

6

Tom Mens
13

Tom Mens
84

translation files is 2.7% (0.29 stddev), and 1.1% (0.03 stddev) for ChangeLogs.
Translation files and ChangeLogs are therefore few, but very large, when compared
to source code files.

Figure 2 shows, for a given release, the number of source codefiles, total LOCS
and total cleanLOCS (number of LOCS when comments and empty lines have been
removed). The average size of a source file has been stable across versions, at 639
(25 stddev) LOCS per .c and 101 (7.6 stddev) LOCS per .h file. The proportion
of cleanLOCS to LOCS has also remained stable across versions, at 72.5% (1.4
stddev) for .c files, and 60% (2.6 stddev) for .h files.

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 550000

00/07 01/01 01/07 02/01 02/07 03/01

 400

 525

 650

 775

 900

 1025

 1150

 1275

 1400

N
um

be
r

of
 S

ou
rc

e
F

ile
s

Month

LOCS
clean LOCS

Total number of files
Major releases

Figure 2: LOCS of releases over time. The plot shows the total number of files,
and the number of clean LOCS (LOCS without comments nor empty lines).

-20000

 0

 20000

 40000

 60000

 80000

 100000

00/07 01/01 01/07 02/01 02/07 03/01

-50

 0

 50

 100

 150

 200

N
ew

 L
O

C
S

N
ew

 S
ou

rc
e

F
ile

s

Month

New LOCS
New Source Files (right axis)

Major releases
’releasesfiles.txt’ using 1:5

Figure 3: Changes in LOCS and number of files, per version

The actual change in LOCS from one version to another show an interesting

7

Tom Mens
13

Tom Mens
85

story. Figure 3 shows the increment in the LOCS and number of files over time.
Of special interest are the negative increments in either LOCS or source files, sug-
gesting removal of source code. For example, in version 0.6 (released 2000/10/23)
15.5 kLOCS and 67 source code files were removed with respect to the previous
version (0.5.1). Between these two releases 157 source code files were deleted
and 90 created (45 kLOCS were deleted and 24k LOCS added). Further analy-
sis of the available software trails showed that for this release it was decided to
move several widgets (from Evolution’s GUI) to the Gal project. Gal, according
to its official description is “the GNOME Application Library, a collection of wid-
gets and other helper functions originally extracted from Evolution and gnumeric
(GNOME spreedsheet)”. In fact, the first version of Gal (0.1) was released in Oct.
5, 2000 [dI00], 5 days before Evolution 0.6 (and the sudden drop in LOCS).

4.2 Development Activity

One important question that arises when looking at the increment in the size of
Evolution is how does it correlate to the actual activity of the developers? The
CVS logs provides some useful information that can be used to attempt to answer
this question.

 0

 200

 400

 600

 800

 1000

 1200

98/01 98/07 99/01 99/07 00/01 00/07 01/01 01/07 02/01 02/07 03/01
 0

 20000

 40000

 60000

 80000

 100000

 120000

M
R

s

Date

Ximian starts operations

Release 0.0 Release 1.0 Release 1.2

Release 1.1.1 Release 1.3.1

MRs
code MRs

Major releases
Minor releases

Figure 4: Evolution of the project in number of MRs

Figure 4 shows the number of MRs per month for Evolution. The plot also
shows the different releases in the project. There are several interesting observa-
tions from this graph. First, the development activity was relatively flat during the
first year of the development, and it is not until Ximian is born that there is a surge
in the number of MRs. The number of MRs surges just before release 1.0. After
that, the number of MRs remains more stable, but still shows peaks that correspond
to releases. Because it is not possible to have access to the actual number of hours
spent per developer in the project, it is not possible to determine the development
effort spent per MRs, and therefore, if less MRs mean less developer-time, or if
some MRs required more time. In the same figure, the number of MRs that in-
volve source code (codeMRs) is also shown. The proportion of codeMRs to MRs
has decreased during 2003 (approximately 38% of the MRs do not involve source
code).

Why has the proportion of codeMRs dropped? The exploration of the logs drew
the following conclusions. From all MRs in 2003, 86% corresponded to changes in
source code (61%), translations (13%) and changes to metafiles (files with exten-
sion .am and .in, 18%)2. Metafiles are used by the automake and autoconf tools to

2Some MRs included changes to Metafiles and source code, and some MRs included changes to
metafiles and translations

8

Tom Mens
13

Tom Mens
86

create other files. The most common use of these Metafiles is the creation of Make-
files (the developer creates an .am or .in file, and autoconf and automake create the
corresponding Makefile). Metafiles rely heavily on macros (GNOME provides a
module called macros with the majority of these definitions).

A surge in the activity related to Metafiles and translations was to blame for
the drop in the proportion of codeMRs. The question that followed was, what
prompted the surge in Metafile activity? In those MRs 70% of the revisions corre-
sponded to Makefile.am files; and 12% of the revisions corresponded to changes to
configure.in, the main autoconf file that drives the configuration ofEvolution
when a user wants to compile it. Inspection of the ChangeLogs seems to suggest a
conscious effort to cleanup the Metafiles.

The surge in changes to the translations is attributed to a previous significant
change in the UI. Once the development team decides to make a “freeze” in the fea-
tures of a release, translators start making changes to the corresponding translation
files.

Another question prompted by figure 4 is why does it show activity before
January, 1999? It appears that some code that was in development previous to
Evolution was later incorporated into it (one widget and some calendar related
code). It is also suspected that some revisions contain invalid dates, suggesting
that during a period of time the machine’s clock was set to an incorrect time.

-200

 0

 200

 400

 600

 800

 1000

 1200

00/01 00/07 01/01 01/07 02/01 02/07 03/01
-20000

 0

 20000

 40000

 60000

 80000

 100000

 120000

co
de

 M
R

s

LO
C

S
 a

dd
ed

 in
 r

el
ea

se
Date

Release 1.0 Release 1.2

Release 1.1.1 Release 1.3.1

MRs
New LOCS (right axis)

Major releases
Major releases

Figure 5: Changes in LOCS and number of files, per version

Figure 5 shows codeMRs and how they relate to the actual growth in the size
of the source code in the releases. Even in periods where the code base does not
increase (like the first half of 2002) the number of MRs is still large. This suggests
a period in which debugging took precedence over development of new features.

4.2.1 Characteristics of MRs

It is also interesting to see the typical characteristics of an MR. Figure 6 shows the
number of files per MR. Most of them contain a small number of files, which is
a healthy sign. The log for the largest MR (which contains 650files, in 2001/06/23)
reads “Update the copyrights, replacing Helix Code with Ximian and helixcode.com
with ximian.com all over the place.”. That day a total of 709 files were mod-
ified. Similarly, the largest number of files modified in a single day was 1417
(2001/10/27) and the reason was “update the licensing information to require ver-

9

Tom Mens
13

Tom Mens
87

sion 2 of the GPL (instead of version 2 or any later version)”. These two expla-
nations highlight a particular feature of MRs in Evolution: developers take good
care of explaining in each MR the reason for the change (CVS allows developers
to add a log message to each MR). The average log for an MR is 300 characters
(561 stddev, 170 median), with a minimum length of 1 (only 8 MRs) and 18K for
the longest log (which involved the merging of a branch to the main CVS tree).

From a total of 18K MRs, only 87% include two or more files in it. A prelim-
inary analysis shows that most of these MRs are of two types: a) files which were
overlooked in a previous MR and committed minutes later; and b) minor correc-
tions, such as fixing spelling mistakes. Further analysis is needed to corroborate
this hypothesis.

 1

 10

 100

 1000

 10000

 1 2 4 8 16 32 64 128 256 512 1024

N
um

be
r

of
 M

R
s

(lo
g

sc
al

e)

Number of files in MR (log scale)

Number of Files in MRs
Number of Files in code MRs

Figure 6: Most MRs contain a small number of files

4.2.2 Contributors

There is a common belief that open source projects are developed by a large number
of individuals. While that is true, it is important to recognize that the contribution
of the majority of these individuals is very small. In open source projects, con-
tributors can be divided into two main groups: those with write access to the CVS
repository (and can make their contributions to the CVS repository themselves)
and those who do not have write access to the repository. In GNOME it is not dif-
ficult to get write access to the repository. Once somebody has submitted several
contributions, this person can apply for CVS write access. In GNOME, more than
500 people have CVS write access3.

By looking at the changes committed by contributors with CVS write access,
we can see that like many other open source projects, the majority of the cod-
ing is done by a small number of individuals. Zawinsky, at one time one of the
core Mozilla contributors, commented on this phenomenon: “If you have a project
that has five people who write 80% of the code, and a hundred people who have
contributed bug fixes or a few hundred lines of code here and there, is that a 105-
programmer project?”—as cited in [Jon02].

Evolution contains contributions by 201 different userids (to which, this paper
will refer as contributors). Few of these, however, contributes a significant portion

3The author has write access to the GNOME CVS repository.

10

Tom Mens
13

Tom Mens
88

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 2 4 8 16 32 64 128

P
ro

po
rt

io
n

of
 to

ta
l M

R
s

(lo
g

sc
al

e)

Developers (log scale)

Developer activity

Figure 7: Proportion of MRs per contributor. Each contributor was assigned a
number from 1 to 201, which corresponds to the X axis.

of the MRs. Figure 7 shows the proportion of MRs per contributor (each contribu-
tor was assigned a number from 1 to 201, which corresponds to the X axis). Only
18 contributors accounted each for more than 1% of the total MRs. The largest
contributor is responsible for 16% of the MRs, while at the other side of the spec-
trum 32 contributors had only one MR only. Furthermore, a total of 48% of the
MRs were contributed by only 5 contributors, while 142 contributors contributed
just 5% of the MRs (80 contributed a total of 1% of the MRs).

Table 2 shows the 11 most active developers, as a proportion of all MRs. The
top 10 appear to be Ximian employees or consultants (see http://primates.ximian.com/).
This fact corroborates the hypothesis that private companies (such as RedHat,
Ximian, and Eazel) have had a very important effect on the development of the
GNOME project [Ger02]. In that respect it is similar to the Mozilla project where
core contributors were employees of Netscape (see [MFH02]).

Userid Prop. Accum.
fejj 0.16 0.16
ettore 0.10 0.26
danw 0.09 0.35
zucchi 0.06 0.42
clahey 0.06 0.48
jpr 0.05 0.53
toshok 0.05 0.58
federico 0.03 0.61
peterw 0.02 0.63
iain 0.02 0.65
other 0.35 1.00

Table 2: Most active developers, as a proportion of total MRs

How regularly were contributors participating in the project? The number of
different contributors by year is depicted in table 3. After January 2000, in any
given month there is an average of 32 contributors (8.3 stddev, minimum 15, max-
imum 47) per month to the project.

11

Tom Mens
13

Tom Mens
89

Year Number of Contributors
1998 37
1999 54
2000 95
2001 98
2002 79
2003 56

Table 3: Contributors to the project by year. It takes into account only those con-
tributors with CVS write access.

4.3 Revisions

Every time a file is modified, CVS creates a record of who modifies it, when, and
the “delta” of the modification. This modification is known in CVS lingo as a
“revision”.

4.3.1 Types of Files

Extension Prop. Accum. Number of
files in CVS

.c 0.41 0.41 1195
ChangeLog 0.22 0.62 43
.h 0.13 0.75 1063
.am 0.05 0.81 174
.po 0.04 0.85 71
.ics 0.02 0.87 396
.sgml 0.02 0.90 228
.in 0.02 0.92 136
.png 0.01 0.93 405
other 0.07 1.00

Table 4: Revisions and number of files per file extension. C files (.h and .c) and
ChangeLog modifications account for 75% of total revisions.

Table 4 shows the proportion of revisions per extension (i.e. type of file) and it
tells an interesting story. Given that C is the language of choice for Evolution, it is
not surprising to see .c and .h files at the top, along with ChangeLogs (ChangeLogs
are discussed in detail in section 4.3.2). Metafiles (.am and .in) and translations
follow. The next file extension .ics corresponds to files that include information
about a particular location in the world, particularly its time zone. There were
1903 revisions made to 396 .ics files, for an average of 4.8 changes per file.

Files with extension .sgml are documentation files. As with many open source
projects, the documentation is written in SGML using the docbook DTD. Finally,
.png files correspond to artwork.

12

Tom Mens
13

Tom Mens
90

4.3.2 ChangeLogs

ChangeLog files are an important source of information about the development
and evolution of a project. The Evolution developers are fairly consistent in their
modifications to the ChangeLog files. From all MRs involving 2or more files, 93%
include a modification to a ChangeLog. Evolution developers seem to make sure
that they document their changes in the corresponding ChangeLogs. Table 5 shows
the 10 most modified files, 8 of them are ChangeLogs. ChangeLogs (and CVS logs)
can provide insight on patches submitted by developers without a CVS account, as
developers are expected to be careful to give credit to the patch submitter in the
corresponding ChangeLog entry (which are not taken into account for this paper).

4.3.3 Source Code Hot Spots

There have been a total of 41120 revisions to 2258 source code files4. Figure 8
shows the proportion of revisions per source code file. 51 files account for 25% of
the total number of revisions, while 764 account for only 5% of them.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 1 10 100 1000

P
ro

p.
 o

f r
ev

. t
o

a
gi

ve
n

co
de

 fi
le

 (
lo

g
sc

al
e)

Files (log scale)

Revisions to Files

Figure 8: Proportion of revisions per source code file. Each file was assigned a
number from 1 to 2258, which corresponds to the X axis.

4.4 Modularization

The success of an open source project depends on the ability of its maintainers to
divide it into small parts in which contributors can work with minimal communi-
cation between each other and with minimal impact on the work of others [LT00].
From the beginning of the project, there has been a conscious attempt to divide
Evolution into modules that fulfill the previous characteristics. Modules are rep-
resented in the code base as subdirectories. Figure 9 shows the different modules
and the number of MRs for each of them, representing the level of activity in each
module.

Figure 10 shows the size of the seven largest modules in Evolution in terms
of LOCS. With the exception of libical and widgets, modules tend to grow in size.
Before 2002, both libical and widgets show a lot of variability in both their sizes

4Many of these files are no longer in the latest release, as they have been removed during the
development process. Nonetheless, CVS keeps information about their modification.

13

Tom Mens
13

Tom Mens
91

File Prop. Accum.
mail/ChangeLog 0.04 0.04
calendar/ChangeLog 0.03 0.06
camel/ChangeLog 0.03 0.09
addressbook/ChangeLog 0.02 0.11
shell/ChangeLog 0.02 0.13
ChangeLog 0.02 0.14
po/ChangeLog 0.02 0.16
configure.in 0.01 0.17
composer/ChangeLog 0.01 0.18
mail/mail/callbacks.c 0.01 0.18

Table 5: Top 10 most modified files. ChangeLogs clearly take the lead. As its
name implies, mail-callbacks.c contains the callbacks of the mail client, hence the
frequency at which it is modified. These 10 files account for a total of 18% of all
file revisions.

mail
camel

calendar
addressbook

shell
widgets

composer
e-util
filter

my-evolution
tests

libical
libibex

executive-summary
wombat

importers
im

libversit
notes
tools

libwombat
cmdline

ebook
 0 500 1000 1500 2000 2500 3000

Number of MRs for each Module

MRs per Module

Figure 9: MRs per module. Most of the activity is concentrated in few modules.

14

Tom Mens
13

Tom Mens
92

and the number of files in them. After Version 1.0, the size of Evolution has been
growing at a very small pace.

 0

 20

 40

 60

 80

 100

00/07 01/01 01/07 02/01 02/07 03/01

LO
C

S

Date

camel
calendar

mail
addressbook

shell
libical

widgets
Major releases

Figure 10: LOCS in selected modules, per version

Other interesting questions are: Do contributors tend to concentrate in one
module? How many core contributors does a given module have? Table 6 shows
that information for the five most active modules of Evolution. In order to account
only for people who are still active in the development, this table only shows data
related to MRs which happened in 2002. It is not surprising to see that one or two
contributors are responsible for at least two thirds of the MRs in each module.

Finally, how well do modules isolate developers from the complexity of other
modules? One potential way to measure this dependency is to analyze the number
of codeMRs that require changes in more than one module. Figure 11 shows a com-
pelling story: only 3% of the MRs include more than one module. Further analysis
of the changes is required to determine what is the proportion of changes that were
actual code changes compared to changes in comments (such as the change in li-
cense, described in section 4.2.1).

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
um

be
r

of
 c

od
eM

R
s

(lo
g

sc
al

e)

Number of Modules in a codeMR

Number of Modules in a MR

Figure 11: Number of different modules that appear in a codeMRs. The proportion
of codeMRs that involve more than one module is very small (3%).

15

Tom Mens
13

Tom Mens
93

Mod Progs Id Prop Acc

shell 17 ettore 0.65 0.65
danw 0.11 0.76
toshok 0.05 0.81
clahey 0.04 0.84
zucchi 0.03 0.87

mail 19 fejj 0.52 0.52
rodo 0.13 0.65
zucchi 0.12 0.77
ettore 0.07 0.83
danw 0.06 0.89

calendar 17 jpr 0.40 0.40
rodrigo 0.32 0.72
ettore 0.07 0.79
danw 0.06 0.85
damon 0.03 0.88

camel 9 fejj 0.66 0.66
zucchi 0.25 0.91
danw 0.03 0.94
peterw 0.03 0.97
ettore 0.01 0.99

addressbook 19 toshok 0.57 0.57
clahey 0.13 0.70
ettore 0.09 0.79
danw 0.07 0.87
fejj 0.03 0.90

Table 6: Top 5 programmers of some the most active modules during 2002. The
first column shows the name of the module, the second shows the total number of
programmers who contributed to it in that year, the third shows the userid of the
top 5 programmers and the proportion of their MRs with respect to the total during
the year.

16

Tom Mens
13

Tom Mens
94

5 Further observations

The results described in this paper show that the method described in section 2 can
be applied to recover the evolution of a software project where the amount of soft-
ware trails is significant. Several observations can be made about this experience.

• One software trail does not tell the whole story. It is paramount to cross-
reference software trails to really understand what they mean in the evolution
of the project. For example, the size of software releases in Evolution has
been growing in linear fashion, while the growth in the size of the source
code is relatively flat; also, many developers have been participating in the
project, but most of them with very few contributions.

• Schema definition. The schema used in this study kept changing, in part due
to the incorporation of new trails, and in part because new information and
relations kept being discovered. It is expected that, as this type of analysis
becomes more pervasive, standard schemas can be developed. This will have
2 advantages: a) it will promote the creation of tools that gather software
trails, extend them, and analyze them; and b) the evolutionist will better
understand the nature and interrelation of the available trails before starting
to do her work.

• One of the main challenges of analyzing software trails is that many of them
are informal in nature. For example, email messages contain a large amount
of information pertaining to the way the project has evolved, but they are
difficult to analyze in an automatic fashion. Correlating different trails is
also an error prone task, in which heuristics have to be developed and tested.
It might be the case that a heuristic performs differently in different projects.

• Information overload and the need for analysis and visualization tools. The
amount of available information makes it indispensable to use tools that can
filter it and visualize it. Again, as schemas are standardized, different re-
search teams could provide different tools that specialize in mining and vi-
sualizing certain types of trails. In this paper, SQL was chosen because it
provides a sophisticated query language (further extended in postgreSQL
with its support for regular expressions in thewhere clause). SQL was very
helpful in filtering and tabulating information, that could then be plotted (our
research team has since developed a tool to automatically create many of the
plots displayed herein using SVG using the Web as its interface). It is also
interesting that Evolution itself proved very useful in analyzing the Evolu-
tion mailing lists, given that it provides a powerful query language for email
messages.

• Quality of software trails. It is important to state that not all development
teams generate “good” software trails. In the experience of the author, there
is a point in a software project in which software trails start to “mature”
and this point is likely a correlation of the success of the project, the level
of interaction that developers have to have, and their maturity, and in the
case of commercial projects, the influence of management. For instance,
there is very little information about Evolution when only one developer was

17

Tom Mens
13

Tom Mens
95

contributing to it, but as the developers grew in number (and became more
experienced) their trails improved in quality. The Free Software Foundation
has an important effect in the quality of trails, as it publishes a collection of
guidelines that free software developers should follow.

6 Conclusions and Future Work

This paper demonstrated a methodology to recover the evolution of a software
project using its software trails. Software trails, such as version releases, version
control logs and mailing lists were used to recover the evolution of Ximian Evo-
lution, a free (as defined by the GPL) mail client for Unix. The analysis of these
software trails allowed the discovery of interesting facts about the history of the
project: its growth, the interaction between its contributors, the frequency and size
of the contributions, and important milestones in its development.

There are several potential avenues for future research. One of them is to create
tools that analyze and enhance the facts extracted. For example, CVS’s MRs can
be analyzed in an attempt to guess the type of modification that the developer
intended: a comment, a bug fix, a new feature, or refactoring, for example. This
will allow the evolutionist to quickly categorize changes and concentrate on those
of interest.

Another area of research is the visualization of this information. As the project
grows older, its trails grow in number. It is necessary to create tools that analyze
and display the gathered facts to the user and allow its visualization in a highly
dynamic manner. Metrics are also an important area of research. It is needed to
quantify the information extracted from software trails, so it can be compared with
other software projects. For example, how can the “disjointness” of contributors of
different modules to different software projects be quantified and compared?

Finally, studies on other software projects (similar to the one done in this paper)
are needed. These studies will provide information necessary to better understand
the characterization of software trails. Furthermore, these studies will allow re-
searchers to compare the evolution of different software projects; and to a certain
extend some of the practices used by their corresponding development teams.

Acknowledments

This research has been supported by the National Sciences and Engineering Re-
search Council of Canada, and the British Columbia Advanced Systems Institute.
The author would like to thank Audris Mockus (co-author of softChange) for his
invaluable help in a preliminary analysis of Evolution and the reviewers of this
paper for their helpful comments.

References

[dI99a] Miguel de Icaza. Writing a GNOME mail client.
http://mail.gnome.org/archives/gnome-announce-list/1999-
April/msg00029.html, April 1999.

18

Tom Mens
13

Tom Mens
96

[dI99b] Miguel de Icaza. Writing a GNOME mail client.
http://canvas.gnome.org:65348/mailing-lists/archives/gnome-mailer-
list/1999-April/0018.shtml, April 1999.

[dI00] Miguel de Icaza. G Apps Lib 0.1 is out.
http://mail.gnome.org/archives/gnome-announce-list/2000-
October/msg00005.html, October 2000.

[Ger02] Daniel M. German. The evolution of the GNOME Project. In Proceed-
ings of the 2nd Workshop on Open Source Software Engineering , May
2002.

[GM03] Daniel M. German and Audris Mockus. Automating the Measurement
of Open Source Projects. In Proceedings of the 3rd Workshop on Open
Source Software Engineering, May 2003.

[GT00] Michael W. Godfrey and Qiang Tu. Evolution in Open Source Soft-
ware: A Case Study. In Proc. of the 2000 Intl. Conference on Software
Maintenance, pages 131–142, 2000.

[Gui99] Bertrand Guiheneuf. Gnome Mail clients (Re: Is Balsa
alive?). http://mail.gnome.org/archives/gnome-devel-list/1999-
April/msg00042.html, April 1999.

[Gui00] Bertrand Guiheneuf. Candidate (Bertrand Guiheneuf).
http://mail.gnome.org/archives/foundation-announce/2000-
October/msg00009.html, Oct 2000.

[Jon02] Paul Jones. Brooks’ law and open source: The more the merrier? does
the open source development method defy the adage about cooks in the
kitchen? IBM developerWorks, August 20, 2002.

[LT00] Josh Lerner and Jean Triole. The Simple Economics of Open Source.
Working Paper 7600, National Bureau of Economic Research, March
2000.

[MFH02] Audris Mockus, Roy T. Fielding, and James Herbsleb. Two case stud-
ies of open source software development: Apache and mozilla. ACM
Transactions on Software Engineering and Methodology , 11(3):1–38,
July 2002.

[Per01] Ettore Perazzoli. Ximian Evolution: The GNOME Groupware Suite.
http://developer.ximian.com/articles/ whitepapers/evolution/, 2001.

19

Tom Mens
13

Tom Mens
97

Meta-Model and Model Co-evolution
within the 3D Software Space

Jean-Marie Favre

Adele Team, Laboratoire LSR-IMAG
University of Grenoble, France

http://www-adele.imag.fr/~jmfavre

Abstract
Software evolution-in-the-large is a challenging issue.

While most research work concentrates on the evolution of
“programs”, large scale software evolution should be
driven by much higher levels of abstraction. Software
architecture is an example of such abstraction. The notion
of co-evolution between architecture and implementation
has been identified and studied recently. This paper claims
that other abstraction dimensions should also be taken into
account, leading to what we call the 3D software space.
This conceptual framework is used to reason about
evolution-in-the-large phenomena occurring in industry.
The meta dimension, which constitutes the core of the MDA
approach, is considered as fundamental. This paper makes
the distinction between appliware and metaware and put the
lights on meta-model and model co-evolution. Conversely
to the MDA approach which makes the implicit assumption
that meta-models are neat, stable and standardized, in this
paper meta-models are considered as complex evolving
software artefacts that are most often recovered from
existing metaware tools rather than engineered from
scratch. In fact, we identified the notion of meta-model and
model co-evolution in the context of the evolution of a multi-
million LOC component-based software developed by one
of the largest software companies in Europe.

1. Introduction

Understanding very large software products is a major
issue. Understanding their evolution is even more difficult
since many factors influence software evolution [1][2]. This
paper concentrates on evolution-in-the-large which is quite
different from evolution-in-the-small, that is evolution of
small programs over rather short periods of time (a few
months or years). Evolution-in-the-large is about the
evolution of multi-million LOC software over decades.

Evolution-in-the-large is indeed a very complex issue.
Considering software evolution at the level of statements
and functions is clearly not enough. A much higher level of
abstraction is required.

1.1. Architecture/Implementation co-evolution

Software architecture shoutld clearly play a central role
in the evolution since it provides a abstraction. However,
making explicit the architecture of software is not easy in
practice. Architectural Description Languages (ADLs)
failed to find their path to industry, in part because of their
poor support for software evolution. Software industry is
still code-centric. Most of the time the architecture is
implicit. To cope with this problem, a increasing amount of
research work focuses on architecture recovery and
architecture evolution (e.g. [3][4][5][6][7]). Recently the
concept of architecture and implementation co-evolution
has been identified by various authors (e.g.[9][10][11]).
Architecture and implementation are two levels of
abstraction. They are both subject to evolution. Since they
are linked they should ideally evolved in a synchronized
way to avoid the so called architectural drift and
architectural erosion. Maintaining some kind of
architectural description is useful to ease software
understanding, but another important idea is that the
architectural description should allow to drive or at least to
constrain the evolution of implementation.

Figure 1 provides a very intuitive view of the relationship
between the two abstraction levels. Modifying an entity at a
level of abstraction can both have an impact at this same
level, but also at the lower (or higher) level of abstraction.
In fact whenever two entities are linked by a relation,
changing one entity may have some impact on the other one.

Vertical
impact

Horizontal
impact

Changed
entity

ARCHITECTURE

IMPLEMENTATION

Levels of
Abstraction

Vertical
impact

Horizontal
impact

Changed
entity

ARCHITECTURE

IMPLEMENTATION

Levels of
Abstraction

Figure 1. Vertical vs. horizontal impacts

Tom Mens
98

Horizontal impacts refer to impacts within a given
abstraction level (i.e. modifying a function may imply to
upgrade other functions). By contrast, vertical impacts
cross abstraction levels. For instance modifying a function
may have an upwards impact on an architectural
component. Removing a dependency between two
components may have many downwards impacts on
implementation entities. The nature of the impact obviously
depends on the nature of the entities and the nature of the
relation. The same is true for the action to be taken after
such an impact is detected.

Horizontal consistency must usually be ensured. For
example updating the impacted functions is usually
considered of paramount importance to ensure a consistent
behaviour of the implementation. Vertical consistency could
be much more loose leading to a large range of co-evolution
policies. For instance, upgrade could sometimes be
deferred, taking the risk of a temporary inconsistency and
deviation [9]. With no suitable policy, these inconsistencies
usually lead to irremediable erosion and the very common
situations where architectural artefacts are no longer
updated. In fact, the horizontal dimension has been studied
for long leading for instance to research on impact analysis
either at the implementation level or at the architectural
level (e.g. [8]). The term co-evolution is usually used
vertically when the evolution of two levels of abstraction
can be asynchronous.

1.2. Co-evolution along other dimensions

We discovered over the last years the existence of similar
phenomena along other abstraction dimensions. Co-
evolution is indeed a very common. This paper introduces
two other abstract dimensions and structure the set of
software artefact as a 3D software space. This conceptual
framework is very useful in the systematic identification of
co-evolution processes.

In particular the main objective of this paper is to put the
light on meta-model and model co-evolution. Though this
phenomenon occurs along the meta-dimension popularized
by the UML and MDA standards [12][13][14], the concepts
presented in this paper are by no means restricted to
software developed using modern techniques such as Model
Driven Engineering (MDE) [15][16][17][19] (In this paper
MDA refers to the OMG standard while MDE refer to the
approach which is more general). This paper shows that
meta-model and model co-evolution actually occurs with
current and legacy industrial practices.

In fact, the MDA approach assumes that meta-models
are neat, stable and standardized. In this paper on the
contrary meta-models are considered as complex evolving
software artefacts that are most often recovered from
existing tools rather than engineered from scratch. Simply

put, while the MDA and meta-related technologies are
typically oriented towards forward engineering, this paper
considers meta-models in the context of reverse
engineering.

1.3. Background

In fact, the concepts presented in this paper results from
our experience in various industrial settings. In particular,
we first identified the meta-model and model co-evolution
phenomenon in the context of a collaboration with Dassault
Systèmes (DS). DS is the world leader in CAD/CAM and
one of the largest software company in Europe. Our
collaboration with this company lasted 7 years. During this
period we dealt with many issues related with software
evolution including configuration management, software
architecture and reverse engineering [20][21]. We gained a
lot of expertise about evolution-in-the-large. In fact, DS
faces a wide range of issues related with very large scale
software evolution. More than 1200 software developers
work at the same time on the same software product leading
to tremendous requirements in configuration
management [20]. DS evolves a huge software, CATIA,
which is made of more than 70 000 classes, 800
frameworks, and 3000 DLLs. This leads to tremendous
requirements on software architecture [22][23]. In fact,
Dassault Systèmes is with Microsoft one of the pioneer of
component-based software development. In the mid 90’s
DS started to design and develop an in-house component-
technology called the OM and at the same time this
technology was used to develop CATIA components [21].
It will be shown in this paper that this is in fact a typical
example of meta-model and model co-evolution.

The rest of the paper is structured as following. In
Section 2 a simplified explanation of what is meta-model
and model co-evolution is provided. Section 3 gives an
overview of the conceptual framework referred as the “3D
software space”. The first dimension, called the meta-
dimension, is presented in section 4. Section 5 introduces
the “product engineering dimension”. Section 6 describes
the third dimension, the “representation dimension”.
Section 7 shows how evolution interacts with this 3D space.
Section 8 gives examples of observable meta-model/model
co-evolution phenomenon. Finally section 9 concludes the
paper.

2. Language/Program/Tool co-evolution

Meta-related notions could be difficult to grasp at the
first sight, especially when applied in complex industrial
contexts. Before to introduce the 3D software space in a
systematic way, let us introduce the issue in terms of much
more narrow but much more intuitive concepts. For the sake

Tom Mens
99

of clarity, the illustrating problem is based on well-known
programming-in-the-small concepts. Let us consider three
kind of entities: programs, (programming) languages, and
(language-dependent) tools (e.g. compilers). Three kinds of
relation can be considered: (1) language/program, (2) tool/
program, (3) tool/language. All these relations leads to co-
evolution issues as suggested below.

2.1. Language / program co-evolution

A program is closely linked with the language it is
written in. It is well known that a change in the language
could have a strong (downwards) impact on programs. This
leads to a wide range of upgrade and migration strategies.
When a new version of the language is made available,
developers have first to determine which programs are
impacted by the language modification. They could then
decided to upgrade impacted programs to ensure
consistency with the new language. Alternatively they
could delay the changes and continue to use the old
language version. They might to that for impacted programs
while using the new version to develop new programs. This
common situation reveals language and program co-
evolution. This phenomenon is usually not made explicit.

2.2. Tool / program co-evolution

Language dependent tools such as interpreters,
compilers also have a great influence on programs. The
availability of such primary tools is of fundamental
importance in practice. Secondary tools such as
documentation generators, metric and profiling tools are
also very appreciated in industrial settings, in particular in
the context of quality insurance processes. Developers may
have to adapt their programs to use a particular tool. This
could be to take advantages of a feature (e.g. adding tags in
comments to use a documentation generator like javadoc).
Sometimes this is to avoid a bug in the tool (e.g. removing
the use of C++ templates in a program because the compiler
on a given platform do not handle it properly). Tool
evolution leads to tool and program co-evolution issues.

2.3. Language / tool co-evolution.

Languages are abstractions. Tools are concrete
implementations supporting these languages. A change in a
language specification could have many impacts on many
tools. This leads to language and tool co-evolution.
Upgrading primary tools such as compiler and interpreters
is usually done first to get synchronized with the language.
By contrast, the modification of secondary tools such as
browsers are often delayed. Deviation from the language
specification is common for such tools.

