

Benchmarking: The Way Forward for Software Evolution

Susan Elliott Sim University of California, Irvine ses@ics.uci.edu

Background

- Developed a theory of benchmarking based on own experience and historical research
- Successful benchmarks examined for commonalities:
 - TREC Ad Hoc Task
 - TPC-A[™]
 - SPEC CPU2000
 - Calgary Corpus and Canterbury Corpus
 - Penn treebank
 - *xfig* benchmark for program comprehension tools
 - C++ Extractor Test Suite (CppETS)

Susan Elliott Sim, Steve Easterbrook, and Richard C. Holt. Using Benchmarking to Advance Research: A Challenge to Software Engineering, Proceedings of the Twenty-fifth International Conference on Software Engineering, Portland, Oregon, pp. 74-83, 3-10 May, 2003.

Overview

- What is a benchmark?
- Why benchmark?
- What to benchmark?
- When to benchmark?
- How to benchmark?
- Talk will interleave theory with implications for software evolution

The Way Forward...

- Start with an exemplar.
 - Motivating Comparison + Task Sample
- Use the exemplar within the network to learn about each other's research
 - Comparison, discussions, relative strengths and weaknesses
 - Cross-fertilization, codification of knowledge
 - Hold meetings, workshops, symposia
- Add Performance Measures
- Use the exemplar (or benchmark) in publications
 - Common validation
- Promote use of exemplar (or benchmark) in broader research community

What is a benchmark?

- A benchmark is a standard test or set of tests used to compare alternatives. It consists of a motivating comparison, a task sample, and a set of performance measures.
 - Becomes a standard through acceptance by a community
 - Primarily concerned with technical benchmarks in computer science research communities.

Benchmark Components

1. Motivating Comparison

- Comparison to be made
- Motivation for research area and benchmark

2. Task Sample

- Representative sample of problems from a problem domain
- Most controversial part of benchmark design

3. Performance Measures

- Performance = fitness for purpose; a relationship between technology and task
- Can be qualitative or quantitative, measured by human, machine, or both

What is not a benchmark?

- Not an evaluation designed by an individual or single laboratory
 - Potential as starting point, but not a standard
- Not a baseline or fixed point
 - Needed for comparative evaluation, but not sufficient
- Not a case study that is used repeatedly
 - Possibly a proto-benchmark or exemplar
- Not an experiment (nor trial and error)
 - Usually no hypothesis testing, key factors not controlled

Benchmarking as an Empirical Method

Characteristics from Experiments	Characteristics from Case Studies
Features Use of control factors Replication Direct comparison of results 	 Features ? Little control over the evaluation setting, (e.g. choice of technology and user subjects) ? No tests of statistical significance ? Some open-ended questions possible
Advantages ? Direct comparison of results	Advantages ? Method is flexible and robust
Disadvantages ? Not suitable for building explanatory theories	Disadvantages ? Limited control reduces generalizability of results

Overview

- What is a benchmark?
- Why benchmark?
 - What to benchmark?
 - When to benchmark?
 - How to benchmark?

Impact of Benchmarking

- "...benchmarks cause an area to blossom suddenly because they make it easy to identify promising approaches and to discard poor ones." -Walter Tichy
- "Using common databases, competing models are evaluated within operational systems. The successful ideas then seem to appear magically in other systems within a few months, leading to a validation or refutation of specific mechanisms for modelling speech." -Raj Reddy

Walter F. Tichy, "Should Computer Scientists Experiment More?," *IEEE Computer*, May, pp. 32-40, 1998.
Raj Reddy, "To Dream The Possible Dream - Turing Award Lecture," *Communications of the ACM*, vol. 39, no. 5, pp. 105-112, 1996.

Benefits of Benchmarking

- Stronger consensus on the community's research
 goals
- Greater collaboration between laboratories
- More rigorous validation of research results
- Rapid dissemination of promising approaches
- Faster technical progress
- Benefits derive from process, rather than end product

Dangers of Benchmarking

- Subversion and competitiveness
 - "Benchmarketing" wars
- Costs to develop and maintain
- Committing too early
- Overfitting
 - General performance is sacrificed for improved performance on benchmark
- Non-independent probabilistic results
- Closing off other research directions (temporarily)

Why is benchmarking effective?

- Explanation is based in philosophy of science.
- Conventional view: scientific progress is linear.
- Thomas Kuhn introduced the idea that science moves from paradigm to paradigm.
 - During normal science, progress is linear.
 - Canonical paradigm shift is change from Newtonian mechanics to quantum mechanics.
- A scientific paradigm consists of all the information that is needed to function in a discipline. It includes technical facts and implicit rules of conduct.
- Paradigm is created by community consensus.

Thomas S. Kuhn, *The Structure of Scientific Revolutions, Third Edition*. Chicago: The University of Chicago Press, 1996.

Theory of Benchmarking

Process of benchmarking mirrors process of scientific progress.

Progress = technical facts + community consensus

- A benchmark operationalizes a paradigm.
 - Takes an abstract concept and turns it into a concrete guide for action.

