
Benchmarking:
The Way Forward for
Software Evolution

Susan Elliott Sim
University of California, Irvine

ses@ics.uci.edu

Background
• Developed a theory of benchmarking based on own

experience and historical research
• Successful benchmarks examined for commonalities:

– TREC Ad Hoc Task
– TPC-A™
– SPEC CPU2000
– Calgary Corpus and Canterbury Corpus
– Penn treebank
– xfig benchmark for program comprehension tools
– C++ Extractor Test Suite (CppETS)

Susan Elliott Sim, Steve Easterbrook, and Richard C. Holt. Using Benchmarking to Advance
Research: A Challenge to Software Engineering, Proceedings of the Twenty-fifth
International Conference on Software Engineering, Portland, Oregon, pp. 74-83, 3-10 May,
2003.

Overview
• What is a benchmark?
• Why benchmark?
• What to benchmark?
• When to benchmark?
• How to benchmark?

• Talk will interleave theory with implications for
software evolution

The Way Forward…
• Start with an exemplar.

– Motivating Comparison + Task Sample
• Use the exemplar within the network to learn about

each other’s research
– Comparison, discussions, relative strengths and

weaknesses
– Cross-fertilization, codification of knowledge
– Hold meetings, workshops, symposia

• Add Performance Measures
• Use the exemplar (or benchmark) in publications

– Common validation
• Promote use of exemplar (or benchmark) in broader

research community

What is a benchmark?
• A benchmark is a standard test or set of tests used to

compare alternatives. It consists of a motivating
comparison, a task sample, and a set of performance
measures.
– Becomes a standard through acceptance by a community

– Primarily concerned with technical benchmarks in computer
science research communities.

Benchmark Components
1. Motivating Comparison

– Comparison to be made
– Motivation for research area and benchmark

2. Task Sample
– Representative sample of problems from a problem domain
– Most controversial part of benchmark design

3. Performance Measures
– Performance = fitness for purpose; a relationship between

technology and task
– Can be qualitative or quantitative, measured by human,

machine, or both

What is not a benchmark?
• Not an evaluation designed by an individual or single

laboratory
– Potential as starting point, but not a standard

• Not a baseline or fixed point
– Needed for comparative evaluation, but not sufficient

• Not a case study that is used repeatedly
– Possibly a proto-benchmark or exemplar

• Not an experiment (nor trial and error)
– Usually no hypothesis testing, key factors not controlled

Benchmarking as an Empirical Method

Characteristics from Experiments Characteristics from
Case Studies

Features
? Use of control factors
? Replication
? Direct comparison of results

Features
? Little control over the evaluation

setting, (e.g. choice of technology and
user subjects)

? No tests of statistical significance
? Some open-ended questions possible

Advantages
? Direct comparison of results

Advantages
? Method is flexible and robust

Disadvantages
? Not suitable for building explanatory

theories

Disadvantages
? Limited control reduces generalizability

of results

Overview
• What is a benchmark?
• Why benchmark?
• What to benchmark?
• When to benchmark?
• How to benchmark?

Impact of Benchmarking
"…benchmarks cause an area to blossom suddenly because they

make it easy to identify promising approaches and to discard
poor ones.” -Walter Tichy

"Using common databases, competing models are evaluated within
operational systems. The successful ideas then seem to appear
magically in other systems within a few months, leading to a
validation or refutation of specific mechanisms for modelling
speech. ” -Raj Reddy

Walter F. Tichy, “Should Computer Scientists Experiment More?,” IEEE Computer, May, pp. 32-40, 1998.
Raj Reddy, “To Dream The Possible Dream - Turing Award Lecture,” Communications of the ACM, vol. 39, no.

5, pp. 105-112, 1996.

Benefits of Benchmarking
• Stronger consensus on the community’s research

goals
• Greater collaboration between laboratories
• More rigorous validation of research results
• Rapid dissemination of promising approaches
• Faster technical progress

• Benefits derive from process, rather than end product

Dangers of Benchmarking
• Subversion and competitiveness

– “Benchmarketing” wars
• Costs to develop and maintain
• Committing too early
• Overfitting

– General performance is sacrificed for improved performance
on benchmark

• Non-independent probabilistic results
• Closing off other research directions (temporarily)

Why is benchmarking effective?
• Explanation is based in philosophy of science.
• Conventional view: scientific progress is linear.
• Thomas Kuhn introduced the idea that science

moves from paradigm to paradigm.
– During normal science, progress is linear.
– Canonical paradigm shift is change from Newtonian

mechanics to quantum mechanics.
• A scientific paradigm consists of all the information

that is needed to function in a discipline. It includes
technical facts and implicit rules of conduct.

• Paradigm is created by community consensus.

Thomas S. Kuhn, The Structure of Scientific Revolutions, Third Edition. Chicago: The University
of Chicago Press, 1996.

Theory of Benchmarking
• Process of benchmarking mirrors process of scientific

progress.
Progress = technical facts + community consensus

• A benchmark operationalizes a paradigm.
– Takes an abstract concept and turns it into a concrete guide

for action.