2.4. Discussion

Summing up, programs, languages and tools are linked
by three kinds of relation. Each relation give rises to co-
evolution issues. At this point the reader might not be
convinced by the relevance of these issues. A few
observations must be made to relate the discussion to the
context of evolution-in-the-large.

One might argue that changes in languages and tools are
seldom when compared to changes in programs. This is
quite true but remember that the time scale considered in
this paper is expressed in terms of years or decades, not
weeks or months. Everything evolve in large companies.
Software architecture evolve. Tools evolve. Languages
evolve. While small projects apply versionning concepts to
programs, large scale projects also deal with language
versionning and tool versionning. Languages and tools are
consider as actual part of the software, which is very true.

It is also very important to stress that while the term
“language” might evoke to researchers a neat, standardized
and stable thing, “real-life” is industry is often quite
different. To a large extend, today software industry largely
relies on many ill-defined, proprietary and unstable
languages. The same is true for tools. The goal of this paper
is to model industrial practices as they are.

Taking into account legacy software and legacy practices
is an important requirements. In the early decades of
computer science, many large companies developed in-
house programming languages and made them evolved
incrementally while developing programs at the same time.
These are real-life language/program co-evolution
scenarios in which language evolution is driven by the
problems encountered in developing programs.

Note that in this context the language remains most of the
time implicit; there is no explicit description of the
language. As reported in [24], the exact grammar of
programming languages such as COBOL variants is often
unknown and has to be recovered from tools. This leads to
grammar reverse engineering [24]. Many legacy and
proprietary languages have actually evolved mostly through
patches in compilers or interpreters to add or remove special
features. Many language definitions, if ever existed,
deviated from tool evolution and became inconsistent. This
is language erosion, a real-life example of language/tool co-
evolution.

One might argue that this time is over, that modern
languages and tools are much more stable and well
engineered. This is unfortunately not true. In the last years
the boom in internet-based technologies gives rise to the
apparition of a very large number of languages such as
scripting languages with internet-based features. These
languages are more than ever linked with tool evolution
such as web servers. Evolution is rapid and chaotic.

Tom Mens
100

Languages are ill-defined and unstable. The future could be
soon populated by legacy web applications raising serious
language/program co-evolution issues.

Modelling languages also evolve. This includes in
particular the continuous evolution the UML standard over
the years. Just like other languages, UML greatly evolves
(e.g. UML 1.0 to 1.5 and now 2.0) and presents symptoms
of language extension and language contraction. Quoting
Warmer about UML 2.0: “The evolution of UML is
absolutely required to make sure that UML will stay up to
date with the latest developments in the software industry.
The direction taken is guided by the user community, but it
requires a big effort “[26]. This evolution is accompanied
by strong co-evolution issues, not only with respect to the
large amount of UML diagrams that, but also with respect
to the production of large amount of commercial CASE
tools. In practice these tools are permanently out of sync.
They often deviate from the standard and subtle or most
often in important ways.

Component-based development is also getting very
popular and component technologies such as COM, .NET
or EJB are largely used. These technologies are based on
“component models” that defines new concepts and rules
that must be followed when developing component-based
programs. Though no specific syntax is provided
component models could be seen as virtual languages [25].
These languages are often ill-defined, unstable and they
greatly evolve because the notion of component is in
constant evolution. Once again, this leads to language/
program co-evolution issues. This point is illustrated in
Section 7 using Dassault Systèmes as a case study.

Co-evolution is a general phenomenon. It can be applied
to requirements, modelling languages, software
architecture, etc. The term program is therefore inadequate.
Since languages do not even need to be explicit, the same
apply to the term language. We use instead more general
concepts: models, meta-models and metaware. Roughly put
programming language are special cases of meta-models,
programs are special cases of models, and programming
tools are special case of metaware tools. These concepts and
their relationships are described in the remainder of this
paper in a systematic way using the 3D software space.

3. The 3D software space

The complex nature of software can be represented as a
3D software product space as depicted in Figure 2.
Figures 6, 8 and 9 on the next pages zoom on this space and
illustrate its content by means of simple examples. The
reader is invited to browse these figures paper to get an
overall idea of the content of this space.

Each dimension corresponds to a different kind of
abstraction. All dimensions are orthogonal as it will be
show in the next sections.

D1: The meta-dimension. This dimension constitutes
the core of the MDA standard. Four levels are
distinguished: instances, models, meta-models and meta-
meta models. Programs are at the model level (M1),
programming-language at the meta-level (M2). The
instance level (M0) and the meta-meta level (M3) are
included for the sake of completeness. Meta-model/model
co-evolution is linked to this dimension.

D2: The engineering product dimension. This
dimension aims to structure the software according to each
phase in the software life-cycle. It helps for instance to
make the distinction between requirement descriptions,
architectural documents, and implementation artefacts.
Architecture/implementation co-evolution phenomenum is
linked to this dimension.

D3: The representation dimension. There are many
different ways to represent a given entity ranging from very
abstract representations to concrete ones. For instance a
programmer might have a mental image of a software
architecture. The architecture might also be represented as a
boxes-and-arrows graph or as an graph stored in an XML
file. Concrete representations heavily depends on the tools
that manipulate it. It will be shown that language/tool co-
evolution is linked to this dimension.

Each point of this space is represented in the subsequent
figures by a cell because it corresponds to a class of
software artefacts. Note that the name of each class is
conveniently formed by appending the corresponding
coordinates in reverse order D3-D2-D1. For instance CR-D-
M1 reads “Concrete Representation of Design Models” and
AR-A-M2 stands for Abstract Representation of
Architectural Meta-Models.

Figure 2. The 3D Software Space

D1
M3 Meta-Meta-Model

Meta-ModelM2

M1 Model

M0 Instance

MetaD1
M3 Meta-Meta-Model

Meta-ModelM2

M1 Model

M0 Instance

M3 Meta-Meta-Model

Meta-ModelM2

M1 Model

M0 Instance

Meta D2
R Requirements

ArchitectureA

D Design

I Implementation

EngineeringD2
R Requirements

ArchitectureA

D Design

I Implementation

R Requirements

ArchitectureA

D Design

I Implementation

Engineering D3
IR Implicit repr.

Abstract repr.AR

CR Concrete repr.

RepresentationD3
IR Implicit repr.

Abstract repr.AR

CR Concrete repr.

Representation

Tom Mens
101

In fact, the density of the space is far from uniform.
Almost all software artefacts are stuck near to the origin,
where programs are. Industry is still code-centric. To
illustrate this phenomenon, gray scales are used in most
figures. Moreover each dimension will be described as a
pyramid in the next sections (see Figures 3, 5 and 7). Since
the 3 dimensions correspond to a different kind of
abstraction, the pyramid structure is well suited to model
reality. The width of the pyramids represents alternatives or
variants, while the depth represents the many software
entities that constitute each alternative.

4. The meta dimension (D1)

The meta-dimension is surely the most difficult
dimension to grasp but it is also the most powerful. It
constitutes the core of this paper. In this paper the MDA
standard is taken as a reference.

4.1. The meta-pyramid (D1)

The meta-pyramid is depicted in Figure 3. A few
examples are provided for each level. More examples can
be found in Figure 5 in which the meta dimension is
represented horizontally.

The most obvious level within the meta pyramid is the
model level (M1), so let us start by this level. This is the
level where regular programs are. This level corresponds to
what could be called appliware. Entities at this level
depends on the particular application domain considered
(e.g. banking, nuclear plant design, etc.). For instance the
concepts of “account” and “client” might be a part of the
banking model, while the concept of “reactor” might be part
of the nuclear plant model.

The model level is used to manage the set of all possible
real-world situations which are represented at the instance
level (M0). For instance “Tom” might be a client that owns
two accounts “a4099” and “a2394” with a respective
balance of $800 and $2000. A point at the instance level

describes a particular state of a software at a particular point
in time. It corresponds to a program state. Program
execution indeed corresponds to the evolution of this state.

Metaware by contrast is independent from application
domains. The meta-model level (M2) is used to manage the
production of software applications. It should describes
therefore all software engineering concepts such as
“classes”, “methods”, but also “modules”, “frameworks”,
“configuration”, “dynamic libraries”, etc. In simple words
meta-models capture the set of the concepts used to develop
software.

On the top of the pyramid, the meta-meta-model level
(M3) describes how the meta-models should be described
and managed. For instance the MDA standard proposes to
use the Meta Object Facilities (MOF) [31]. Simply put, the
MOF is a self descriptive subset of UML that allows to
describes arbitrary software meta-models (not only the
UML meta-model). The MOF is to meta-models what the
BNF is to grammars, a standardized way to represent them.
Though the meta-meta level is important, this paper
concentrates on the meta level for the sake of simplicity.
Similarly the term metaware will be used for both level M2
and M3, to avoid introducing the term metametaware.

4.2. Software = Appliware + Metaware

The meta pyramid depicts the realm of software. The
next sections will help in making this dimension more
concrete, but what is important to understand at this point is
that at each level M1, M2, M3 there is some piece of
software. Software at the level n+1 is used to build and
control software at the level n. Metaware is application-
independent software that help producing software
applications, that is appliware. A compiler is an example of
metaware tools. It is based on the meta-model of the source
programming language (e.g. the java meta-model for the
javac compiler).

We found distinction between metaware and appliware
very important to understand industrial practices. For

Figure 3. D1: the meta pyramid Figure 4. D1: the meta-actor pyramid

D1
M3 Meta-Meta-Model

Meta-ModelM2

M1 Model

M0 Instance

MOF

UML MM

Java MM

C# MM
Cobol MM

EJB MM

ACME Banking Apps

FOO Banking Apps Z Bookstore Apps

ACME Banking State 3pm Z Bookstore state 9pm

FOO Banking State 10am

alternatives

Software engineering
« known-how »

Real world

Applications

End users

Software
developers

Soft. engineering
experts

Metaware
experts

Z MM

of
entities

Metaware
« known-how »

D1
M3 Meta-Meta-Model

Meta-ModelM2

M1 Model

M0 Instance

MOF

UML MM

Java MM

C# MM
Cobol MM

EJB MM

ACME Banking Apps

FOO Banking Apps Z Bookstore Apps

ACME Banking State 3pm Z Bookstore state 9pm

FOO Banking State 10am

alternatives

Software engineering
« known-how »

Real world

Applications

End users

Software
developers

Soft. engineering
experts

Metaware
experts

Z MM

of
entities

Metaware
« known-how »

M
ETA

W
ARE

APPLI
W

ARE

Tom Mens
102

instance, during our 7-years collaboration with Dassault
Systèmes we always stayed at the meta-level. We know
much about DS’ metaware. By contrast, we never saw
DS‘appliware [20]. In fact, we never saw a single line of
application code in 7 years. Metaware and appliware are
distinct parts of software. Software is metaware plus
appliware. Metaware is software that manage and control
software. As it will be shown in the next sections meta-
models are just the visible part of metaware. Appliware is
software that represents applications. Software covers the
three higher levels of the pyramid (M1,M2,M3). Level M1
corresponds to appliware, the world of applications. Level
M2 and M3 corresponds to metaware. Note that the lower
level M0 is about particular states of software execution,
which is usually not considered as software.

4.3. The meta/actor pyramid

In fact, one good way to grasp the distinction between
the various levels in the meta pyramid is to consider the
actors involved at each level. This leads to the meta/actor
pyramid depicted in Figure 4. The goal of the actors
working at the level n+1 is to help actors at the level n to do
their job by providing them software. As shown below,
raising from a level to the next one decreases the number of
people concerned by various orders of magnitude.

End-users are the instance level actors (M0). They
interact with software applications. They use appliware to
perform their job. Billions of people around the planet are
direct or indirect users of software applications. About
500 000 people use CATIA applications to do their jobs.

Appliware developers are developers of software
applications (M1). They produce appliware for the benefit
of M0 actors. They use metaware tools to do their job. The
number of developers is estimated to be about 6
millions [16]. The great majority of them work at the M1
level. Within the context of DS, more than 1200 software
engineers work on developing CATIA applications.

Metaware developers are the meta level actors (M2).
They produce metaware for the benefit of the M1 actors. In
practice, each large company includes a separated group of
people that define processes, work on quality and build/
integrate tools to manage applications development. They
are referred as “know-how providers” in [16]. Their number
is estimated to be around 100 000 for the globe [16]. In the
context of Dassault Systèmes, these tasks are handled by the
Tool Support Team (TST) [20]. This team, made of a few
dozens of people, work on metaware and build in-house
tools to support CATIA development.

At the higher level of the pyramid, the number of people
dealing with meta-meta models (M3) is obviously even
lower. It might be something around a few thousands for the
whole planet because most of the time the meta-meta level

is not expressed. However, this could change in the future in
particular if the MDA and MOF find their place in industry.

5. The engineering dimension (D2)

Though it is an over-simplification, the waterfall
lifecycle clearly shows that software products are not only
made of programs: software also includes requirement
specifications, global design, detailed design, etc. This
leads to dimension D2.

5.1. The engineering pyramid (D2)

Dimension D2 aims at structuring software artefacts
following the a very basic engineering process. For the sake
of simplicity, only 4 levels are distinguished in the context
of this paper, namely the requirement level (R), the
architectural level (A), the design level (D), and the
implementation level (I). This view is obviously a huge
simplification of the software realm. The purpose is just to
cross this dimension with the other ones, so the model must
be simple enough to get understandable results. The next
figure shows the engineering product pyramid. Each level is
illustrated by different examples. More detailed examples
are provided in next sections.

5.2. The engineering / actor pyramid (D2)

Software lifecycles like the waterfall model not only
help in identifying the variety of software artefacts. They
also make it clear that various actors with different skills are
involved in the production of software. Though the
engineering/actor pyramid is not depicted, each level of the
D2 pyramid involves different actors: requirement
engineers, software architects, designers, and developers. A
typical project is formed by many developers, but only few
architects.

D2
Requirements

Architecture

Design

Implementation

Use
cases

UML class
diagrams

C# impl.
EJB
impl.

Cobol impl.

alternatives

R

A

D

I

Deployment
diagram

State
charts

DB impl.

of
entities

D2
Requirements

Architecture

Design

Implementation

Use
cases

UML class
diagrams

C# impl.
EJB
impl.

Cobol impl.

alternatives

R

A

D

I

Deployment
diagram

State
charts

DB impl.

of
entities

Figure 5. D2: the engineering pyramid

Tom Mens
103

5.3. Crossing D1 and D2

Confusing the meta dimension and the engineering
dimension is quite common, especially when considering
the higher levels of abstractions. These two dimensions are
however truly orthogonal. For instance, there are
architectural models (A-M1), architectural meta-models
(A-M2), design model (D-M1), design meta-models (D-
M2) and so on. Figure 6 illustrates this property by means
of a very simplified yet consistent example. The banking
application of the virtual ACME company is considered.

In fact, Figure 6 is centred around column M1 (models)
because the engineering process we speak about is defined
on models. The reading of the figure should therefore start
from that column: other columns are derived from M1.
Column M2 acts as the key for the concepts instantiated in
column M1. That is, column M2 describes the various meta-
models in an informal way, using a UML-like class diagram
notation. In fact, boxes, lines and symbols are used to
described the meta-models (see column M3). On the
opposite side column I describes a particular state of the real

world as modelled for the purpose of the ACME banking
software. The reader is invited to carefully read Figure 6
which is expected to provided enough intuitive material to
grasp the idea.

5.4. Cross-links between levels and co-evolution

All the concepts presented in Figure 6 are connected.
However, for the sake of readability only a few links have
been drawn between the different cells. The nature of the
cross-links depends on the dimension considered.

Vertical cross-links correspond to tracability links
between the artefacts produced during the software life-
cycle. At the level of meta-model tracability links can just
be modelled as regular associations. We first applied this
approach to link software architecture and source code in
the context of java beans [18], and then in the context of
CATIA [22]. Maintaining these links is fundamental to
support co-evolution along the engineering dimension (D2),
and in particular architecture/implementation(A/I) co-
evolution. Tracability between models is considered as an
important issue in the MDA approach [14].

Figure 6. Crossing the meta-dimension (D1) with the engineering dimension (D2)

D3

D2
Use caseActor

Requirement

Node Executable

Subsystem

Components

Connectors

Functional Req.

Non Funct. Req.

Feature

Class Association

AssociationEnd

JavaClass

Statement

Package

Expression

JavaMethodJavaField

M2

class client implements Serializable {
private String name ;
private Vector Accounts ;
public String getName() {

return this.name ;
}
public void setName(String name) {

if (name == null)
throws new NullPointerException() ;

this.name = name

Client
*

accountsclient

name : string

1

balance : int

R1: all transfers must
secured

Cash
Machine

<<tcpip>>
Bank

Server

widthdraw

transferMoney
client

R2: clients can transfer
money either via cash
machines and internet

Account

…

R3: withdraw requires
previous identifiication

M1
Instances

D1

Symbol

Lines

Boxes

M0

Tue 24 Dec, 10pm
Tom wants to withdraw
100€ from the cash machine
located "12 rue de la
monnaie" at Bruxelles

tom : client

The XB12 feature is
running on the cash
machines. The cash
machine Cs29485 is
connected to the ACME
bank server executable
XP23Serv via a secure
connector.

balance= 24600

a231 : Account

balance= 300

a2204 : Account

name = "tom"

tom : Client

ACME bank
server

Cs29485

26400

300

"tom"

2

R

A

D

I

M3
Models Meta-models Meta-meta Models

Java objects References to objects

Appliware execution
Appliware Metaware

Software

Cs292385 Cs291285

D3

D2
Use caseActor

Requirement

Node Executable

Subsystem

Components

Connectors

Functional Req.

Non Funct. Req.

Feature

Class Association

AssociationEnd

JavaClass

Statement

Package

Expression

JavaMethodJavaField

M2

class client implements Serializable {
private String name ;
private Vector Accounts ;
public String getName() {

return this.name ;
}
public void setName(String name) {

if (name == null)
throws new NullPointerException() ;

this.name = name

Client
*

accountsclient

name : string

1

balance : int

R1: all transfers must
secured

Cash
Machine

<<tcpip>>
Bank

Server

widthdraw

transferMoney
client

R2: clients can transfer
money either via cash
machines and internet

Account

…

R3: withdraw requires
previous identifiication

M1
Instances

D1

Symbol

Lines

Boxes

Symbol

Lines

Boxes

M0

Tue 24 Dec, 10pm
Tom wants to withdraw
100€ from the cash machine
located "12 rue de la
monnaie" at Bruxelles

tom : client

The XB12 feature is
running on the cash
machines. The cash
machine Cs29485 is
connected to the ACME
bank server executable
XP23Serv via a secure
connector.

balance= 24600

a231 : Account

balance= 24600

a231 : Account

balance= 300

a2204 : Account

balance= 300

a2204 : Account

name = "tom"

tom : Client

name = "tom"

tom : Client

ACME bank
server

Cs29485

26400

300

"tom"

2

R

A

D

I

M3
Models Meta-models Meta-meta Models

Java objects References to objects

Appliware executionAppliware execution
AppliwareAppliware Metaware

Software

Cs292385 Cs291285

Tom Mens
104

Horizontal cross links are different in nature: they relate
an entity to its model and conversely a model to its
instances. The modelling of these cross-links constitutes the
basis to support co-evolution along the meta-dimension and
in particular meta-model/model (M2/M1) co-evolution.

6. The representation dimension (D3)

The reader might have noticed that all the examples in
Figure 6, do not correspond to the same kind of
representations. In fact one can imagine many other
alternative representations for each cell. What is needed is
an additional dimension to represent these variations. This
leads to D3, the “representation dimension” (D3).

6.1. The representation pyramid (D3)

It is important to recognize that a single piece of
information can be represented in many different ways
ranging from implicit representations to very concrete ones.
The fact that a piece of data is not explicitly represented as
a sequence of bits does not mean that it does not exist. For
instance, most of the time, software architecture is not
explicitly represented. Software architects maintains some
mental images and this might be enough. To communicate,
box-and-arrows diagrams are often used. Other information
is also represented by means of natural languages. Or it is
simply part of the “implicit knowledge” of a given
company. These kind of representations are obviously not
adapted to automated processing. Very concrete
representations are required when tools support is needed.

The figure above depicts the representation pyramid.
Though there is a continuum of abstraction levels, only
three levels are named for the sake of simplicity: implicit
representation (IR), abstract representation (AR) and
concrete representation (CR). The lowest level is oriented
towards tool processing, while the highest level represents
implicit knowledge. Though the actor pyramid is not
depicted human actors would be at the top of the pyramid
while the many tools that process concrete representations
would be at the lower level.

The shape of the pyramid is justified by the fact that a
very large set of representation techniques can be used to
represent a particular software entity. This includes for
instance graph of objects in memory, tuples in a database,
XML files, etc. Concrete representations greatly vary
depending on the purpose of the tool considered. For
instance a compiler, a syntax editor and a test coverage tool
might represent the same program with very different
internal structures. That’s just a matter of concrete
representation.

Figure 8. D1+D3: Alternatives representations of a Java program (I-M) and a Java meta-model (I-MM)

: Class

name = "Client"

file ::= { <imports> }
{ classdecl | interfdecl }

classdecl ::= "class" <id>
["extends" <id> { "," <id> }]
["implements" <id> { "," <id> }]
<classbody>

interfdecl ::= "interface" <id>
["extents" <id> { "," <id> }]
<interfacebody>

…

Class

name

Interface

name

Implements

0..1
superclass CExtendsC

* subclasses

* *

IExtendsI

*

*
super

package bank ;
import java.io ;

class Account {
…

}
class Client implements Serializable {

…
}

Package

name
isSealed

* *

<package name = "bank" sealed = "false" >
<import packagename="java.io" />
<import packagename="java.lang" />
<class name="Bank.Account">

<cextendsc classname="java.lang.Object" />
<implements itfname="java.io.Serializable" />

</class>
…

</package>

<!ELEMENT package (import*,(class|interface)*)>
<!ATTLIST package name ID #REQUIRED >
<!ATTLIST package sealed PCDATA #REQUIRED >

<!ELEMENT import EMPTY>
<!ATTLIST import package ID #REQUIRED >

<!ELEMENT class (cextendsc,implements*)>
<!ATTLIST class name ID #REQUIRED >

<!ELEMENT interface (iextendsi*)>
<!ATTLIST interface name ID #REQUIRED >

<!ELEMENT cextendsc EMPTY>
<!ATTLIST cextencs ID #REQUIRED >
…

Imports

* clients

targets*

Create table PACKAGE (
name varchar,
sealed integer

)
Create table CLASS (

name varchar,
superclass varchar

)
Create table IMPLEMENTS (

classname varchar,
interfacename varchar

)
…

PACKAGE
name sealed
bank false
java.io true
java.lang true

IMPLEMENTS
classname interfacename
bank.Clent java.io.Serializable
…

CLASS
name superclass
bank.Account java.lang.object
bank.Client java.lang.object

…M1

M2

D1

D3UML/MDA Language Database XML

M
E

T
A

W
A

R
E

A
P

P
L

O
W

A
R

E

D2

: Package

name = "bank"
sealed = false

o : Class

name = "Object"

: Class

name = "Account"

: Interface

name = "Serializable"

Implements

superclass superclass

: Class

name = "Client"

: Class

name = "Client"

file ::= { <imports> }
{ classdecl | interfdecl }

classdecl ::= "class" <id>
["extends" <id> { "," <id> }]
["implements" <id> { "," <id> }]
<classbody>

interfdecl ::= "interface" <id>
["extents" <id> { "," <id> }]
<interfacebody>

…

Class

name

Interface

name

Interface

name

Implements

0..1
superclass CExtendsC

* subclasses

* *

IExtendsI

*

*
super

package bank ;
import java.io ;

class Account {
…

}
class Client implements Serializable {

…
}

Package

name
isSealed

* *

<package name = "bank" sealed = "false" >
<import packagename="java.io" />
<import packagename="java.lang" />
<class name="Bank.Account">

<cextendsc classname="java.lang.Object" />
<implements itfname="java.io.Serializable" />

</class>
…

</package>

<!ELEMENT package (import*,(class|interface)*)>
<!ATTLIST package name ID #REQUIRED >
<!ATTLIST package sealed PCDATA #REQUIRED >

<!ELEMENT import EMPTY>
<!ATTLIST import package ID #REQUIRED >

<!ELEMENT class (cextendsc,implements*)>
<!ATTLIST class name ID #REQUIRED >

<!ELEMENT interface (iextendsi*)>
<!ATTLIST interface name ID #REQUIRED >

<!ELEMENT cextendsc EMPTY>
<!ATTLIST cextencs ID #REQUIRED >
…

Imports

* clients

targets*

Create table PACKAGE (
name varchar,
sealed integer

)
Create table CLASS (

name varchar,
superclass varchar

)
Create table IMPLEMENTS (

classname varchar,
interfacename varchar

)
…

PACKAGE
name sealed
bank false
java.io true
java.lang true

IMPLEMENTS
classname interfacename
bank.Clent java.io.Serializable
…

CLASS
name superclass
bank.Account java.lang.object
bank.Client java.lang.object

…

PACKAGE
name sealed
bank false
java.io true
java.lang true

PACKAGE
name sealed
bank false
java.io true
java.lang true

IMPLEMENTS
classname interfacename
bank.Clent java.io.Serializable
…

IMPLEMENTS
classname interfacename
bank.Clent java.io.Serializable
…

CLASS
name superclass
bank.Account java.lang.object
bank.Client java.lang.object

…

CLASS
name superclass
bank.Account java.lang.object
bank.Client java.lang.object

…M1

M2

D1

D3UML/MDA Language Database XML

M
E

T
A

W
A

R
E

A
P

P
L

O
W

A
R

E

D2

: Package

name = "bank"
sealed = false

: Package

name = "bank"
sealed = false

o : Class

name = "Object"

: Class

name = "Account"

: Class

name = "Account"

: Interface

name = "Serializable"

: Interface

name = "Serializable"

Implements

superclass superclass

D3
Implicit repr.

Abstract repr.

Concrete rep.

Text

Objects

mental
image

XML
files

alternatives

DB tables

IR

AR

CR

Lines and boxes
. . .

. . .

Reification
of

entities

D3
Implicit repr.

Abstract repr.

Concrete rep.

Text

Objects

mental
image

XML
files

alternatives

DB tables

IR

AR

CR

Lines and boxes
. . .

. . .

Reification
of

entities

Figure 7. D3: the representation pyramid

Tom Mens
105

6.2. Crossing D3 and D1-D2

Though this might not be obvious, the representation
dimension D3 is orthogonal both to the engineering
dimension D2 and the meta dimension D1. Due to space
constraint only small slices of the space could be provided.

Figure 8 on the previous page illustrates the variety of
concrete representations both for a java program (M1) and
a java meta-model (M2). At both levels, the same
information is represented in different ways. Since all
alternative representations are more or less at the same level
of abstraction with respect to D3, this example illustrates
the width of the representation pyramid but not its height.

The continuum from implicit representations to very
concrete ones is illustrated in Figure 9 for the metaware
column (M2). This small slice of the software space
illustrates in particular the notion of conceptual meta-
model, specification meta-model and implementation meta-
model as well as metaware tool. Due to limitation space,
Figure 9 illustrates the height but not the width of D3
pyramid: only one possible representation is selected when
going down from one level to the next one.

A very simple example of meta-model (a small subset of
the java language) has been selected for the sake of clarity.
In practice the approach has to be applied on much more
complex meta-models, such as proprietary architectural
meta-model (e.g. [20][27])1.

The implicit knowledge a java programmer could have
about the java language would fit on the top of the pyramid.
A programmer might know for instance that java provides
simple inheritance between “classes”, yet a “class” may
implement multiple “interfaces”. This is the implicit part of
the metaware. Just implicit knowledge.

At the other extremity of the spectrum, we found very
concrete metaware artefacts managed by metaware tools. In
the case of a programming language, metaware tools
include all tools that parse, analyse, interpret, and
manipulate programs: interpreters, compilers, browsers,
etc. Obviously, each tool have an embedded knowledge of
the language it manipulates. This knowledge is represented
somehow in the code of the tool. This observation is
consistent with what Lammel and Verhoef report in [24].

As show in Figure 9, the role of meta-models is central
to metaware. Meta-models makes the bridge between
concrete metaware items and informal metaware
knowledge. Meta-models constitute the conceptual part of
the metaware. In the academic world, the term meta-level
usually evokes this part, because meta-models are neat
abstractions to reason about. Unfortunately our experience

1. For a full understanding of the various steps described in Figure 9 it is
assumed that the reader has both a knowledge of java and the
understanding of the refinement process as described in [30]. .

shows that this part is often missing in industry. Though the
term meta-level might not evoke anything in large
companies, metaware does exist. It takes however the form
of software development tools. Many of these tools are
complex and often proprietary [20]. Recovering meta-
models is important in particular since meta-models capture
the application independent part of the company know-
how [32].

Finally it should be noted that the distinction made
between conceptual meta-model, specification meta-model
and implementation meta-model is indeed based on the

Class

name

Interface

name

Implements

0..1
superclass CExtendsC

* subclasses

* *

IExtendsI

*

*
super

Package

name
isSealed

* *

Package

name : String
isClass : boolean
isInterface : boolean

Class

superclass

0..1

*

name : String

interfaces

*

1

Class

-shortname : String
-isClass : boolean

-retrieveInterfaces() : List
+getName() : String
+isClass() : boolean
+isInterface() : boolean
+getSuperclass() : Class
+getInterfaces() : List
+getPackage() : Package

-super

0..1
post : result = isClass

post : result = not isClass

class Class {
private String shortname ;
private boolean isClass ;
private Class super ;
private Vector retrieveInterfaces() { … }
public String isClass() { return isClass ; }
public boolean isInterface() { return ! IsClass ; }
public Class getSuperclass() { return super ; }
public String getName() { return name+getPackage().getName(); }
…
Class() { .. }

}

post : result = super

D3

Conceptual meta-model

Specification meta-model

Implementation meta-model

Tool derived from
the meta-model

Textual language
specification

Programming
knowledge

class
inheritance

interface

Optimizing
compiler
jcv0.2.4

context c:Class
inv i1: c.superclass->isEmpty

= c.name="java.lang.Object"
inv i2: c.name.startsWith(c.package.name)

context Class
inv i3 : isClass xor isInterface
inv i4 : isInterface implies superclass->isEmpty
inv i5 : superclass->notEmpty implies

superclass->isClass
inv i6 : c.interfaces->forall(i | i.isInterface)

post : result = shortName.concat(package.name)

Class

name

Interface

name

Implements

0..1
superclass CExtendsC

* subclasses

* *

IExtendsI

*

*
super

Package

name
isSealed

* *

Package

name : String
isClass : boolean
isInterface : boolean

Class

superclass

0..1

*

name : String

interfaces

*

1

Class

-shortname : String
-isClass : boolean

-retrieveInterfaces() : List
+getName() : String
+isClass() : boolean
+isInterface() : boolean
+getSuperclass() : Class
+getInterfaces() : List
+getPackage() : Package

-super

0..1
post : result = isClass

post : result = not isClass

class Class {
private String shortname ;
private boolean isClass ;
private Class super ;
private Vector retrieveInterfaces() { … }
public String isClass() { return isClass ; }
public boolean isInterface() { return ! IsClass ; }
public Class getSuperclass() { return super ; }
public String getName() { return name+getPackage().getName(); }
…
Class() { .. }

}

post : result = super

D3

Conceptual meta-model

Specification meta-model

Implementation meta-model

Tool derived from
the meta-model

Textual language
specification

Programming
knowledge

class
inheritance

interface

Optimizing
compiler
jcv0.2.4

Class

name

Interface

name

Interface

name

Implements

0..1
superclass CExtendsC

* subclasses

* *

IExtendsI

*

*
super

Package

name
isSealed

* *

Package

name : String
isClass : boolean
isInterface : boolean

Class

superclass

0..1

*

name : String

interfaces

*

1

Class

-shortname : String
-isClass : boolean

-retrieveInterfaces() : List
+getName() : String
+isClass() : boolean
+isInterface() : boolean
+getSuperclass() : Class
+getInterfaces() : List
+getPackage() : Package

-super

0..1
post : result = isClass

post : result = not isClass

class Class {
private String shortname ;
private boolean isClass ;
private Class super ;
private Vector retrieveInterfaces() { … }
public String isClass() { return isClass ; }
public boolean isInterface() { return ! IsClass ; }
public Class getSuperclass() { return super ; }
public String getName() { return name+getPackage().getName(); }
…
Class() { .. }

}

post : result = super

D3

Conceptual meta-model

Specification meta-model

Implementation meta-model

Tool derived from
the meta-model

Textual language
specification

Programming
knowledge

class
inheritance

interface

Optimizing
compiler
jcv0.2.4

context c:Class
inv i1: c.superclass->isEmpty

= c.name="java.lang.Object"
inv i2: c.name.startsWith(c.package.name)

context Class
inv i3 : isClass xor isInterface
inv i4 : isInterface implies superclass->isEmpty
inv i5 : superclass->notEmpty implies

superclass->isClass
inv i6 : c.interfaces->forall(i | i.isInterface)

post : result = shortName.concat(package.name)

Figure 9. D3: Metaware

Tom Mens
106

application of the principles introduced by Fowler [30].
These levels are usually applied on models to develop
appliware through successive refinement. We found
however these concepts very useful to categorize existing
meta-models. In fact, reading Figure 9 from bottom to top
clearly suggests a forward engineering process, while
reading the figure from top to bottom leads to a reverse
engineering process. While D2 is centred around appliware
engineering, D3 is centred around metaware engineering.

