
— 1 —

Construction of the Reflective Tower Based on Open
Implementations

Kris De Volder1 , Patrick Steyaert2

--- DRAFT (1.1) ---

Abstract

It is our opinion that the traditional view on reflection, the notion of towers of
interpreters interpreting each other, is not sufficiently detailed to give a thorough
understanding of reflection. Expressions such as "somehow the levels must be connected"
and "adding lines to the interpreter above" are typical when talking about towers of meta-
circular interpreters. This alone gives an indication that the model is not detailed enough,
lacking a way to formalise the relation between levels of the tower. The connection
remains a magical ingredient in the recipe to cook up a reflective system. This is the
main reason why reflection has hitherto remained covered in a mystical veil.

We present an alternative view on reflection. Rather than being based on meta-circular
interpreters, this model is based on open implementations. An open implementation
hides the implementation details of the interpreter, but shows how the interpreter can be
extended/adapted. In this approach reflection is obtained by explicitly generating the limit
of an infinitely ascending chain of open implemented interpreters through a fix-point
operation.

We argue that the connection between interpreters in the traditional view is ad-hoc and
counter-intuitive. The open implementation point of view yields a notion of reflection
which is highly similar to the traditional view, but improves upon the ad-hoc way of
relating interpreters at different levels. In a tower of open implementations the
connection between levels is established in a natural way through the parameters for the
open-implementation which are provided by the implementing level above.

1 Motivation

Every reflective system needs an accessible, causally connected self-representation. As every representation
defines a certain terminology to talk about the entities it represents, so does this self-representation define a
terminology for the system to talk about itself. The self-representation determines the system’s aspects that can
be reasoned about and modified by the system. As is true for any representation the self-representation can not be
“complete”, i.e. any representation will always ignore certain aspects of the system it represent. For reflective
systems this is known as the “theory relativity” of reflective systems [Maes87].

For procedurally reflective languages it is said that the procedural code in the meta-circular processor serves as
the “theory” or causally connected self-representation [Smith84]. It is our opinion that this is a misleading, or
even wrong, statement. And that exactly this statement hampers our true understanding of reflective systems. In
this paper we will discard with meta-circular processors as self-representations. Moreover, since the meta-circular
processors are used in the tower model, we will also discard the notion of towers of meta-circular processors. We
will not discard with the notion of tower-architectures! Only with towers of meta-circular processors.

One of the motivations for our work is the demystification of the magical "link between levels" ingredient. As
stated before, we believe that the traditional model is not sufficiently detailed in this respect.

Another and perhaps more important consideration is the fact that the traditional view defies the notion of theory

1 Programming Technology Lab; Computer Science Department; Vrije Universiteit Brussel; Pleinlaan 2,
B-1050 Brussel, Belgium; email: kdvolder@vnet3.vub.ac.be
2 Programming Technology Lab; Computer Science Department; Vrije Universiteit Brussel, Pleinlaan 2,
B-1050 Brussel, Belgium; email: prsteyae@vnet3.vub.ac.be

— 2 —

relativity. When using the procedural code in the meta-circular processor for a self representation it is tempting
to think that if one can change the code of the meta-circular interpreter in any way one likes, one must be able to
do just about anything. This of course is not true because a meta-circular evaluator alone does not define a
programming language. An external processor is needed to process the meta-circular interpreter.

If the procedural code of the meta-circular processor is to serve as a causally connected self-representation then
any modification to this code must not only affect the interpretation of user programs but also the interpretation
of the meta-circular processor's code itself. In practice—in any existing implementation—this is not the case.
Thus the meta-circular code does not truly serve as a self representation. The following figure tries to illustrate
this.

Interpreter Extensions

Interpreter Extensions

User Level Code

P
rogram

R
eflective S

ystem
This picture represents a traditional infinite tower of meta-circular interpreters. The arrows indicate the "… plays
a part in the interpretation of …" relationship. The reflective system is a tower of meta-circular interpreters. This
tower is used to interpret a program. The program usually contains some normal non reflective "User Level"
code but also some reflective code that will be installed as part of the interpreter (shown in the drawing as
"Extensions"). The traditional model is misleading because it gives the impression that the extended interpreter
is used to interpret itself meta-circularly. This is not true, the extended interpreter is only used to interpret the
extensions, while the "core" of the interpreter is not affected by the extensions. That is why we have crossed out
the arrows leading from "extensions" to "interpreter".

In any existing implementation, extensions to the language do not affect the interpretation of the "core
interpreter". The extensions only affect evaluation of a) “User Level Code” and b) the code implementing the
extensions themselves. They do not affect the core-interpreter. In many systems this is so because the "core
interpreter" is explicitly written in a subset of the language that can not be altered by reflective programming
(e.g. a variant of Scheme with reifier-procedures, whereby the implementation does not make use of reifiers, nor
is it possible for reifiers to override the pre-defined special forms). In other implementations the core interpreter
is written in a part of the language that can be changed by reflective programming (e.g. a variant of Scheme
whereby the pre-defined special forms can be redefined), but even then the scope of the changes will only include
the extension's implementation and the user level code, but never the actual interpreter itself.

The traditional model is deceiving because it does not distinguish the extensions (added by reflective
programming) and the core of the interpreter from each other. Our approach attempts to remedy this by dividing
the interpreter into a fixed and a parameterised part.

In this paper we will start with building an open implemented interpreter. This open implementation will be

— 3 —

written meta-circularly, meaning that it can be evaluated with some “basic” evaluator obtained from that open
implementation itself. Then we will experiment a little with finite3 literal towers of open implementations. The
finite tower experiment serves as a stepping stone towards reflection, providing an easy way to experiment with
towers of open implementations. After playing around with finite towers for a while we will introduce “real”
reflection characterised by a fix-point equation and show the relation between this equation and infinite towers.

2 The Open Implemented interpreter

Our approach is an attempt to refine the traditional model. We will represent a level of the tower by an open-
implemented interpreter, explicitly representing the "fixed-core" of the system as a separate entity.

We will use the following simple example language (ASEL), which is a subset of Scheme.

<exp> = <var> | <constant> | <lambda> | <if> | <definition> |
<assignment> | <application>

<var> = <scheme-symbol>
<constant> = <scheme-literal> | <quoted>
<quoted> = '<scheme-value>
<lambda> = (lambda <formals> <sequence>)
<sequence> = <exp>+
<formals> = () | <var> | (<var>+ [. <formals>])
<if> = (if <exp> <exp> <exp>)
<definition> = (define <var> <exp>)
<assignment> = (set! <var> exp>)
<application> = (<exp> <exp>*)

An open implementation is in essence nothing more than a parameterised interpreter. The parameterised
interpreter will take the form of a function we will name meta. Applying meta to a parameter will return an
evaluator based on that parameter. Thus we can obtain a range of evaluators, by applying meta to a variety of
parameters. The fixed core is explicitly represented by meta.