Sensemaking vs. Know-how
• Beneficial to both main activities of RELEASE

– Understanding evolution as a noun– what, why
– Understanding evolution as a verb– how

• Focusing attention on a technical evaluation brings
about a new understanding of the underlying
phenomenon
– Assumptions
– Problem frames and world views

Overview
• What is a benchmark?
• Why benchmark?
• What to benchmark?
• When to benchmark?
• How to benchmark?

What to benchmark?
• Benchmarks are best used to evaluate technology

– When a result to be use for something
• Where engineering issues dominate

– Example: algorithms vs. implementations

• For RELEASE, this is the how of software evolution

Benchmark Components
• The design of a benchmark is closely related to the

scientific paradigm for an area.
– Deciding what to include and exclude is a statement of

values.
– Discussions tend to be emotional.

• Benchmarks can fulfill many purposes, often
simultaneously.
– Advance a single research effort
– Promoting research comparison and understanding
– Setting a baseline for research
– Providing evidence for technology transfer

Motivating Comparison
• Examples:

– To assess information retrieval system for an experienced
searcher on ad hoc searches. (TREC)

– To rate DBMSs on cost effectiveness for a class of update-
intensive environments. (TPC-A)

– To measure the performance of various system
configurations on realistic workloads. (SPEC)

• Can a context for specified for the software evolution
benchmark?

Software Evolution Techniques

evolving
software system

testing

metrics

UML

visualization

refactoring

Which techniques do complement each other ?

Take from Tom Mens, RELEASE meeting, 24 October 2002, Antwerp

Task Sample
• Representative of domain problems encountered by

end user
– Focus on the problems, not the tools to be compared

• Tool view: Retrospective, Curative, Predictive
• User view: Due diligence, bid for outsourcing

– Key or typical problems act as surrogates for a class

• Possible to include a suite of programs, but need to
keep the benchmark accessible
– Does not take too much time and effort to use
– Automation can mitigate these costs.

Performance Measures
• Do accepted measures already exist?
• Are there right answers (ground truth)?
• Does close count? How do you score?
• Initial performance measures can be “rough and

ready”
– Human judgments
– Approximations
– Qualitative

• Process of measuring often defines what is.
– Should first decide what is and then figure out how to

measure.

Overview
• What is a benchmark?
• Why benchmark?
• What to benchmark?
• When to benchmark?
• How to benchmark?

When to benchmark?
• Process model for benchmarking
• Knowledge and consensus move in lock-step
• Pre-requisites

– Indicators of readiness
• Features

Prerequisites for Benchmarking
• Minimum Level of Maturity

– Proliferation of approaches and implementations
– Recognized separate research area
– Participants self-identify as community members

• Ethos of Collaboration
– Research networks
– Seminars, workshops, meetings
– Standards for data, files, reports, papers

• Tradition of Comparison
– Accepted research strategies, especially validation
– Evidence in the literature
– Use of common examples

Overview
• What is a benchmark?
• Why benchmark?
• What to benchmark?
• When to benchmark?
• How to benchmark?

How to benchmark?
• Knowledge and consensus move in lock-step
• Features of a successful benchmarking process

– Led by a small number of champions
– Supported by laboratory work
– Many opportunities for community participation and feedback

Emergence of CppETS

1998 1999 2000 2001 2002 2003

Paper

Meeting

Laboratory work

CppETS 1.0

Implications for Software Evolution

• Steps taken so far fits with the process model
– Papers, workshops, champions

• Many years (and iterations) are needed to build a
widely-accepted benchmark
– Time is needed to build consensus

• Many elements already in place
– Champions
– A research network that meets regularly
– Funding for laboratory work

The Way Forward…
• Start with an exemplar.

– Motivating Comparison + Task Sample
• Use the exemplar within the network to learn about

each other’s research
– Comparison, discussions, relative strengths and

weaknesses
– Cross-fertilization, codification of knowledge
– Hold meetings, workshops, symposia

• Add Performance Measures
• Use the exemplar (or benchmark) in publications

– Common validation
• Promote use of exemplar (or benchmark) in broader

research community

More Information
• Paper from ICSE 2003

– http://www.cs.utoronto.ca/~simsuz/papers/icse03-
challenge.pdf

• xfig structured demonstration
– http://www.csr.uvic.ca/~mstorey/cascon99/

• CppETS 1.0
– http://www.cs.utoronto.ca/~simsuz/cascon2001

• CppETS 1.1
– http://cedar.csc.uvic.ca/kienle/view/IWPC2002/WebHome

Virtual LEGO Construction
• All software is free, thanks to the spirit of James Jessiman.

– http://www.ldraw.org
• LD Design Pad Minifig Plug-In

– Uses LDraw parts library and DAT file format
– http://www.pobursky.com/LDrawBody3.htm

• MLCad
– Creates models and scenes
– http://www.lm-software.com/mlcad

• L3P
– Converts DAT to POV format
– http://home16.inet.tele.dk/hassing/index.html

• POV-Ray
– Renders the model into a drawing
– http://www.povray.org/