7. Evolution: entering the fourth dimension

As depicted in Figure 10, evolution can be introduced in
the conceptual framework by adding a fourth orthogonal
dimension representing time.

This modelling put emphasis on the fact that every
classes of software artefacts evolve. Everything evolve or
will evolve soon or later. Large companies with a long
background about software development know that. Along
the years and decades they accumulate know-how about
evolution-in-the-large. However, stability is still a very
common yet implicit assumption made in many research
projects. We are not aware for instance of much research
work concerning meta-model evolution.

Co-evolution phenomena can easily represented by
crossing one abstraction dimension with the time
dimension. A pair of cells X and Y leads to co-evolution
that will be noted X/Y-CoE. Figure 11 depicts how
evolution interact with the engineering dimension revealing
for example architecture/implementation co-evolution (i.e.
A/I-CoE). The figure also suggests that the rate of changes
greatly vary between software artefacts. For instance, the
architecture of a software is expected to be much more
stable that its implementation.

Figure 12 add time to the meta-dimension. Notice that
instance evolution (M0-E) corresponds to program
execution. The rate of change is therefore extremely high,
especially when compared with higher level of abstractions.
Similarly models (e.g. programs) are much more unstable
than meta-models (e.g. languages).

The conceptual framework is useful to structure ideas
but it is sometimes too abstract to get a real feeling of what
happen in practice. Let us illustrate the concept of meta-
model and model co-evolution (M2/M1-CoE).

8. Example of M2/M1 co-evolution in industry

From our collaboration with Dassault Systèmes we can
draw various conclusions about large scale software
development and evolution. Most conclusions could also
apply to other industrial contexts as well.

(1) Evolution-in-the-large is often achieved through ad-
hoc processes, tools and concepts. This should not be
surprising because many problems are discovered on the
run. Pragmatic solutions are incrementally elaborated in a
“as-needed” mode and sometime in “panic” mode to solve
unexpected issues. For instance, in [20] we describe how
ADELE, the configuration management tool developed by
our team, was adopted at large by Dassault Systèmes and
how the huge requirements in collaborative development
lead to “hot” periods. Large companies where thousands of
developers work on the same software cannot stop their
development process when they find problems. They have
to find solutions.

(2) Architecture is fundamental to evolution-in-the-large
but its explicit representation with ADLs raises more
problems than it solves. Industry is code centric and most
architectural facts should be extracted from the code.
Initially one of our goals was to study what kind of ADLs
could be applied to support the evolution of CATIA
[23][28]. We soon discover however that a much better
approach was to provide architectural recovery and
software exploration tools [22][29].

(3) The notion of software architecture is really more
complex than the academic vision tend to explain and its
exact nature really depends on the company culture and
know-how [23]. In particular, we didn’t found a single
definition of architecture really helpful in practice. We

D1
D2

D3

MMM

MM

M

I

D

A

R

CR

AR

IR

I

D4Evolution dimension
time

D1
D2

D3

MMM

MM

M

I

D

A

R

CR

AR

IR

I

D4Evolution dimension
time

Figure 10. Entering the fourth dimension

Meta dimension

M2

M1

M0I

D1
M3

D4 Instance
evolution

Model
evolution

Meta-model
evolution

Meta-meta-model
evolution

Meta dimension

M2

M1

M0I

D1
M3

D4 Instance
evolution

Model
evolution

Meta-model
evolution

Meta-meta-model
evolution

Engineering dimensionD2

A

D

I

D4 Implementation
evolution

Design
evolution

Architecture
evolution

Requirements
evolution

R
Engineering dimensionD2

A

D

I

D4 Implementation
evolution

Design
evolution

Architecture
evolution

Requirements
evolution

R

A

D

I

D4 Implementation
evolution

Design
evolution

Architecture
evolution

Requirements
evolution

R

Figure 12. Crossing D1 and D4Figure 12. Crossing D1 and D4Figure 11. Crossing D2 and D4

Tom Mens
107

found on the contrary that many of the architectural
concepts used at-large within DS were beyond traditional
concepts. For instance we identified the business
architecture. It describes how software can be sold in parts.
This structure is quite complex at DS.

(4) The company “know-how” is in part immaterial
knowledge shared among the company, but in part
materialized by in-house metaware tools. These tools
support appliware development and constrain appliware
evolution by enforcing specific processes and in-house
quality standards. These tools are either bought and then
customized, or developed internally by the tool support
team. Over the last decades DS has developed a huge
amount of metaware to support for instance configuration
management, testing, component-based-development, etc.
This range from sophisticated tools to hand-craft tools .

(5) The distinction must be made between metaware and
appliware, between M2 and M1, between models and meta-
models, especially in the context of software architecture.
Too often these levels are confused in this context; in large
part because architecture if a fuzzy notion. The distinction
must be made between architectural models (A-M1), which
are application dependent, and architectural meta-models
which represent reusable know-how about building
software (A-M2). This difference is illustrated in Figure 6
in the respective cells. Hofmeister and her colleagues
describe reusable architectural know-how resulting from
Siemens experience in [20]. This book is organized around
4 meta-models presented on the front and back covers of the
book. Extracts of the architectural meta-models we
recovered from DS’ metaware can be found in [22][23].

(6) Everything evolve in large companies. In particular
the notion of architecture and the architecture of
applications. To be more precise both architectural meta-
model evolution (A-M2-E) and architectural model
evolution (A-M1-E) take place. In the first case this is the
architectural know-how which evolves, in the second case
this is the architecture of particular applications. This leads
to architectural meta-model/model co-evolution issues (A-
M2/M1-E). That is, without entering into the
implementation details (I), one can observe that both
architectural concepts and their occurences in software
applications evolve.

(7) The evolution of the architectural concepts can have
a strong impact on the architecture of the application, but
also the other way around. For instance in the mid 90’s DS
decided to develop a component technology similar to
Microsoft’ COM but with also a set of unique features to
cope with DS specific needs [21]. This technology evolved
at the same time as the applications built using it. DS know-
how about component-based architectures greatly evolved
with the experience gained in developing large set of
components (about 8000 today). Note that when the

concepts underlying the component technology change,
component-based applications may or may not be impacted.
For instance sometimes an architectural concept reveals to
be harmeful after a long period of use without noticable
problem. This was the case for instance for a feature
included in the DS component technology. This feature
greatly simplified component developement but it later
revealed to be responsible of significant decreases in
performance when used at-large. DS then decided to
remove it from the set of features available to develop
software. From a conceptual point of view this corresponds
to a removal of an element from the architectural meta-
model. Components using this feature had to be identified
to be upgraded. Sometimes, external events make it
necessary to improve the architectural meta-model. For
instance a few years ago DS decided to make its component
technology available to partners such as Boeing. Before this
DS used a visibility model based on the traditional public/
private distinction to control dependencies between
software entities. This was enough within the context of DS,
but not enough for externalisation because more levels had
to be added to better control external dependencies. From a
conceptual view, this modification just imply at the level of
meta-model to change the type of the “visibility” meta
attribute, as well as to update the constraints associated with
this attribute in the meta-model. From a concrete point of
view, the metaware tool that control dependency
management was modified and the level of visibilty had to
be assigned for each software entity concerned. From a
conceptual point of view, this modification consiste in
updating in architectural models the value of the visibility
attribute of each entity concerned.

(10) Metaware tools developed within large companies
are often built in an incremental and in ad-hoc way,
following the needs of the company. These tools are often
hand-craft using for example unix scripts to automate
transformations. As shown in the previous example some
transformations occur only a few time and building a tool
from scratch could be too costly. One important issue in this
context is to facilitate the production of metaware.
Declarative meta-progamming or using meta-model driven
environment are very promizing approaches in this context.

9. Conclusion

Software evolution is too often confused with program
evolution. Software is much more than programs. Just like
programs, languages follow Lehman’s laws of continuing
changes: in order for a language to continue to be useful
(and used) in the real world it must change continuously.
Languages are integral part of software. Languages, tools
and programs evolve in parallel.

While architecture and implementation co-evolution has

Tom Mens
108

been identified as a natural process during evolution-in-the-
large, this paper has unveiled the existence of meta-model
and model co-evolution, which is a generalisation of
language/program co-evolution. We shortly described for
instance the architectural meta-model/architectural model
co-evolution problem as it occurs in industry.

These complex issues has been studied thanks to the
provision of conceptual framework. The framework is
based on the fact that software artefacts can be classified
along a three abstraction dimensions. The meta-dimension
is based on the four layers and includes models and meta-
models. The engineering dimension distinguishes software
artefacts according to the phase in which they are produced.
The representation dimension makes it possible to model
artefacts that range from implicit and fuzzy knowledge to
very concrete representations used by tools.

Emphasis has been put on the need to make the
distinction between metaware and appliware. Appliware is
the set of applications, while metaware is software that help
in developing and controlling appliware. In fact, software is
metaware plus appliware. Software evolution should not be
restricted to appliware evolution, metaware also evolves.

Some experts predict that the MDA standard could have
a strong influence on the future of software engineering
[17][14]. However, failure is still possible. Historically,
most approaches looking only towards the future have
failed. Roughly put, while ADLs were designed to make the
architecture explicit (and failed), Model Driven
Engineering is designed to make explicit models and meta-
models. This is certainly the way to go, but this raises some
questions. Will software engineers accept to draw UML
models if evolution is not supported in a very effective way?
What about extracting models and meta-models from
existing software? What about model and meta-model co-
evolution in the context of the MDE? Could we assume that
“standard” meta-model will not evolve in the long run?
What about reverse engineering of meta-models from
legacy and proprietary metaware?

We see Model Driven Engineering as a very promising
approach. But we also believe that this approach will fail if
evolution is poorly supported and if legacy software is not
taken into account. Metaware evolution and metaware
reverse engineering are open research issues as well as
effective tool support for meta-model/model co-evolution.

10. References

[1] T. Mens, J. Buckley, M. Zenger, A. Rashid, “Towards a Taxonomy
of Software Evolution”, USE 2003

[2] M. Felici, “Taxonomy of Evolution and Dependability”, Workshop
on Unanticipated Software Evolution, USE’2003.

[3] L. O’Brien, C. Stoermer, C. Verhoef, “Software Architecture
Reconstruction: Practice Needs and Current Approaches”, SEI
Technical Report CMU/SEI-2002-TR-024, 2002

[4] A.E. Hassan, R.C. Holt, “Architecture Recovery of Web
Applications”, ICSE 2002

[5] S. Boucetta, H. Hadjami, F. Kamoun, “Architectural Recovery and
Evolution of Large Legacy Systems”, IWPSE 1999

[6] Q. Tu, M.W. Godfrey, “An Integrated Approach for Studying
Architectural Evolution”, IWPC 2002

[7] J.B. Tran, M.W. Godfrey, E.H.S. Lee, R.C. Holt, “Architectural
Repair of Open Source Software”, IWPC 2002

[8] J. Zhao, H. Yang, L. Xiang, B. Xu, “Change impact analysis to
support architectural evolution”, Journal of Software Maintenance
and Evolution, 14:317–333, 2002

[9] R. Wuyts, “A Logic Meta-Programming Approach to Support the
Co-Evolution of Object-Oriented Design and Implementation”, PhD,
Vrije yiversity of Brussel, 2001.

[10] K. Mens, T. Mens, M. Wermelinger, “Supporting unanticipated
software evolution through intentional software views”, USE 2002

[11] T. D’Hondt, K. De Volder, K. Mens, R. Wuyts, “Co-evolution of
Object-Oriented Software Design and Implementation”, Proc. Int’l
Symp. Software Architectures and Component Technology: The
State of the Art in Research and Practice, Kluwer, 2000

[12] OMG, “MDA: the OMG Model Driven Architecture”, http://
www.omg.org/mda/

[13] OMG, "Model Driven Architecture - A Technical Perspective",
ormsc/01-07-01, 2001

[14] A. Kepple, J. Warmer, W. Bast, “MDA Explained - The Model
Driven Architecture: Practice and Promise”, Addison Wesley, 2003

[15] S. Kent, “Model Driven Engineering”, LNCS 2335, 2002
[16] X. Blanc, P. Desfray, “Model Driven Engineering”, in french, to

appear in 2003
[17] J. Bézivin, X. Blanc, “MDA: Towards an Important Paradigm

Change in Software Engineering”, in french, Développeur
Référence, http://www.devreference.net/Develop, July 2002

[18] V. Marangozova, “Linking the Software Architecture with Source
Code”, Master, in french, University of Grenoble, June 1998

[19] Softeam, “Guarantee permanent Model/Code consistency: Model
driven Engineering versus "Roundtrip engineering", 2000

[20] J.M. Favre, J. Estublier, R. Sanlaville, “Tool Adoption Issues in Very
Large Software Company”, 3rd Workshop on Adoption Centric
Software Engineering, ACSE 2003

[21] J. Estublier, J.M. Favre, R. Sanlaville, "An Industrial Experience
with Dassault Systèmes' Component Model", Book chapter in
Builiding Reliable Component-Based Systems, I. Crnkovic, M.
Larsson editors, Archtech House publishers, 2002

[22] J.M.Favre and al., "Reverse Engineering a Large Component-based
Software Product", CSMR'2001

[23] R. Sanlaville, “Software Architecture: An Industrial Case Study
within Dassault Systèmes”, PhD dissertation, in french, Univeristy of
Grenoble, 2002

[24] R. Lammel, C. Verhoef, “Semi-automatic grammar recovery”,
Software Practice and Experience, 2001

[25] J. Estublier, J.M. Favre, “Component Models and Component
Technology”, Book chapter in Builiding Reliable Component-Based
Systems, Archtech House publishers, 2002

[26] J. Warmer, “The Future of UML”, available from www.klasse.nl
[27] C. Hofmeister, R. Nord and D. Soni. Applied Software Architecture.

Addison-Wesley Publisher, 2000.
[28] Y. Ledru, R. Sanlaville, J Estublier, “Defining an Architecture

Description Language for Dassault Systèmes”, 4th International
Software Architecture Workshop, 2000.

[29] J.M. Favre, "GSEE: a Generic Software Exploration Environment",
9th International Workshop on Program Comprehension,
IWPC'2001

[30] M. Fowler, “UML distilled: A brief guide to the standard modelling
language”, Addison Wesley, 1999

[31] OMG, “Meta Object Facilities (MOF) Specification, Version 1.4”,
April 2002

[32] P. Desfray, “MDA – When a major software industry trend meets our
toolset, implemented since 1994”, Softeam white paper, 2001

Tom Mens
109

MDS-Views: Visualizing Problem Report Data of Large Scale Software using
Multidimensional Scaling∗

Michael Fischer and Harald Gall
Distributed Systems Group, Vienna University of Technology

Argentinierstrasse 8/184-1, A-1040 Vienna, Austria
{fischer,gall}@infosys.tuwien.ac.at

Abstract

Gaining higher level evolutionary information about large software systems is key a in validating past and adjusting future
development processes. In this paper we address the visualization of problem reports by taking advantage of the proximity
introduced by changes required to fix a problem. Our analyses are based on modification and problem report data repre-
senting the system’s history. For computation of proximity data we applied a standard technique called multidimensional
scaling (MDS). Visualization of feature evolution is enabled through the exploitation of proximity among problem reports.
Two different views support the assessment of a system design based on historical data. Our approach uncovers hidden
dependencies between features and presents them in easy-to-evaluate visual form. Regions of interest can be selected inter-
actively enabling the assessment of feature evolution on an arbitrary level of detail. A visualization of interwoven features
can indicate locations of design erosion in the architectural evolution of a software system.

1. Introduction

Our work is focused on the evolution of software features since they are a natural unit to describe software from the
perspective of the application user and the software developer as well. A software design may erode during the project’s
lifetime and features which were initially implemented in separated modules become more and more interwoven [8]. Our
goal is to reveal this degeneration through the use of information collected during the implementation and maintenance phase.

In this paper we describe an analysis and visualization method for uncovering dependencies between sub-modules of
software products source tree. Our approach is based on standard techniques and tools and any future project can be adapted
easily to meet the data requirements for analysis. Existing projects often have no bug tracking system at all or the integration
with the revision control system does not track relevant data.

Modification Reports(MR) andProblem Reports(PR) contain an overwhelming amount of information about the reasons
for small or large changes to a software system. Groups of reports can be related to provide a clearer picture about the
problems concerning a single feature or a set of features. Hidden dependencies of structurally unrelated but over time
logically coupled files (i.e. files that most often are changed together although residing in separate modules or subsystems)
further exhibit potential to illustrate feature evolution and possible architectural shortcomings.

The approach presented here addresses this problem by grouping feature related PRs and presenting the results in visual
form. The input data for this process are selected from aRelease History Database(RHDB) [12] which contains MR, PR
and feature data. For every feature which shall be inspected the related PR information is selected from the RHDB. Now,
the distance between two PRs can be expressed as the number of files commonly modified to fix both problems. The more
files they have in common the shorter is the distance between the PRs. On the basis of this proximity data, groups of related
reports are formed by applying a technique calledMultidimensional Scaling(MDS) [14] on these data. Results of the MDS
process are visualized in a two or optional higher dimensional space. PRs belonging to the same feature are indicated by

∗This work is partially funded by the Austrian Ministry for Infrastructure, Innovation and Technology (BMVIT) and the European Commission under
EUREKA 2023/ITEA-ip00004 ’from Concept to Application in system-Family Engineering (CAFÉ)’.

Tom Mens
110

the same symbol which has been selected to represent the feature. Groups of PRs can be selected interactively and saved for
further processing.

Grouping of PRs can reveal hidden dependences between features but can be also used to identify groups of commonly
modified program code. Results from this analysis can be used as evidence for a poor system architecture or as indication of
design erosion.

The remainder of this paper is organized as follows: Section 2 gives a brief overview of related work in the area of
visualization of large large scale software evolution. In Section 3 we introduce the data sources used. Section 4 describes
the feature extraction process and its results. Section 5 gives short introduction in grouping using multidimensional scaling.
Visualization of problem report data using different views to emphasize different relationships is discussed in Section 6. We
conclude in Section 7 with an outlook to future work.

2. Related Work

In [17] Taylor and Munro describe an approach based on revision data to visualize aspects of large software such as active
areas, changes made, or sharing of workspace between developers across a project by using animated revision towers and
detail views. Since their approach is purely base on revision history, additional important information such as problem reports
or feature data are not considered for visualization.

Similar to the our working environment used to produce the results presented in this paper, Draheim and Pekacki propose
a framework for accessing and processing revision data via predefined queries and interfaces [9]. Linkage of their data model
with other evolutionary project information – such as problem report data as required for our analysis – and making them
accessible for external queries is beyond the scope of their work.

Mozilla has been already addressed, for example, by Mockus, Fielding and Herbsleb in a case-study about Open Source
Software projects [15]. They also used data from CVS and the Bugzilla bug-tracking system but, in contrast to our work,
focused on the overall community and development process such as code contribution, problem reporting, code ownership,
and code quality including defect density in final programs, and problem resolution capacity as well.

Bieman et. al [5] used change log information of a small program to detect change-prone classes in object oriented
software. The focus was on visualization of classes which experienced frequent changes together which they calledpair
change coupling. Instead of grouping coupled objects they used for visualization standard UML diagram together with a
graph showing the number of pair change couplings between change-prone classes.

3. Building a Release History Database

Our analysis is based on three main sources: (a) modification reports (MR); (b) problem reports (PR); and (c) basically the
executable program to extract feature information. Data in sufficient quantity and quality is offered via publicly accessible
resource from theMozilla project. The MR data are available via the projects Concurrent Versions System (CVS) [7], whereas
the PR information is offered via theBugzilla [1] bug tracking system. The source code package for building the executable
are released frequently and contain all necessary files to compile the program.

3.1. RHDB

We have downloaded the relevant MR and PR, filtered, validated and stored the these data in our Release History Database
(RHDB) [11, 12]. The nucleus of our RHDB is depicted in Figure 1. General information about objects - items or artefacts
- of the software’s program source and modification reports are stored incvsitemandcvsitemlog, respectively. The relation
between them was easy to establish, since the relevant information is contained in consistent form within the logs from the
CVS repository. Problem reports from the bug tracking system are stored in thebugreportentity. Crucial in the reconstruction
of the RHDB was the re-establishment of the linkage between modification reports and problem reports since no formal
mechanisms are provided by CVS to link this information. In the rebuild process we used the problem report IDs found in the
modification reports of CVS to link modification reports and problem reports. These IDs have been entered by the authors
of source code modifications as free text. Natural problems were: context not clear in which an ID was used, incorrect
report IDs (typos) or no ID at all. Whilst we were able to solve the first two problems with more or less effort, we didn’t
find a practicable solution for the third problem to reconstruct this information, e.g., from patch data. IDs in modification
reports are detected using a set of regular expressions. A match is rated according to the confidence value we have assigned

2

Tom Mens
13

Tom Mens
111

cvsitemlog

id
cvsitemid
revision
date

* 1*1*1
bugreport

id
bug_severity
short_desc
. . .

cvsitem

id
rcsfile
workfile

cvsitemlogbugreport

cvsitemlogid
bugreportid

ladd
ldel
. . .

. . .

Figure 1. “Nucleus” of the RHDB

to the expression and can behigh (h), medium (m), or low (l). The confidence is considered high if expressions such as
<keyword><ID> can be detected whilst a five digit number just appearing somewhere in the text of a modification report
without preceding keyword is considered low.

To verify the results from the reconstruction process we used patch information which are sometimes attached to problem
reports. These patches contain file name information which can be used to validate the results from the linkage reconstruction.
If a patch was found which confirms the linkage, the rating value is changed from (h) to (H), (m) to (M) and (l) to (L),
respectively – details can be found in [11].

3.2. Selection of problem reports

To improve results of this analysis process, we need to reduce the impact of PRs not directly related with fixing a specific
functional problem. We inspected the description of the largest reports and tried to find a criterion for the selection of
our data sets. Reports such as “license foo” (98089,7961), “printfs and console window info needs to be boiled away for
release builds” (47207,1135), or “Clean up SDK includes” (166917,888) - the numbers in parenthesis indicate the problem
report number and number of referenced files respectively - are considered as not relevant since they primarily concern
administrative problems. When the problem reports become smaller they are getting more interesting for the evalution of
coupling between features. While the following two reports are still concerned with administrative issues “libtimergtk s is
causing link problems” (11159, 300) and “repackage resources into jar files” (18433, 289), the remaining reports begin to
focus on programming and bug fix problems: “[meta] necko api revision bugs for embedding” (74221, 254), “[CSS] Rule
matching performance improvements” (78695, 234), “Investigate switching output to use DOM Serializer” (50742, 234),
“change nsCRT::mem* to mem*” (118135, 233). Thus, we have decided to use 255 as limit for the size of bug reports we
accept. This is an arbitrary limit and specific to our configuration. Fortunately, no “major” or “critical” classified PRs are
affected by this criterion.

4. Features

Since features are used in communication between users and developers it is important to know which features are affected
by (future) functional modifications of a software system. According to [13] a feature isa prominent or distinctive aspect,
quality, or characteristic[3, 4] of a software system or systems. For our purposes we will refer to the more practical definition
of a feature asan observable and relatively closed behavior or characteristic of a (software) part[16].

Goal of the feature extraction process is to gain the necessary information to map the abstract concept of features onto
a concrete set of files which implement a certain feature. To extract the required feature data we applied the software
reconnaissance technique [18, 19] within ourLinux (RedHat 8.0& SuSE 8.1) development environment. GNU tools [2] were
already used sucessfully in [10] to extract feature data.

We first created a single statically linked version ofMozilla with profiling support enabled. From several test-runs where
the defined scenarios (see Table 1) were executed, we created the call graph information using the GNU profiler. The call
graph information again was used to retrieve all functions and methods visited during the execution of a single scenario.
Since our analysis process works on the file level, we mapped function and method names onto this higher abstraction level.
In the next processing step, “feature data” were extracted from file name mappings using set operations, e.g., theXml feature
using the following expression:

Xml = (MathML∩XML)/(Core∪HTTP∪PNG∪ fBlank∪hBlank∪ChromeGIF).

3

Tom Mens
13

Tom Mens
112

Table 1. Scenario definitions with features

Scenario Description Feature Color Files
Core mozilla start / blank window / stop Core White 705
HTTP TrustCenter.de via HTTP1 Http DeepPink 28
HTTPS TrusterCenter.de via SSL/HTTP2 Https MediumGreen 6
File read TrustCenter.de from file - - -
MathML mathematic in Web pages3 MathMlExtension YellowGreen 13
About “about:” protocol About Gold 3
PNG sample image4 ImagePNG DarkOrange 10
XML XML Base5 Xml MediumOrchid 65
JPG JPEG Karlskirche6 ImageJPG Cyan 16
fBlank read blank html page from file7 Html DeepSkeyBlue 76
hBlank blank html page via HTTP8 - - -
ChromeGIF Mozilla logo9 ImageGIF SlateBlue1 4
Image - Image OrangeRed1 3

where the names represent the set of files extracted in the previous steps from the executed scenarios. Table 1 also lists the
names assigned to the features, the colors which are used later, and the number of files retrieved. E.g., for theAboutfeature we
determined to following set of files:content/base/src/nsTextContentChangeData.cpp , xpfe/appshell/
src/nsAbout.cpp , andxpfe/appshell/src/nsAbout.h . Finally, we imported these filename information into
the RHDB along with the release number of the program from which the data were retrieved. In our case it wasMozilla
version1.3awith the official freeze date 2002-12-10.

5. Introduction to multidimensional scaling

The goal of multidimensional scaling (MDS) is to map objectsi = 1, . . . , N to points‖xi − xj‖ ∈ Rk in such a way that
the given dissimilaritiesDi,j are well-approximated by the distances‖xi − xj‖ whereask is the dimension of the solution
space. MDS is defined in terms of minimization of a cost function calledStress, which is simply a measure of lack of fit
between dissimilaritiesDi,j and distances‖xi − xj‖. In its simplest case,Stressis a residual sum of squares:

StressD(x1, . . . ,xN) =
(∑

i 6=j

(Di,j − ‖xi − xj‖)2
) 1

2

where the outer square root is just a convenience that gives greater spread to small values [6].
For our experiments we usedmetric distance scalingwhich is a combination ofKruskal-Shepard distance scalingand

metric scaling. Kruskal-Shepard distance scalingis good at achieving compromises in lower dimensions (compared to
classical scaling) andmetric scalinguses the actual values of the dissimilarities in contrast tonon-metric scalingwhich
considers only their ranks [6].

The generation process of the dissimilarity matrix can be formally described as follows. A problem report descriptordi

of a problem reportpi is built of all artefactsan which refer to a particular problem report via their modification reportsmk

(linkage MR – PR; see Section 3):
di = {an|anRmk ∧mkRpi}.

The distance data for every pair of problem report descriptordi, dj are computed according to the formula below and fed

1http://www.trustcenter.de/
2https://www.trustcenter.de/
3http://www.w3.org/Math/testsuite/testsuite/General/Math/math3.xml
4http://www.w3.org/Math/testsuite/testsuite/General/Math/math3.png
5http://www.w3.org/TR/2001/REC-xmlbase-20010627/Overview.xml
6http://www.infosys.tuwien.ac.at/img/karlskirche.jpg
7file:///home/eu/robinson/WWW/blank.html
8http://intra.infosys.tuwien.ac.at:8092/˜robinson/blank.html
9chrome://global/content/logo.gif

4

Tom Mens
13

Tom Mens
113

1001/Http

1010/About

1003/Html

1004/Image

1007/ImageGIF

1008/MathMlExtension

1009/Xml

(a) 1999

1001/Http

1003/Html1007/ImageGIF

1008/MathMlExtension 1002/Https

1004/Image

1009/Xml

(b) 2000

Figure 2. Dependencies between features introduced by large problem reports

into theDissimilarity Matrix.

dist(di, dj) =

{
1 if pi 6Rpj ,
1
2 (1− n

min(si,sj)
) if piRpj

(1)

wheresi andsj denote the size of the descriptorsdi anddj respectively. The fraction12 is used to emphasize the distance
between unrelated objects and “weakly” linked objects. All values are scaled according to the maximum number of elements
the descriptors can have in common, i.e., they are scaled to the size of the smaller one.

An alternative way of specifying distances is to use edges and weights. We use a logarithmic function to emphasize the
connections with higher values, while connections with lower values are weakened. This has the effect that the nodes with
stronger connections are moved closer to each other than nodes with only a few connections. The weight for an edge between
two nodesvi andvj are computed by the following formula, whereasn specifies the current number of connection between
the two nodes andnmax the maximum number of connections between two nodes of this graph:

weight(vi, vj) = 10− b ln(n)
ln(nmax)

∗ 8 + 1.5c (2)

All weights are mapped by the above formula onto a range of[1..9] where 9 means the closest distance. Other integer values
not covered by the given range cause the visualization programxgvis[6] to hang or crash. Now we just need to define when
two problem reports are linked:pi andpj in the RHDB are linked via a software artefactan if a modification reportmk exists
such that

anRmk ∧mkRpi ∧mkRpj

or two modification reportsmk, ml exist such that

anRmk ∧mkRpi ∧ anRml ∧mlRpj .

6. Views

Visualization is a useful technique to present complex interrelationships. We use two different types of views to facilitate
the understanding of evolutionary processes in large software: a)feature-viewfocuses on the problem report based coupling
between the selected features; and b)project-viewdepicts the reflection of problem reports onto the structure of the project-
tree.

6.1. Feature view – projecting PRs onto features

This view focuses on the visualization of features and their dependencies via problem reports. The coupling between two
features is symbolized via edges whereas the number of references is expressed as line-width. Since a feature comprises

5

Tom Mens
13

Tom Mens
114

1001/Http

1002/Https

1007/ImageGIF

1008/MathMlExtension

1009/Xml

1003/Html

1004/Image

1010/About

1006/ImageJPG

1005/ImagePNG

(a) 2001

1001/Http

1002/Https

1009/Xml

1007/ImageGIF

1008/MathMlExtension

1003/Html

1006/ImageJPG

1010/About

1004/Image

1005/ImagePNG

(b) 2002

Figure 3. Dependencies between features introduced by large problem reports

several items (i.e., object of the project tree), a connection between two features may consists of several lines of different
width. They indicate the coupling of files through problem reports on feature level rather than file level. In fact, all entities
contributing to a feature are drawn on the same position, which supports the impression that features are compared.

To reduce the amount of visible edges and to visualize only the most important ones, we used a threshold criterion of
10% of the number of references of the topmost problem report or 20 edges if the number of references is greater than
200. Likewise, in the graphical representation the number of problem reports two features have in common are not depicted.
These numbers are listed in Table 2 for all features. This means that every edge in the following figures (except for Figure 2.a)
represents at least 20 references. Due to the small set of files we identified for the featuresImageGIF, Image, andAboutand
the 10% limit, the coupling for this features may be not very indicative.

Figures 2 and 3 depict the results for the observation periods 1999, 2000, 2001, and 2002, whereas features are aligned
on a circle and colored according to Table 1. From 1998 till 1999 – the situation is depicted in 2.a – we found virtually no
coupling between features. The situation changed in the subsequent observation periods not dramatically but constantly. In
Figure 2.b the situation for the year 2000 is depicted and indicates that the focus shifted fromHttp to other features such as
Html, Xml, andMathMlExtension.

Consecutively, the situation changed substantially – as depicted in Figure 3.a – in year 2001. The partially connected graph
has turned into an almost fully connected graph and also the number of reported and fixed problems have more than doubled
(from 290 to 657). Except featureImagePNG, all features are affected by system-wide changes. In 2002 (see Figure 3.b) the
situation improved slightly since the number of reported problems dropped to 580.

6.2. Project view – projecting PRs onto project-tree structure

The goal of this view is the visualization of the reflection of problem reports onto the structure of the project-tree. Our
method is to assign weights - to both, the edges of the tree structure and the edges introduced through the coupling of
problem reports - and to search for groups in the resulting data set. Output of the optimization process is visualization using
a conventional drawing program, whereas the resulting graph is enhanced with feature information and distance data.

6.2.1 General description

Input data forxgvis and the drawing program, e.g.,xgvis, used for visualization are generated by a Java program. This
program accepts some arguments which allows to control the data selection and generation process. A critical step in the data
generation process is the selection of parameters for the weights since this has a direct impact on the final layout. For edges
of the project-tree we use aweightof 10. Connections via problem reports are weighted 1 for every connection between two
objects - a single report can affect several objects of different directories. This scheme gives more emphasize on the directory
structure compared to connections with 1 or 2 problem reports between nodes. In a first phase of the data generation process,
the objects of the project tree are assigned the respective nodes of the graph. The minimum child size parameterminchildsize

6

Tom Mens
13

Tom Mens
115

Table 2. Total number of “couplings” between features

Feature Period
Feature ...1 ...2 ...3 ...4 ...5 ...6 ...7 ...8 ...9 ..10<2000 2000 2001 2002 Total
...1/Http 0 20 10 7 0 2 2 0 7 4 24 63 155 129 367
...2/Https 0 2 1 0 0 0 0 2 0 0 1 69 61 130
...3/Html 0 6 0 1 46 16 29 1 87 116 140 122 463
...4/Image 0 0 15 5 0 3 2 5 5 54 31 95
...5/ImagePNG 0 0 0 0 0 0 0 0 3 5 8
...6/ImageJPG 0 0 0 0 0 1 0 22 11 34
...7/ImageGIF 0 17 36 0 15 61 75 38 188
...8/MathMLExtension 0 67 0 2 9 32 72 114
...9/XML 0 1 7 34 105 110 249
..10/About 0 2 1 2 1 6

specifies which nodes remain expanded or will be collapsed. Collapsing means that the object information is moved to the
next higher level. We used as default setting a value of 10. To simplify the resulting graph – the completeMozilla project
tree consists of more than 2500 subdirectories – we cut off unreferenced directories. With the compactification parameter
compactit is possible to determine the limit for callapsing directories entries. A limit of 1 means that only unreferenced
directories are collapsed/removed. The effect on the graph is that unreferenced leafes are suppressed.