The way we write meta, the choice of parameterisation, establishes beforehand in what way we can adapt the
evaluator. In the system we will implement here as an example, the goal is to be able to extend the evaluator so
that it can handle new kinds of syntax structured as follows:

(<syntactic-keyword> <arg>*)

For example we could extend the evaluator with cond, let, let*, … expressions. The parameter that is passed to
meta will take the form of an assoc-list which associates an appropriate evaluation procedure with a <syntactic-
keyword>. We will also provide a standard parameter, yielding the basic evaluator which handles the vanilla
version of ASEL. The definition of meta will be written meta-circularly, which in our case means that it is
implemented in vanilla ASEL and thus can be evaluated with the basic-evaluator.

The following figure gives a schematic view of what our open implementation looks like.

3 This approach is inspired by the work of Jefferson and Friedman [Jefferson&Friedman92]. They
introduce reflection through explicitly constructing finite towers meta-circular interpreters that are interpreting
each other literally. This gives poor performance, but it does give a very clear, simple and understandable
account of procedural reflection. One can observe the behaviour of a finite tower and “extrapolate” upon this to
understand how an infinite (procedurally) reflective tower behaves.

— 4 —

Meta

Disp eval

User code Result

The convention is that rectangular objects represent syntactic entities, i.e. pieces of source code. Round objects
represent functions. The application of a function is represented by a thick black line, an arrow points through
the black line, pointing from the argument to the result of the application. This diagram shows the open
implementation as a function called meta, that is applied to a dispatcher. The result of this application is a
function called eval, this is the evaluator. The evaluator is then used to evaluate user code. One last remark: the
parameter to our meta function is called disp, in our system this is an association list, which associates a
syntactic keyword with an evaluation function. Thus, strictly spoken, disp is not a function but to keep the
figures simpler we will treat it as such. Regarding disp as a function does not change anything in an essential
way. Similarly result is also drawn as a function although it usually is something else like a number, a list, ….

User code

Meta Meta DispDisp

eval

Scheme

Result

The previous figure gives a more detailed view of the open implementation, this time also showing the open
implementation's source code, and the dispatcher's source code. Both are evaluated by the underlying scheme's
evaluation function, yielding the meta and disp functional objects.

We can view meta as establishing the meta-theory. It determines what aspects of the interpreter we can talk
about, and how we must do this (i.e. what parameters must be supplied to meta). In this respect we can consider
the argument(s) to meta as the representation for some evaluator. The meta-theory relates the representation to
the evaluator it represents. Without a proper meta-theory, the representation is meaningless. This model
explicitly exhibits theory relativity. The representation is not complete it only determines an interpreter in the
context of some meta-theory: some of the interpreters aspects are contingent to this meta-theory.

The representation (the round Disp in the drawing) is a semantical object. We must denote this semantical object
by some syntactical structure (the rectangular Disp in the drawing). An interpretation function will be needed to
relate the syntactical description with the corresponding semantical representation. In this drawing that
interpretation function is the Scheme evaluator. From here on we will use "representation of E" for referring to
the semantical object that represents an evaluator E in the sense described above. Respectively we will use
"description of E" for referring to the syntactical structure denoting the representation of E.

The overall structure of meta is displayed below. It takes a dispatch-table assoc-list as argument and returns an
evaluator. The implementation of the evaluator, which is hidden inside the body of meta, is written in
continuation passing style. All evaluation procedures like evaluate, basic-evaluate, evaluate-constant, … take 3
arguments e, r and k. These are respectively the expression to be evaluated, the current environment (= set of
bindings of variables to values) and the current continuation. The evaluation procedures in the dispatcher take
another extra argument: evaluate. This is the evaluator itself, passed as an argument to dispatcher procedures so

— 5 —

that they may use it to evaluate sub-expressions.

(define meta
 (lambda (dispatch-table)

 (define evaluate
 (lambda (e r k)
 (if (pair? e)
 (find-pair (car e) dispatch-table
 (lambda (success-pair)
 ((cdr success-pair) evaluate e r k))
 (lambda ()
 (basic-evaluate e r k)))
 (basic-evaluate e r k))))

 (define basic-evaluate
 (lambda (e r k)
 ((if (constant? e)
 evaluate-constant
 (if (variable? e)
 evaluate-variable
 (if (if? e)
 evaluate-if
 (if (assignment? e)
 evaluate-assignment
 (if (definition? e)
 evaluate-definition
 (if (abstraction? e)
 evaluate-abstraction
 evaluate-combination))))))
 e r k)))

 (define evaluate-constant …)
 (define evaluate-variable …)
 …
 (define …)

 evaluate))

The main procedure, evaluate, checks the dispatch table for an appropriate evaluation procedure to call. If one is
found, then it will be used to evaluate the expression. If the dispatcher does not contain a procedure for this type
of expression, then basic-evaluate gets called. Basic-eval handles all "vanilla" ASEL expressions, it distinguishes
between different types of expressions and dispatches to an appropriate evaluation procedure for that particular
expression type.

Most of the sub-task procedures that basic-eval dispatches to are rather straightforward, so we won't explain all
of them here. The full source code can be found in appendix A. Since some of the rest of this paper will involve
dealing with complications that arise when procedures are moving up and down in the tower of interpreters, and
inter level (in)compatibility of procedures, we will now take a look at the code of the evaluator involving
procedure creation (evaluation of lambda expressions) and procedure calls.

(define evaluate-abstraction
 (lambda (e r k)
 (k (make-compound (formals-part e) (body-part e) r))))

Evaluation of a lambda expression (abstraction) is very straightforward: create a representation for a procedure by
calling make-compound, and pass the result to the continuation.

(define make-compound
 (lambda (formals body r)
 (lambda (k . args)

— 6 —

 (evaluate-sequence body (extend r formals args) k))))

As can be seen from the definition of make-compound, procedures are represented by procedures. The
representation procedure has an extra first argument. This extra argument is a continuation that will receive the
result of the procedure-call. The remaining arguments are the "real" arguments. Application of a procedure
represented in this way is written as follows.

(define apply-procedure
 (lambda (proc args k)
 (if (procedure? proc)
 (apply proc (cons k args))
 (wrong "operator is not a procedure" proc))))

The evaluate-combination procedure is the one that is called for evaluating procedure calls. It first evaluates the
operator part (the expressions that yields the procedure to be called). Then it evaluates the operands one by one
by calling the procedure evaluate-operands. Finally the procedure (proc = result from evaluating the operator part)
is applied to the list of evaluated arguments.

(define evaluate-combination
 (lambda (e r k)
 (evaluate (operator-part e) r
 (lambda (proc)
 (evaluate-operands (operands-part e) r
 (lambda (args)
 (apply-procedure proc args k)))))))

We also provide a read-eval-print loop mechanism, so that we can type in expressions to be evaluated and see the
result printed on the screen. A read-eval-print loop can be started by calling the function openloop passing the
evaluator as an argument.