Sensemaking vs. Know-how

- Beneficial to both main activities of RELEASE
 - Understanding evolution as a noun-what, why
 - Understanding evolution as a verb- how
- Focusing attention on a technical evaluation brings about a new understanding of the underlying phenomenon
 - Assumptions
 - Problem frames and world views

Overview

- What is a benchmark?
- Why benchmark?
- What to benchmark?
 - When to benchmark?
 - How to benchmark?

What to benchmark?

- Benchmarks are best used to evaluate technology
 - When a result to be use *for* something
- Where engineering issues dominate
 - Example: algorithms vs. implementations
- For RELEASE, this is the *how* of software evolution

Benchmark Components

- The design of a benchmark is closely related to the scientific paradigm for an area.
 - Deciding what to include and exclude is a statement of values.
 - Discussions tend to be emotional.
- Benchmarks can fulfill many purposes, often simultaneously.
 - Advance a single research effort
 - Promoting research comparison and understanding
 - Setting a baseline for research
 - Providing evidence for technology transfer

Motivating Comparison

- Examples:
 - To assess information retrieval system for an experienced searcher on ad hoc searches. (TREC)
 - To rate DBMSs on cost effectiveness for a class of updateintensive environments. (TPC-A)
 - To measure the performance of various system configurations on realistic workloads. (SPEC)
- Can a context for specified for the software evolution benchmark?

Software Evolution Techniques

Which techniques do complement each other ?

Take from Tom Mens, RELEASE meeting, 24 October 2002, Antwerp

Task Sample

- Representative of domain problems encountered by end user
 - Focus on the problems, not the tools to be compared
 - Tool view: Retrospective, Curative, Predictive
 - User view: Due diligence, bid for outsourcing
 - Key or typical problems act as surrogates for a class
- Possible to include a suite of programs, but need to keep the benchmark accessible
 - Does not take too much time and effort to use
 - Automation can mitigate these costs.

Performance Measures

- Do accepted measures already exist?
- Are there right answers (ground truth)?
- Does close count? How do you score?
- Initial performance measures can be "rough and ready"
 - Human judgments
 - Approximations
 - Qualitative
- Process of measuring often defines what is.
 - Should first decide what is and then figure out how to measure.

Overview

- What is a benchmark?
- Why benchmark?
- What to benchmark?
- When to benchmark?
 - How to benchmark?

When to benchmark?

- Process model for benchmarking
- Knowledge and consensus move in lock-step
- Pre-requisites
 - Indicators of readiness
- Features

Prerequisites for Benchmarking

- Minimum Level of Maturity
 - Proliferation of approaches and implementations
 - Recognized separate research area
 - Participants self-identify as community members
- Ethos of Collaboration
 - Research networks
 - Seminars, workshops, meetings
 - Standards for data, files, reports, papers
- Tradition of Comparison
 - Accepted research strategies, especially validation
 - Evidence in the literature
 - Use of common examples

Overview

- What is a benchmark?
- Why benchmark?
- What to benchmark?
- When to benchmark?
- How to benchmark?

How to benchmark?

- Knowledge and consensus move in lock-step
- Features of a successful benchmarking process
 - Led by a small number of champions
 - Supported by laboratory work
 - Many opportunities for community participation and feedback

Emergence of CppETS

Implications for Software Evolution

- Steps taken so far fits with the process model
 - Papers, workshops, champions
- Many years (and iterations) are needed to build a widely-accepted benchmark
 - Time is needed to build consensus
- Many elements already in place
 - Champions
 - A research network that meets regularly
 - Funding for laboratory work

The Way Forward...

- Start with an exemplar.
 - Motivating Comparison + Task Sample
- Use the exemplar within the network to learn about each other's research
 - Comparison, discussions, relative strengths and weaknesses
 - Cross-fertilization, codification of knowledge
 - Hold meetings, workshops, symposia
- Add Performance Measures
- Use the exemplar (or benchmark) in publications
 - Common validation
- Promote use of exemplar (or benchmark) in broader research community

More Information

- Paper from ICSE 2003
 - http://www.cs.utoronto.ca/~simsuz/papers/icse03challenge.pdf
- *xfig* structured demonstration
 - http://www.csr.uvic.ca/~mstorey/cascon99/
- CppETS 1.0
 - http://www.cs.utoronto.ca/~simsuz/cascon2001
- CppETS 1.1
 - http://cedar.csc.uvic.ca/kienle/view/IWPC2002/WebHome

Virtual LEGO Construction

- All software is free, thanks to the spirit of James Jessiman.
 - http://www.ldraw.org
- LD Design Pad Minifig Plug-In
 - Uses LDraw parts library and DAT file format
 - http://www.pobursky.com/LDrawBody3.htm
- MLCad
 - Creates models and scenes
 - http://www.lm-software.com/mlcad
- L3P
 - Converts DAT to POV format
 - http://home16.inet.tele.dk/hassing/index.html
- POV-Ray
 - Renders the model into a drawing
 - http://www.povray.org/