In the following figures the project-tree, i.e., directory structure, is shown as gray nodes connected by black lines. The
root node is indicated with the name “ROOT” and features are indicated by colored boxes according to the colors given in
Table 1. Coupling between nodes as result of a common problem reports are indicated by pink lines. Broader lines and a
darker coloring means that the number of problem reports two nodes have in common is higher. Black lines indicate the
structure of the project tree. Since the optimization algorithm tries to place connected nodes close to each other, stronger
dependencies can be grasped easily.

One marginal problem is the limited layout area in the two dimensional solution space - all nodes must be placed at least
somewhere within a single plane - the placement of nodes after the optimization is only indicative within a certain radius.
Naturally, this radius depends on the total number of nodes. By zooming-in, it is possible to give a better picture of otherwise
overlayed areas. An n-dimensional solution space could yield better results but is very difficult to visualize. It is also possible
that nodes are placed side by side, not because they share a common problem report, rather they have nothing in common with
other nodes so they could be attracted by them and moved to a different location. In general, the layout after the optimization
is one possible solutions. It also does not mean that a global minimum for the given distances has been achieved.

6.3. Project view results

The initial layout without any optimizationed clustering of the graph for three features –HTTP (DeepPink),HTTPS
(MediumGreen), andHTML (DeepSkyBlue) – after data extraction from the RHDB is depicted in Figure 4. Black lines
indicate the structure of the project tree, whereas pink lines indicate the coupling via problem reports.

A minimal set of three features -HTTP(DeepPink),HTTPS(MediumGreen), andHTML (DeepSkyBlue) - is depicted in
Figure 5. The root of the project tree is indicated by “ROOT”. Easy to see is the placement of HTML features on the right side,
andHTTP, HTTPSon the opposite side. One exception is.xpcom: it can be shifted to the left side during the optimization
process, but it is automatically moved back to its original position by the optimization program. This means the achieved
result is stable and this is an optimal solution for the given weights. Interesting to see is the arrangement of.security
and.netwerk since they were placed close together. In the original layout they were placed in oppositely directions (see
Figure 4). What can be deduced from the placement, is the coupling between certain very close together placed nodes such
as.layout.html.base and.intl.lwbrk , or .netwerk.base and.netwerk.protocol.http .

Figure 6 depicts all features we extracted fromMozilla. The root of the project tree has been shifted away from the
center and its structure has been completely mangled by the optimization procedure on the basis of the given weights. As the
previous figure already shows, it is also possible to assign distinct areas for the features, e.g., theHttp andHttpsarea by the
colors DeepPink and MediumGreen. Features in other areas are not that distinguishable as desired.

Figure 7 depicts a detailed view of the cluttered area of Figure 6 with its coupling between different levels of the project
structure. The positions of the nodes are slightly modified to have a better “viewing position” on the coupling. Since
the coupling lines connect nodes of the project tree not along the project tree path, it may indicate unstable interfaces or

7

Tom Mens
13

Tom Mens
116

ROOT

.layout

.layout.html

.layout.html.base

.layout.base

.extensions
.extensions.cookie

.db

.db.mork

.security

.security.manager

.security.manager.ssl.security.manager.boot

.intl

.intl.lwbrk

.editor.editor.libeditor
.editor.txmgr

.dom

.dom.src

.netwerk

.netwerk.protocol

.netwerk.protocol.http

.netwerk.base.netwerk.cache.netwerk.socket

.content

.content.base

.xpcom

.xpcom.proxy

Core

Http

Https

Html

Image

ImagePNG

ImageJPG

ImageGIF

MathMlExtension

Xml

About

Features:

Figure 4. Initial layout for features: Http, Https, Html

8

Tom Mens
13

Tom Mens
117

ROOT

.layout

.layout.html

.layout.html.base

.layout.base

.extensions

.extensions.cookie

.db

.db.mork

.security

.security.manager

.security.manager.ssl

.security.manager.boot

.intl

.intl.lwbrk

.editor

.editor.libeditor

.editor.txmgr

.dom

.dom.src

.netwerk
.netwerk.protocol

.netwerk.protocol.http
.netwerk.base

.netwerk.cache

.netwerk.socket

.content

.content.base

.xpcom

.xpcom.proxy

Feature Http & Https

Feature Html

Figure 5. Features: Http, Https, Html

9

Tom Mens
13

Tom Mens
118

ROOT

.layout

.layout.html

.layout.html.base

.layout.mathml

.layout.mathml.base
.layout.base

.extensions

.extensions.transformiix.extensions.transformiix.source

.extensions.transformiix.source.xml.extensions.transformiix.source.xml.dom

.extensions.transformiix.source.xslt

.extensions.cookie.modules

.modules.libpr0n

.modules.libpr0n.decoders

.db

.db.mork

.security

.security.manager

.security.manager.ssl

.security.manager.boot

.xpfe

.xpfe.appshell

.intl

.intl.lwbrk

.editor

.editor.libeditor

.editor.txmgr

.dom

.dom.src

.netwerk

.netwerk.protocol

.netwerk.protocol.http.netwerk.base

.netwerk.cache.netwerk.socket

.content

.content.html

.content.html.content

.content.html.document

.content.xsl

.content.xsl.document

.content.base

.content.shared

.content.xml
.content.xml.content

.xpcom

.xpcom.proxy

Figure 6. All features but no core

.extensions.transformiix

.extensions.transformiix.source
.extensions.transformiix.source.xml

.extensions.transformiix.source.xml.dom

.extensions.transformiix.source.xslt

.db.mork

Figure 7. Detailed view of Figure 6

10

Tom Mens
13

Tom Mens
119

ROOT

.layout

.layout.html

.layout.xul

.layout.xul.base

.extensions

.modules

.modules.plugin

.xpfe

.xpfe.components
.intl

.rdf

.htmlparser

.editor

.gfx

.gfx.src

.dom

.embedding

.embedding.browser

.netwerk

.netwerk.protocol

.content .xpcom

.widget

.widget.src

Figure 8. Core and features

11

Tom Mens
13

Tom Mens
120

weaknesses in the system design.
The core - indicated by white boxes - and all features are depicted in Figure 8 on a very coarse level. For this configuration

we selected all reports which were ratedmajoror critical. We also set the minimum sub-tree size to 250 (minchildsize) entities
and the minimum number of problem report references to 50 (compact). As result we received a graph with 25 nodes, 215
edges induced by problem reports. By changing the values forminchildsizeandcompactit is possible to generate an arbitrary
detailed graph of the while project. SinceMozilla has more than 2500 sub-directories a complete graph representation of the
whole project tree is far beyond the illustration capabilities of this medium. It is intuitive that the most critical sub-systems in
Mozilla are related with visualization which is also supported by our findings. The nodes with the highest density in severe
problem reports are.content (with 595 references),.layout.html (438),ROOT(366),.layout.xul.base (220),
and.layout (210). In fact,ROOTdoes not have any entities, but through the compactification of the project tree entities
from lower levels have been moved to higher levels. The same is true for the other nodes such as.com or .htmlparser ,
since all the entities are moved to higher levels until thecompactcriterion is met. Nodes with fewer connections are.dom
(161), .xpfe (121), .netwerk (119), .modules (118), .modules.plugin (106), .network.protocol (100),
.rdf (100),.htmlparser (96). Another interesting aspect is the spread of edges. In total 215 connections between nodes
are depicted. While some nodes are more focused on a single partner node, e.g.,.htmlparser with 15 edges, others have
a wider spread, e.g.,.xpfe with 21 edges. Since.layout.xul does not share a problem with any other node, we can
neglect this node and have 24 nodes sharing connections with others. For instance,.xpfe shares connections with 87.5%,
or .content with 95.8% of the possible nodes.

7. Conclusions and future work

The graphical representation of dependencies between features based on problem report data opens a new perspective on
the evolution of software systems through retrospective analysis by visualization. By intuition problem reports should have
a minimal impact on different features. Situations where this is not the case can be grasped easily through the graphical
representation, e.g., in case of overlapping or feature spreading. We have applied multi-dimensional scaling of problem
reports linked with files and directory structures for the visualization of features of Mozilla for the years 1999 until 2002.
The tool that we developed allows a domain expert to generate two specific views of relationships and dependencies of a large
software system: (1) thefeature viewenables a projection of problem reports onto the files that realize a particular feature,
thereby indicating otherwise hidden feature dependencies that have evolved over time (intentionally or unintentionally); (2)
theproject viewenables a projection of problem reports onto the directory and project structure of a system and, as a result,
depicts the logical coupling between modules, sub-modules, etc. introduced through changes over time.

First results using MDS are promising, thus we want to further explore this approach and test other large software systems
to compare, for instance, the spread of features in commercial and other open source software. Of further interest are the
exploration of higher dimensional solution spaces which should yield more optimized solutions. Withxgvis this is quite
difficult since the interactive selection and visualization works optimal only on two-dimensional data.

An interesting perspective for future work is the coupling of this visualization approach with architecture recovery systems.
One possible application could be to gain insight into the impact of problem reports on architectural styles and patterns. A
pattern search process might identify all implementations of a socket connection. The location information is augmented
with information from the RHDB and visualized using MDS. More work will be devoted to visualization capabilities such
as highlighting or selection of diverse areas for detailed inspection of problem reports. Furthermore, we will investigate the
optimization algorithms as to allow placing related features as close to each other as their proportional computed strength
indicates.

8. Acknowledgments

We thank theMozilla developers for providing all their data for this case study to analyze the evolution of an large Open
Source Software project.

References

[1] Bugzilla Bug Tracking System.
http://www.bugzilla.org/ .

12

Tom Mens
13

Tom Mens
121

[2] GNU’s Not Unix! - the GNU Project and the Free Software Foundation (FSF).http://www.gnu.org/ .
[3] Merriam Webster’s Collegiate Dictionary. Merriam-Webster, Incorporated, 10th edition edition, 1996.
[4] The American Heritage Dictionary of the English Language. Houghton Mifflin Co, 4th edition edition, 2000.
[5] J. Bieman, A. Andrews, and H. Yang. Understanding change-proneness in OO software through visualization. InProceedings of

11th International Workshop on Program Comprehension. IEEE, 2003.
[6] A. Buja, D. F. Swayne, M. Littman, N. Dean, and H. Hofmann. XGvis: Interactive Data Visualization with Multidimensional Scaling.

Tentatively accepted for publication in the Journal of Computational and Graphical Statistics, 2001.http://www.research.
att.com/areas/stat/xgobi/papers/xgvis.pdf .

[7] P. Cederqvist et al.Version Management with CVS, 1992.http://www.cvshome.org/docs/manual/ .
[8] S. Demeyer, S. Ducasse, and O. Nierstrasz.Object-oriented Reengineering Patterns. Morgan Kaufmann, 2002.
[9] D. Draheim and L. Pekacki. Process-centric analytical processing of version control data. InProceedings of the International

Workshop on Principles of Software Evolution (IWPSE), Helsinki, Finland. IEEE Computer Society Press, September 2003.
[10] T. Eisenbarth, R. Koschke, and D. Simon. Aiding Program Comprehension by Static and Dynamic Feature Analysis. InProceedings

of the International Conference on Software Maintenance. IEEE Computer Society Press, November 2001.
[11] M. Fischer, M. Pinzger, and H. Gall. Analyzing and Relating Bug Report Data for Feature Tracking. In10th Working Conference

on Reverse Engineering (WCRE), Victoria, Canada, November 2003.
[12] M. Fischer, M. Pinzger, and H. Gall. Populating a Release History Database from Version Control and Bug Tracking Systems.

In Proceedings of the 2003 International Conference on Software Maintenance (ICSM 2003), Amsterdam, Netherlands, September
2003.

[13] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-oriented domain analysis (foda). Technical report,
Software Engineering Institute, Carnegie Mellon University, 1990.

[14] J. B. Kruskal and M. Wish. Multidimensional Scaling.Quantitative Applications in the Social Sciences, 11, 1978.
[15] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case studies of open source software development: Apache and Mozilla.ACM

Transactions on Software Engineering and Methodology (TOSEM), 11(3):309–346, 2002.
[16] E. Pulverm̈uller, A. Speck, J. O. Coplien, M. D’Hondt, and W. DeMeuter. Feature Interaction in Composed Systems. InFeature

Interaction in Composed System, 2001.
[17] C. M. B. Taylor and M. Munro. Revision towers. In1st International Workshop on Visualizing Software for Understanding and

Analysis. IEEE, 2002.
[18] N. Wilde, J. Gomez, T. Gust, and D. Strasburg. Locating user functionality in old code. InInternational Conference on Software

Maintenance, pages 200–205, 1992.
[19] N. Wilde and M. C. Scully. Software Reconnaissance: Mapping Program Features to Code.Journal of Software Maintenance:

Research and Practice, 7(1):49–62, January 1995.

13

Tom Mens

Tom Mens
13

Tom Mens
122

Linking the Effect of Typographical Style to the
Evolvabililty of Software

Position Paper

Andrew Mohan Nicolas Gold

Information Systems Group
Department of Computation

UMIST
UK

a.mohan@postgrad.umist.ac.uk

n.e.gold@co.umist.ac.uk

1. Introduction

The fact that comprehending software is a costly business is not in question. The
question is whether this cost can be controlled, even reduced, as the software evolves.
To answer that question one must analyse the source code, the key artefact in this
evolutionary software lifecycle, to discover and maintain its evolvable quality.

This paper presents the problem of program comprehension and its relationship

with programming style. It defines programming style as those characteristics of
source code associated with formatting and commenting (i.e. typographical style [1]).
The paper also outlines a position whose ultimate aim is to support the software
evolution process through maintaining comprehensibility. This aim could be achieved
by managing the cost of increasing code comprehensibility (in terms of deviation from
a base programming style), through the application of groomative maintenance [2].

2. The Problem

In the software life cycle, maintenance is the final stage, taking place once the
developed software has been incorporated into the business. However it is the most
costly activity taking up between 40 and 70 percent of the cost of any software system
[3, 4].

Software evolution is the result of the application of maintenance to software over

time. To apply maintenance to existing code, the maintainer firstly requires a sufficient
level of comprehension of that code [5, 6, 7]. This process of program comprehension
is the most costly activity of software maintenance [8]. The key artefact in this process
is the source code itself [9]. The ease of comprehending this source code is strongly
influenced by the programming style (e.g. use of comments, variable naming,
indentation) employed by the original developer and subsequent maintainers [1].
Therefore determining software’s stylistic quality, by learning (or discovering) the
base programming style, is a desirable activity.

Tom Mens
123

Groomative maintenance is the activity in which software is changed, without
changing its functionality, to improve its maintainability [2]. This maintenance activity
is applied because as a program evolves it becomes more complex, and thus more
difficult to comprehend and maintain [10]. If groomative maintenance is applied to
increase the stylistic quality of the program, this should improve its comprehensibility
and consequently maintainability (and evolvability). There are several associated
problems:

1. What is program style?
2. Why and how does program style affect program comprehension?
3. When does this effect become problematic?
4. How can program style be learnt?
5. Who will benefit from improving the stylistic quality of a program?

To define program style (and metrics to record and subsequently compare program

style), one must consider that these must reflect the quality of the software in terms of
comprehensibility (as opposed to identifying its author for instance [11]). The
difficulty is to identify what programming style attributes need to be measured that
affect the quality attribute of comprehensibility. A major part of this difficulty is that
each programmer is individual. The styles they prefer and that are easier for them to
comprehend are individual to them [12]. This individual learning (or constructivist
learning) implies that a coding standard is wholly effective only for that particular
individual (although the imposition of organisational coding standards may facilitate a
“middle ground” position that is sufficiently effective for everyone). Our work is
focused upon the learning (or discovery) of a coding standard to use as a quality
benchmark. This can then be used to measure the degradation of code quality in
respect to comprehensibility for that individual, whether they be an individual person,
group or company.

To clarify that any changes in comprehensibility result from changes in the coding

style, a method of rating the comprehensibility of the program needs to be identified.
This could be achieved either manually or automatically with some kind of tool. The
problem with a manual method is that this is very subjective and costly (although
accurate in terms of judging comprehensibility for that particular maintainer). An
automatic method is objective but may be limited in terms of the capabilities of the
evaluation tool.

3. Proposed Solution

The solution to the above problem can be expressed as proving, or otherwise, the
following hypotheses:

1. A quality attribute of programming style can be learnt (or discovered) and
related to program comprehension.

2. The degradation in the stylistic quality of a program is associated with an
increased cost in comprehend ing and therefore maintaining it.

3. A degradation “boundary” for stylistic quality can be determined in the
evolution of a program which can indicate the need for the application of
groomative maintenance to improve this quality aspect.

The style used when writing or maintaining a program has a direct impact upon the

quality of the software and consequently upon a program’s comprehensibility and

Tom Mens
124

maintainability [13]. Furthermore, as an evolving program changes its complexity
increases unless maintenance is undertaken to reverse this [10]. This leads to the
possibility of using programming style as a stylistic coding quality standard. An
example standard (based upon [14, 15], but not exhaustive) would consider:

• Module Length - average of non blank lines
• Identifier Length - average
• Comments - percentage of program
• Indentation - ratio of initial spaces to chars
• Blank Lines - percentage of program
• Line Length - average of non blank lines
• Embedded Spaces - average number per lines
• Constant Definition - percentage of user identifiers that are constants
• Reserved Words - number of different reserved words and standard

functions used
• Included Files – number of occurrences.

If we look at indentation as an example, here a stylistic standard should indicate a

level from 2 to 8 (the normal upper limit). However specifying an exact level is more
problematic. This is because overly indented programs hinder comprehension, due to
the associated increase in both the horizontal and vertical costs of reading the program
[13, 16]. Miara et al discovered that indentation is needed in a program, as no
indentation makes a program difficult to comprehend. Indentation is therefore
desirable in a program and should be at a moderate level, i.e. 2 or 4 spaces. However
an important factor regarding comprehensibility, is that whatever indentation style is
used it should be consistent throughout [17].

The degradation of a program’s stylistic quality, derived by the measurement of

deviance from the standard used in version X+1 against version X, could be used to
predict when groomative maintenance should be applied to the code to improve its
falling stylistic quality. However there is a requirement to demonstrate that the
degradation in quality, measured through this deviance, is related to increased
difficulty in comprehending the code. This would also provide the necessary business
benefits to undertake the work.

To model the changes in comprehensibility we are exploring the use of an

automated method: hypothesis-based concept assignment (HB-CA) [18]. This is a
method for automatically recognising concepts (descriptive terms nominated by the
programmer, e.g. updating a policy), within a program and matching them to sections
of the code to help the maintainer rapidly build an initial understanding of the program
[19]. The number of concepts identified or, in particular, the number that are not,
could be used as a measure of program comprehension, i.e. a degree of difficulty
modeller. HB-CA is particularly suitable for this task because it uses those clues in the
source code (e.g. comments and identifiers) that maintainers use when forming
hypotheses about a program [18]. HB-CA has a knowledge-base defined by the
maintainer containing concepts of interest from the application and software
engineering domains, and possible source code clues to these (e.g. words that might be
used in identifiers or comments). The method creates hypotheses for the appropriate
concepts when it finds a clue, identifies areas of source code where hypotheses for
similar concepts are found (using a flexible concept-oriented rather than location-

Tom Mens
125

oriented approach, see [20]), and assesses the evidence in each area to provide the
most likely description for that code.

The establishment of the relationship between programming style and

comprehensibility via concept assignment is to be achieved by measuring the deviance
in stylistic coding quality of version X from version X+1 and relating this to the
concepts with each version. This evolutionary measurement could then predict an
effect upon program comprehension using the stylistic quality or at least highlight
offending areas of code that have caused the effect (we have detailed a framework on
concepts and the comprehensibility of evolving programs using a version of HB-CAS
with initial case studies, see [21]).

4. Final Remarks

The ability to predict an effect upon program comprehension using the degradation

of code quality may indicate the need for groomative maintenance to reinforce the
quality standard upon the software. This is analogous with the process of rejuvenating
software to prevent or reverse the effects of software aging [22, 23]. If concept
assignment can be used to model the effect of program style upon program
comprehension, during the evolution of that program, then HB-CAS can be used as a
modeller of certain aspects of software quality. Indeed the evolution of the concepts
themselves could be capable of indicating to maintainers a way of producing more
comprehensible code by, for example, indicating candidates for refactoring [24].

The position presented in this paper is that the automatic modelling of software

quality, given both a measurable stylistic coding standard and a relationship to
comprehensibility, has the potential to contribute to reducing the program
comprehension burden associated with evolving software. This is achieved by ensuring
that by adherence to its stylistic quality standard, the evolvability of the code is
maintained or even improved.

References

1. Oman, P. & Cook, C. (1990). Typographic style is more than cosmetic.

Communications of the ACM, vol.33, nos.5, pp506-520.
2. Chapin, N., Hale, J.E., Khan, K.Md., Ramil, J.F. & Tan, W. (2001). Types of

software evolution and software maintenance. Journal of Software Maintenance
and Evolution: Research and Practice, vol13, pp 3-30.

3. Lientz, B.P. & Swanson, E.B. (1980). Software Maintenance Management;
Addison-Wesley, Reading M.A..

4. Takang, A.A. & Grubb, P.A. (1996). Software Maintenance – Concepts and
Practise. Int. Thomson Computer Press.

5. Brooks, R. (1983). Towards a theory of the comprehension of computer
programs. International Journal of Man-Machine Studies, pp543-554, June 1983.

6. Mayrhauser, A.von & Vans, A.M. (1995). Program Comprehension during
Software Maintenance and Evolution; IEEE Computer, vol.28, pp44-55.

7. Pennington, N. (1987). Stimulus Structure and Mental Representations in Expert
Comprehension of Computer Programs. Cognitive Psychology, 19, pp295-341.

Tom Mens
126

8. O’Brien, M.P. & Buckley, J. (2001). Inference-based and Expectation based
Processing in Program Comprehension. Proceedings 9th International Workshop
on Program Comprehension, IEEE Computer Society, pp71-78, Toronto, Ont.,
Canada, 12-13 May, 2001.

9. Dromey, R.G. (1995). A Model of Software Product Quality; IEEE Trans. of
Software Engineering, vol.21, nos.2, pp146-162.

10. Lehman, M.M. & Belady, L.A. (1985). Program Evolution, Processes of
Software Change, Academic Press Inc. Ltd..

11. Krsul, I. & Spafford, E. (1997). Authorship analysis: Identifying the author of a
program. Computers & Security, vol.16, nos.3, pp248-259.

12. Exton, C. (2002). Constructivism and Program Comprehension Strategies: Proc.
10th International Workshop on Program Comprehension, Paris, France, 27th-29th
June 2002, pp281-284.

13. Shneiderman, B. (1980). Software Psychology - Human Factors in Computer and
Information Systems; Little, Brown and Company.

14. Berry, R.E. & Meekings, B.A.E. (1985). A style analysis of C programs;
Communications of the ACM, vol.28, nos.1, pp80-88.

15. Oman, P. & Cook, C. (1990). A taxonomy for programming style. 18th ACM
Computer Science Conference Proceedings, pp244-247.

16. Kernighan, B. & Plauger, P.J. (1978). The Elements of Programming Style;
McGraw Hill.

17. Miara, R.J., Musselman, J.A., Navarro, J.A., Shneiderman, B. (1983). Program
Indentation and Comprehensibility; Communications of the ACM, vol.26, nos.11,
pp861-867.

18. Gold, N.E., Bennett, K.H. (2002). Hypothesis-Based Concept Assignment in
Software Maintenance, IEE Proceedings – Software, vol. 149, no. 4, pp103-110.

19. Biggerstaff, T.J., Mitbander, B.G. & Webster, D.E. (1994). Programming
Understanding and the Concept Assignment Problem; Communications of the
ACM, vol.37, nos.5, pp72-83.

20. Gold, N.E. & Bennett, K.H. (2001). Flexible Method for Segmentation in
Concept Assignment. Proceedings of the 9th IEEE International Workshop on
Program Comprehension (IWPC) 2001, pp. 135-144, 12-13 May 2001, Toronto,
Canada.

21. Gold, N.E. & Mohan, A.M. (2003). A Framework for Understanding Conceptual
Changes in Evolving Source Code. To appear in Proc. International Conference
of Software Maintenance, IEEE Computer Society, Amsterdam, Netherlands,
22nd-26th September, 2003.

22. Castelli, V., Harper, R., Heidelberger, P., Hunter, S., Trivedi, K, Vaidyanathan,
K. & Zeggert, W. (2001). Proactive management of software aging; IBM Journal
of Research & Development, vol.45, nos.2.

23. Bobbio, A., Sereno, M. & Anglano, C. (2001). Fine grained software degradation
models for optimal rejuvenation policies. Performance Evaluation, vol.46, pp45-
62.

24. Fowler, M. (1999). Refactoring: Improving the Design of Existing Code.
Addison-Wesley Longman, Inc.

Tom Mens
127

Challenges of Highly Adaptable Information Systems

Stephen Cook, Rachel Harrison, Timothy Millea & Lily Sun
Applied Software Engineering Research Group

University of Reading

18th August 2003

Keywords: architecture description, autonomic computing, design pattern language, e-learning,
information system architecture, simulation, software evolution, system dynamics

1 Introduction

The success of personal, networked computing (most obviously in the form of the World Wide Web)
has encouraged computerisation in application domains that were previously found (or assumed) to
be unsuitable for it. Some of these domains are characterised by:

• imprecise and volatile requirements;
• frequent reconfigurations of processes, strategies and objectives;
• complex rules with innumerable exceptions;
• high (and often rising) user expectations (e.g. for usability, customisation).

In other words, information systems in these domains must be highly adaptable if they are to satisfy
users’ complex and rapidly evolving requirements.

This position paper identifies four current research areas in software engineering that are critical
success factors for the development of highly adaptable information systems. The e-learning domain
is used as a running example. Section 2 introduces some background material and related work in
the areas of information system architecture, software evolution and e-learning. Section 3 outlines the
issues that define this research programme. Section 4 relates these concerns to current research in the
Applied Software Engineering Research Group at the University of Reading.

2 Background and Related Work

2.1 Architecture and evolution in information systems

The architecture and the evolution of any information system are closely related, as illustrated by
their definitions. IEEE Standard 1471-2000 defines architecture as:

‘The fundamental organization of a system embodied in its components, their relation-
ships to each other, and to the environment, and the principles guiding its design and
evolution.’ [12]

The phenomenom of software evolution, first identified by Lehman and Belady [15], refers to a process
of continual change in software systems, particularly in the growth of their functionality and complex-
ity. Implicitly, each incremental step in the evolution of a software system involves the adaptation of
some of its architectural properties and the preservation of others.

The architectural properties of any particular system are not equally adaptable. Some may be
so difficult (and therefore expensive) to change, that they are effectively invariants of a system, or
of a product line of systems, or even of an entire enterprise. This kind of architectural property can
be thought of as an investment that is intended, in part, to reduce the costs of future adaptations
to the system. (Arguably, the return on investment of architectural work should be measured in
terms of reducing the system’s maintenance costs.) However, over the lifetime of a system, its evolu-
tion may expose either weaknesses or inflexibility in its architecture (especially if the evolution was
unanticipated), which in turn may raise the costs of ownership and even threaten the viability of the
system.

The behaviour of these relationships is not yet well understood; case studies of real-world domains
that require highly adaptable information systems can improve our knowledge.

1

Tom Mens
13

Tom Mens
128

2.2 Flexible e-learning systems

Computer-based training (CBT) and distance-learning are well-established, niche alternatives to tra-
ditional (‘chalk-and-talk’) models of education. The e-learning [19] concept builds on these traditions
but also adds powerful new ingredients drawn from network-centric computing, computer-supported
co-operative work (CSCW), adaptive environments, flexible processes and component-based software
reuse. Effectively, e-learning may be regarded as a new paradigm of education that could improve
flexibility, quality and participation in education and training [17, 13]. Ambitious plans are already
being made for e-learning to play a major role in expanding higher education [5]; the University of
Reading is directly involved in these initiatives through its leadership of the Thames Valley New
Technology Institute1.

Considerable resources have been applied to e-learning by industrial trainers, educational institutes
and software producers. Several COTS products (e.g. Lotus LearningSpace2, Blackboard3, Oracle
iLearning4) are available and have established a baseline of functionality that enables a tutor to
publish teaching materials online, create discussion forums, organise assessments, and link to other
resources [2, 10].

However current e-learning products have been less successful so far in providing more advanced
functionality. For example, although many learning systems can provide simple customisation (e.g.
a choice of font families), richer forms of personalisation currently depend on personal, usually face-
to-face, interaction between teacher and learner. Consequently, if current e-learning systems were to
simply replace traditional educational models, there would be a significant risk that the quality of the
learning experience would deteriorate.

The challenges facing the next generation of e-learning systems include the provision of:

• improved ability to adapt rapidly and transparently to changes in a learner’s profile and his/her
progress through a learning package;

• better mechanisms for discovering and comparing relevant learning resources;

• the ability to specify the requirements of an instructional component and delegate the discovery
of a resource that satisfies it to another process (e.g. a software agent);

• low-maintenance systems that are easy to inter-operate with both external resources and other
education management systems.

This implies that e-learning systems face the challenge of how to evolve rapidly to become seman-
tically rich, highly dynamic, distributed and personalised to the needs of individual users.

3 Architectural Challenges of Highly Adaptable Systems

3.1 Assessing information system evolvability

The IEEE definition of architecture cited in section 2.1 assigns a major role to architecture in defining
the evolutionary principles of software-intensive systems. This role is poorly supported by existing
modelling languages and tools, which tend to focus on system structure, operational behaviour and
communications. However, the architectural properties of a system have to be considered at various
levels of abstraction, from policies and principles (the ‘Contextual’ level) down to servers and programs
(the ‘Components’ level) [20]. Consequently, architects and other stakeholders are often hampered in
assessing whether the architecture of a system supports its expected evolution across the range of
their concerns.

Some support for assessing architectural adaptability is provided by scenario-based methods (e.g.
ATAM [8]). The explicit identification of architectural commonalities and variability has been recog-
nised as particularly important in product-line engineering [9]. However, these approaches may not

1 http://www.hefce.ac.uk/News/hefce/2002/NTIs.htm
2 http://www.lotus.com/products/learnspace.nsf/wdocs/
3 http://www.blackboard.com/
4 http://ilearning.oracle.com/

2

http://www.hefce.ac.uk/News/hefce/2002/NTIs.htm
http://www.lotus.com/products/learnspace.nsf/wdocs/
http://www.blackboard.com/
http://ilearning.oracle.com/
Tom Mens
13

Tom Mens
129

scale up gracefully in domains such as e-learning that are characterised by complex and rapidly chang-
ing concepts. The variabilities in, for example, ‘teaching resources’ cover a potentially vast range
of cross-cutting concerns (e.g. teaching methods and technologies, language and culture of learning
milieu, students’ level of education and prior experience, applied vs. theoretical focus of course). Com-
pared with physical products, it is much more difficult to identify a stable, core ‘chassis’ that could
be adapted using standardised, bolt-on components.

3.2 Architectures for low-maintenance information systems

Highly adaptable information systems are implicitly expected to adapt intelligently to a continuous
stream of events, both from within the system and from its environment. Currently, complex adap-
tations of software usually require manual intervention by skilled (hence expensive and often scarce)
personnel. Unless intelligent adaptive processes can be largely automated, it will be impossible to
prevent highly adaptable systems from becoming ‘support-bound’ as they increase in scale.

3.3 Using design patterns in rapidly evolving domains

The design of highly adaptable systems should make use of design patterns [11] to achieve the following
benefits:

• simplified software maintenance (assumption: the explicit use of well-known design patterns
makes systems easier to understand);

• more adaptable systems (many ‘classic’ design patterns are directed at solving problems of
system evolution).

However, it is unclear how design patterns should be used in domains that are evolving rapidly.
For example, some approaches (e.g. [4]) have chosen to add explicit and detailed domain knowledge
to individual patterns but to leave implicit any relationship to ‘deeper’, domain-independent patterns
such as those catalogued in [11]. This approach could lead to inflexible, rather than evolvable, designs
if there is a high risk that the knowledge will be modified in the future.

3.4 Assessing the dynamics of architecturally complex systems

It will not be possible to accurately predict either the dynamic behaviour or the evolution of highly
adaptable systems by purely static analysis of their programs; some form of behavioural modelling or
simulation will be essential. These models will need to take account of:

• the technological environment in which the system operates;
• the social and business processes that the system is intended to support;
• the ‘global software process’ [16] in which the evolution of the system is managed.

Models will also need to take account of a wide range of timescales, from very short-term (as services
vary dynamically during a user’s online session) to much longer-term (as services, agents and resources
evolve through both technological and business life cycles).

4 Proposed Research Programme

4.1 Architecture description languages for evolutionary properties

A case study of the e-learning domain can explore practical approaches to assessing system evolvability
(section 3.1) by investigating:

• which concepts of evolution are most relevant to highly adaptable information systems,
• how the concepts could be represented as a simple grammar, and
• how to anchor them to software engineering theory.