(define openloop
 (lambda (evaluate read-prompt write-prompt)
 (display read-prompt)
 (evaluate (read) global-env
 (lambda (v)
 (display write-prompt)
 (if (eq? v (void))
 "Nothing is displayed"
 (write v))
 (newline)
 (openloop evaluate read-prompt write-prompt)))))

Now we have everything we need to start a session, we can open a read-eval-print loop on a basic evaluator, or
variation of the evaluator we create by applying meta to a parameter. The following is an example of how one
might create an extended evaluator that understands a special exit expression. When an exit expression is
evaluated, it causes the evaluator to terminate promptly, discarding all pending computations. The example
shows the evaluation of some simple expressions, an invocation of the exit construct ends the session. Things
typed in bold where typed in by the user. Things in normal font where responses or prompts printed by the
read-eval-print loop or by the underlying scheme system.

scheme> (initialise-global-env)
scheme> (define exit-evaluator
 (meta (list (cons 'exit (lambda (evaluate e r k) e)))))
scheme:
scheme> (openloop exit-evaluator "exit> " "exit: ")
exit> (* 3 4)
exit: 12
exit> (define foo (lambda (x) (* x x)))
exit:
exit> foo
exit: #[procedure #x8B2D2]

— 7 —

exit> (foo 5)
exit: 25
exit> (exit)
scheme: (exit)
scheme> …

3 Finite Towers

3 . 1 Construction

The next step towards a reflective tower will be to use the code from (2) meta-circularly, building a finite tower
of a fixed number of literal levels of open implementations. For this purpose we add a procedure loadfile, that
enables us to read a file from disk and interpret its expressions one by one with an interpreter of our choice.
loadfile is very similar to a read-eval-print loop, but also checks for end-of-file and reads expressions from a file
instead of from the keyboard.

(define loadfile
 (lambda (evaluate file)
 ((lambda (port)
 ((lambda (loop)
 (set! loop
 (lambda (v)
 (if (eof-object? v)
 (close-input-port port)
 (evaluate v global-env
 (lambda (ignore)
 (loop (read port)))))))
 (loop (read port)))
 '*))
 (open-input-file file))))

Now it's easy to build a finite tower of open implementations. In the following example we will build a tower
of 2 levels, with at every level of the tower an interpreter that is extended with a climb construct. The climb
construct takes one argument. This argument must evaluate to a strictly positive integer value. Evaluation of
climb will cause an exit from exactly the number of levels indicated by the argument. The climb construct is not
a very useful thing, but we employ it because it is a simple example of a construct that needs an arbitrary
number of reflection levels (depending on the argument).

First we load the file "open-simple.scm", which contains the definitions for meta, loadfile, openloop, … . Then
we initialise the level 1 global environment for the first level and load "open-simple.scm" again, but this time
into the level 1 global environment, using the level 1 basic evaluator.

scheme> (load "open-simple.scm")
scheme:
scheme> (initialise-global-env)
scheme:
scheme> (loadfile basic-eval "open-simple.scm")
scheme:

Next we define the dispatcher and evaluator for level 1. The evaluator for level 1 is an evaluator extended to
handle climb.

scheme> (define climb-proc
 (lambda (evaluate e r k)
 (evaluate (car (cdr e)) r
 (lambda (how-many)
 (if (= 1 how-many)
 how-many
 'cannot-climb-further)))))
scheme:

— 8 —

scheme> (define climb-dispatcher (list (cons 'climb climb-proc)))
scheme:
scheme> (define climb-evaluator (meta climb-dispatcher))
scheme:

After doing all of the above, the system is ready to start the level 1 read-eval-print-loop with a call to openloop.

scheme> (openloop climb-evaluator "1> " "1: ")
1>

To add another level to the tower we simply go through the same steps again, defining the dispatcher and
evaluator and starting a read-eval-print loop. This time we can skip loading "open-simple.scm" because we do
not intend to add a third level below level 2, so we don't need to load another meta-circular open implementation.

1> (ini t ial ise-global-env)
1:
1> (define climb-proc
 (lambda (evaluate e r k)
 (evaluate (car (cdr e)) r
 (lambda (how-many)
 (if (= 1 how-many)
 how-many
 (climb (- how-many 1)))))))
1:
1> (define climb-dispatcher (list (cons 'climb climb-proc)))
1:
1> (define climb-evaluator (meta climb-dispatcher))
1:
1> (openloop climb-evaluator "2> " "2: ")
2>

Notice that the definitions of climb for level 1 and level 2 are not identical. Normally climb calls "itself"
recursively when it needs to climb more than one level. Strictly spoken "itself" is not correct, since the climb
that is called and the one that is being implemented are in different levels of the tower. The level 2 climb is
taken care of by climb-proc at level 1, which relies on level 1's climb. Since scheme, which coincides with level
0 in our tower, does not understand climb, the level 0 climb-proc (implementing level 1 climb), cannot rely on
it. This is the reason why the level 0 climb-proc instead of calling climb "recursively" returns the symbol
"cannot-climb-further". The result is that on level 2 we can climb at most 2 levels, and at level one we can
climb only one level. Trying to climb more than this number of levels leaves us in Scheme, with the message
"cannot-climb-further".

2> (* 3 4)
2: 12
2> (climb 1)
1: 1
1> (climb 2)
scheme: cannot-climb-further
scheme> …

3 . 2 Explanation

The following figure illustrates the configuration of the finite tower we just created. A little explanation is in
order here. Dashed horizontal lines separate the different levels of the tower. Evaluation functions are drawn at
the boundary, just above the dashed lines. Their application protrusions point through the dashed line into the
level below, because they "reason about" objects from the level below, the level they are implementing. Notice
that we actually have 2 towers here, standing right next to each other. On the left is a tower of basic evaluators,
and on the right a tower of customised evaluators. The end product, the evaluator that is used to evaluate user
code is the bottom of the tower of customised evaluators.

Although this is only a finite tower, and not a real reflective system, it already illustrates some interesting

— 9 —

things. By representing a level of the tower as an open implemented interpreter, we have exactly the right
amount of detail to be able to represent the independence of the fixed core of the system from the extensions.
Meta and default are evaluated explicitly with basic-eval. This ensures that changes to the language introduced by
the reflective parts of the user program (disp in the drawing) will not affect the interpretation of the fixed core.

Schem
e

L
evel 1

L
evel 2

User code

basic-eval1

Meta Meta1Default1Default Disp1Disp

eval1

Meta Meta0Default0Default Disp0Disp

basic-eval0 eval0

Scheme

Result

In this implementation, the dashed line boundaries are very strict, function representations at different levels are
incompatible, a function of one level cannot be used at another level. To see that this is true let's examine the
representation of procedures at different levels, for an example let's consider the representation of the +
procedures. At scheme's level this is simply represented by the native primitive addition procedure. On every
level procedures are represented as procedures of the implementing level with one extra continuation argument in
front of the real argument list (remember the definition of make-compound discussed in section 3). So at level 1
the representation for the primitive addition procedure will roughly correspond to the result of evaluating the
following expression in native scheme:

(lambda (k1 . args) (k (apply + args)))

Similarly, the addition procedure at level 2 will correspond to the evaluation of the following at level 1:

(lambda (k2 . args) (k2 (apply + args)))

Which in turn corresponds to the following evaluated in scheme:

(lambda (k1 k2 . args) (k2 k1 (apply + args)))

Every level of the tower introduces an extra continuation, thus a procedure representation at level 1 takes one
extra continuation argument, and a procedure at level 2 takes 2 extra continuation arguments. This obviously
shows that procedures at different levels differ in the number of hidden continuation arguments they expect and
are therefor not interchangeable.

