Benchmarking:
The Way Forward for
Software Evolution

Susan Elliott Sim
University of California, Irvine
ses@ics.uci.edu




Background

« Developed a theory of benchmarking based on own
experience and historical research

Successful benchmarks examined for commonalities:
— TREC Ad Hoc Task

— TPC-A™

— SPEC CPU2000

— Calgary Corpus and Canterbury Corpus

— Penn treebank

— Xfig benchmark for program comprehension tools

— C++ Extractor Test Suite (CppETS)

Susan Elliott Sim, Steve Easterbrook, and Richard C. Holt. Using Benchmarking to Advance
Research: A Challenge to Software Engineering, Proceedings of the Twenty-fifth
International Conference on Software Engineering, Portland, Oregon, pp. 74-83, 3-10 May,
2003.



Overview

- What is a benchmark?
* Why benchmark?

« What to benchmark?

« When to benchmark?

How to benchmark?

+ Talk will interleave theory with implications for

software evolution



The Way Forward...

Start with an exemplar.

— Motivating Comparison + Task Sample

Use the exemplar within the network to learn about
each other’s research

— Comparison, discussions, relative strengths and
weaknesses

— Cross-fertilization, codification of knowledge
— Hold meetings, workshops, symposia
Add Performance Measures

Use the exemplar (or benchmark) in publications
— Common validation

Promote use of exemplar (or benchmark) in broader
research community



What is a benchmark?

A benchmark is a standard test or set of tests used to
compare alternatives. It consists of a motivating
comparison, a task sample, and a set of performance
measures.

— Becomes a standard through acceptance by a community

— Primarily concerned with technical benchmarks in computer
science research communities.




Benchmark Components

1. Motivating Comparison
— Comparison to be made
— Motivation for research area and benchmark

2. Task Sample
— Representative sample of problems from a problem domain
— Most controversial part of benchmark design

3. Performance Measures

— Performance = fitness for purpose; a relationship between
technology and task

— Can be qualitative or quantitative, measured by human,
machine, or both



What is not a benchmark?

Not an evaluation designed by an individual or single
laboratory
— Potential as starting point, but not a standard

Not a baseline or fixed point
— Needed for comparative evaluation, but not sufficient

Not a case study that is used repeatedly
— Possibly a proto-benchmark or exemplar

Not an experiment (nor trial and error)
— Usually no hypothesis testing, key factors not controlled



Benchmarking as an Empirical Method

Characteristics from Experiments

Characteristics from
Case Studies

Features

? Use of control factors

? Replication

? Direct comparison of results

Features

? Little control over the evaluation
setting, (e.g. choice of technology and
user subjects)
No tests of statistical significance
Some open-ended questions possible

Advantages
? Direct comparison of results

Advantages
? Method is flexible and robust

Disadvantages
? Not suitable for building explanatory
theories

Disadvantages
? Limited control reduces generalizability
of results




Overview

- What is a benchmark?
* Why benchmark?

« What to benchmark?

« When to benchmark?

How to benchmark?



Impact of Benchmarking

"...benchmarks cause an area to blossom suddenly because they
make it easy to identify promising approaches and to discard
poor ones.” -Walter Tichy

"Using common databases, competing models are evaluated within
operational systems. The successful ideas then seem to appear
magically in other systems within a few months, leading to a
validation or refutation of specific mechanisms for modelling
speech. ” -Raj Reddy

Walter F. Tichy, “Should Computer Scientists Experiment More?,” IEEE Computer, May, pp. 32-40, 1998.

Raj Reddy, “To Dream The Possible Dream - Turing Award Lecture,” Communications of the ACM, vol. 39, no.
5, pp. 105-112, 1996.



Benefits of Benchmarking

- Stronger consensus on the community’s research

goals

« Greater collaboration between laboratories

More rigorous validation of research results
Rapid dissemination of promising approaches
Faster technical progress

Benefits derive from process, rather than end product




Dangers of Benchmarking

Subversion and competitiveness
— “Benchmarketing” wars

Costs to develop and maintain
Committing too early

Overfitting

— General performance is sacrificed for improved performance
on benchmark

Non-independent probabilistic results
Closing off other research directions (temporarily)



Why is benchmarking effective?

Explanation is based in philosophy of science.
Conventional view: scientific progress is linear.

Thomas Kuhn introduced the idea that science
moves from paradigm to paradigm.

— During normal science, progress is linear.

— Canonical paradigm shift is change from Newtonian

mechanics to quantum mechanics.

A scientific paradigm consists of all the information
that is needed to function in a discipline. It includes
technical facts and implicit rules of conduct.

- Paradigm is created by community consensus.

Thomas S. Kuhn, The Structure of Scientific Revolutions, Third Edition. Chicago: The University
of Chicago Press, 1996.



Theory of Benchmarking

* Process of benchmarking mirrors process of scientific
progress.
Progress = technical facts + community consensus

- A benchmark operationalizes a paradigm.

— Takes an abstract concept and turns it into a concrete guide
for action.