The results could assist the design of a structured language for unambiguously describing the evo-
lutionary requirements and capabilities of a system in architectural terms (i.e. defining an evolution
viewpoint and its model, to use the terminology of IEEE 1471-2000 [12]).

3

Tom Mens
13

Tom Mens
130

4.2 Architectures for autonomic information system services

One approach that could mitigate the risk of highly adaptable systems becoming support-bound
(section 3.2) is autonomic computing. The term autonomic takes its meaning from the self-regulation
of the central nervous system, in which functions such as heart beat rate, blood sugar levels and
perspiration are adjusted without conscious thought and according to changing external conditions.
By analogy, autonomic computing systems should regulate and maintain themselves to provide an
optimal level of service without the conscious intervention of either the user or maintenance staff.

The e-learning domain provides an opportunity to assess the emerging results of our ‘Autonomic
Computing – Creating self-Evolving Software Systems’ (ACCESS) project. ACCESS5 introduces a
model in which the evolution of a software system is guided by resolving the expressed concerns of
its stakeholders. The resolution process operates within a space of possibilities defined by a software
component market. This approach to automated ‘just-in-time’ system evolution develops ideas on
ultra-rapid evolution that were proposed by Bennett et al. [6]. A schematic diagram of ACCESS’s
proposed architecture is shown in figure 1.

other autonomic
systems, usersautonomic system

end users

managers

purchasers

regulators

legislature

IT support

stakeholders

expressed

concerns

cost benefit model

objective document

resolver

optimiser

service
components

communicator

protectorledger

monitor

operational concerns

software exchange

primary market
(developers selling)

secondary market
(autonomic trading)

futures market
(trade in risk)

alternative
components

service
provision

Figure 1: ACCESS schematic architecture

The ACCESS approach is by intention domain-independent and its architecture is highly abstract.
Applying it to a specific rapidly evolving domain such as e-learning will raise many questions, including:

• is a market-based metaphor suitable for an activity such as education that has multiple, poten-
tially conflicting, objectives?

• most competitive social situations, including markets, require a regulatory function that is
independent of the broking function (i.e. the ‘autonomic system’ in figure 1); how should this
be provided in an e-learning context?

• fairness in market-based allocation systems depends critically on all stakeholders having similar
access to reliable information, but feedback to stakeholders is only implicit in the ACCESS

5 EPSRC grant no. GR/S19066/01

4

http://194.66.183.26/WEBSITE/GOW/ViewGrant.ASPx?Grant=GR/S19066/01&bannerlink=Programme%20support
Tom Mens
13

Tom Mens
131

architecture; what additional, possibly domain-specific, feedback channels are needed to ensure
fair access for stakeholders to information?

4.3 Design pattern languages for rapidly evolving domains

The issue of how to relate design patterns to domain knowledge (section 3.3) can be addressed by
investigating whether the concepts of system evolution provide an effective rationale for structuring
design patterns in rapidly evolving domains. For example, Simon [18] suggested that the qualities of
hierarchical and nearly decomposable organisation make it easier for a system to evolve. This may
imply that when systems are required to be highly adaptable, their atomic design patterns should
be as domain-independent as possible, and the binding to a specific domain should be achieved at a
higher level, i.e. through an arrangment of selected patterns into a pattern language [1].

This approach could be seen as a generalisation of the coordination patterns that Andrade et
al. [3] proposed as a mechanism for allowing business rules to evolve independently of core business
concepts. It is also implicitly related to Lehman’s SPE taxonomy [14]; the concept of patterns as
reusable, domain-independent solutions seems similar to Lehman’s P-type components (which are less
likely to evolve), while pattern languages seem closer to his E-type components (which inevitably
evolve).

Case studies and experiments are needed to explore which of these concepts are both relevant and
scalable to the demands of e-learning systems. The development of new IT courses at Reading Uni-
versity provides an opportunity to conduct pilot studies, e.g. to compare the effectiveness of different
approaches to the design and use of pattern languages for the e-learning domain.

4.4 Simulation of architectural evolution

Previous simulation studies of software evolution (e.g. [7]) have usually treated a software system as a
black-box component and have not attempted to consider the effects of the system’s architecture. On
the other hand, simulation models of computer networks do take account of network architecture but
often model the architecture as a simple, recursive structure. These approaches, if taken separately,
may not be sufficient to produce accurate predictions of the dynamics of highly adaptable systems on
either short- or long-term timescales.

One of the questions that we plan to investigate is whether models of software evolution can be
improved by introducing selected information about the system’s architecture. For example, referring
again to Lehman’s SPE classification of software components, does knowing the proportions of E-
and P-type components in a system improve predictions of the course of its evolution? The ultimate
goal would be to discover which architectural properties (i.e. fundamental design choices) of highly
adaptable systems are most important in determining the shape of a system’s subsequent evolution.

5 Conclusions

The demands of highly adaptable information systems provide a challenge for many aspects of software
engineering, especially those related to architecture and evolution. The e-learning domain is very
suitable for investigating these problems because it is entering a phase of rapid change. Furthermore,
this rapidly evolving domain has a direct impact on many higher education institutions, which creates
opportunities for researchers to also explore the practicality of candidate solutions to the problems
that this paper has identified.

References

[1] Alexander, C., Ishikawa, S. and Silverstein, M., 1977. A Pattern Language: Towns, Buildings,
Construction. New York: Oxford University Press.

[2] Anderson, M.D., 1997. Critical elements of an Internet based asynchronous distance education
course. Journal of Educational Technology Systems, 26(4), 383–388.

5

Tom Mens
13

Tom Mens
132

[3] Andrade, L., Fiadeiro, J., et al., 2000. Patterns for coordination. In: Catalin-Roman, G. and
Porto, A., ed. Coordination Languages and Models. Springer-Verlag (Lecture Notes in Computer
Science, 1906), 317–322.

[4] Avgeriou, P., Papasalouros, A., et al., 2003. Towards a pattern language for Learning Management
Systems. Educational Technology & Society, 6(2), 11–24.

[5] Beller, M. and Or, E., 1998. The crossroads between lifelong learning and information technol-
ogy: a challenge facing leading universities. Journal of Computer Mediated Communication, 4(2)
December, .

[6] Bennett, K., Munro, M., et al., 2001. An architectural model for service-based software with ultra
rapid evolution. In: Proceedings of the IEEE International Conference On Software Maintenance
(ICSM 2001): Systems and Software Evolution in the Era of the Internet, Florence, Italy, 7–9
November 2001. Los Alamitos, CA: IEEE Computer Society, 292–300.

[7] Chatters, B.W., Lehman, M.M., et al., 2000. Modelling a software evolution process: a long-term
case study. Journal of Software Process: Improvement and Practice, 5(2–3), 95–102.

[8] Clements, P., Kazman, R. and Klein, M., 2002. Evaluating Software Architectures: Methods and
Case Studies. Boston, MA: Addison- Wesley (Software Engineering Institute series).

[9] Coplien, J., Hoffman, D. and Weiss, D., 1998. Commonality and variability in software engineer-
ing. IEEE Software, 15(6) November/December, 37–45.

[10] El-Tigi, M. and Branch, R.M., 1997. Designing for interaction, learner control, and feedback
during Web-based learning. Educational Technology, 37(3), 23–29.

[11] Gamma, E., Helm, R., et al., 1995. Design Patterns: Elements of Reusable Object-Oriented
Software. Boston, MA: Addison-Wesley (Professional Computing series).

[12] IEEE Computer Society, 2000. IEEE Recommended Practice for Architectural Description of
Software-Intensive Systems, IEEE-Std-1471- 2000. New York: IEEE.

[13] Learning Systems Architecture Lab, 2002. SCORM Best Practices Guide for Content Developers.
Pittsburgh, PA: Carnegie Mellon University.

[14] Lehman, M.M., 1980. Programs, life cycles, and laws of software evolution. Proceedings of the
IEEE, 68(9), 1060–1076.

[15] Lehman, M.M. and Belady, L.A. (eds.), 1985. Program Evolution: Processes of Software Change.
London: Academic Press (A.P.I.C. Studies in Data Processing, 27).

[16] Lehman, M.M. and Kahen, G., 2000. A brief review of feedback dimensions in the global soft-
ware process. In: Ramil, J.F., ed. FEAST 2000 Workshop: Feedback and Evolution in Software
and Business Processes, London, UK, 10–12 July 2000. London: Imperial College of Science,
Technology and Medicine, 44–49.

[17] Schweizer, H., 1999. Designing and Teaching an Online Course: Spinning Your Web Classroom.
Needham Heights, MA: Allyn and Bacon.

[18] Simon, H.A., 1969. The Sciences of the Artificial. Cambridge, MA: M.I.T. Press.

[19] Sloman, M., 2001. The E-Learning Revolution: From Propositions to Reality. London: CIPD.

[20] Zachman, J.A., 1987. A framework for information systems architecture. IBM Systems Journal,
26(3), 276–292.

6

Tom Mens
13

Tom Mens
133

Abstract. Design erosion affects most, if not all,
software systems. As these systems age, it becomes
ever more difficult to make new changes until
eventually it is more feasible to replace (or at least
refactor) the software than it is to continue to the
regular maintenance. In earlier work we have
already identified a number of potential causes for
this phenomenon. The case study presented in this
paper, examines two eroded subsystems of a large
software product. We look at various aspects of
how the company involved has identified that the
systems were eroded and how they managed to
recover from that situation.

1. Introduction
In this paper, we present the preliminary results of
two case studies, which were conducted on two
subsystems within the same company. Due to the
preliminary and confidential nature of the case
study and its results, we will not elaborate any
further on the domain of the software or nature of
the company involved in this paper. However, a
full paper that will include these details is nearing
completion.

For the moment, it is enough to specify that the
company involved is a large multinational that, for
the past few decades, has developed a large
software product, which has been deployed on
numerous (thousands) of customer sites worldwide.
The software product, this company makes,
consists of a number of application modules and an
infrastructure layer that is common to these
application modules. In the first case study, we
examined the evolution of a component in the
infrastructure layer. In the second case study, one
of the application modules was examined. The
purpose of the case studies was to explore the
problems and issues encountered in large software
developing organizations, such as the company
involved in this study, with respect to design
erosion.

Design erosion is a problem that affects most, if not
all, large software systems. The phenomenon is
also known as architectural drift [5], software aging
[6] or architecture erosion [4]. Essentially the
problem is that as software evolves, the software is
incrementally changed to meet new requirements,
fix defects or optimize quality attributes (adaptive,
corrective and perfective maintenance [8]).
However, these requirements may conflict with

requirements in earlier iterations or may change the
assumptions under which design decisions in
earlier iterations were made. When faced with such
requirement conflicts, there are two strategies for
adapting the system to incorporate the changes:

• An optimal design strategy. No compromises
are made with respect to design quality and the
design of the software is enhanced in such a
way that the new requirements can be
incorporated without compromising the design
integrity. While this strategy typically results
in a good design, the associated cost may make
it infeasible for some changes.

• A minimal effort strategy. Often complicated
design changes can be avoided by stretching
the design rules of the existing design a bit.
While this may have consequences for the
quality of the design, this strategy can be very
effective in meeting the requirements on short
notice.

In [3], we concluded that it is inevitable that in real
world systems the first strategy is not always
feasible. Consequently, cost considerations or time
constraints sometimes force developers to take less
than ideal design decisions. Over time, these less
than ideal design decisions accumulate, resulting in
what we call design erosion. Eroded software
systems are typically hard to understand due to the
many sub-optimal design solutions that have
accumulated and complicated the design.
Consequently, additional changes become harder
and eventually may even become infeasible. When
this happens, the only ways to resolve the situation
are to either repair (e.g. using refactoring
techniques) or replace the software. Both types of
resolutions typically require a significant effort. In
[3] we list a number of real-world projects that
were affected by design erosion. In these examples,
the subsequent effort to repair/replace the software
spanned several years.

In a world that is increasingly relying on a growing
quantity of ever-larger software, design erosion
presents a serious problem. Affected software
cannot be easily replaced or repaired. Failing to do
so, however, may cause maintenance cost to rise
and limits the flexibility of the affected software.
Ultimately, eroded software may threaten the
existence of the company that produces it as well as
the existence of companies that use the software.

Design Erosion in Evolving Software Products
Jilles van Gurp, Jan Bosch, Sjaak Brinkkemper

University of Groningen, Vrije Universiteit Amsterdam

{jilles|jan.bosch}@cs.rug.nl, Sjaak@cs.vu.nl

Tom Mens
134

The cases we report on in this case-study, concern
software subsystems that are part of a large
software system that have both been affected by
design erosion to such an extent that in both cases,
the company chose to undertake an effort to
address the issues, which in both cases implied
several person-years of work. In one of the cases,
this effort involved the refactoring of tens of
thousands of lines of code. In the other case, the
affected component had to be replaced by a new
one to address the issues. The old version,
representing a decade of evolutionary development
and refinements, had to be discarded.

In the remainder of this paper, we will first discuss
the research questions of this case study and our
research method. After that, we will present some
preliminary conclusions of the case-study. As
outlined above, at this point, we cannot go into
detail on the case studies themselves, however.

2. Research questions
The focus of our study is to explore how design
erosion issues are identified, resolved and
prevented in software developing organizations.
Specifically, our study addresses the following
research questions:

• Symptoms. What are the effects of design
erosion on a system?

• Identification. How does an organization
decide that their software is eroding and needs
to be repaired? How does the decision process
work?

• Causes. What are common causes for erosion?
• Resolution. What kinds of solutions are

applied to fix an eroded system? How and
when are decisions with respect to preservation
and repair taken?

• Prevention. What practices help prevent
erosion?

3. Methodology
In this section, we will outline the empirical
research approach we have applied in the case
studies and discuss its strengths and weaknesses. In
his editorial for the journal of empirical software
engineering [1], Victor Basili makes a plea for the
use of empirical studies to validate theories and
models that are the result of software engineering
research. In a more recent publication, [2], Basili
presents an overview of how empirical research has
benefited NASA’s Software Engineering Lab.
When doing empirical research, a distinction can
be made between qualitative empirical studies and
quantitative studies. The approach advocated by
Basili in [1] and [2], can be characterized as mostly
quantitative. As can be seen in [2], collecting
quantitative data is a labor-intensive process that

needs to be tightly integrated with the development
process. In a setting like NASA, where reliable,
dependable software is required this is feasible.
The results of the quantitative empirical research
are used to optimize the development processes.
However, in many other contexts this is much less
feasible.

Qualitative data, on the other hand, is relatively
easy to obtain and has the advantage of providing
more explanatory information [7], which in an
exploratory case study such as ours is very
desirable. As is noted in [7], neither quantitative
nor qualitative empirical research can prove a given
hypothesis. Empirical research can only be used to
support or refute a given hypothesis. A
combination of both quantitative and qualitative
studies is the best way of supporting a hypothesis
[7].

In this exploratory case study, we use interviews as
the primary tool of retrieving information.
Consequently, our research is mostly of a
qualitative nature. However, where possible, we
complement the qualitative data with quantitative
data provided by the interviewees (e.g. estimated
defect rates, number of lines of code, etc.). Due to
the confidentiality of such metrics within the
company, a full quantitative study was not feasible.
We have found that in general, software
development organizations are very reluctant in
providing or publishing such data.

In both case studies, the interviews followed the
same pattern. We first met with the interviewees
(software engineers, product architects, project
managers) in a group for an introductory meeting.
During this meeting, the purpose of the case study
was communicated and a brainstorm session was
held to select appropriate modules/components for
further study. This meeting was also used for
planning subsequent interviews. In the following
meetings, both group and individual interviews
were held during which more specific questions
about the design and evolution of the system were
asked.

In addition to interviews, we were given access to
various documents including for example
functional designs and requirements
documentation. Using these documents, we were
able to both verify/clarify certain statements of the
interviewees as well as prepare specific questions
in advance.

3.1 Case selection
Throughout both case studies, we have cooperated
with the company’s R&D department who were
very much interested in the results of the case study
for the sake of (a) providing an outsider analysis on
the architecting and engineering practices, and (b)
educating the product architects and software

Tom Mens
135

engineers with the results. Using their expertise and
knowledge of the company’s product portfolio, two
representative sub-systems were selected for
further study and contacts with staff working on
these sub-systems were initiated. Before selecting
the cases, we had several meetings with the R&D
department during which we discussed the
organizational structure, the company’s product
architecture and the goals for the case study. In
addition, an estimate of the time that was needed
for both cases was made.

We used the following criteria for the selection of
the cases:

• The systems had to be old enough to have
endured design evolution.

• During the evolution, there must have been
significant changes in the requirements.

• It should be possible to interview both people
who were involved in the initial development
of the system and people who were involved in
restructuring the system for new requirements.

3.2 Validity
To ensure the correctness of our data and
conclusions, we have used two methods:

• Cross-checking. In both cases, we interviewed
multiple developers. This allowed us to
compare their answers and verify whether
there were any contradictions. In both cases we
were also given limited access to software
documentation, which allowed us further
validate the information we received.

• Feedback. An important part of qualitative
research is feedback. The data presented in this
article consists mostly of our interpretation of
interviews. Verifying whether this
interpretation is correct is therefore an
essential part of ensuring the validity of our
case study. After each meeting, a report
detailing our conclusions and interpretation
was communicated back without the
interviewees for feedback. The feedback has
made us confident that the interviewees share
our interpretation and conclusions.

However, there are a number of problems with our
research approach that may affect the validity of
our findings:

• Representativeness of the cases. By limiting
ourselves to one company and one software
product, we risk that this case study's
conclusions may not be applicable to other
domains and companies. Both the corporate
culture and the domain this particular company
is operating in affect our conclusions.
However, based on our experience with case-

studies in other companies, the corporate
culture in this company is representative for
many software developing companies. In
addition, despite coming from the same
company, the two cases we selected are
dissimilar, so, any conclusions that can be
generalized for these two cases may be
applicable to other domains as well.

• Quantitative data. As explained earlier, we
use a (mostly) qualitative approach.
Complementing our data with quantitative
metrics would certainly strengthen our
conclusions. However, there are a few reasons
why this study does so only to a limited extent.
First of all, many relevant metrics that would
need to be collected are generally considered
as sensitive information in software
development organizations. Consequently, we
did not have access to raw quantitative data.
However, the company does collect metrics
and provided some qualitative information
regarding e.g. defects to us that was based on
this data. Additionally, this is an exploratory
study. A quantitative study requires a more
precise formulation of hypotheses, relevant
quantifiable parameters and a model for the
interpretation of values for these parameters. A
study such as presented here may provide the
necessary input formulating hypotheses and
parameters for future quantitative studies.

• Cases are not comparable. We have
deliberately chosen to research two cases from
different domains to show that identification,
resolution and prevention of design erosion
works the same across domains. Therefore,
both cases use different types of technology
and involve people with different skills and
training. On the other hand, both teams operate
in a centrally managed release development
project to design and build the sub-systems as
part of one product. This makes it possible to
compare the results of both case studies,
notwithstanding some limitations.

4. Results & observations
In this section, we present the answers we found to
the five research questions in the introduction in
both our case studies. While we cannot go into
much detail on either of the case studies, it is
worthwhile to outline them in an abstract fashion.

• Case 1 examined the evolution of an
infrastructure component that had evolved in a
number of versions. In each version,
significant architectural changes were made to
this component. Recently, based on an internal
evaluation it was decided to replace this
component with a new component because the
old one had eroded so much that repairing it

Tom Mens
136

and adding new features was no longer
feasible.

• Case 2 concerns an application module that
was originally designed at the request of a
particular customer. After an initial design
project, the realization phase was handled by a
relatively inexperienced development team.
However, the resulting software had all sorts
of problems. Eventually, the development was
transferred to a more experienced team. This
team subsequently decided to refactor and
restructure the software.

As mentioned in the introduction, a full paper with
much more detail is pending. In the remainder of
this section, we will simply refer to them as case 1
and case 2.

4.1 Symptoms
A first step in preserving the design of a software
system is to recognize the symptoms of an eroding
system. Both cases we examined, exhibited similar
symptoms of deterioration:

• Low quality code. In both cases, the
developers working with the system were
unhappy with the quality of the source code.
They complained about misuse of language
constructs, the lack of structure, inconsistent
use of code standards, etc.

• Uncertainty about specifications. There was
a great deal of uncertainty about the
specification of the system in both cases. The
designs were sketchy and incomplete. In the
case 1, application developers actually
depended on unspecified and even incorrect
behavior of the infrastructure component. In
case 2, changes were not properly documented
(as prescribed in the companies development
processes), effectively making the existing
designs obsolete.

• Regressions. In both cases, fixes for defects
often introduced new problems. Particularly in
case 1, where at one point there were about
100 known defects, this was an important
reason for discarding the old software. The
estimated cost of fixing these 100 defects in
combination with the near certainty of
additional defects provided enough motivation
for doing so.

• Deployment problems. In both cases, there
were problems with respect to the usage of the
system. In case 1, developers of application
modules were relying on the unspecified,
arguably incorrect, behavior of the component
whereas in case 2, the functional design was
no longer accurate because design changes
were not documented.

• Defect rates & cost. An interesting aspect
about the development process in the company
is that it includes a fine-grained process for
measuring defect rates and relating defects to
particular development artifacts. In both cases,
the developers we interviewed indicated that
the amount of defects that needed to be fixed
was substantially higher than in comparable
systems.

4.2 Identification
In order to repair an eroded system, it has to be
recognized first that the system is eroded and that it
is worthwhile to undertake an effort to repair it.
Obviously, in the systems we examined, the
developers came to this conclusion. A number of
factors may play a role in identifying erosion:

• Evaluation. In both cases, the decision to
redevelop/redesign the system was taken after
an internal evaluation of the software. In both
cases these evaluations were prompted by
problems with the existing software and a
general feeling the software was not in a good
condition (e.g. because of the symptoms
outlined above). Additionally, in both cases,
the defect rates that are routinely collected
within this company were abnormally high,
which provided additional evidence that both
software systems had quality problems.

• New requirements. New requirements may
call for enhancements that, given the quality of
the system at that point, are infeasible. In both
cases, it was the case that there were new
requirements that were proving to be hard to
realize in the existing systems.

• Change of staff. Developers, like most human
beings, may be reluctant in admitting their own
faults. In both cases, the developers that
identified the erosion and took the initiative for
the redevelopment of the software had not
been involved in the original development of
the software.

• Defect Metrics. In both cases, defect metrics
played an important role. The development
process includes a fine-grained process for
collecting such metrics and the decision to
redesign (case 1) or refactor (case 2) was
partially based on these metrics.

4.3 Causes
In order to effectively repair an eroded system, the
causes of the issues that are responsible for the
erosion need to be understood. . We have found
that both cases had a number of common issues.
Consequently, these issues are also likely to share
the same causes:

• Vaporized design decisions. In both cases, all
or most of the original developers were either

Tom Mens
137

no longer working on the system or had left
the company entirely. Consequently, many of
the design decisions taken early in the
evolution of both systems were poorly
understood. Particularly the maintenance of
case 1 became more problematic after the
person who designed this component left the
company. In the other case, the designers were
on a different continent than the people who
were involved in the realization phase.

• Too little attention to design during
evolution. During the evolution of a system,
changes may occur that require that the
software design is altered. In both cases, we
found that little attention to the design was
paid during the evolution. In case 1 several,
major design changes had taken place during
its evolution. The resulting software had
become extremely complex. In case 2, time-
pressure had caused developers to bypass the
proper process for defect fixing (which
includes documenting the changes and
designing a fix).

• Quick fixes. During the evolution of a system,
defects are found and fixed (in [8] this is called
corrective maintenance). The proper way to fix
a defect is to analyze the defect, design a
solution, implement and test the solution.
Unfortunately, time-pressure or cost
considerations may prevent developers to
properly follow this process. Often this results
in quick fixes that addresses the issues but that
may also introduce additional issues.
Especially in case 2, it was identified that the
existing process for processing change
requests (which is the common way for fixing
defects) had not always been followed. In case
1 the design was so out of date that developers
did not bother to update it anymore.

• Experience. An interesting aspect in case 2
was that the development of the software was
transferred a number of times. One of the first
development groups was relatively
inexperienced and consequently, the quality of
their work was relatively low. The lack of
experience with development and the internal
development processes probably was an
important reason for the problems that
surfaced once the development was transferred
to a more experienced team.

• Time pressure. In the two cases we examined,
two components of the same software product.
While the components of this product are
developed separately, their development must
be synchronized with the release cycles of the
product. Consequently, if a particular change
cannot be realized in the timeframe between
two product releases, problems may arise. The
time-pressure associated with these releases
was an important factor in the initial

development of case 2. In order to make the
release, certain things were rushed an parts of
the code were incomplete.

4.4 Resolution
Once it has been determined that a system is
eroded, and once causes have been identified, an
attempt can be made to repair the system and
prevent further damage. The obvious things that
can be done and that we have observed in both
cases are:

• Redevelopment. Redevelopment of the
software is often the only real option in fixing
an eroded system. This approach was chosen
in case 1. Interestingly this decision was taken
based on an estimate of the cost of fixing all
the known defects (about 100).

• Restructuring. The people working on case 2,
on the other hand, chose to restructure the
existing system and reserved a significant
amount of time for it. As in case 1, this
decision was based on a cost estimation.

• Strong focus on design. As pointed out
earlier, the lack of up to date designs is usually
one of the problems with eroded systems. In
both cases, recovering/updating the designs
was an integral part of the attempt to address
the problems and key to the success of the
whole operation.

• Modularization and object orientation. In
both cases, the developers complained about
the fact that the source code was in bad shape
and that there were many dependencies
between the various modules and components
in the system. In both cases object oriented
like mechanisms such as encapsulation,
information hiding and delegation were
applied to improve the structure of the system.

• Take product release cycles into account. As
argued earlier, the development of individual
subsystems, such as the two cases we are
dealing with, must be synchronized with the
product release cycles. Typically, changes are
projected at a particular release and there is
little room for delays. Consequently, it must be
possible to make the necessary changes within
that timeframe. If not, an option is to break
down the work. This happened in case 1 where
the new component was planned and delivered
in two releases. In case 2, one of the problems
was that the developers adopted some quick
fixes in order to be able to integrate their
software in the product in time for the product
release.

4.5 Prevention
The developers of the systems we examined in this
paper have experienced first hand what it takes to

Tom Mens
138

recover a deteriorated system. Naturally, they made
an effort to learn from the experience to adapt the
way they develop software in such away that future
problems can be avoided. In the cases we examined
a number of practices were adopted that appear to
be successful:

• Automatic regression testing. In order to
prevent that new defects are introduced during
defect fixing, automated tests can be used to
verify that the system still works. Regressions
were particularly a problem in case 1.
Therefore, the developers adopted the practice
of creating automatic tests while they were
redeveloping their component. By the time this
component was finished, a test suite of 800
tests was available. Also, the defect metrics
showed that there were almost no regressions
during the maintenance of the new system.

• No undocumented fixes. Both cases shared
the problem that in the past there had been
undocumented changes. This both makes it
hard to test the software and to use it correctly
(this was a problem in case 1). To address this,
all changes are now documented properly.
Also, in case 1, test cases are made to ensure
that the software works as advertised in the
documentation. Any deviation from the
specified behavior is considered as a defect
now.

• Stronger focus on process. Part of the
problems in case 2, and to a lesser extent case
1, can be attributed to the fact that the existing
development process was not enforced. This
caused all sorts of problems the processes were
designed to prevent.

5. Concluding remarks
In this position paper, we have briefly discussed the
results of two case-studies. As discussed in the
introduction, a full paper including details on how
and where the results outlined here were obtained
is pending.

An important conclusion of our earlier work was
that design erosion is inevitable. Consequently, our
case study did not focus on how to prevent design
erosion but on effective strategies for dealing with
design erosion. Both software systems in the two
cases we discuss in this paper are part of a software
product, which has existed in several versions. The
company involved identified that there were
problems with these subsystems and successfully
addressed these issues without causing any delays
in the product release schedule. In other words, the
process of identifying and resolving design erosion
works reasonably well in this company.

An interesting aspect of this case study is that, in
addition to the technical factors identified in our
earlier study [3], there are also a number of non-

technical factors that contribute to design erosion.
For example, in case 2, an important factor was that
the existing development process was not enforced.
Consequently, any measures for resolving or
preventing design erosion also have to consider
these non-technical factors.

Based on what we have seen in this case study and
in other software systems, we are strengthened in
our belief that design erosion is inevitable.
Software developing organizations should not be
judged by how effective they are in preventing
design erosion but in how effective they are in
identifying and resolving eroded software
components.

In future work we will present more details about
the case study presented here. Additionally, we
intend to write a ‘best practices’ paper.

6. References
[1] V. Basili, “Editorial”, Journal of Empirical

Software Engineering, Vol 1. no. 2, 1996.
[2] V. Basili, F. E. McGarry, R. Pajerski, M. V.

Zelkowitz, “Lessons learned from 25 years of
process improvement: The rise and fall of the
NASA Software Engineering Lab“,
proceedings of ICSE 2002, pp. 69-79, 2002.

[3] J. van Gurp, J. Bosch, “Design Erosion:
Problems & Causes”, Journal of Systems &
Software, 61(2), pp. 105-119, Elsevier, March
2002.

[4] C. B. Jaktman, J. Leaney, M. Liu, “Structural
Analysis of the Software Architecture - A
Maintenance Assessment Case Study”, in
Proceedings of the First Working IFIP
Conference on Software Architecture
(WICSA1), 1999.

[5] D. L. Parnas, “Software Aging”, in
Proceedings of ICSE 1994, 1994.

[6] D.E. Perry, A. L. Wolf, “Foundations for the
Study of Software Architecture”, in ACM
SIGSOFT Software Engineering Notes, vol 17
no 4, 1992..

[7] C.B. Seaman, “Qualitative Methods in
Empirical Studies of Software Engineering“,
IEEE Transactions of Software Engineering,
25(4), pp. 557-572, 1999.

[8] E. B. Swanson, “The dimensions of
maintenance“, proceedings of the 2nd
international conference on software
engineering, pp. 492-497, IEEE Computer
Society Press, Los Alamitos 1976.

Tom Mens
139

 Page 1

Observations on automation in cross-platform migration

Ben Wilson, Tony Van der Beken
Anubex

Veldkant 35C, Kontich Belgium

E-mail: ben dot wilson at anubex dot com, tony dot vanderbeken at anubex dot com

Abstract
There are numerous ways for organisations to migrate an
operational information system from one deployment platform
to another. This paper relates a number of experiences of
applying automated techniques to cross-platform migrations
of larger (> .5MLOC) information systems in real world
projects. The paper examines these experiences, considering
factors influencing the organisations’ decision for the
approach, the project-specific features and limitations of the
approach, and the effects of the approach on the
organisational context. This paper does not attempt to provide
an exhaustive comparison of the advantages and
characteristics of the different approaches that may be used,
but rather to consider a single approach in more detail, based
on the experience of the authors. It is our position that the use
of automated methods will increase as the risk-elimination
effects of the technique will ensure its rise in popularity, and
information systems increasingly outlive the platforms for
which they were developed.

1. Introduction
Calculating the actual number of time-proven, mission-critical
information systems with over a half million lines of program
code currently in operation worldwide is a nearly impossible
task. The term ‘legacy’ is often used to describe these
systems, and with the term a number of negative and
subjectively sensitive attributes typically spring to mind:
([3], [4], [9], [10]) hard to understand, insufficiently
documented, difficult to maintain, and unintuitively structured
are some of them. In the typical industry jargon, the term
‘quality’ ([5], [7], [8], [11]) is often quoted as a blanket term,
and can be used to refer to a combination of any number of
these attributes.

The notion of ‘poor quality’ can be used as an argument to
convince the organisation owning the information systems
into undertaking a revolutionary reengineering effort ([7], [8],
[9]). Typically such an effort involves understanding a
program’s functionality (perhaps aided with a ‘legacy
understanding tool,’ a ‘business rules extraction tool,’ or a
‘code slicing tool’); storing this information in some form of a
repository or representing the code in an easier-to-understand
format or a modelling tool; and rewriting or generating new

code with a 4GL or in a modern, object-oriented architecture
such as J2EE or .NET.

There are, however, many mature systems for which not all or
even none of the above attributes apply, and indeed the only
observation that can be made is that the systems were built
with leading-edge technology. And that the leading-edge
technology is old. Host-based, monolithic, character-based
systems on proprietary platforms that are hard to integrate are
also called ‘legacy systems.’ Too often, however, simply
because a system is built to run on technology in its teens, it
gets stigmatised with the same subjectively sensitive,
negative attribute of being ‘difficult to maintain.’

Organisations who either lack the monetary resources to re-
engineer or rewrite large amounts of code, or who see no
business benefit in doing so, typically look to the alternative
of replacing the system (or parts thereof) with COTS1. If no
suitable COTS alternative can be found to replace the
system’s functionality (or the remaining parts thereof) then
the organisation will be stuck with finding a solution that
remains their own.

This, in a nutshell, is where the industry for cross-platform
software migration tools lies. These tools serve to make the
transition from endangered or undesired component
technologies to the ones of the organisation’s choosing
optimally automated and cost-effective, simultaneously
enabling the organisation to retain what they see as an asset,
namely the functionality of their systems. While there are
many variants, the better tools enable this simultaneous
transition and retention without introducing runtimes foreign
to the technology being implemented and proprietary to the
tool vendor. Some vendors make this possible by coupling
their tools with a service to generate a 100 % functionally
identical and 100 % visually equivalent copy of the original
system that furthermore retains its ease of maintenance.