— 10 —

4 Reflection

4 . 1 Why the Finite Tower is not Reflective

There are strong arguments to say that it would be a mistake to call the finite tower architecture just presented a
reflective system. It isn't much more than an open implemented interpreter, it is just a number of open
implemented interpreters executing each other. An open implemented interpreter in itself is not reflection, it is
merely an interpreter that can be varied upon by supplying different parameters. The most important aspect of
reflection, the ability of a program/interpreter to reason about itself is completely absent, an interpreter cannot
reason about itself, it can only reason about the interpreter below. The interpreter below is a similar, but
nevertheless a different interpreter, it need not even be extended in the same way.

4 . 2 The Fix-point Equation of Reflection

Merely an open implementation by itself is not reflection. What do we expect from a "reflective
language/interpreter"? First of all, we need some meta-theory to talk about the interpreter. Second a
representation of the evaluator is needed under this meta-theory. Obviously these 2 things are not sufficient to
get a reflective system because both of these are present in open implementations: there is a meta-theory
established by meta and the parameters to meta serve as representation for the evaluator. One essential thing is
missing however. In a reflective system we want to be able to express the description for the interpreter in the
language implemented by that interpreter itself! That is the essence of reflection! We express this in the
following equation:

E = (M (E d))

Our convention is to write functional objects (round objects in the drawings) with capitals, and "source code"
objects (rectangular in the drawings) with small letters. In this equation the evaluator, E, that is being created by
applying the meta function, M, to a dispatcher function (representation of the evaluator) is the same as the
evaluator that is being used to create the dispatcher by evaluating its source code (description) d. This fix-point
equation is the key to reflection in a system of open implemented interpreters. Schematically we can draw this
fix-point equation as follows:

Meta

eval

Disp Disp

The "recursiveness" of the fix-point equation shows up in this diagram under the form of a circularity in the
drawing. Notice that the arrow that leaves from the dispatcher goes through the level boundary. Remember that
we pointed out before there cannot be arrows crossing level boundaries, the boundaries are strict. This is a
complication we will deal with in the following 2 sections.

4 . 3 Reflection and Infinite Towers

The equation E = (M (E d))actually implies an infinite tower of open implementations. This can be seen
when rewriting the equation into longer and longer equivalent equations as follows:

E = (M (E d))

E = (M ((M (E d)) d))

E = (M ((M ((M (E d)) d)) d))

…
E = (M ((M ((M ((M ((M (… d)) d)) d)) d)) d))

— 11 —

The last equation, the result of substituting (M (E d)) an infinite number of times into E = (M (E d)) can
be regarded as an infinite tower, corresponding to the next figure.

Disp DispMeta

Eval

Disp DispMeta

Eval

In this figure there is an infinite number of levels (imagine that the level is repeated ad infinitum). Every level
contains an evaluator, a meta and a dispatcher. You should consider all rounded rectangles containing the word
"meta" to stand for one and the same meta-function, simply drawn multiple times. Similarly consider the
rectangles and rounded rectangles representing dispatcher, dispatcher source code and evaluator as multiple
drawings of the same objects. It is not difficult to see that actually the 2 drawings, the infinite tower and the one
with the circularity, are "isomorphic", that is, if we simply look at the way the arrows go, and do not
distinguish between the multiple copies at different levels, but regard them as identical, the two drawings are the
same. In both drawings there are 2 arrows. One that starts from dispatcher source code goes through the evaluator
and points to the dispatcher function, representing the application E D(). The other arrow starts from the
dispatcher function goes through the meta-function and points to the evaluator, representing the application

M E D()() .

Notice that in the infinite tower figure there are no arrows crossing level boundaries. This shows that we can
think of the fix-point equation as an infinite tower of open implementations, without the discrepancy of level
crossing procedures.

We consider both drawings to represent equivalent views of the fix-point equation. The circular one directly
represents the recursion by a circularity in the drawing, thus looking at the equation from a rather direct,
"implementational" viewpoint. While the infinite one looks at it from a conceptual, behavioural angle, viewing
it as the representation for an infinite tower of identical open implementations. The first drawing we conceive as
being of an implementational nature, because we are going to implement reflection directly by supplying an
suitable M, that can be used to define an evaluator by directly expressing the fix-point equation, using recursion
in ASEL to define E in terms of itself. The infinite tower drawing gives the more conceptual view, expressing
that the result will be something that behaves like an infinite tower of identical open implementations, with
identical extensions at every level.

5 Implementing the Infinite Tower

This section gives a brief description of how to implement an infinite tower of open implemented interpreters.
This can be done in 2 stages.

5 . 1 Stage 1: Implementing M

The level crossing arrow in the figure from section (4.2) indicates that there is something strange about the M in
the fix-point equation. Normally level crossing arrows are not possible.

— 12 —

Our implementation of M is inspired upon the left side of the finite tower from section 4, extended into infinity.
An important aspect of the infinite tower is that procedures at different levels (near the bottom of the tower) are
interchangeable. This is different from the situation in finite towers where procedures at different levels differ in
the number of continuation arguments they receive as hidden arguments. At the bottom of an infinite tower, a
procedure expects an infinite number of continuation arguments. Informally we could argue that adding one more
continuation to an already infinite number doesn't make much of a difference, there still are an infinite number of
them.

We have built a "level shifting" implementation, based on the idea of a meta at the bottom of an infinite tower.
For technical reasons it was not possible to mimic the behaviour of an infinite tower exactly, but what matters
is that we were able to ensure interlevel compatibility of procedures. The whole thing boils down to simulating
an infinite tower by maintaining a stack of meta-continuations that is virtually infinite, but from which only a
finite number of the topmost levels will actually be used. We will not go into detail because this is very
similar4 to the traditional implementation of a level shifting interpreter as previously described in
[desRivières&Smith84] and [Smith84]. The result is an implementation of meta (from here on called meta∞) as
an "infinite level procedure". It can be applied on dispatchers that contain "infinite level" procedures and returns
an evaluator that also is an "infinite level" procedure.

5 . 2 Stage 2: Fix-point Equation

Given meta∞ we can use the fix-point equation given under (4.2) to spawn an infinite tower of customised
interpreters. The system we have implemented provides a read-eval-print loop, in which the user can type in
expressions. The evaluator used to evaluate the expressions is an instance of basic-eval, created by applying
meta∞ to the default-dispatcher. The global environment contains a reference to meta∞ in a variable called
"meta*". Thus the user can create his own dispatcher and pass it to meta∞ to create an infinite tower of
customised evaluators.

The following is an example showing the creation of an infinite tower of evaluators that understand the climb
syntax. The code is a bit more complicated than expected but this is merely the result of some technical matters.
A dispatcher is not really a function, but an assoc-list, containing functions, this makes things a bit more
intricate. Another complication is that Scheme, and ASEL (a subset of scheme) do not have delayed evaluation
so we have to throw in some extra η-redexes here and there to avoid infinite loops.

First the variable “climb-code” is bound to the source code (notice the quote) of the climb-dispatch procedure.
Thus the contents of “climb-code” corresponds to d in the equation.