@



Sensemaking vs. Know-how

« Beneficial to both main activities of RELEASE

— Understanding evolution as a noun— what, why
— Understanding evolution as a verb— how

» Focusing attention on a technical evaluation brings
about a new understanding of the underlying
phenomenon

— Assumptions
— Problem frames and world views



Overview

- What is a benchmark?
* Why benchmark?

« What to benchmark?

« When to benchmark?

How to benchmark?



What to benchmark?

- Benchmarks are best used to evaluate technology
— When a result to be use for something

- Where engineering issues dominate
— Example: algorithms vs. implementations

 For RELEASE, this is the how of software evolution



Benchmark Components

* The design of a benchmark is closely related to the
scientific paradigm for an area.

— Deciding what to include and exclude is a statement of
values.

— Discussions tend to be emotional.

- Benchmarks can fulfill many purposes, often
simultaneously.
— Advance a single research effort
— Promoting research comparison and understanding
— Setting a baseline for research
— Providing evidence for technology transfer



Motivating Comparison

- Examples:

— To assess information retrieval system for an experienced
searcher on ad hoc searches. (TREC)

— To rate DBMSs on cost effectiveness for a class of update-
intensive environments. (TPC-A)

— To measure the performance of various system
configurations on realistic workloads. (SPEC)

- Can a context for specified for the software evolution
benchmark?



Software Evolution Techniques

]
metrics visualization
FE UM
| U %0
" "
D A
evolving |
software syste
testing \) refactoring

Which techniques do complement each other ?

Take from Tom Mens, RELEASE meeting, 24 October 2002, Antwerp



Task Sample

- Representative of domain problems encountered by
end user

— Focus on the problems, not the tools to be compared
- Tool view: Retrospective, Curative, Predictive
« User view: Due diligence, bid for outsourcing

— Key or typical problems act as surrogates for a class

- Possible to include a suite of programs, but need to
keep the benchmark accessible
— Does not take too much time and effort to use
— Automation can mitigate these costs.



Performance Measures

Do accepted measures already exist?
Are there right answers (ground truth)?
Does close count? How do you score?

Initial performance measures can be “rough and
ready”

— Human judgments

— Approximations

— Qualitative

Process of measuring often defines what is.

— Should first decide what is and then figure out how to
measure.



Overview

- What is a benchmark?
* Why benchmark?

« What to benchmark?

« When to benchmark?

How to benchmark?



When to benchmark?

Process model for benchmarking

Knowledge and consensus move in lock-step
Pre-requisites

— Indicators of readiness

Features






Prerequisites for Benchmarking

* Minimum Level of Maturity
— Proliferation of approaches and implementations
— Recognized separate research area
— Participants self-identify as community members

- Ethos of Collaboration
— Research networks
— Seminars, workshops, meetings
— Standards for data, files, reports, papers

- Tradition of Comparison
— Accepted research strategies, especially validation

— Evidence in the literature
— Use of common examples



Overview

- What is a benchmark?

* Why benchmark?

« What to benchmark?

« When to benchmark?
P> . How to benchmark?



How to benchmark?

- Knowledge and consensus move in lock-step

- Features of a successful benchmarking process
— Led by a small number of champions
— Supported by laboratory work
— Many opportunities for community participation and feedback






Emergence of CppETS

CppETS 1.0

' Meeting

- Laboratory work



Implications for Software Evolution

Steps taken so far fits with the process model

— Papers, workshops, champions

Many years (and iterations) are needed to build a
widely-accepted benchmark

— Time is needed to build consensus

Many elements already in place

— Champions

— A research network that meets regularly

— Funding for laboratory work



The Way Forward...

Start with an exemplar.

— Motivating Comparison + Task Sample

Use the exemplar within the network to learn about
each other’s research

— Comparison, discussions, relative strengths and
weaknesses

— Cross-fertilization, codification of knowledge
— Hold meetings, workshops, symposia
Add Performance Measures

Use the exemplar (or benchmark) in publications
— Common validation

Promote use of exemplar (or benchmark) in broader
research community






More Information

Paper from ICSE 2003

— http://www.cs.utoronto.ca/~simsuz/papers/icse03-
challenge.pdf

xfig structured demonstration
— http://www.csr.uvic.ca/~mstorey/cascon99/

CppETS 1.0

— http://www.cs.utoronto.ca/~simsuz/cascon2001

CppETS 1.1
— http://cedar.csc.uvic.ca/kienle/view/IWPC2002/WebHome



Virtual LEGO Construction

All software is free, thanks to the spirit of James Jessiman.
— http://www.ldraw.org
LD Design Pad Minifig Plug-In
— Uses LDraw parts library and DAT file format
— http://www.pobursky.com/LDrawBody3.htm
MLCad
— Creates models and scenes
— http://www.Im-software.com/mlcad
L3P
— Converts DAT to POV format
— http://nome16.inet.tele.dk/hassing/index.html
POV-Ray
— Renders the model into a drawing
— http://www.povray.org/