Anubex is a Belgian IT company, and has specialised for the
past ten years in building and deploying application
transformation and migration tools. During this time, we have
advised over fifty organisations on migration projects of
larger (.5-10 MLOC) information systems, and built over

1 COTS: Acronym for Commercial Off The Shelf software, or
a packaged system. The ‘approach’ that this acronym refers to
can be applied to the implementation of any packaged
software, however, regardless whether it is publicly or
commercially available.

Position paper featured in the 2003 International Workshop on Evolution of Large-scale Industrial
Software Applications (ELISA), Amsterdam; September 23, 2003

Tom Mens
Page 1

Tom Mens
Page 1

Tom Mens
140

 Page 2

forty tools that automate various aspects of software
transformation for specific platforms and languages. In this
paper, we relate, based on our experience, our view on how
the overall perception of cross-platform migration is evolving,
how automated translation works in the context of a
manageable project, and how semi-automated transformation
and migration techniques impact organisations and
developers.

2. Definitions and scope
The discourse on software transformation and migration is
made difficult by the lack of a clear consensus regarding the
use of terms, sometimes intermingled, to describe, variously,
the business goals, the technical deliverables, and the
methodologies used. The terms ‘legacy transformation,’
‘legacy modernisation,’ ‘legacy renovation,’ and ‘legacy
reengineering’ are used to describe families of these
‘approaches’ in which redevelopment [3], re-writing [5], EAI
([1] [11]), retro-documentation (more used in French-
speaking regions of the world) [6], replacement ([1], [5],
[11]), migration ([3], [10]), consolidation [1], wrapping
([3][11]), web-enablement [1], re-use [5], screen-scraping
[11], domain engineering [8], and componentisation [8] (to
give a few common examples) fall.

The narrower term ‘migration’ also suffers from a similar lack
of clarity. Migration can be either a business goal in itself or a
technical deliverable of a larger business goal (for example,
consolidation), and is furthermore embodied in multiple
reengineering methodologies that rely on automation in
different ways ([3], [10]). The term is also sometimes
avoided, with synonyms such as retargeting, replatforming,
and rehosting [7] being used.

For the purposes of this paper, we consider migration as the
restoration of value to a software application by removing its
dependency on undesired technologies or architectures,
through the conversion of the application’s pieces from one
technology to another, creating an otherwise identical
working system that uses new technologies in a native way.
This approach makes use of platform or language-specific
‘models’ that represent the application before the migration
and afterwards.

We define a platform-specific model as one where the bi-
directional transformation between it and the source code it
represents can occur an infinite number of times, without the
loss of any information. Migration is automated, then, through
the transformation of one platform-specific model into
another. It can rely on the use of either one or two meta-
models, traditionally referred to as grammars [2], depending
on whether the migration of the legacy application involves a
conversion of the code from one language to another or not.
This approach has the characteristics of a black box, meaning
that any manual alterations made to the code occur either
before the application is parsed or after the migrated code is
generated.

With the exception of any additional application tuning,
which may be necessitated to ensure the retention of the
performance of the system in its new environment, this is
where migration, as used in this paper, stops. Many legacy

strategies that bear the label ‘migration’ attempt to go further
([3], [10]), incorporating additional steps such as the
restructuring of ‘spaghetti’ code, the re-architecturing of an
application’s entities, the manual development of GUI
interfaces, or the full exploitation of object-orientation. While
it is not our intention to ignore the value of such additional
services, our observation is that the ROI argument to follow
the shortest possible path to achieve a clearly defined
business goal (in this case, the decommissioning of an
undesired technology component) is growing in importance.
This is especially the case as concerns decisions made for
larger software applications, and the approach may be
pursued even when the ‘quality’ of the code may be
questionable.

The overwhelming majority of organisations we advise
(100 % of them) consider automated migration for
administrative software applications. These applications run
the ‘core business’ of banks, insurance firms, government
institutions, or services companies; or the ‘back office’
applications for companies in the aerospace,
telecommunications, or manufacturing industries. Most of
these organisations started developing the applications
between fifteen and twenty years before their migration, and
in all cases except for one, used COBOL. (The sole exception
regarded a 3MLOC application written in BASIC for a
European airline company.)

At a technical level, the transformation projects being pursued
fall into one of two categories:

• Actual cross-platform migration from endangered or

proprietary hardware platforms to ‘open’ distributed
systems (mainly Unix or NT), or from endangered
development environments to modern development tools
and deployment platforms (mainly application servers
such as WebSphere, etc.);

• Retargeting applications from data access methods that
pre-date RDBMS (networked databases, hierarchical
databases, or (index) sequential files) to an RDBMS
product (mainly Oracle or DB2).

3. Justifying migration
Other studies ([4], [9]) have investigated common ‘drivers’
for software transformation projects. Some [5] have gone
further to analyse these drivers according to their justification
by internal considerations (such as cost reduction or
guaranteed operational continuity) or external considerations
(such as eBusiness initiatives or more strategic ‘future-
proofing’ of the applications).

Our experience with COBOL-heavy environments in Europe
suggests that migration or transformation projects are mostly
justified by a combination of these predictably recurring
‘drivers’ together, but that in a quarter of the cases a single
overriding factor is sufficient to justify the project in its
entirety. Y2K compliance, obviously, has disappeared as a
driver.

Perhaps surprisingly for a business context, the driver of ‘cost
reduction’ is rarely used to justify a migration project on its
own. Examples of cost reduction drivers include eliminating

Tom Mens
Page 1

Tom Mens
141

 Page 3

administrative overheads and extra technical support costs for
running processes over separate, non-integrated systems;
eliminating the need for middleware to connect proprietary
systems with open ones; reducing maintenance overheads by
adopting cheaper hardware or development platforms; or
other economies made through platform consolidation.

Examples of overriding, singular drivers that do get used to
justify migrations are the following:

• The technologies used present a physical technical

barrier in terms of performance, (storage) volume, or the
maximum number of concurrent users. Migration is seen
as urgent when these technical barriers prevent the
business’ natural growth;

• The technologies used by the application are outmoded
and the organisation is pressured by its clients to
modernise them. ISV’s are of course especially
vulnerable to these influences, but this driver has also
been found in the B2B insurance and services sectors;

• The migration of the application is a necessary step in
some other process. A common example involves
organisations implementing an ERP package to replace
business-generic functionality in a legacy application,
and that need business-specific application functionality
to be migrated in order to retain the integration of the
processes and data. In these cases, migration makes the
implementation of the ERP system possible;

• The supplier of the technology has announced the
termination of support. This can involve both hardware
and software suppliers.

Perhaps equally surprisingly, in none (0 %) of the cases have
any of the following been used either as primary or supporting
drivers:

• Pressure from clients or suppliers to integrate supply

chains;
• eBusiness;
• Migrating away from COBOL to a ‘more modern’

programming language.

In well over half of the cases, organisations that have real
migration needs do not initially consider automated migration
as a potential solution. The most common reasons for this are
the following:

• An unawareness of the availability of tools that cater for

their requirements in terms of source and target
technologies supported, or the belief that the creation of a
tool that fits their specific environment requirements is
not feasible or cost-effective;

• A belief that manual redevelopment of their systems
from scratch in newer technologies is desirable or
feasible, or resignation to the belief that the only cost-
effective solution is to outsource the redevelopment
offshore;

• The perception that a project which delivers a 100 %
functionally identical piece of software “does not take
the company forward;”

• A prior negative experience with a migration tool that
generated unmaintainable code.

Over 50 % of attempts to migrate applications with over
.5MLOC through manual redevelopment are abandoned after
two to four years as failures.

4. Wanted? 100 % migration
The figure of 100 % is often referred to in the justification
and planning phases of migration projects, and this in two
cases:

• How to justify a project that creates a 100 % functionally

identical target system;
• The evaluation of the quality of a migration tool by

measuring how close to 100 % of the objects or language
statements in the original technologies it migrates
automatically.

Deliberately creating a target system that is 100 %
functionally identical to the original system is sometimes seen
as a counterintuitive milestone. This limitation nevertheless
offers several benefits, all of which an organisation typically
comes to recognise during project execution:

• First and foremost, perhaps, it is incontestable. When

organisations undertake a tools-assisted migration of
their software applications, they rarely use tools of their
own making. Not having the expertise or experience to
build the tools needed, they look to licensing existing
ones from a tool vendor. Normally, the tool vendor
provides the services that go with the tool and can be
given the responsibility for guaranteeing the new system
works. A discrepancy in behaviour or in output is easily
demonstrated and gives the organisation procuring the
service added protection;

• It is the only way to avoid the difficult, expensive, and
time-consuming process of making specifications; it
prevents the danger of scope creep; and it facilitates the
testing phases of the project;

• It gives the organisation a clear, easy-to-understand
means of tracking the progress of the project;

• It relieves the strain on users to adapt to the new system
and limits the entire change management process to the
IT department;

• It is the fastest way for an organisation to transition from
old technology to new, and it is the fastest way for the
organisation to regain autonomous control and resume
normal incremental maintenance activities for the
system.

5. Migration Complexity
Regardless which life extending approach an organisation
pursues for its applications, at some point ‘analysis’ takes
place. For the sake of simplicity we will limit the discussion
to the approaches of continued incremental maintenance (the
‘do nothing’ approach), replacement with COTS, re-
engineering/re-writing, or automated migration. The
exception to the analysis rule involves certain language,
platform, or presentation extension technologies such as
emulators, wrappers, or (cross) compilers that serve at the
same time as a means and an end.

Tom Mens
Page 1

Tom Mens
142

 Page 4

With the exception of migration, all of the strategies listed
above have in common that analysis is functionality-driven.
With COTS, a ‘gap analysis’ may be performed to highlight
original application functionality that is not supported in the
commercial product, and other analyses can be performed to
plan change management when internal processes of the
organisation have to be revised before the commercial
software package can be used. With re-engineering and re-
writing, code complexity, similarity, and redundancy can be
analysed in addition to the functionality of the application.

Analysis plays an important role in the planning of a
migration project too, however this analysis is not driven by a
need to understand either existing or intended functionality.
The focus of migration is in code and object translation, and is
predominantly a purely technical exercise. Because of this, an
understanding of the code’s functional purpose is not needed.

Such analysis can be automated or done manually. Some tool
vendors supply analysis tools as a companion part of their
toolkits, which automate the process and provide a more
mature solution. These analysis tools, much like the tools that
do the actual migration, extract the information they need
from the code itself. While there are many variants, a common
denominator is the extraction of information pertaining to the
size of the applications and their complexity. Vendors use this
information to forecast the amount of work that the migration
effort will entail and to draw up project plans. From a
commercial perspective, vendors may also use this
information to calculate the licence price that the migrating
organisation must pay to use the migration tool.

Bearing the above in mind, automated migration is an
exceptional part of application development for three reasons.
First, since the calculation of the complexity and the number
of lines of code in the original system is sufficient to calculate
the effort required in terms of man-days, automated migration
is exceptional since it uses a predictive LOC metric with
accuracy. Second, automated migration is exceptional since
functional or business analysis is not used to predict man-days
of programming effort and function point analysis does not
offer the project any direct benefits. And third, due to the
purely technical nature of the exercise, automated migration is
exceptional since the effort required in terms of man-days
does not accelerate in function of the size of the applications,
and as our experience shows, in some cases even decelerates.

The notion of complexity also warrants further clarification,
since complexity in this context is not calculated on the basis
of the relationships of the lines of code to each other, or from
the code’s structure or lack thereof. Complexity in migrations
is an indication of the number of occurrences in the source
code of the original system where a statement or object does
not have a one-to-one equivalent in the target technology.
These occurrences can be simple (for instance, a variable
name used in the original application is a reserved word on
the target environment) or complex.

An example of a frequently recurring, COBOL-related, cross-
platform incompatibility of a high complexity involves the
data access methods that are used on most legacy platforms.
While most basic data types like numeric or alphanumeric are
prevalent and equivalent in both legacy and modern

platforms, composite data types often pose difficulties.
COBOL makes it possible to access and store data at the
record level through powerful low-level pointers, and many
COBOL programs make use of this facility to store data in a
single file with the individual data elements organised
inconsistently. Modern RDBMS products restrict data access
to the field level, and manage the structure of records so that
each is guaranteed to have a consistent organisation. When a
COBOL application uses a REDEFINES clause in a File
Description, the lack of a one-to-one equivalent in the target
RDBMS environment prevents an automated translation of
the statement. Individual instances of this cross-platform
incompatibility can sometimes be dealt with fully
automatically. However, when a record is redefined with
incompatible data types (for instance, to store alphanumeric
data at a position in a record where previously numeric data
was stored) the translation must be manually prepared before
the automated translation process can continue.

The issue of cross-platform incompatibility leads to the
question of whether it is possible to create perfect tools that
automate the migration of 100 % of the objects and language
statements in the original technologies. It is perhaps good to
mention at this point that such ambitions are hardly the holy
grail of the automated migration industry. Typically, averages
of 95-99 % are achieved, and it is worth mentioning that a
tool, compatible with 95 % of the objects and language
statements of a development environment could automatically
migrate 100 % of one application and only 80 % of another.
At the same time, it is dangerous to compare tools on the
basis of coverage percentages only. Certain cross-platform
incompatibilities can be solved automatically with ease, but
the solution may come at the cost of being very difficult to
maintain. Except in circumstances where the target
technologies have been built specifically with backwards-
compatibility in mind, the likelihood of being able to
automate the migration process of 100 % of the objects and
language statements, and at the same time generate code that
is easily maintained, is low to non-existent.

From the discussion on complexity and cross-platform
incompatibility, it should be clear as well that the level of
automation has a direct impact on cost. This is for two
reasons: less automated translation means more man-hours to
implement manual solutions; and less automated translation
also means more time is spent on testing as humans tend to
make more mistakes than software.

But how important is this factor, and how does this weigh
against the drive of organisations to embrace ‘more modern’
languages and development environments? Surely a language
such as Java is more modern than COBOL, but at the same
time surely a COBOL-to-COBOL migration is cheaper than a
COBOL migration coupled with a language conversion to
Java, since there are more incompatibilities between the two
languages? And surely there must be a perception that an
application written in Java is better ‘future-proofed’ than one
in COBOL, but how does this weigh against the notion that
the Java program will be less intuitive for the original
developers to maintain than if it were kept in COBOL, due to
structural changes made to the code?

Tom Mens
Page 1

Tom Mens
143

 Page 5

Actually, none of the organisations we have dealt with have
pursued the automated migration of a large-scale information
system with a language conversion from COBOL to Java.
However, organisations that we have dealt with who pursue a
migration of COBOL applications to, say, Oracle database
technology have a choice, since a variety of tools are available
that perform COBOL-to-COBOL retargeting, COBOL-to-
PL/SQL conversion and retargeting, and COBOL-to-Java
conversion and retargeting. When migrating COBOL
applications from legacy platforms to an Oracle database, and
given the choice to keep the applications in COBOL or to
convert them to PL/SQL or Java, 95 % of the organisations
opted to keep the applications in COBOL, and the other 5 %
chose to convert to PL/SQL.

How each justified their decisions is also something of a
surprise. The majority who chose to keep the COBOL did so
out of cost considerations. The minority who chose
conversion to the ‘more modern’ language, on the other hand,
also did so out of cost considerations.

The cost argument used by the majority of organisations
opting for COBOL-to-COBOL migration was that the cost to
retrain teams of COBOL developers to the ‘more modern’
language was greater than the potential ‘future proofing’
benefits of having the code in PL/SQL or Java. Coupled with
the fact that most organisations had other COBOL developers
in their employ who worked on other applications, these
organisations took this decision with the certainty that the
number of available COBOL developers, for the time being at
least, was higher than the number of available PL/SQL and
Java developers. The cost argument used by the minority was
a licensing issue, in which paying for COBOL runtime
licences for the hundreds or thousands of users of the system
was higher than the cost to retrain the COBOL developers.

This evidence suggests that organisations with large-scale
software applications are not capricious with their migration
choices, and stresses that the business angle weighs heavily in
the major investment decisions taken around them.

6. Project dynamics and fluid systems
The approach to migration as explored in this paper is able to
reduce or even eliminate many project elements that involve
users, such as user retraining or the analysis of user
requirements. Such economies are of course inherent to the
deliberate limitations of the approach, which actively seeks to
ignore these and a number of other issues.

On the other hand, it is rare to find a situation in which the
issues, ignored by the approach, do not surface at some point
during the project. This problem introduces a new issue that is
common to any approach taken to migration, and involves the
way in which it can balance the need for a system ‘freeze’
with the need of the existing system to evolve freely during
the project’s course.

In accordance with the strict enforcement of the 100 %
equivalence rule, all modifications must be done on the
existing system in production. In this case, the application of
the rule protects the tool vendor, since any modification of the
functionality pursued by the migrating organisation must be

proven to work on the original system prior to being taken
into consideration. Through the 100 % equivalence rule, then,
business disruption is not only minimized as concerns the
operational context of the system’s use, but also as concerns
its evolutionary maintenance throughout the transitory period.

To put the problem into perspective, it is necessary to
consider two facts: First, the duration of an average migration
project for applications as treated here is between five and six
months. Second, despite organisations recognising the
complications that modifications to the existing systems will
introduce to the migration project, it has been necessary in
100 % of the cases for the original system to be modified at
least once while migration is in progress. Such changes can
be necessitated by law or by regulation; or can be warranted
by other business needs.

The need for the original system to evolve freely during the
course of a project makes it impossible for all practical
purposes to impose any form of freeze on the code. The only
freeze that does takes place regards the system in its totality,
and is limited to the very last stage of the project in which the
final conversion of the data from the old environment to the
new one takes place. This phase normally takes place during a
weekend when the system is otherwise not in use. Since 24/7
system availability has been necessary in 0 % of the cases,
such a freeze has not been the cause of business disruption,
and the overhead of implementing of a real-time switchover
mechanism, while possible, has not yet been justified.

When assessing the impact of a modification on the existing
system during the migration, there are two parameters that are
the most important to consider. These are, first, whether or
not the source concerned has been converted AND manual
work has been done on the converted source; and second,
whether or not the modification involves a change to the data
structure.

The simplest scenario is if the modification does not involve a
change in the data structure and no manual work has
happened yet on the converted source. In this case, the source
is merely converted again.

The scenario with a slightly higher complexity occurs when
the modification does not involve a change to the data
structure, but manual work has already been done on the
converted source. This scenario introduces a version conflict,
as illustrated in the figure below:

S1

Original Source

S2'

Migrated
Modified Source

S1'+

Migrated, Tuned
Original Source

S2

Modified Source

S1'

Migrated Original
Source

automated
migration

automated
migration

manual
modification

manual
modification

Figure 1: The version conflict in the migration of fluid systems

Tom Mens
Page 1

Tom Mens
144

 Page 6

As shown in Figure 1, source S1 is converted to the new
environment and manual work has been done, resulting in a
production-ready candidate S1’+. When modifications are
subsequently made to S1 on the original system, resulting in
S2, the creation of S2’+ must result from the comparison of
the differences between S1’+ and S2’. Very often, the
modifications do not affect one another and S2’+ can be the
result of the straightforward merge between S1’+ and S2’. In
other cases, additional manual work and testing must be done.

Scenarios that involve the modification of the original
system’s data structure are significantly more complex. This
is largely due to the method inherent to this form of migration,
which combines incremental elements of ‘chicken little’ [4]
during the construction and testing of the new system with a
‘big bang’ in the event of going live. As a result, the ‘test
data’ being used in the tuning and testing of the migrated
programs prior to going live plays an important role in the
migration process, and the definition of the test data
environment must always be kept up to date. For this reason,
the creation of the test data environment is always one of the
first steps done in any project.

When the data structure in the original system is modified,
this implies that the test data on the target system together
with the data dictionary and DDL statements must be updated.
Any application sources that are affected by the change must
be reconverted. This process can be the cause of numerous
version conflicts, as depicted in Figure 1.

7. Migration impacts
Even when bearing in mind that the goal of migration is the
creation of a 100 % functionally identical target system, and
that doing so benefits the organisation since change
management is limited to the IT department, change
management in the IT department can be heavy nevertheless.
While migration of course impacts the IT department, it is the
transition to a new environment that causes the most
disruption, and it is the automated migration approach that
actually minimises the extent of it.

Or at least, it can. Our experience shows a clear correlation
between the level of direct involvement of the organisation in
the migration project and their overall level of satisfaction
with the project’s final outcome. This factor persists in all
projects, and is not influenced by the involvement of third-
party migration service providers. This factor is especially
pronounced when the maintainers of the system play an active
role in the performing of manual work. Maintainers who get
involved are more autonomous and confident in their abilities
to resume maintenance over the new system once the project
is finished.

In environments where large, 15-20 year-old applications are
maintained in-house, developers typically posses three critical
competencies:

• A knowledge of the business;
• A knowledge of the application code and its structure;
• A knowledge of the development and deployment

technologies used.

Armed with these three competencies, developers have the
capacity to support the applications that support or enable the
business. Automated migration makes it possible to
economise and retain the first two of these, with both being
actively used both during the course of the project and
afterwards. As concerns the last point, the transition to new
technologies can cause disruption since new skills must be
acquired. There is rarely the luxury of time, since the
migration projects of the organisations we advise normally
take up to six months to complete.

Automated transformation and migration is arguably the best
way for maintainers to acquire new skills and adapt to new
technologies, and although organisations do not always see
the benefits initially, real-world examples confirm it to be so.
Some developer-related benefits of migration are the
following:

• Since the bulk of the code is converted by a piece of

software, the code is translated and generated
consistently. This relates not only to code formatting
conventions such as capitalisation and indentation, but
also to the consistent translation of the statements the
maintainers are already familiar with and the retention of
comments. Subsequent application maintenance is easier
since the code still ‘belongs’ to the developers;

• Learning the new environment is easier since developers
can compare the code ‘before and after;’

• The retraining of developers is never on the ‘critical
path’ of the project, and developer retraining is never
rushed as a result of it being a prerequisite for the project
to begin, as is the case in fully manual redevelopment
projects;

• Libraries and languages are pre-deployed by the
migration tool. Through this, developers do not have to
achieve reasonable professional proficiency in the target
environment, and then go through a difficult process of
agreeing on a development ‘house standard’ in the new
technology before the project can start;

• By working with a tools vendor with extensive
experience in both the source and target technologies,
training materials and programs can be tailored to take
advantage of the skills the developers already posses.
Such targeted training is normally impossible to find
externally. Our experience shows that training time of
developers can be reduced by up to 50 % in comparison
to following standard, vendor-approved, entry-level
courses when the training can be tailored in this way.

The most lasting impact on the organisation of a migration
project, of course, is that an application’s anticipated lifespan
is doubled, and that the applications preserved get a new lease
of life. Especially if migration is partial and business-generic
parts of the original legacy system are replaced by COTS, the
migration to new technology of core applications can bring an
organisation’s appreciation of their uniqueness as a business
into sharper relief.

This added realisation can impact the way that subsequent
maintenance decisions of the system are handled, and mark
the transition of business-specific application functionality to
a new level of maturity in which an organisation makes a
conscious choice to continue investing in its growth for many

Tom Mens
Page 1

Tom Mens
145

 Page 7

years to come. The awkward position the system occupied
prior to the migration as being simultaneously a business-
enabling asset and a technical liability is thankfully put in the
past.

Conclusion
In this paper, we have examined automated migration from a
number of different angles, exploring the utility of the
approach through the limitations that serve as its defining
characteristics. The choice to deliberately limit the target
system to feature 100 % functional and visual equivalence as
a deliberate milestone on the road to ultimate modernisation is
perhaps the most prominent feature of this approach. When
applied consistently, this limitation can affect, as explained
here, the way in which organisations justify implementing the
approach, the relationship between complexity and the cost of
the approach, the ability of systems to evolve freely during the
transitory period, and the way in which the organisational
context is impacted through the approach’s application.

The fact that many organisations opt for an approach that
deliberately limits the scope of the project deliverables opens
a number of potential relatively unexplored research
directions. It is our opinion that research is lacking, which
considers the viability of achieving modernisation for larger
software systems in terms of sequentially applied steps that
are applied to a system on the whole. Such research has the
potential to benefit organisations that are under pressure to
achieve clearly understood business objectives and realise
ROI in increasingly shorter timeframes.

Bibliography
[1] Aberdeen Group: Legacy Applications: From Cost
Management to Transformation, March 2003.

[2] J Bézivin, S Gérard: A preliminary identification of MDA
components. Date unknown.

[3] J Bisbal, D Lawless, B Wu, J Grimson: Legacy
Information System Migration: A Brief Review of Problems,
Solutions, and Research Issues. Technical Report TCD-CS-
1999-38, Computer Science Department, Trinity College
Dublin, May 1999

[4] M Brodie, M Stonebraker: Migrating Legacy Systems,
Morgan Kaufmann Publishers, Inc. 1995.

[5] D Good: Legacy Transformation, Club de Investigación
Tecnológica, August 2002.

[6] D Good: Proceedings of the Club de Investigación
Tecnológica Legacy Transformation Workshop, San Jose
Costa Rica. February 2003. Available at
www.cit.co.cr/Presentations/DeclanGood.ppt

[7] M Olsem: STSC Reengineering Technology Report,
Document No: TRF-RE-9510-000.04, Software Technology
Support Center. October 1995.

[8] A van Deursen, B Elsinga, P Klint, R Tolido: From
Legacy to Component: Software Renovation in Three Steps,
Cap Gemini and the CWI. 2000

[9] I Warren: The Renaissance of Legacy Systems, Method
Support for Software System Evolution, Springer
Verlag.1999.

[10] B Wu, D Lawless, J Bisbal, R Richardson, J Grimson, V
Wade, D O’Sullivan: The Butterfly Methodology: A
Gateway-free Approach for Migrating Legacy Information
Systems. Proceedings of the third IEEE Conference on
Engineering of Complex Computer Systems (ICECCS97),
September 8-12, 1997. pp.200-205, IEEE Computer Society.

[11] F Zoufaly: Issues and Challenges Facing Legacy
Systems. November 1, 2002. Available at
http://www.developer.com/mgmt/article.php/1492531.

Tom Mens
Page 1

Tom Mens
146

 1

Evolution of legacy systems : strategic and technological issues,
based on a case study

Herman Tromp and Ghislain Hoffman
Department of Information Technology

Ghent University, Belgium
Herman.Tromp@UGent.be, Ghislain.Hoffman@UGent.be,

Abstract

The goal of this experience report is to highlight the strategic and managerial issues that are likely to
be involved in any migration or evolution effort of large-scale legacy systems. The report is based on a
specific case study of a large organisation in the Belgian health care and social security system. Major
drivers for a legacy evolution effort are identified. Emphasis is put on the required management and
planning view, rather than on the mere technological issues. Their constituent elements are discussed
in some detail.

Introduction

In a companion paper [1] some first findings of the ARRIBA research project are described and
directions for future research are outlined. While ARRIBA tries to define the more technological
aspects of legacy mining, knowledge extraction and revitalisation in a generic and long term way, in
this paper we report in more detail on specific experiences of a specific case. In [1] only a summary
description of this case is presented, besides some other cases. We will also discuss the strategic and
managerial aspects, rather than limiting the scope to pure IT issues.

While ARRIBA focuses on research towards techniques for reverse engineering and architectural
knowledge extraction, the case we present here is mainly driven by the need to revitalise an IT
infrastructure that is crucial for the organisation and is driven by the need to further evolve a large
scale legacy application. Some of the most obvious drivers behind that need will be explained below,
but it is important to note that they are widely different in nature. They include technology, economy
of scale, strategy and market position.

This experience report is based on a spin-off project of the ARRIBA project. This project is a bilateral
cooperation between the Department of Information Technology, Ghent University and the LCM
(“Landsbond Christelijke Mutualiteiten”). The latter is the largest independent organisation, which is,
as a part of the Belgian Social Security system, responsible for providing the redistribution of health
care insurance allowances, both towards individuals and hospitals etc. Besides their legally regulated
core mission, they also offer a number of welfare related services to their members. It should be noted
that their operational and legal context is typically Belgian, which implies that no COTS software can
be found on the international market to support their core business. Even if a standard ERP package is
installed, it offers only a partial solution, for example in basic accounting operations. Particular legal
requirements exclude the use of standard packages to cover all of them, mainly due to fundamental
differences in information models and business processes.

Although the case study is about a large-scale migration effort, the best approach, as will be explained
below, appears to be an evolutionary. The managerial problems associated with that approach will be
discussed in some more detail further in this paper.

For reasons of confidentiality, some details in this experience report are made somewhat more generic,
but the conclusions remain sufficiently based on real experience to be relevant for this workshop.

Tom Mens
1

Tom Mens
147

 2

Drivers for legacy evolution

Several alternative definitions of what exactly a legacy system is can be envisaged (see for example
[6] [7]). In those definitions, often the notion of “something valuable” is present, as well as the notion
of “old, obsolete”. It is clear that legacy systems are crucial for the operation of organisations, which
are essential for our economical and welfare activities. If we want to identify, however, what the
drivers and the needs for evolution are, we prefer to use a more pessimistic definition:

A legacy system is an operational system that has been designed, implemented and installed in a
radically different environment than that imposed by the current IT strategy.

A careful analysis of the above definition allowed us to identify a number of most evident drivers for
having the system migrate and evolve. A number of them are listed below and illustrated by the case.

• The corporate strategy gets redefined, e.g. from a traditional data processing model to a multi-
channel, service oriented model. This goes together with the requirement to have up-to-date
data, coming from multiple sources, online all the time. It must be noted that currently, data
are often replicated (daily, weekly) at local offices, for historical reasons (lack of sufficiently
performing communication infrastructure, unclear definition of data ownership, etc.).
Historical data are often only available off-line, e.g. archived on tape.

• Legal requirements and regulations in Belgian health care insurance change often, and those
changes hardly ever take into account the IT system characteristics. As an example of this,
new legislation requires the use of archival data, which is currently only available on magnetic
tape, in order to impose a limit on the maximum health care cost per household (a notion
which is not strictly defined, by the way), depending on their total income, requiring an
interface with the taxation services.

• Business processes are redefined when management and business structure is reorganised
• The total cost of ownership of current systems becomes prohibitive, due to the diversity of the

systems and the cost of software maintenance. On top of that, due to a growing business
volume and the data processing model used, performance becomes increasingly an issue,
raising the question whether to invest either in more powerful, but expensive hardware or to
migrate to a new hardware/software platform with a larger evolutionary capacity.

• In the case we were also confronted with an outright end-of-life situation (no proper data base
system, phasing out of a line of hardware and system software, etc.), resulting in an absolute
need to migrate to a new platform. It should be noted, however, that the timeframe in such a
situation is still a few years, but not very much longer

• Obstacles for migration can clearly be identified
o A corporate information model does not exist. That model is deeply hidden in a

proprietary flat file system: essential corporate data are stored in a single file, which is
accessed through a wrapper. That wrapper performs maps the logical view on the data
to their physical structure, but also accounts low-level tasks such as hashing, garbage
collection, memory mapping, etc. The original developer of that “data structure” has
retired, which makes it extremely hard to recover the data model.

o There is no well defined IT architecture

Other factors hindering evolution, as already mentioned in [1], were also found in this case. Just to
mention a few:

• The predominance of COBOL code, which has severe implications
o Knowledge of the code is getting lost (the experts are retiring)
o Recent techniques for software reengineering [5] are often based on object oriented

languages and it is not clear yet how they can be fully used in this environment
• The project driven nature of the development efforts in the organisation often prevents a

uniform, organisation-wide view

Tom Mens
1

Tom Mens
148

 3

• Recent technologies, based on standard ERP packages [11], EAI techniques [8] [9] [10] [12],
data warehousing, etc are often not very well understood. This is mainly due to a significant
gap between the business view on organisation needs on one hand, and the IT infrastructure on
the other hand.

A feasible migration strategy and a management view should seriously address the above. In the next
section, we will concentrate on those issues.

Management view and plans

In order to support a revitalisation effort in a large organisation, management must clearly formulate
answers to the following questions

• What is the motivation for the effort? (Why do we do it?)
• What are the objectives of the migration effort? (Where do we want to get?)
• What are the basic postulates and constraints? (What do the environment and previous

management decisions impose?)
• How do we measure success, both on the road and at the end? (What are the critical success

factors?)
• What are the risks? How to assess and address those risks?
• What methodology do we adhere to? (How do we get there in a systematic way?)

In the following subsections, we will discuss those issues more specifically for the case at hand.

Motivation

A concise motivation is required to get the stakeholders’ and management buy-in. In the case at hand,
the following elements are at play:

• A technology drive is present, but should not be overestimated. The main issue with this
respect is to make sure that the organisation develops and maintains a strategic technology,
while keeping aligned with industry development, and employs the selected technologies
appropriate to reach its long-term objectives

• The business driven motivation is the aim to remain the national leader in health care and
related social services

• The current hardware platform (BS2000) is reaching the end of its useful lifecycle and must
be replaced anyhow

• Migration involves some risks, but appears to be essential and inevitable for future evolution
• The strategic decision to start with a “REFAC” project (Reorganisation of the Financial,

Administrative and Control Circuits) implies a complete revision of the health care
information system and is the basis for a reengineering effort

• Migration to a new environment should reduce support requirements, enable faster response
times in development needs and allow to reassign IT staff to support emerging new
technologies

• Viewing data and information as an institutional asset will improve the quality of
(management) reporting and allow staff to respond easily to rapidly expanding needs for
information, as well as provide a service oriented environment.