0> (define climb-code ;; d
 '(lambda (evaluate e r k)
 (evaluate (car (cdr e)) r
 (lambda (how-many)
 (if (= 1 how-many)
 how-many
 (climb (- how-many 1)))))))
0:

 Next we construct a dispatcher assoc-list that contains the evaluation of the source code from “climb-code” and
store that in a variable “climb-dispatcher”. The evaluator that should be used for evaluating the source code
should be “eval-climb” the evaluator we are constructing. Since this evaluator will be declared later and is still
unavailable, we must delay the evaluation with an extra η-redex.

0> (define climb-dispatcher ;; (E d)
 (list (cons 'climb
 (lambda (eval e r k) ;; extra η- redex
 (eval-climb climb-code global-env

4 Actually our implementation looks simpler and more elegant than similar things written for the
traditional model because the ad-hoc notion of things moving up and down the tower has disappeared. The link
between levels are through the parameters for M. Source code can be found in the Appendix.

— 13 —

 (lambda (ED)
 (ED eval e r k)))))))
0:

Subsequently we obtain the evaluator by giving the dispatcher created above as an argument to “meta*”. Here we
also need an extra η-redex, this time to avoid infinite looping.

0> (define eval-climb ;; E = (M (E D))
 (lambda (e r k) ;; extra η- redex

 ((meta* climb-dispatcher) e r k)))
0:

Finally we can use the evaluator. For example we can start a read-eval-print loop and evaluate some expressions.

0> (openloop eval-climb "1> " "1: ")
0:
1> (climb 3)
-2: 0
-2> …

6 Why the Infinite Tower of Meta-Functions is Reflective

It can be argued, on the basis of the time of definition and installation of dispatcher functions, that the tower of
meta-functions is still a weaker form of reflection than the more common reifier functions sort of reflection. We
will argue that the difference is merely a matter of 1) a lower degree of reflective overlap (something one really
tries to avoid) and 2) pragmatics and the choice of the particular open implementation.

Dispatcher functions are defined and installed in the evaluator prior to their usage in some user program. It
might seem that there is an even stronger form of reflection whereby a user program can install dispatcher
functions while it is running. In this set-up dispatcher functions are defined in the context of the user program.
First and most obvious one can remark that this leads to reflective overlap regarding the environment. Dispatcher
functions are evaluated in an (implicit) environment that will later be given as explicit argument to them.

Furthermore it can be argued that the fact whether extensions to the interpreter are made prior to rather than
during the execution of a program, depends largely on the architecture of the open implementation. We claim
that in the system given here, this is mostly the result of the direct mapping of the theoretical "meta-functional"
view of reflection onto an implementation which retains the functional nature of parameterisation. Most (if not
all) present day implementations of reflective system involve some kind of side effect in the installation of
parameters into an evaluator (with procedural reflection for example this is the side effect that installs a reifier
procedure into the current environment). This naturally yields a more dynamic behaviour and gives a more direct
impression that the system/program reasons about itself or about its evaluator.

To illustrate our point, it is possible to imagine a practical implementation that has the capability to
destructively alter the dispatcher after the instantiation of an evaluator. This yields something that is highly
similar to the reifier approach, be it with one big difference, it is impossible to pass on reifiers as arguments.
This in itself is not a problem, some people even claim that the ability to pass on reifiers is a flaw in the
procedural reflection approach [Bawden88].

7 Comparing Static Reflection, Dynamic Reflection and Finite Towers

The above defined meta* need not be used to spawn infinite reflective towers. It need not be used to express
programs that can climb arbitrarily high in the tower. Consider the following example. Here again a climb
syntax is defined, but in contrast with the above climb syntax it can only be used to climb a number of levels in
the tower which is statically defined. The evaluators being defined are not the result of some fix-point equation.

0> (define climb-proc-0
 (lambda (evaluate e r k)
 (evaluate (car (cdr e)) r

— 14 —

 (lambda (how-many)
 (if (= 1 how-many)
 how-many
 'cannot-climb-further)))))
0:
0> (define climb-dispatcher-0 (list (cons 'climb climb-proc-0)))
0:
0> (define climb-evaluator-0 (meta* climb-dispatcher-0))
0:
0> (openloop climb-evaluator-0 "1> " "1: ")
1> (define climb-proc-1
 (lambda (evaluate e r k)
 (evaluate (car (cdr e)) r
 (lambda (how-many)
 (if (= 1 how-many)
 how-many
 (climb (- how-many 1)))))))
1:
1> (define climb-dispatcher-1 (list (cons 'climb climb-proc-1)))
1:
1> (openloop climb-evaluator-1 "2> " "2: ")
2> (climb 1)
1: 1
1> (climb 2)
0: cannot-climb-further
0>

Although the above sequence of climb-evaluators looks very similar to the climb-evaluators defined with the
finite tower of section 3, they have noticeably different properties. The following equations show the
construction of both. Again capitals denote functions and small letters denote pieces of source code. CD, D,
BE, M and CE stand for climb-dispatcher, default-dispatcher, basic evaluator, meta and climb-evaluator
respectively. The indexing convention is that we put an index to denote the level a function belongs to if this
level is finite. For example BE1 is an instance of the basic evaluator that is a level 1 procedure (taking one
continuation argument). If the level is infinite the index is omitted. Thus BE denotes an instance of basic-eval
that is an "infinite level" procedure. Indexes to source code don't signify a certain level because pieces of source
code are never bound to a certain level and can be freely interchanged without compatibility problems. Thus cd0,
… , cdn merely denote n different pieces of source code.

CE = (M ((… ((M ((M (BE cd0)) cd1)) …)) cdn)) with meta*

CEn+1 = (Mn+1 ((… ((M2 ((M1 (BE0 cd0)) cd1)) …)) cdn))

BE0 = Scheme

Mi = (BEi−1 m)

BEi = (Mi Di)

Di = (BEi−1 d)

finite tower

Most noticeable is a difference in performance. In the second case there is very large interpretation overhead.
There are n levels of interpreters literally interpreting each other, where n is the statically predetermined
maximum number of levels one can climb in the tower. The first is much more efficient because the
interpretation overhead will only occur for interpretation of the specific code in the dispatcher implementing the
climb construct.

The performance cost of extra numbers of evaluation levels is avoided due to the special properties of meta∞.
The extra performance cost associated with finite towers is due to extra flexibility in the architecture. Whereas
using meta∞ implies that the meta function is fixed, the meta-function of finite towers need not all be evaluated
with the same evaluator. This brings us back to the issues raised in the introduction. For a finite tower it is
possible to influence the 'core' of the interpreter. For example one could define a sequence of evaluators:

— 15 —

CE1 = ((BE0 m) (BE0 cd0))

CE2 = ((CE1 m) (CE1 cd1))

…
CEn+1 = ((CEn m) (CEn cdn))

Unlike the previously employed finite tower that explicitly used a basic evaluator for evaluating m, the evaluator
that would result from continuing this sequence into infinity cannot be represented by a single fix-point
equation. We might propose the following equation:

E = ((E m) (E d))

However, this equation merely corresponds to a meta-circular "definition" of E. It is a well known fact that this
does not really define anything. There is no unique solution to this equation thus it does not specify an
interpreter or a language at all.

There is also a difference pertaining to procedure compatibility. In the literal tower, procedures at different levels
cannot be interchanged whereas in the "static reflection" tower they can be interchanged. This is due to the nature
of meta* which was specifically written with procedure compatibility in mind.

Before going on let's first introduce some terminology. Two languages are related if both are a customisation of
the same open implementation. For example in the drawing of the finite tower in section 3.2 the evaluators
basic-eval0 and eval0 implement related languages since both where created from the same meta0. Whereas eval0
and eval1 do not implement related languages because they where created from different metas. It is important to
note that we do not consider meta0 and meta1 to be the same open implementation. Although they share the
same source code, they are still distinct because they are procedures belonging to different levels and thus have
different procedure representations (different number of continuations!). Note that in the example in this section
all evaluators implement related languages because they where created from the same open implementation
namely meta∞.

Using this terminology we can categorise open implementations into two different categories. The first is the
category of "plain" open implementations in which customisation parameters are expressed in a language not
necessarily related to the language they engender. The second is the category "with reflective potential" in which
customisation parameters are expressed in a language that is related to the engendered language.

We can also distinguish 2 categories of reflection: static-reflection and dynamic reflection. An evaluator
constructed without fix-point operations will be categorised as static reflection. If the construction involves
some kind of fix-point operation than we will categorise it as dynamic reflection. Note that this fix-point need
not be so direct as in the climb example. More exotic things like mutually recursive equations are also possible.

It is not difficult to see that any evaluator constructed without using a fix-point will always be limited
beforehand in the number of levels it needs to “reflect”. Hence the term static reflection, the number of possible
levels of reflection is statically limited by the construction of the evaluator. In the case of dynamic reflection
there is no guaranteed statically determined upper bound on the number of reflection levels a program might
require.

The “limited climb” in this section is a sample of static reflection. The number of reflection levels required is
statically limited beforehand. The climb construct only works up to a limited number of levels, beyond that
upper-bound it will stop and return the message “cannot-climb-further”. In section 5.2 the “unlimited” climb is
an example of dynamic reflection. The number of reflection levels actually required is dynamically dependant on
the execution of the program: it depends on the argument passed to climb.

8 Reflective Programming Languages Based on an Open Implementation

First let us consider what a reflective language is. Traditionally one considers two important requirements a
language must conform to in order to be reflective [Smith...]. First it needs "an account of itself embedded

— 16 —

within it". In other words some kind of representation for the language must be accessible from within itself.
Secondly this "self-representation" must be causally connected to the system so that changes to it directly affect
the system itself.

Under this definition, what we have built does not qualify as a reflective system. It is more like a low-level "do-
it-yourself kit". A global variable called meta* contains a reference to meta∞. It is up to the user to construct
recursive definitions over evaluators for defining dynamic reflection or open read-eval-print loops for constructing
static reflection. This can be somewhat involved sometimes, e.g. the construction of the climb dispatcher is
more complicated than need be due to need for lazy evaluation. Furthermore, this reference can be used to
generate different interpreters, that can each be used to evaluate different parts of a program (an often useful
property). No true support is given to manage all this.

Although it is not a reflective system in the traditional sense—it has no self representation embedded within it—
it can be used to create interpreters from a description expressed in that same language. It is even possible to
actually provide access to this "self-representation" from within the language itself. The user will have to do
some programming to accomplish this however.

When building a real reflective system based on an open-implementation, we would use the parameters to meta
as a self representation. Of course it is not practical to burden the user with explicitly constructing fix-points to
obtain dynamic reflection etc. Normally one would determine some practical, sufficiently flexible ways for
accessing the self-representation and hard-code this into the system. A suggestion for a practical implementation,
that has the capability to destructively alter the dispatcher, was already given in section 6. In this case access to
the self-representation could (for example) take place by storing the dispatcher table in a special global variable
which is made available to the user. Less destructive forms are imaginable. For example, a reflective variant of
scheme's let, and letrec, can be provided to the user as standard mechanisms for writing statically or dynamically
reflective code respectively.

9 Conclusion

The traditional model of reflection is not sufficiently detailed for expressing the fact that every interpreter has a
fixed “untouchable” core that cannot be affected by reflective programming. Our open-implementation approach
adds some detail to fix this, dividing an interpreter into a fixed and a parameterised part.

The open-implementation view gives a better and cleaner understanding of reflection. For one thing, it improves
upon the ad-hoc and obscure way levels are linked to each other in the traditional approach. Another important
aspect of the open-implementation model is that it clearly exhibits the notion of theory relativity. It actually
takes the fact that some parts of the system will never be represented in its (self-)representation as a premise and
puts these things separately into a meta function. This meta function establishes the meta-theory and the
parameters to the functions constitute the representation of a language/representation. Thus the “meta-theory”
and the notion of “representation” are clearly defined before we even start thinking about reflection. Reflection is
then obtained by making a representation (parameters to meta) available from within the language.

It is our opinion that this alternative view on reflective systems will strongly influence the definition,
implementation and theory of reflective systems. In fact it can now be argued that a large part of the literature on
reflective systems is devoted to "variations on open implementations" for particular systems (e.g. alternative
open implementations for Scheme). Which is an important topic, of course, but a topic that can be considered as
a research topic that is more general than reflective systems.

The good news is that, given this alternative view on reflection, it is possible to start considering a generalised
theory of reflective systems. As pointed out in [Mendhekar,Friedman93] when the view taken on reflective
systems is: base system + reflective operators (the traditional view) then: "we can never hope to have a
generalised theory about reflective systems since the theory will have to take into account the operational
behaviour of every base system". This problem is entirely resolved when reflection is based on open
implementations: the operational behaviour of the base system has already been taken care of in defining the
open implementation, and is a prerequisite before turning a system into a reflective one.

— 17 —

1 0 References

[Bawden88] A. Bawden: Reification without Evaluation, Conference Record of the 1988
ACM Symposium on LISP and Functional Programming, 1988.

[desRivières&Smith84] J. des Rivières and B. C. Smith: The Implementation of Procedurally
Reflective Languages, Conference Record of the 1984 ACM Symposium on
LISP and Functional Programming, pp 331-347, Austin, Texas (August 1984)

[Friedman&Wand84] D.P. Friedman, and M. Wand: Reif icat ion: Reflect ion without
Metaphysics, Conference Record of the 1984 ACM Symposium on LISP and
Functional Programming, pp 348-355, Austin, Texas (August 1984)

[Jefferson&Friedman92] S. Jefferson, and D.P. Friedman: A Simple Reflective Interpreter, IMSA'92
International Workshop on Reflection and Meta-Level Architecture, Tokyo,
November 4-7, 1992. (1992)

[Kickzales, des Rivières,Bobrow91] G. Kickzales, J. des Rivières, and D. G. Bobrow: The Art of the
Metaobject Protocol, The MIT Press, Cambridge, Massachusetts, 1991.