• In this view, it is felt that a more structured one should replace the present proprietary data
infrastructure. A relational data model seems appropriate, but performance remains a major
issue and this could impose constraints on the feasibility of deploying a relational database
system.

It should be clear that the above list is a mixture of technological, management and strategic issues. As
an expression of interest and motivation, they provide a clear and necessary commitment from

Tom Mens
1

Tom Mens
149

 4

management, which, by the way, consists mainly of non-IT professionals but rather of medically
trained people.

Objectives

In this section of any master plan for migration and evolution, the desired outcome and objectives
must be formulated, based on both the “motivation” section but taking into account the environment,
as described in the “postulates and constraints” section.

In the case at hand, the objectives were phrased as follows:

• Set up a migration path from the present operating platform (BS2000) to a new one. This is
not only a major technological challenge, but requires also a profound economical analysis.

• Define a new technical architecture to be developed and installed. Several options are open for
consideration.

• Create an efficient and flexible application and data architecture, which is felt to be lacking
currently

• Accompany this with a budgetary, human resources management and business reengineering
plan

• Make the necessary budgets available. This point depends heavily on management and
stakeholders’ buy-in, as defined in the “Motivations” section

The above list is definitely not exhaustive, but turned out to be both sufficiently concise and elaborate
to convince the stakeholders, including the users, that their interests are best served.

Postulates and constraints

This section lists constraints imposed by the present environment and by previous management
decisions. It should be noted that a previous reengineering project has failed, at a considerable
expense, so a clear understanding of those constraints must be stated. Some of the previous decisions
can definitely be argued, but license costs of software packages already incurred must be given
consideration in the final cost/benefit analysis.

• A big bang migration is not feasible, because of ongoing operational requirements and
obligations.

• Migration must be gradual. This implies that more is needed than a mere refactoring exercise,
since data migration, synchronisation and consistency are major issues

• In every migration step, data must remain synchronised. This involves inevitably some degree
of replication in intermediate stages, but finally it should be avoided. A central data provider
must be present, instead of replicating data asynchronously to local offices.

• A business process reengineering exercise is going on and it is not very clear how this can be
synchronised with IT migration

• A corporate information model must be developed. In [2] is described how such a model can
be extracted from existing persistent data structures and from COBOL code, but in this case
much of the information cannot easily obtained from COBOL record structures and is
embedded in the executable code. The central role of a corporate information model within an
organisation is explained in [3].

• This corporate information model should be based on an existing relational database product,
which was chosen a few years before, for mainly commercial reasons

• Real-time and on-line data access (24 x 7) becomes a stringent requirement for the future and
service oriented environment

• A J2EE based thin client architecture through portal and application servers is deemed to be
most appropriate, but few experience (estimated at 5 over 200 traditional COBOL developers)
is available. This turns out to be a major challenge.

Tom Mens
1

Tom Mens
150

 5

• Integration with newly developed customer relationship management and financial systems
(already based on newer technologies) is required

All these put severe constraints on the feasibility of possible migration paths.

Critical success factors (CSF)

The success of an evolution effort has to be measurable. Therefore, a number of critical success factors
(CSF’s) must be defined. Those should not only be used to evaluate the final outcome, but should be
used along the road to measure progress and to define decision points in the plan, where go/no-go
decisions should be made.

In this particular case, the following CSF’s were identified:

• An affordable but significant proof of concept must be delivered within a reasonable amount
of time and effort (typically 4 months)

• Along the whole roadmap, quick wins must be identified to validate the migrating system, and
those should offer a measurable business benefit

• A strategic implementation of a strategic application suite within a time-frame of two years is
essential

• Support from the stakeholders must continuously be ensured
o From management
o From users, both corporate and individual

This list could easily be enlarged, but on the other hand reflects what was mentioned in the
“Motivations” section.

Risk assessment

A number of risks are definitely present in a large-scale migration plan, and must clearly be identified
in order to be controllable. A list of risks is indispensable in any plan, but is certainly preliminary.
New risks are likely to pop up.

Possible risks in this case are:

• Unfeasibility. Before a proof of concept or even a pilot application is delivered, it remains
uncertain whether the combination and integration of traditional and “new” technology is
feasible. The difficulties involved in controlling transactional context in a mixed environment
are, for example, discussed in [4].

• Especially the interaction between a COBOL environment and a Java environment is a major
technological risk factor. See also [4].

• Complexity. Systems may tend to be overly complex, and complexity is a source of
unmaintainability. Integration of systems of a different nature does not relieve this risk.
Componentisation and loose coupling between constituents might bring a solution, but well-
understood solutions are not available yet.

• Performance is already a problem in the “as-is” situation, mainly because of the data
processing mode used. To control costs and guarantee operational flexibility, it remains a
major issue in the new environment, especially while transitioning.

• Obsolescence of techniques. Even “new “ technology tends to be obsolescent before it even
matures.

• Lack of pragmatism, taking into account the current situation in terms of expertise, resources
and technology available. Solutions have to be pragmatic. Solutions offered by academics
often fail in this respect – we must admit that. We should clearly attend to what was presented
before in the “Postulates and constraints” section.

Tom Mens
1

Tom Mens
151

 6

• Unmanageable systems. This point is related to “complexity” as mentioned before. What is
overly complex is also unmanageable. There is also a human resource issue here: do we have
the people and staff to manage those environments?

• Cost control. This point might seem to be obvious. but cost estimates in legacy evolution are
hard to obtain.

• Lack of appropriate (human) resources, both within the organisation as on the local market.
This point was mentioned earlier. It is clear that finding the right people and skills is a major
impediment.

In the present case, the risks were carefully evaluated and fallback positions were defined.

Methodology

A methodological action plan is required.

In the case at hand, a number of tracks were defined to plan the required actions. These are

1. Evaluation of the “as-is” situation in the current mainframe environment. Relevant action
items are among others: evaluation of the existing COBOL code and underlying data
structures

2. Determine the “to-be” business and application architecture
3. Determine the “to-be” technical and deployment architecture
4. Critical evaluation of the migration scenario’s between the “as-is” and “to-be” situations

The careful development of this methodology allowed (and still is allowing) the streamlining of the
migration path. Although the division between the tracks seems, at least at first sight, to be rather
artificial, it partially reflects the structure of the different teams in place and so it is a consequence of
the organisational structures, which cannot be ignored.

Technological migration issues and solutions

Based on the above managerial and tactical considerations, several technical migration scenarios are
examined at the moment. For company-confidential reasons, those cannot fully be exposed right now,
but that can very soon be remedied and result in a more expanded version of this position paper.
underpinned by facts and figures.
Possible solutions to the evolution and migration plan will definitely have to rely on a temporary and
controlled form of mirroring of data between the current mainframe platform and the relational
database to be deployed.

Conclusion

Any effort for migration or evolution of large-scale industrial software systems must be driven by a
corporate strategy redefinition. Buy-in from management and end users requires a well-defined
strategic management view and planning, based on a clear statement of motivation, objectives and of
the constraints imposed by the current environment and continuous operational needs. The definition
of measurable success factors and a precise risk assessment are also essential. An organization-wide
methodology must be defined and supported by all stakeholders. As a final note, it should be pointed
out that the case on which this paper is based is a not- profit organisation. It is likely that in a more
commercial context, a more detailed cost-benefit analysis would be needed.

Tom Mens
1

Tom Mens
152

 7

References

[1] I. Michiels, D. Deridder, H. Tromp, A. Zaidman, “Identifying ICT problems in legacy software:
preliminary findings of the ARRIBA project”, this workshop.

[2] J. Henrard, J-M. Hick, P. Thiran, J-L. Hainaut, “Strategies for data reengineering”, Proc.
WCRE02, IEEE Computer Society Press, 2002

[3] K.Vandenborre, P. Heinckiens, G. Hoffman, H. Tromp, “Coherent Enterprise Modelling in
Practice”, 13th European-Japanese Conference in information modelling and knowledge bases”,
Kitakyushu, Japan, 2003.

[4] D. Plakosh, S. Comella-Dorda, G.A. Lewis, P.R.H. Place, R.C.Seacord, “Maintaining transactional
context: a model problem”, Report CMU/SEI-2001-TR-012, Carnegie Mellon Software Engineering
Institute, August 2001

[5] S. Ducasse, S.Demeyer and O.Nierstrasz, “Object-Oriented Reengineering Patterns”, Morgan
Kaufmann and Dpunkt, 2002.

[6] M.L. Brodie and M. Stonebraker, “Migrating Legacy Systems – Gateways, Interfaces and the
Incremental Approach”, Morgan Kaufmann Publishers, 1995.

[7] Aberdeen Group, “Legacy Applications: from cost management to transformation”, Executive
White Paper, March 2003, at http://www.aberdeen.com/2001/research:03038126.asp

[8] D.S.Linthicum, “Enterprise Application Integration”, Addison-Wesley, 1999

[9] J.C.Lutz, “EAI Architecture patterns”, EAI Journal, March 2000

[10] M. Themistocleous and Z. Irani, “Evaluating and adopting application integration: the case of a
multinational petroleum company”, Proc. 35th Hawaii International conference on system sciences,
2002.

[11] M. Themistocleous, Z. Irani, R.M. O’Keefe and R. Paul, “ERP problems and application
integration: an empirical survey”, Proc. 34th Hawaii International Conference on system sciences,
2001.

[12] M. Fowler, “Patterns of Enterprise Application Integration”, Addison-Wesley Signature Series,
2002.

Tom Mens
1

Tom Mens
153

 Supporting Software Maintenance and Evolution
 with Intentional source-code Views1

 Kim Mens and Bernard Poll

 Département d’Ingénierie Informatique, Université catholique de Louvain
 Place Sainte-Barbe 2, B-1348 Louvain-la-Neuve, Belgium

 E-mail: {Kim.Mens@, poll@student.}info.ucl.ac.be

Abstract. We propose the abstraction of intentional source-code views to codify essential information,
about the architecture and implementation of a software system, that an engineer needs to better
understand, maintain and evolve the system. We report on some experiments that investigate the
usefulness of intentional source-code views in a variety of software maintenance, evolution and
reengineering tasks, and present the results of these experiments in a pattern-like format.

1. Introduction

“A program that is used in a real world environment necessarily must change or become less useful in that
environment.” [Leh84]

Software systems are constantly being enhanced and adapted to accommodate to changes in their environment.
Several studies have proven software maintenance and evolution to account for a large part of the total software
life cycle cost, making software maintainability a major commercial and economic factor to deal with in the
development of a software system.

Our research hypothesis is that many software maintenance and evolution problems are directly or indirectly
caused by a documentation problem. Software documentation most often does not capture all information a
software engineer needs to understand, maintain or evolve a software system: important implementation choices
that were made; the original programmers’ intentions; how the code maps to higher-level architectural
descriptions; interactions between methods, classes and modules; specifications of each piece of code; and so on.

A lot of this information remains hidden in the engineers’ minds. Some of it may be recovered by analysing the
code and its comments, but often it cannot be retrieved at all. In addition, browsing the code to understand its
underlying intentions or to reverse engineer its effective architecture is a non-trivial and time consuming process
and generally produces an incomplete mental picture of the software only. When evolving the software, such an
incomplete understanding of a software system can lead an engineer to unnecessarily increase its complexity, or
to introduce undesired and erroneous inconsistencies.

In [MMW02a] we introduced the abstraction of intentional source-code views as a way to ”increase our ability
to understand, modularise and browse the source code by grouping together source-code entities that address
the same concern.” We claim that this abstraction can be used to capture much of the information about a
software system’s architecture and implementation that an engineer needs to better maintain and evolve a
software system. This is mainly because the views are defined intentionally, i.e. as a logic query on the source
code, rather than by explicitly enumerating all source-code entities involved. As such, an intentional source-code
view’s description typically does not need to be changed when the source code evolves. In addition, extensional
consistency of such views, i.e. the fact that two alternative intentional descriptions of the same view should
always produce exactly the same extension set, is proposed as a way of maintaining source code consistency.

We conducted some preliminary experiments to investigate how intentional source-code views can codify
information that is essential to software maintainers and evolvers and to document, in a pattern-like format, how
they can use this information in a variety of software maintenance, evolution and reengineering tasks. We will
present two evolution-related usage patterns: enforcing coding conventions and checking design consistency.

This research is a step towards developing a technique and tool that, without drastically changing the way in
which software engineers work, can:

- help engineers understand a software’s architecture;
- contribute to keep an up-to-date software documentation;

1 This position paper is a shortened version – though customized to the topic of the ELISA workshop – of the full paper
[MPG03] that was accepted for publication and presentation at the main conference track (ICSM 2003). It was also submitted
– with minor differences only – to the ECOOP 2003 workshop on Object-Oriented Reengineering, where it was published in
a technical report [DDM03].

Tom Mens
154

- improve developers’ and maintainers’ efficiency;
- help engineers take implementation choices;
- help engineers to conform to an established architecture;
- avoid an evolving software’s architecture to become unnecessarily complex;
- help developers and maintainers following coding conventions and standards.

2. Intentional Views

Before continuing, we explain the essence of the intentional view model. For more details, see [MMW02a,
MPG03].

An intentional source-code view is a set of related (static2) program entities (such as classes, instance
variables, methods, method statements) that is specified by one or more alternative intentional
descriptions (one of which is the ‘default’ intentional description). Each intentional description is an
executable specification of the contained elements in the view. Such a description reflects the
commonalities of the contained elements in the view, and as such, codifies a certain intention that is
common to all these elements. We require that all alternative descriptions of a given view are
‘extensionally consistent’, in other words, after computation they should yield the same set of elements.

The above definition highlights some key elements that turn intentional views into more than mere ‘sets’ of
program entities:

Intentional. The sets are not defined by enumeration but are computed from a specification. This is useful when
the software is evolved as the sets are ‘updated’ automatically: it suffices to recompute the specification.
Intentional descriptions are also more understandable and concise.

Declarative. Preferably, to make them easier to read and understand, the executable specifications should be
written in a declarative language. This is important as they codify essential knowledge on the programmers’
assumptions and intentions.

Alternative descriptions. Some descriptions are more intuitive; others are more efficient to compute. As such it
is useful to specify both. Also, sometimes there are different natural ways in which to codify a view,
depending on the perspective taken.

Extensional consistency. The consistency constraint between different alternative descriptions allows us to
assess the correctness of the view definition, as well as the consistency of the actual source code (e.g.,
consistent usage of certain conventions and assumptions in the source code).

Deviations. Although not mentioned in the definition, for each alternative we can specify positive and negative
‘deviations’, i.e. elements that do not satisfy the specification of the alternative but that should be included,
and elements that do satisfy the specification but should not be included. These deviations indicate
‘exceptions to the general rule’ made by programmers. They also help in defining intentional views
incrementally: you can start out with a rough rule that has some exceptions and refine it later to make it
more precise.

Relations. By relating intentional views we codify high-level structural knowledge about the source code.

Negative information. By using logic negation in our intentional descriptions we can codify negative
information too (all program entities that do not have a certain desired property), which is often very
powerful.

Intentional views can help an evolver because they allow him to ensure that the code — either before or after an
evolution step — has a certain structure or satisfies certain conventions. “Negative” views of all program entities
that do not have a certain desired structure or do not satisfy a certain convention, are also useful for evolution
purposes, as they group all entities that need to be modified (so that they do have the desired structure or satisfy
the desired convention).

To help a software engineer define intentional views, we implemented a prototype tool called the Intentional
View Browser [MPG03]. This tool supports the declaration of intentional views on top of the VisualWorks
Smalltalk development environment. The Intentional View Browser also verifies extensional consistency.

3. Logic metaprogramming

The computational medium in which we specify our intentional source-code views is SOUL [MMW02b], a
Prolog-like logic programming language. But SOUL is more than a mere logic programming language: it is a

2 Although the definition itself does not really require that the program entities contained in intentional source code views be
static, in our particular implementation of the intentional view model, we can only reason about static program entities.

Tom Mens
155

metaprogramming language, which enables logic reasoning about an underlying base language.3 In our case, this
base language is the object-oriented programming language Smalltalk. In fact, SOUL was implemented entirely
in Smalltalk, which made it quite easy to make it reason about Smalltalk (thanks to Smalltalk’s strong reflective
capabilities).

As a concrete example of an intentional source-code view (and of the capacity of SOUL to reason about its own
underlying Smalltalk implementation), consider the definition of a view soulLogicTestMethods. When
implementing the SOUL logic libraries, we followed a kind of unit testing approach where every logic predicate
was tested separately. The view soulLogicTestMethods groups all methods that implement tests for SOUL logic
predicates.

For readability purposes, we edited the logic declarations of our intentional views somewhat so that they
resemble Prolog syntax more closely (except that Soul logic variables start with a question mark); we do assume
that the reader is somewhat familiar with Prolog syntax.

view(soulLogicTestMethods,[extractedFromClasses,withSamePrefix]).

viewComment(soulLogicTestMethods,'This intentional view contains all methods that implement tests for logic
predicates.').

default(soulLogicTestMethods,withSamePrefix).

The above facts declare an intentional view soulLogicTestMethods with two alternatives extractedFromClasses
and withSamePrefix, of which the latter is considered the default alternative. The alternative
extractedFromClasses codifies the intention that a method is a logic test method if it belongs to a class that
implements tests for logic predicates (which is verified by an auxiliary predicate soulLogicTestClass). An
exception is made for private methods, which are only auxiliary methods that are used by the actual logic test
methods.

intention(soulLogicTestMethods,extractedFromClasses,?MethodDefinition) :-
soulLogicTestClass(?Class),
classImplements(?Class,?MethodName),
not(privateMethod(?Class,?MethodName)),
methodDefinition(?Class,?MethodName,?MethodDefinition).

Now suppose that an auxiliary method exists that was not put in the private protocol, where it belongs. In that
case, we can still exclude it to keep the alternative intentional descriptions consistent. Of course, this is a
temporary fix and we should require the developer in charge to fix the error as soon as possible. E.g.,

exclude(soulLogicTestMethods,extractedFromClasses,?MethodDefinition) :-
methodDefinition(Soul.SoulTests.ErrorHandlingTest,inspectorClassUsedFor:,
 ?MethodDefinition).

The other alternative withSamePrefix codifies the intention that all methods that implement tests for logic
predicates have the same prefix4 'test' and belong to a subclass of a class LogicTests:

intention(soulLogicTestMethods,withSamePrefix,?MethodDefinition) :-
hierarchy(Soul.SoulTests.LogicTests,?Class),
classImplements(?Class,?MethodName),
startsWith(?MethodName,test),
methodDefinition(?Class,?MethodName,?MethodDefinition).

4. Potential usage patterns

Rather than just enumerating the results of our experiments, we decided to present them in a pattern-like format,
thus broadening their scope of usability. The pattern style allows us to abstract away from the particular logic
metaprogramming approach we used to codify various design issues. Being purpose-oriented, this kind of
presentation enables an engineer to quickly identify what results he could reuse to aid in solving a relevant

3 Although intentional source code views could be specified in any metaprogramming language, we chose a logic language
because we felt that declaring them in a logic metaprogramming language made them more”intentional” and declarative.
4 Note that the fact that all these methods have the same prefix 'test' is more than a naming convention. It is required by the
SUnit application which will automatically run these test methods as “unit tests”.

Tom Mens
156

maintenance or evolution problem he is faced with. Each of our potential usage patterns consists of a name, a
purpose indicating what task the intentional view was used for, a rationale explaining why this task is a relevant
one, a solution describing how exactly we can use intentional views to help in achieving that task and a concrete
example of such a solution.

We prefer to talk about our usage patterns as “potential” patterns because, as most of our patterns have just been
discovered, they are still immature in the sense that we have not yet been able to check their validity on other
case studies. We have also not yet elaborated other important aspects of these patterns such as possible
alternative solutions, when (not) to apply the pattern and relationships among patterns. Although not elaborated
upon in this paper, we are also planning to define a pattern language describing how these usage patterns coexist
and interact. Such a pattern language can help an engineer to identify the set of patterns that address his concerns
and to find out how to combine them to aid him in his software maintenance and evolution tasks.

We are currently using intentional views to maintain and evolve two applications. At this stage, we have defined
six potential usage patterns, that each solve a relevant maintenance problem. Due to space limitations, we only
show two of them, illustrated by a single example each. For more examples and patterns, see [MPG03].

Usage pattern 1: Enforcing coding conventions

Purpose. Verify the consistent use of certain coding conventions throughout the system.

Rationale. Programmers (and Smalltalk programmers in particular) use lots of coding conventions and ‘best
practice patterns’ to codify their intentions [Bec97]. Unfortunately, consistent usage of such conventions and
patterns strongly depends on the programmers’ discipline, as it is difficult to verify that the conventions are
actually respected throughout the software system (and remain respected after having evolved the software).

Example. Suppose we want to enforce the convention that every mutator method assigns a value to the
corresponding instance variable. We can do this by defining an intentional view mutatorMethods with two
alternatives. The extensional consistency constraint between the two alternatives takes care of the rest.

The first alternative codifies the Smalltalk naming convention that mutator methods always have the name of the
instance variable that they modify, followed by a colon5.

intention(mutatorMethods,byName,?M) :-
 mutatorMethod(?M,?).

mutatorMethod(?M,?V) :-
 instVar(?C,?V),
 equals(?N,{?V:}),
 classImplementsMethodNamed(?C,?N,?M).

The second alternative refines the first one with an extra clause which states that the method ?M actually assigns
some value to the variable ?V. The predicate methodWithAssignment will traverse the entire method parse tree
of the mutator method to search for such an assignment.

intention(mutatorMethods,byBody,?M) :-
 mutatorMethod(?M,?V),
 methodWithAssignment(?M,?V,?).

Extensional consistency of these two alternatives implies that all methods that follow the naming convention of
mutator methods will actually assign the appropriate variable as well.

Solution. The extensional consistency constraint between the different alternative descriptions of an intentional
view can be used to implicitly express an essential convention or assumption in the source code.

Enforcing such a convention will make the software cleaner and easier to understand, and thus easier to evolve.
We can also use the extensional consistency constraint for evolution purposes. When the constraint is not
satisfied, this implies that some entities do satisfy one alternative intentional description but not another. For
example, it may be the case that we have a method with a mutator name, but which does not assign any value, or

5 The expression {?V:} produces a string which is the concatenation of the string representation of the value contained in
the logic variable ?V, with a colon.

Tom Mens
157

vice versa. Once we have discovered these faulty entities, it is easy to modify them so that the extensional
consistency constraint will be satisfied.

Usage pattern 2: Checking Design Consistency

Purpose. Verify consistency of the system's source code with a higher-level design diagram.

Rationale. Without a means of ensuring that the source code of a software system is, and remains, consistent
with a higher-level design diagram, the design diagram soon becomes outdated and looses its relevance as high-
level documentation of the source code.

Solution. To verify whether every class in, for example, a UML class diagram corresponds to one in the source
code and vice versa, we declare one intentional view with two alternative definitions. The first alternative groups
all classes that have been defined in the diagram6, the other groups all existing classes in (the relevant part of)
the implementation. Inconsistencies may arise either when adding a class to the source code without updating the
diagram or when evolving the diagram without updating the code. These inconsistencies will be detected
automatically when verifying extensional consistency of the intentional view. The same applies for methods,
instance variables and class variables. Due to space limitations, we only show the view defined for classes. Note
that the inImplementation alternative is based on the convention that all classes of the diagram are implemented
in the same namespace, but can be adapted easily when another convention would be used.

view(classesOfDiagram,[inDiagram,inImplementation]).

intention(classesOfDiagram,inDiagram,?ClassName) :-
umlClass(Diagram,?ClassName,?,?,?).

intention(classesOfDiagram,inImplementation,?ClassName) :-
namespaceForDiagram(?Namespace,Diagram),
classNameInNamespace(?,?ClassName,?Namespace).

Example. We recently built a small proof-of-concept application for computing the invoices of a mobile phone
operator. The source code for that application was partially generated from a UML class diagram description.
The above solution allowed us to verify easily when the design diagram was out of sync with the implementation
and when either (part of) the code needed to be regenerated, or the diagram needed to be updated.

Again this pattern can be used for evolution purposes, to modify the source code and/or diagram so that they
become consistent (in case the existential consistency check would fail).

5. Discussion

In spite of the high declarative and intuitive nature of intentional views, one might argue that it still requires an
above-average engineer to define intentional views. Therefore, we are currently investigating how to facilitate or
automate the task of defining intentional views. This is also a crucial issue in order for the technique of
intentional source-code views to be scalable and applicable in the context of large industrial software.

One possibility is to offer a simpler, decidable, but maybe less expressive, language in which to define the
intentional views (as opposed to using a full-fledged logic programming language). Another way is to add tool
support that offers some predefined templates for the most common kinds of intentional views, which only need
to be parameterized with some concrete details. A third solution is to offer a tool that helps us in semi-
automatically extracting intentional views from the source code or from an enumerated set of elements (or
“extensional view”). For example, some of our colleagues are investigating the use of inductive logic reasoning
to derive the logic rules describing an intentional view from a set of examples contained in an extensional view
[TBKG03]. Of course, the question then remains how to come up with these extensional views. We are currently
conducting some experiments to use the technique of conceptual analysis to automatically extract interesting
extensional views from source code.

6. Related Work

Existing software engineering tools and formalisms provide only small, restricted sets of decomposition and
composition mechanisms, that typically support only a single, “dominant” means of separating the concerns of

6 In our experiment, the UML class diagram was expressed as a set of logic facts and could thus easily be reasoned about by
the same logic (meta)programming language that we used to reason about source code entities.

Tom Mens
158

importance in a software system. Tarr et al. [TOHJ99] propose Hyperslices and Hypermodules as a new
paradigm for modeling and implementing software artifacts in a way that keeps separate all concerns of
importance. In their approach, a program is defined in an N-dimensional space where each dimension is a
different concern. e.g. objects, functionalities, properties. Each hyperslice defines a decomposition (a
modularization) of the program according to one of its dimensions, considering methods as primitive, indivisible
units.

The work on intentional source-code views is clearly similar in spirit to Tarr et al’s technique of multi-
dimensional separation of concerns [Men02], as it also acknowledges that it is essential to be able to separate the
different concerns of importance. However, the abstraction of intentional source-code views is not targeted at
modeling and implementing software systems but rather at understanding, maintaining and evolving software
systems. In addition, as opposed to Tarr et al. we do not propose a new paradigm, but propose our approach as a
technique that aids software engineers in their maintenance and evolution tasks, without drastically changing the
way in which they work.

The same remark can be made about the relationship between Intentional Programming [CE2000, Chapter 11]
and the work on intentional source-code views.

7. Conclusion

Evolving and maintaining software requires adequate documentation of its implementation. However, due to the
software’s constant evolution, this documentation is often absent, incomplete, or not synchronized with the
implementation. We proposed intentional source-code views as an “active” documentation technique to alleviate
this problem: intentional source-code views are defined as a logic query on the program and are thus defined
intentionally rather than enumerating the collection of source-code entities involved. In this way, intentional
source-code views provide support for software evolution: when the source code changes the intentional source-
code views remain.

Although creating such views is not a trivial task, the support they may offer to future software maintainers may
very well be worth the initial investment. Because the different ways in which intentional views may aid
software maintainers and evolvers are documented in the form of usage patterns, an engineer will be able to
quickly identify what particular pattern is useful for the particular maintenance or evolution task at hand. Two
examples of how intentional source-code views can be used to support software evolution were presented:
enforcing coding conventions and checking design consistency.

8. References

[Leh84] M. M. Lehman. Program evolution. Information Processing & Management, 20(1-2):19-36, 1984.

[Bec97] Kent Beck. Smalltalk Best Practice Patterns. Prentice Hall, 1997.

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods, Tools and
Applications. Addison-Wesley, 2000.

[DDM03] Serge Demeyer, Stéphane Ducasse and Kim mens (editors). WOOR’03 – Proceedings of the 4th

International Workshop on Object-Oriented Reengineering 2003. Published as Technical Report
2003-07 by the Department of Mathematics & Computer Science, Universiteit Antwerpen.

[Men02] Kim Mens. Multiple Cross-Cutting Architectural Views. Position paper submitted to the Second
Workshop on Multi-Dimensional Separation of Concerns in Software Engineering (ICSE 2000).

[MMW02a] Kim Mens, Tom Mens, Michel Wermelinger. Maintaining software through intentional source-
code views, In Proceedings of SEKE 2002, pp. 289–296. ACM, 2002.

[MMW02b] Kim Mens, Isabel Michiels, Roel Wuyts. Supporting software development through declaratively
codified programming patterns. Journal on Expert Systems with Applications, 23(4):405–431.
Elsevier, November 2002.

[MPG03] Kim Mens, Bernard Poll, Sebastián González. Using intentional source-code views to aid software
maintenance. In Proceedings of ICSM 2003. IEEE, 2003. (To be published.)

[TBKG03] Tom Tourwé, Johan Brichau, Andy Kellens and Kris Gijbels. Induced intentional software views.
Paper submitted to ESUG’03.

[TOHJ99] Peri L. Tarr, Harold Ossher, William H. Harrison, and Stanley M. Sutton Jr. N degrees of
separation: Multi-dimensional separation of concerns. In Proceedings of ICSE 1999, pages
107–119, 1999.

Tom Mens
159

Identifying Problems with Legacy Software
Preliminary Findings of the ARRIBA Project ?

Isabel Michiels1, Dirk Deridder1, Herman Tromp2, and Andy Zaidman3

1 Programming Technology Lab, Vrije Universiteit Brussel
Pleinlaan, 2 , 1050 Brussel, Belgium

{Isabel.Michiels,Dirk.Deridder }@vub.ac.be
2 Universiteit Gent, INTEC, Sint-Pietersnieuwstraat 41
9000 Gent, Belgium -Herman.Tromp@UGent.be

3 Universiteit Antwerpen, Lab On Re-Engineering, Middelheimlaan 1
B-2020 Antwerpen, Belgium -Andy.Zaidman@ua.ac.be

Abstract. The goal of this experience report is to identify some of the key prob-
lems of today’s enterprises that have to deal with managing their large business
critical software systems. Our motivation to do so is based on preliminary find-
ings from the ARRIBA project. The work we present here form our preliminary
conclusions of the first 6 months of the project, where we visited some of these
enterprises, to identify their main needs of today.

Keywords: Legacy Systems, EAI, restructuring, COBOL

1 Introduction

The dynamics of modern business applications is characterized by a constant need for
integration and restructuring and this at a much larger scale than ever before. This is
often driven by the physical integration and restructuring of companies, which conse-
quently results in a need to alter their ICT infrastructures to accomodate the changed
business activities. Possible examples are the redefinition of a corporate strategy, a
corporate take-over, a conversion of the existing infrastructure from a data process-
ing model towards a service oriented model, etc . . .
This continuous modification process will finally result in a situation where several soft-
ware systems have to collaborate in a way that was never (or could never have been)
anticipated in their original design.
Such large-scale software applications are often referred to aslegacy applications. In
this report we will adhere to the following definition1 of a legacy application [13]:

A legacy system is an operational system that has been designed, implemented
and installed in a radically different environment than imposed by the current
ICT strategy

? This research is funded by the Institute for the Promotion of Innovation by Science and Tech-
nology in Flanders (IWT)

1 Other definitions are in use [2]

Tom Mens
160

When burdened with the task to enable the collaboration of these separate systems,
having access to a rich collection of documentation (preferably also feedback from the
original designers/ programmers of the system) is imperative. Unfortunately, in all but
a few cases, this documentation remains non-existing or has become completely out of
date due to evolution of the software system. Generally speaking, one could state that
the only true description of the information structures and the implemented behaviour
is locked up in the running software system itself. Hence to obtain a sufficient (active)
set of documentation one will have to turn to analysing the available static (e.g. source
code, data models) and dynamic (e.g. runtime event traces) artifacts of the system.
There are five ways to handle a legacy situation in which a change is imposed :

1. Develop a new system from scratch
2. Refactor - rewrite portions of the system preserving its existing behavior
3. Porting the system to another platform
4. Migration strategy with partial reuse of the existing system

As we have seen in our first findings, a solution is chosen by doing a combination
of the four above methods.
In this report we provide a preliminary overview of a number of encountered problems
when confronted with legacy software. We have based ourselves on the results of visit-
ing three major Belgian enterprises in the context of a research project called ARRIBA.
In the following section, we will briefly describe the ARRIBA project. Then we will
present our first findings in section 3 and in section 4 we will point out future work for
the project. We will then round up in section 5 with our conclusion.