[Maes87] P. Maes: Computational Reflection, VUB AI-Lab technical report 87-2. (1987)

[Maes88] P. Maes: Issues in Computational Reflection, Meta-Level Architectures and
Reflection, P. Maes and D. Nardi (eds.) Elsevier Publishers B.V. (North-Holland).
(1988)

[Mendhekar,Friedman93]A. Mendhekar, D.P. Friedman: Towards a Theory of Reflective
Programming Languages. In informal proceedings of the OOPSLA'93
workshop on Object-Oriented Reflections and Meta-level Architectures, October
1993.

[Rao91] R. Rao: Implementational Reflection in Silica, Lecture Notes in Computer
Science, P. America (ed.), ECOOP’91, European Conference on Object-Oriented
Programming, Springer Verlag. (1991)

[Simmons&Friedman92]J.W. Simmons II, and D.P. Friedman: A Reflective System is as Extensible
as its Internal Representations: An Illustration, Indiana University
Computer Science Department Technical Report #366. (1992)

[Simmons,Jefferson&Friedman92]J.W. Simmons II, S. Jefferson, and D.P. Friedman: L a n g u a g e
Extensions via First-class Interpreters, Indiana University Computer
Science Department Technical Report #362. (1992)

[Smith84] B. C. Smith: Reflection and Semantics in Lisp, Conf. Rec 11th ACM Symp
on Principles of Programming Languages (Salt Lake City, January 1984, pp23-35.
(1984).

[Wand&Friedman88] M. Wand, and D. P. Friedman: The Mystery of the Tower Revealed: A
Non-Reflective Description of the Reflective Tower, Meta-Level
Architectures and Reflection, P. Maes and D. Nardi (eds.) Elsevier Publishers B.V.
(North-Holland). (1988)

— 18 —

A Appendix: “plain” open-implementation for building finite towers

;--------------------------
; Open evaluator for ASEL
; possible to use meta-circularly
;--------------------------

(define meta
 (lambda (dispatch-table)

 (define evaluate
 (lambda (e r k)
 (if (pair? e)
 (find-pair (car e) dispatch-table
 (lambda (success-pair)
 ((cdr success-pair) evaluate e r k))
 (lambda ()
 (basic-evaluate e r k)))
 (basic-evaluate e r k))))

 (define basic-evaluate
 (lambda (e r k)
 ((if (constant? e)
 evaluate-constant
 (if (variable? e)
 evaluate-variable
 (if (if? e)
 evaluate-if
 (if (assignment? e)
 evaluate-assignment
 (if (definition? e)
 evaluate-definition
 (if (abstraction? e)
 evaluate-abstraction
 evaluate-combination))))))
 e r k)))

 (define evaluate-constant
 (lambda (e r k)
 (k (constant-part e))))

 (define evaluate-variable
 (lambda (e r k)
 (get-pair e r
 (lambda (success-pair)
 (k (cdr success-pair)))
 (lambda ()
 (wrong "symbol not bound: " e)))))

 (define wrong
 (lambda (message object)
 (display "Error:")
 (display message)
 (display object)
 (newline)))

 (define evaluate-if
 (lambda (e r k)
 (evaluate (test-part e) r
 (lambda (v)
 (if v
 (evaluate (then-part e) r k)
 (evaluate (else-part e) r k))))))

 (define evaluate-assignment
 (lambda (e r k)
 (evaluate (value-part e) r

— 19 —

 (lambda (v)
 (find-pair (id-part e) (car r)
 (lambda (success-pair)
 (set-cdr! success-pair v)
 (k (void)))
 (lambda ()
 (set-car! global-env
 (cons (cons (id-part e) v)
 (car global-env)))
 (k (void))))))))

 (define evaluate-definition
 (lambda (e r k)
 (evaluate (value-part e) r
 (lambda (v)
 (find-pair (id-part e) (car r)
 (lambda (success-pair)
 (set-cdr! success-pair v)
 (k (void)))
 (lambda ()
 (set-car! r
 (cons (cons (id-part e) v)
 (car r)))
 (k (void))))))))

 (define evaluate-abstraction
 (lambda (e r k)
 (k (make-compound
 (formals-part e) (body-part e) r))))

 (define evaluate-combination
 (lambda (e r k)
 ;(display "@: ")
 ;(write e)
 ;(newline)
 (evaluate (operator-part e) r
 (lambda (proc)
 (evaluate-operands (operands-part e) r
 (lambda (args)
 (apply-procedure proc args k)))))))

 (define evaluate-operands
 (lambda (operands r k)
 (if (null? operands)
 (k '())
 (evaluate (car operands) r
 (lambda (v)
 (evaluate-operands (cdr operands) r
 (lambda (w)
 (k (cons v w)))))))))

 (define evaluate-sequence
 (lambda (body r k)
 (if (null? (cdr body))
 (evaluate (car body) r k)
 (evaluate (car body) r
 (lambda (v)
 (evaluate-sequence (cdr body) r k))))))

 (define make-compound
 (lambda (formals body r)
 (lambda (k . args)
 (evaluate-sequence body (extend r formals args) k))))

 evaluate))

(define apply-procedure
 (lambda (proc args k)
 (if (procedure? proc)

— 20 —

 (apply proc (cons k args))
 (wrong "operator is not a procedure" proc))))

(define extend
 (lambda (r ids vals)
 (cons (extend-frame '() ids vals) r)))

(define extend-frame
 (lambda (f ids vals)
 (if (null? ids)
 f
 (if (pair? ids)
 (extend-frame (cons (cons (car ids) (car vals)) f)
 (cdr ids)
 (cdr vals))
 (cons (cons ids vals) f)))))

(define get-pair
 (lambda (id r success failure)
 (if (null? r)
 (failure)
 (find-pair id (car r)
 success
 (lambda ()
 (get-pair id (cdr r) success failure))))))

(define find-pair
 (lambda (elt alist success failure)
 ((lambda (assq-result)
 (if assq-result
 (success assq-result)
 (failure)))
 (assq elt alist))))

(define empty-env '())

(define 1st (lambda (l) (car l)))
(define 2nd (lambda (l) (car (cdr l))))
(define 3rd (lambda (l) (car (cdr (cdr l)))))
(define 4th (lambda (l) (car (cdr (cdr (cdr l))))))
(define 5th (lambda (l) (car (cdr (cdr (cdr (cdr l)))))))

(define test-tag
 (lambda (tag)
 (lambda (e)
 (if (pair? e) (eq? (car e) tag) #f))))

(define make-primitive ;;only for "non-higher order" primitives
 (lambda (op)
 (lambda (k . args)
 (k (apply op args)))))

(define primitive-identifiers
 (lambda ()
 '(car cdr cons set-car! set-cdr! assq memq
 null? = eq? newline write display read
 + - * symbol? list pair? eof-object?
 close-input-port open-input-file void procedure?)))

(define primitive-procs
 (lambda ()
 (list car cdr cons set-car! set-cdr! assq memq
 null? = eq? newline write display read
 + - * symbol? list pair? eof-object?
 close-input-port open-input-file void procedure?)))

(define variable? symbol?)
(define if? (test-tag 'if))
(define assignment? (test-tag 'set!))