2 The ARRIBA project

The ARRIBA project is a generic research project funded by the IWT, Flanders2. The
project started in October 2002 and will allow 6 researchers to work on the project for
4 years3.
The aim of ARRIBA is to provide a methodology and its associated lightweight tools in
order to support the integration of disparate business applications that have not neces-
sarily been designed to coexist. Inspiration comes from real concerns that are the result
of an investigative effort on the part of some of the research partners in this consortium.
The object of this investigation is the identification of mainstream ICT problems within
a representative forum of Belgian enterprises (large and small) that rely on information
technology for their critical business activities. Part of what we propose to investigate
is covered by the newly named discipline of Enterprise Application Integration (EAI);
another part is covered by re(verse) engineering; however, our ambitions reach further.
At the roots of the ARRIBA project are two driving forces. On the one hand we have a
consortium of research groups that have been active in the field of software engineering

2 Institute for the Promotion of Innovation by Science and Technology in FlandersIWT -
http://www.iwt.be

3 ARRIBA: Architectural Resources for the Restructuring and Integration of Business Applica-
tions, see http://arriba.vub.ac.be

Tom Mens
161

and more particularly in re(verse) engineering, software evolution and software archi-
tectures4. These groups have a fairly long-standing history of cooperation and they feel
confident that they can join forces and tackle the new and ambitious problem domain
targeted in the ARRIBA proposal.
On the other hand, we have the already mentioned and recently created forum of Bel-
gian enterprises interested in a joint initiative to identify generic problems and likewise
generic solutions plaguing their ICT base5. This forum has the form of a foundation
hosted by what could best be described as a collective spin-off of the five Flemish com-
puter science departments.
The academic partners together with the user committee (the first providing the content
of the ARRIBA project, the second providing the context) will guarantee the correct
identification of the problem setting and the proper channeling of the results to the
business world.
The user committee of the ARRIBA project currently consists of 7 Belgian enterprises.
They form the steering group of the project: they regularly check if we tackle current
ICT problems and during the evolution of the project they will see whether our results
will be industrially applicable. The next section reports on the first findings based on
visits of part of the user committee members.

3 First Findings

During the first six months of ARRIBA, we visited 3 major Belgian enterprises: the
KBC group6, Banksys7 and LCM [13]8. As preparation for these visits, we prepared a
question list according to [5]. One of these visits was organized in a workshop format,
while the other two were more Q&A sessions based on presentations by the companies
In a later phase, other visits to other companies are planned.
In what follows, we have organized our findings into common themes:

The Mainframe Syndrome

All of these organisations depend heavily for their back-office on proven technology
and duplicate datacenters, which are essential for their critical business activities; this
is an environment strictly used for controlling processes to be able to ensure operational

4 There are 3 Flemish academic partners involved: Vrije Universiteit Brussel (VUB), Univer-
siteit Gent (UG) and the Universiteit Antwerpen (UA) and two other European partners, UCL
in Louvan-La-Neuve, Belgium and SCG, Berne, Switzerland. The latter two play a supporting
role

5 These Belgian enterprises are grouped in aUser Committeecurrently consisting of 7 compa-
nies: Inno.com, KBC, LCM, Banksys, Toyota, KAVA and Pefa

6 KBC is a large banking company that holds three major product factories: banking, insurance
and marketing activities

7 Banksys is one of the most important providers of the infrastructure for electronic financial
transactions in Belgium

8 Landsbond der Christelijke Mutualiteiten (LCM) is a large organisation responsible for the
redistribution of health care allowances, and offers also a number of related social services

Tom Mens
162

performance.
In the front-office environment and end-user environment, UNIX-like systems and J2EE
application server systems are also used. They are not always considered to be fully
reliable, and therefore less suited to support their essential business operations. This
situation indicates that there is a serious resilience towards new and not yet proven
technology (hardware as well as software). The integration with the existing mainframe
environment also remains a very big issue [9, 10]. Previous efforts to migrate to a Mi-
crosoft technology-based system have proven to be unsuccessful, at least in the case of
LCM [13].

Organisation and Human Resources

Most organisations have a pretty strict and project-based organization which is clearly
reflected by the Human Resources setup. This adds considerably to their latency and
inability to adapt. Take as an example LCM: they have about 200 COBOL developers,
and (only) 4 or 5 Java-aware software engineers. It is clear that in such an environment
there will be a lot of resistance towards new developments (the systems are functioning
properly, aren’t they, so why change anything?). The previous point is reflected in the
structure of the organisation : separated business units, project driven work structure,
etc. [4] . A central authority to control major revitalisation efforts, to enforce architec-
tural consistency and provide a deployment policy is often missing or very difficult to
install.

Coding Standards and Techniques

In general, it is estimated that between 60 and 80 % of today’s operational code is
still written in COBOL [3, 1]. Some C or Java code is also present, but only in small
quantities. Knowledge about the systems is partly lost and only evident in the code
itself, e.g. people have left the company, documentation is very poor (and out of sync
with the current system) or not present. When validating the quality of these mainframe
COBOL applications, usually the 80/20 rule will manifest itself: 80% of the coding
problems are caused by 20% of the code (also known asThe Pareto Principle) [8].
Regarding architectural issues, migration has been put forward as the main bottleneck of
the restructuring process; however we found that companies experience that integration
with new technologies is much more important (and also more difficult). Take as an
example the introduction of new environments (like J2EE) for new applications: the
real challenge here is how to let these connect or communicate with the other COBOL
applications on the mainframe.

Data and Information

Large-scale software systems consequently also have to deal with large amounts of data.
Unfortunately, in most legacy systems, the use of a Relational Database Management
System (RDBMS) is scarce. Proprietary flat file systems are still in use, but migration
to using an RDBMS system has received top priority.

Tom Mens
163

In large organizations, a Corporate Data Model is hard to enforce. The reason for this is
simple: there is no central ownership of data or information items in use by these com-
panies. This often leads to a rapid growth of different information models, where every
part of the organization has its own view on that same information, with differences in
structure and even in the semantics of these information models. Take as an example
the concept of acustomer: it is interpreted differently in other business units within
the company; acustomerthat buys something is very different from acustomerthat
complains about the companies’ delivered products. So the quality of the data models
and the data itself, because of the lack of a responsible person, is far from guaranteed.
Also, a consistent view on the information between the business units themselves [14]
is missing. As a consequence, migrating the software and the information models be-
comes a real problem.
At the KBC for example, the use of a uniform data model cannot be enforced, but in-
stead they enforce a uniform message model. This means that they clearly specify the
syntax and semantics of messages that are sent between different software applications,
not the form of the data itself. In practice, this approach has proven to give very satis-
factory results.

Using Standard Packages

One of the possible solutions these companies bring forward to better structure their
applications is using standard ERP packages. However, this causes several problems
[12]. Experience proves that packages have a strong front-end (or presentation layer),
but a weak back-end for performance. On the other hand, some applications require the
use of certain packages since they implement international standards.
Security forms a large problem as well; it can be a conclusive reason for refusing the use
of a package. Another drawback of using packages is that they are expensive and some-
times do not have the functionality that is really needed. Customizing these packages
can be risky due to package updates; therefore a decision is made every time whether a
package should be bought or written from scratch.
Another issue is that the view of the package on the business domain does not map
directly to the real world, and the amount of work to be done for integrating these pack-
ages into the existing application is highly underestimated. Formulated otherwise: there
is a semantic gap between the ”standard” package and its existing information model;
and performing gap analysis is time-consuming.
Another open question that still remains is how to map the companies’ business process
model onto the ICT infrastructure of the predefined package.

Datawarehousing

Setting up datawarehousing activities is not a trivial thing to do: project-driven busi-
nesses (like the KBC) need to set-up a project first, mainly about collecting meta-data
information. Since this data is cross-cutting different business units, these projects are
difficult to ’sell’, because it is difficult to find a single business case for them. After all,
possible profit can only be shown after a while. Most extraction of meta-data is done by
interviewing people: they are the most valuable sources of information. And although

Tom Mens
164

most companies see the importance of datawarehousing, it is not really clear yet what
they will do with all the meta-data information.

Enterprise Application Integration (EAI)

This rather new domain dates from the mid-nineties [7, 11]. According to Linthicum
Enterprise Application Integration is [6]:

The unrestricted sharing of information between two or more enterprise ap-
plications. A set of technologies that allow the movement and exchange of in-
formation between different applications and business processes within and
between organisations.

At this moment there is a growing number of enterprises that try to use this, usually
under the form of standard EAI tools (at the KBC they use eGate, Tibco and some EAI
tools developed within the company). For KBC, they have been using this through a
business case since 1998. Problems that arise now for KBC mainly come from handling
different EAI tools at once: now it is almost impossible to go back to using only one tool
throughout all units within the company. Instead, the use of the tools is being extended,
according to the needs and applications, inside the growing domain of EAI.

The IT Development Process

The IT Development process is usually well-defined within a company policy and a
lot of attention is paid to it. However, as mentioned before, it is not technology-driven,
which has as a downside that projects that do not have a business case (that are hard to
sell within the company), cannot be realized.
Developing and collecting documentation is, in some cases, part of the predefined soft-
ware development process of the company. Unfortunately it is too often neglected for
obvious reasons (e.g. time consuming, limited budget). So there is documentation avail-
able, but it is in most cases not up-to-date with the current software. So the source code
and the information models are often the only reliable source of documentation.

4 Future Work

Based on our first findings, we conclude that the first step for restructuring legacy ap-
plications is to understand and analyze the source code (we will call thisCode Mining).
This can be accomplished by analyzing static as well as dynamic information and tak-
ing into account the data and information models as well.
The second step could then be to identify lightweight tools that can, using the results of
the analysis of the first step, automatically extract architectural information, documen-
tation or domain knowledge out of the source code and data models. A last step could
then be to incorporate changes into the extracted artifacts and propagate these back into
the code (forward engineering).
Future tracks will emphasize more on COBOL and its environment and on how to use
dynamic information as well:

Tom Mens
165

Emphasis on COBOL code and its environmentSince the companies we presented be-
fore are willing to let us experiment on their code, we will concentrate in a first phase
on studying COBOL code and its environment. We would like to apply some of the
already known tools (that were developed in the labs of one of the academic partners),
like SOUL 9 or CodeCrawler10. Since these tools were not developed specifically for
COBOL, we first have to see how we can adapt them to use them within this context.
We have started to work on transforming COBOL into a more portable platform: we
intend to use XML as a portable format for source code representation. We can then
manipulate XML documents inside other language platforms. In a second phase (for-
ward engineering), we could try to manipulate this XML representation (either directly
on the DOM model, either through XSLT) and retransform it back to COBOL to actu-
ally restructure the code.
In the near future, we would also like to investigate in which way we can reuse tech-
niques developed for object-oriented systems, like code metrics, code refactoring,. . . for
restructuring (and enhancing code quality) non-OO legacy systems.

Using Dynamic Informationin the context of reverse engineering, static analysis is the
term used for a reengineering effort based solely on the information that can be found in
the source code of the software. In many cases this analysis is computationally very in-
tensive and doesn’t give the whole picture. Dynamic analysis uses information collected
during the execution of the program. The information we collect is called an event trace
and consists of a list of method invocations, procedure calls, object instantiations, etc.
A clear advantage of using dynamic analysis is that the information you have is always
correct with respect to the execution of the program, but a clear disadvantage is the
amount of information you have to wade through. Research in this direction will re-
volve around finding event sequences that logically belong together in the execution of
the program, i.e. a clustering operation. These clusters can then be abstracted to patterns
that point to key functionality in the software.

5 Conclusion

In this experience report, we have identified some of our preliminary findings of the
ARRIBA project, which aims at providing lightweight methodologies and tools for the
integration of software entities that have not necessarily been designed to cooperate.
During the first phase of the project we visited 3 out of 7 enterprises that are part of
the project’s user committee, and we presented some surprising commonalities found
in their current ICT restructuring schemes.
Finally, we ended by pointing out our future work for this ARRIBA project, with as next
intermediate goal to experiment with some mainframe applications (witten in COBOL)
and applying some already known lightweight tools to see what we can achieve.
In the near future, we will continue with the company visits.

9 Smalltalk Open Unification Language - http://prog.vub.ac.be/research/DMP/soul/soul2.html
10 see http://www.iam.unibe.ch/ lanza/CodeCrawler/ codecrawler.html

Tom Mens
166

References

1. Aberdeen Group. Legacy applications: From cost management to transformation,
2003. Executive White Paper from Aberdeen Group, March 2003. Can be found at
http://www.aberdeen.com/2001/research/03038126.asp.

2. M. L. Brodie and M. Stonebraker.Migrating Legacy Systems - Gateways, Interfaces and the
Incremental Approach. Morgan Kaufmann Publishers, 1995.

3. G. D. Brown. Cobol: The failure that wasn’t. COBOLReport.com -
http://www.csis.ul.ie/COBOL/course/.

4. J. O. Coplien.Pattern Languages of Program Design, volume 1, chapter 14 - A Development
Process Generative Pattern Language. Addison-Wesley, May 1995.

5. S. Demeyer, S. Ducasse, and O. Nierstrasz.Object-Oriented Reengineering Patterns. Mor-
gan Kaufmann and DPunkt, 2002.

6. D. S. Linthicum.Enterprise Application Integration. Addison-Wesley, 1999.
7. J. C. Lutz. EAI architecture patterns. InEAI Journal, March 2000.
8. V. Pareto. The pareto principle or the 80:20 rule.

http://www.public.asu.edu/ dmuthua/pareto’sprinciple.html.
9. D. Plakosh, S. Comella-Dorda, G. A. Lewis, P. R. H. Place, and R. C. Seacord. Maintaining

transactional context: A model problem. Technical report, SEI, august 2001. CMU/SEI-
2001-TR-012 - ESC-TR-2001-012.

10. M. Stonebraker and J. M. Hellerstein. Content integration for e-business. InSIGMOD
Conference, 2001.

11. M. Themistocleous and Z. Irani. Evaluating and adopting application integration: The case
of a multinational petroleum company. InProceedings of the 35th Hawaii International
Conference on System Sciences, 2002.

12. M. Themistocleous, Z. Irani, R. M. O’Keefe, and R. Paul. Erp problems and application
integration issues: An empirical survey. InProceedings of the 34th Hawaii International
Conference on System Sciences, 2001.

13. H. Tromp and G. Hoffman. Evolution of legacy systems, strategic and technological issues,
based on a case. Paper also accepted to the workshop on Evolution of Large-Scale Industrial
Software Applications (ELISA), 23 September 2003, ICSM 2003.

14. K. Vandenborre, P. Heinckiens, G. Hoffman, and H. Tromp. Coherent enterprise information
modelling in practice. InProceedings of 13th European-Japanese Conference on Informa-
tion Modeling and Knowledge Bases, Kitakyushu, Japan, June, 2003.

Tom Mens
167

Madhavji & Tassé Page 1 of 6

A Case for Establishing Evolutionary Policies
and their Support Mechanisms, with Examples †

Nazim H. Madhavji Josée Tassé

University of Western Ontario, Canada University of New Brunswick, Canada
madhavji@csd.uwo.ca jtasse@unbsj.ca

Abstract

An important trait of a mature discipline is that,
amongst other things, practitioners have specific
criteria to judge the appropriateness of the different
courses of action to take under a given circumstance, or
whether a given task has been well-accomplished. These
criteria may be in the form of templates, checklists,
rules-of-thumb, constraints, policies and laws, which
have resulted from many years of experience with
repeated application of these in different situations.
There is data to support that software evolution
practices are far from mature. Thus, in this position
statement, we make a case for establishing a (i)
comprehensive set of evolutionary policies and (ii) their
support mechanisms, to guide development1 in the
context of the instituted policies. A benefit of utilising
established policies and their support mechanisms is
that the sustainability of the evolving systems would
likely be increased.

1. Introduction

While the overall process maturity in software
organisation continues to improve according to the
SEI’s Year 2002 Year End update [1], there are still a
staggering 60% of the 1,345 organisations assessed
worldwide (appraised and reported since 1998) that
have been calibrated at Level 1 or 2 on the software
Capability Maturity Model (CMM) [2] and another
approx. 25% at Level 3. The first two levels denote
chaotic and repeatable practices, respectively, while
Level 3 denotes defined processes in an organisation.
Both technically and numerically, majority of the
organisations are far from the 15% organisations that are
at the, desired, higher levels of maturity (Level 4 --
managed and Level 5 -- optimising). Overall, therefore,
the worldwide picture of software development can be
considered quite gloomy.

† This work is supported, in part, by research grants from
NSERC (Natural Science and Engineering Research Council
of Canada).

1 In this paper, by “development” we mean evolutionary
development unless indicated otherwise.

Moreover, because most significant software projects
in industry are in evolutionary stages (i.e., beyond the
first release of a software system), we can assume that
the software projects assessed were typically not new
development projects. Also, whilst in general there are
many factors that contribute to the overall low process
maturity rating in software projects, there is no reason to
believe that software-evolution-related factors (e.g.,
ability to control size growth, or amount of regression
testing conducted in proportion to the degree of code
change, etc.) were not amongst them. Software evolution
community, both research and practice, thus has every
reason to be concerned about the state of the art and of
practice in software evolution.

Also, the Standish Group’s CHAOS study [3] of

23,000 applications in US companies over five years
(1994-1998) shows that, while more and more projects
are succeeding, by 1998 approx. 28% were failing
outright and another 46% were significantly challenged
on the quality and delivery fronts. This is corroborated
by data from another source [4] that also indicates that
approx. 30% of the large projects get cancelled, and that
the probability of a system of size 1 million lines of
code (MLOC) or some 10,000 Function Points (FP)
getting cancelled is approximately 50%. Not only this,
large systems are notorious for: drastically overshooting
schedules and budgets; severe reduction in
requirements, features or functions after project start;
not delivering what was promised; major reliability and
performance problems following delivery; and many
other issues [5].

Add to this abysmal record the approximately 8%
annual growth (new + changed), though in migration
projects (hardware or software based), volatile
environments, or in early evolutionary life, the growth
can be significantly higher (25-100%) [4]. This,
therefore, raises a challenge as to how to increase the
life expectancy of, say, a 10,000 function point system
from the current average of 10-15 years.

2. Position

There are many lines of attack in attempting to solve
software evolution problems. In this position statement,
however, we make a case for establishing a (i)

Tom Mens
Madhavji & Tassé

Tom Mens
Page 6 of 6

Tom Mens
168

Madhavji & Tassé Page 2 of 6

comprehensive set of evolutionary policies2 and (ii) their
support mechanisms, to guide development3 in the
context of the instituted policies.

A rationale for this strategy is that, in a mature
discipline, amongst other things, practitioners have
specific criteria to judge the appropriateness of the
different courses of action to take under a given
circumstance, or whether a given task has been well-
accomplished. These criteria may be in the form of
templates, checklists, rules-of-thumb, constraints,
policies and laws, etc., which have resulted from many
years of experience with repeated application of these in
different situations.

In the building industry, for example, single-glazed
or ¼” double-glazed windows would be considered
inadequate for the deep wintry conditions of Quebec
(typically in the range -20 to -30 ˚C); whereas, they
would be considered acceptable-to-comfortable for the
mild winters of New Zealand. Such knowledge is often a
result of past mistakes. For example, when early British
settlers emigrated to New Zealand, the orientation of
many houses did not maximise solar access in the
principal rooms which, in the years to come, precipitated
house remodelling.

In the field of software evolution, however, while

progress has no doubt been made over the last thirty-odd
years, exemplified by Lehman’s laws [6], the general
principle of “design for change” [7], or by numerous
other empirical studies (some of which are cited later in
the section on discussion) it is our contention that, as a
community, our rate of progress in adopting and
developing evolutionary policies and their support
mechanisms has been undeniably slow4. For example,
the Trial Version 1.00 of The Guide to the Software
Engineering Body of Knowledge (SWEBOK) [8] –
specifically Chapter 6 (Software Maintenance) and
Chapter 10 (Software Engineering Tools and Methods) -
- neither mentions policies for evolving software nor
their technological or methodological support as a
critical issue.

2 An evolutionary policy is defined as a statement of rule,
guiding principle, strategy, plan, course of action, procedure,
or constraint, to follow during the process of software
evolution.
3 In fact, we also need mechanisms to ensure continued
relevance, comprehensiveness and soundness of the enacted
policies. But we choose not to delve into policy management
and evolution issues in this position statement so as not to lose
focus on development issues, which are clearly of first order
importance.
4 While one may argue that this slow pace is due to the lack of
a general theory of software evolution, we contend that there
are nuggets hidden in numerous empirical studies and in
general practice awaiting discovery and their synthesis into
formalized policies that can be supported by automated means.
A prime purpose of this position statement is to demonstrate a
humble beginning in this direction.

Thus, in the absence of a concerted5 effort by the
software evolution community, developers have often
resorted to use, manually of course, ad hoc policies and
rules of thumb, such as:

 If the number of files edited for a given
change is ≤ six then self-reviews would
suffice; otherwise, independent
inspection would be conducted. [9].

While an argument in favour of such practice is

“better this than none”, it does little to further the
discipline as a whole. Consequently, even in a single
large project, let alone across projects, divisions or
organisations, one may find inequity in the application
of specific policies. The net result is an imbalance in
software quality in different parts of even the same
system; integration delays due to hold ups, or feature or
test reduction to cope with integration and release
schedules; higher evolutionary costs; and ultimately,
user dissatisfaction.

Ad hoc and esoteric practices in a given project

almost certainly imply a lack of a comprehensive (or
practically viable) set of policies concerning different
aspects of software evolution. Much remains to be done,
therefore, in defining detailed policies to guide, monitor
and verify project-specific actions in all areas of
software evolution (e.g., from release planning, detailed
analysis, to release implementation, and involving
numerous types of software artefacts).

From the preceding description, it should be evident
that the total number of policies required to
comprehensively satisfy the needs of a software
evolution project would be quite large. There is thus a
danger that such a large set of policies could become the
heart of a bureaucratic machine reeked with policy
management problems, which would defeat the purpose
of institutionalising policies in the first place.

To avoid this danger, but also, in fact, to apply

policies effectively, there is a need for technological
support to design, codify, organise and evolve policies
and verify development against these policies. In our
work thus far, we have concentrated mainly on the last
of these. Detection of development-violation against the
policies would help fix product or process problems at
their earliest; whereas, any “positive” feedback would
help build stronger confidence in the development team.
Collectively, thus, a significant benefit of utilising
established policies and their support mechanisms is that
the sustainability of the evolving systems’ quality would
likely be increased.

5 While it is not our intention to give here a particular blueprint
for such a concerted effort, examples exist in other disciplines
where such effort has resulted in benchmarks, body of
knowledge, standards, Open Source software, etc., which have
proved invaluable for experimentation, learning, and business.

Tom Mens
Madhavji & Tassé

Tom Mens
Page 6 of 6

Tom Mens
169

Madhavji & Tassé Page 3 of 6

3. Examples Policy:

∀ c ∈ {p ∈ TypedEntSet("Component")  p.name
∈ <list of components> } • In this section, we give two brief examples of

policies derived from third-party empirical work [10,
13]. These examples deal with pertinent issues in
software evolution, such as: re-engineering change-
prone modules, and consistency between code and
documentation. Some more examples can be found in a
companion paper [12].

∃ r(a,m,t) ∈TypedRelSet("activity consumes
component") • a.name = "re-engineering"

where, “<list of components>” denotes the list of
modules to be re-engineered. The policy says that for
each component in the given list, there should be an
activity called “re-engineering” that consumes (or
operates on) the component.

3.1 Example 1: Re-engineering change-
prone modules

 This policy would be used to verify the development
plan, such as that shown in Figure 1. This plan shows
two versions of the same system, called V-elicit6, (see
the two double circles) and the new-release development
process (see the hierarchy of boxes representing the
process activities). Version 5 (V5) of the system consists
of the components (see ellipses linked to V5):
visualization_V2, policies_V1,
generator_V2, base_code_V5 and
view_matching_V1. This system is to be updated to
version 6 (V6), whose planned components (also shown
by ellipses) are likewise linked by its arrows. The new-
release development process (model) consists of the
activities: make_changes, re-engineering and
testing. For simplicity, no further activity breakdown
is shown here.

Mattsson and Bosch [10] have proposed an approach
to identify those modules of a system that require re-
engineering. Proactively maintaining the software (an
object-oriented framework in their case) by restructuring
the change-prone modules could "simplify the
incorporation of future requirements". In their approach,
the change-prone modules from past releases are
identified based on their size, change rate and growth
rate.

Once it has been decided which modules need to be

re-engineered during the development of a particular
release, an important issue then is to ensure that all the
identified modules do in fact go through the re-
engineering process. However straightforward this may
appear by itself, such monitoring -- basically carried out
manually today – is leaden with the risk of losing track
of the tasks involved amidst project pressures.

Let us now assume that the Mattsson-Bosch

approach identified two components for re-engineering:
view_matching_V1 and generator_V2 (from
version 5). The “<list of components>” in the policy
description above would thus be replaced by these two

In an automated system, however, a policy such as

the following could be defined:

Figure 1 - Overall plan for the development of the sixth version of the V-elicit system.

6 V-elicit is a system for eliciting models of processes or
products [11]. Its operational details are not relevant to this
paper.

Tom Mens
Madhavji & Tassé

Tom Mens
Page 6 of 6

Tom Mens
170

Madhavji & Tassé Page 4 of 6

component names7. Such automated checking is much preferable to
hand-checking the plans, and its value is particularly
felt: in large or complex systems; when many
individuals are involved in the project; when quality is
at stake; and when time is at a premium. Also, the policy
checking mechanism can be used in either prescriptive
or descriptive contexts. For example, in the former
context, as described above, it is used to ensure that the
plan is complete prior to process enactment. In the latter
context, it can be used to monitor a project’s progress by
verifying the process-trace against the policy at a desired
time in the project.

The policy checking mechanism8, described in [12],

accepts two inputs (a policy and a model) and produces
feedback as to whether or not the model complies with
the policy and, if not, identifies the offending elements
and relationships of the model.

Evidently, the plan in Figure 1 is not correct.
Specifically, the component generator_V2
(identified for re-engineering) is mistakenly left out
from the re-engineering effort (i.e., this component is
not an input to the "re-engineering" activity box in
Figure 1). Such mistakes do occur when building
prescriptive models in the planning phase, even in
moderate sized projects. This is why it is quite important
to verify the planned process - against the prescribed
policies -- prior to its execution, in order to prevent
evolution errors.

3.2 Example 2: Code-documentation
consistency

A case study by Tryggeseth [13] shows that the
availability of valid documentation during software

evolution increases system
understandability and
productivity. However,
maintainers and evolvers
often document their work
by means of memos, which
are not always integrated
into the master
documentation [7]. Over
time, therefore, the
documentation gets
increasingly out of date to
the point that the
documentation is no longer
trusted or used. Often, this
triggers costly and intensive
reverse-engineering of the
system to recover the “lost”
design, architectural,
requirements or other
software artefacts.

Figure 2 shows the result of verifying the plan
against the described policy. The top part of the figure
describes the policy informally and then formally. The
bottom part lists the violations -- that is, those
components that were supposed to be re-engineered but
have not been included in the plan.

7An advanced form of this policy could automatically detect
the components that should be re-engineered, for example,
components with a change rate higher than a certain threshold.

8 This mechanism is relevant here in concept, not so
much in its details.

A preventative approach
would ensure that with any
new development or
changes the documentation
and implementation are

congruent with each other. For example, in an object-
oriented system one may want to verify that the code
implements exactly the class diagram in the design
document (i.e., no classes missing or added, and all
attributes and method interfaces properly implemented).
This can be achieved by comparing the class diagram
from the design document against that generated by
reverse-engineering the new or updated code, guided by
a policy that specifies those entities and relationships
that should be similar in the two diagrams. For example,
the following policy verifies whether all the classes in
the code are included in the design document.

Figure 2 - Verifying the plan for re-engineering change-prone modules.

Tom Mens
Madhavji & Tassé

Tom Mens
Page 6 of 6

Tom Mens
171

Madhavji & Tassé Page 5 of 6

Policy:

∀ c1 ∈ {c ∈ TypedEntSet("Class")  c.source =
“code” } •
∃ c2 ∈{d ∈ TypedEntSet("Class")  d.source =
“documentation” }•
c1.name = c2.name

Figure 3 (bottom part) then shows that the code class
line-on-invoice does not match the class diagram
from the documentation. Likewise, policies can be
written to verify in more detail whether related classes
have the same attributes and functions (including
parameters and return values).

3.3 Discussion and Closing Remarks

The described two examples are illustrative in the
basic idea of evolutionary policies and their supporting
mechanism, though, needless to state, much further
work is necessary to make this an industrial-scale
reality. As a step in this direction, we have derived,
codifed in logic and, in some cases, pseudo-codified for
preliminary assessment, a number of other policies
interpreted from empirical studies or experiential works
of others, e.g.: 35 policies from Davis' 201 principles of
software development [14]; 42 policies from Lehman's
laws of evolution [6]; Munson’s proportional regression
testing policy [15]; Humphrey’s optimal value of
“Appraisal-to-failure ratio” [16]; and Ramanujan et al.’s
“standard for variable naming” [17]. What this does
suggest is that evolutionary policies are numerous, if

implicitly buried in their rudimentary forms in the
literature or in specific practices.

Time is thus ripe to dig into such literature, all the

while conducting more empirical studies to establish
evolutionary facts; use the findings to design suitable
evolutionary policies; experiment with such policies to
assess their validity in case studies and in practice; and
investigate into policy-design and support mechanisms
(see [12], for example, where we describe a mechanism
to verify evolutionary software artefacts and processes
against instituted policies). The overall objective of this
work is to improve software evolution practice and to
improve the quality-sustaining power of software
systems. This is no mean task, however, and therefore to
make significant progress, it would require a concerted,
community, action as opposed to isolated efforts of a
few individual researchers and practitioners.

Figure 3 - Verifying consistency between
documentation and code.

ACKNOWLEDGEMENTS

We are thankful to the three anonymous referees, whose
comments have helped us to improve this position
paper.

4. References

[1] The SEI, “Software CMM CBA IPI and SPA
Appraisal Results 2002 Year End Update”, April 2003,
available from: www.sei.cmu.edu/sema/profile.html
(accessed: May 2003).

[2] M.C. Paulk, C.V. Weber and B. Curtis, “The
Capability Maturity Model: Guidelines for Improving
the Software Process”, Addison Wesley Professional,
1995.

[3] “CHAOS: A recipe for success”, The Standish
Group International, Inc., 1999.

[4] C. Jones, “Applied Software Measurement –
Assuring Productivity and Quality”, 2nd edition,
McGraw Hill, 1996.

[5] W. Wayt Gibbs, “Software's Chronic Crisis”,
Scientific American, September 1994, pp72-81.

[6] M. M. Lehman and J. F. Ramil, "Rules and Tools for
Software Evolution Planning and Management", Annals
of Soft. Eng., Vol. 11, 2001, pp. 15-44.

[7] D.L. Parnas, “Software Aging”, Proc. Of the 16th
International Conference on Software Engineering,
Sorento Italy, May 1994, IEEE Press, pp. 279-287.

[8] SWEBOK -- Guide to the Software Engineering
Body of Knowledge, Trial Version 1.00, May 2001,
IEEE Computer Society.

[9] H. Dayani-Fard, Personal communication, 2002.

http://www.sei.cmu.edu/sema/profile.html
Tom Mens
Madhavji & Tassé

Tom Mens
Page 6 of 6

Tom Mens
172

Madhavji & Tassé Page 6 of 6

[10] M. Mattsson and J. Bosch, "Observations on the
Evolution of an Industrial OO Framework", Proc. of the
International Conference on Software Maintenance
1999, pp. 139-145.

[11] J. Tassé and N. H. Madhavji, "View-Based Process
Elicitation: a User's Perspective", Software Process
Improvement and Practice, vol.6 no.3, Sept. 2001, pp.
125-139.

 [12] N.H. Madhavji and J. Tassé, “Policy-guided
Software Evolution”, Proc. of the International
Conference on Software Maintenance, September 2003,
Amsterdam (To appear).

[13] E. Triggeseth, “Report from an Experiment: Impact
of Documentation on Maintenance”, Empirical Software
Engineering, vol.2 no.2, Kluwer Academic Press, 1997,
pp.201-207.

[14] A. Davis, “201 Principles of Software
Development", McGraw Hill, 1995.

[15] J. C. Munson, "Measuring Software Evolution",
chapter submitted for consideration in “Software
Evolution” (eds.) Madhavji, N.H., Lehman, M.M.,
Ramil, J.F. and Perry, D., Wiley (pending).

[16] W. S. Humphrey, "Using a Defined and Measured
Personal Software Process", IEEE Software, vol.13
no.3, May 1996, pp. 77-88.

[17] S. Ramanujan, R. W. Scamell, J. R. Shah, "An
Experimental Investigation of the Impact of Individual,
Program, and Organizational Characteristics on
Software Maintenance Effort", Journal of Systems and
Software, vol.54 no.2, October 2000, pp. 137-157.

Tom Mens
Page 6 of 6

Tom Mens
Madhavji & Tassé

Tom Mens
173

	09-Chaudhuri-full.pdf
	Development and Deployment
	J2EE

	Choosing Between the Architectures
	Establishing the Need for an Enterprise Solution
	The Emergence of Web Services
	Acknowledgements

	References

	[8]MacHale, Robert. Microsoft Developers Network

	10-Wermelinger-full.pdf
	Introduction
	Business Rules and Coordination Contracts
	Architectural Framework
	Batch-oriented Rule Processing
	Concluding Remarks
	Acknowledgments

	05-Cook-position.pdf
	1 Introduction
	2 Background and Related Work
	2.1 Architecture and evolution in information systems
	2.2 Flexible e-learning systems

	3 Architectural Challenges of Highly Adaptable Systems
	3.1 Assessing information system evolvability
	3.2 Architectures for low-maintenance information systems
	3.3 Using design patterns in rapidly evolving domains
	3.4 Assessing the dynamics of architecturally complex systems

	4 Proposed Research Programme
	4.1 Architecture description languages for evolutionary properties
	4.2 Architectures for autonomic information system services
	4.3 Design pattern languages for rapidly evolving domains
	4.4 Simulation of architectural evolution

	5 Conclusions

	18-MadhavjiTasse-position.pdf
	A Case for Establishing Evolutionary Policies
	and their Support Mechanisms, with Examples †