— 21 —

(define definition? (test-tag 'define))
(define abstraction? (test-tag 'lambda))
(define quote? (test-tag 'quote))

(define constant?
 (lambda (e)
 (if (pair? e) (quote? e)
 (if (symbol? e) #f #t))))

(define constant-part
 (lambda (e) (if (quote? e) (2nd e) e)))

(define test-part 2nd)
(define then-part 3rd)
(define else-part 4th)

(define id-part 2nd)
(define value-part 3rd)

(define formals-part 2nd)
(define body-part (lambda (e) (cdr (cdr e))))

(define operator-part 1st)
(define operands-part cdr)

(define void
 ((lambda (v) (lambda () v)) (cons '* '*)))

(define mapper
 (lambda (f l)
 (if (null? l)
 '()
 (cons (f (car l)) (mapper f (cdr l))))))

(define initialize-global-env
 (lambda ()
 (set! global-env
 (extend
 empty-env
 (cons 'apply (primitive-identifiers))
 (cons (lambda (k proc args)
 (apply-procedure proc args k))
 (mapper make-primitive (primitive-procs)))))))

(define default-dispatcher '())

(define basic-eval (meta default-dispatcher))

(define openloop
 (lambda (evaluate read-prompt write-prompt)
 (display read-prompt)
 (evaluate (read) global-env
 (lambda (v)
 (display write-prompt)
 (if (eq? v (void))
 "Nothing is displayed"
 (write v))
 (newline)
 (openloop evaluate read-prompt write-prompt)))))

(define loadfile
 (lambda (evaluate file)
 ((lambda (port)
 ((lambda (loop)
 (set! loop
 (lambda (v)
 (if (eof-object? v)
 (close-input-port port)
 (evaluate v global-env

— 22 —

 (lambda (ignore)
 (loop (read port)))))))
 (loop (read port)))
 '*))
 (open-input-file file))))

(define boot-1-level
 (lambda (evaluate input-prompt output-prompt)
 (initialize-global-env)
 (loadfile basic-eval this-file-name)
 (openloop evaluate input-prompt output-prompt)))

(define start
 (lambda (evaluate input-prompt output-prompt)
 (initialize-global-env)
 (openloop evaluate input-prompt output-prompt)))

(define global-env 'dummy);;just so that global-env exists and can be set! to

(define this-file-name "open-simple.scm")

B . Open Implementation “with reflective potential” for fix-point equations

;--------------------------
; Open evaluator for ASEL with reflective potential
; read this file into scheme and then evaluate ‘(start)’

;;---- Stack of meta continuations for simulating an infinite tower

(define make-default-stack
 (lambda (level)
 (list 'cstack level (- level 1))))

(define push
 (lambda (base-stack cont)
 (list 'cstack cont base-stack)))

(define pop
 (lambda (stack)
 (if (number? (3rd stack))
 (make-default-stack (3rd stack))
 (3rd stack))))

(define top
 (lambda (stack)
 (if (number? (2nd stack))
 (make-loop (2nd stack))
 (2nd stack))))

;; procedure for creating the revpl procedure for default continuations
(define make-loop
 (lambda (level)
 (define loop
 (lambda (m v)
 (display level)
 (display ": ")
 (if (eq? v (void))
 "nothing is displayed"
 (write v))
 (newline)
 (display level)
 (display "> ")
 (basic-eval m (read) global-env loop)))
 loop))

;;sometimes we need something that behaves like (lambda (v) v) as
; continuation
(define id-cont

— 23 —

 (push 'should-not-be-used (lambda (m v) v)))

;;---------
;This file is based on a copy of "open-simple.scm"
;It has been converted a bit to simulate an infinite tower.
;All lambdas have been replaced by similar lambdas with an extra first
;argument:
;a stack of meta-continuations
;all calls to such procedures similarly have been converted to pass on a
;stack of meta continuations.
;Note that continuations are also procedures and thus also have to receive
;a stack of meta-continuations as first argument.
;
;The following variable names are used throughout the file
;m : stack of meta continuations
;k : continuation
;e : expression
;r : environment
;;---------

(define meta
 (lambda (m dispatch-table)

 (define evaluate
 (lambda (m e r k)
 (if (pair? e)
 (find-pair (car e) dispatch-table
 (lambda (success-pair)
 ((cdr success-pair) m evaluate e r k))
 (lambda ()
 (basic-evaluate m e r k)))
 (basic-evaluate m e r k))))

 (define basic-evaluate
 (lambda (m e r k)
 ((if (constant? e)
 evaluate-constant
 (if (variable? e)
 evaluate-variable
 (if (if? e)
 evaluate-if
 (if (assignment? e)
 evaluate-assignment
 (if (definition? e)
 evaluate-definition
 (if (abstraction? e)
 evaluate-abstraction
 evaluate-combination))))))
 m e r k)))

 (define evaluate-constant
 (lambda (m e r k)
 (k m (constant-part e))))

 (define evaluate-variable
 (lambda (m e r k)
 (get-pair e r
 (lambda (success-pair)
 (k m (cdr success-pair)))
 (lambda ()
 (wrong m "symbol not bound: " e)))))

 (define evaluate-if
 (lambda (m e r k)
 (evaluate m (test-part e) r
 (lambda (m v)
 (if v
 (evaluate m (then-part e) r k)
 (evaluate m (else-part e) r k))))))

— 24 —

 (define evaluate-assignment
 (lambda (m e r k)
 (evaluate m (value-part e) r
 (lambda (m v)
 (find-pair (id-part e) (car r)
 (lambda (success-pair)
 (set-cdr! success-pair v)
 (k m (void)))
 (lambda ()
 (set-car! global-env
 (cons (cons (id-part e) v)
 (car global-env)))
 (k m (void))))))))

 (define evaluate-definition
 (lambda (m e r k)
 (evaluate m (value-part e) r
 (lambda (m v)
 (find-pair (id-part e) (car r)
 (lambda (success-pair)
 (set-cdr! success-pair v)
 (k m (void)))
 (lambda ()
 (set-car! r
 (cons (cons (id-part e) v)
 (car r)))
 (k m (void))))))))

 (define evaluate-abstraction
 (lambda (m e r k)
 (k m (make-compound
 (formals-part e) (body-part e) r))))

 (define evaluate-combination
 (lambda (m e r k)
 ;(display "@: ")
 ;(write e)
 ;(newline)
 (evaluate m (operator-part e) r
 (lambda (m proc)
 (evaluate-operands m (operands-part e) r
 (lambda (m args)
 (apply-procedure m proc args k)))))))

 (define evaluate-operands
 (lambda (m operands r k)
 (if (null? operands)
 (k m '())
 (evaluate m (car operands) r
 (lambda (m v)
 (evaluate-operands m (cdr operands) r
 (lambda (m w)
 (k m (cons v w)))))))))

 (define evaluate-sequence
 (lambda (m body r k)
 (if (null? (cdr body))
 (evaluate m (car body) r k)
 (evaluate m (car body) r
 (lambda (m v)
 (evaluate-sequence m (cdr body) r k))))))

 (define make-compound
 (lambda (formals body r)
 (lambda (m . args)
 (evaluate-sequence (pop m) body (extend r formals args) (top m)))))

 ((top m) (pop m) evaluate)))

— 25 —

(define wrong
 (lambda (m message object)
 (display "Error:")
 (display message)
 (display object)
 (newline)
 ((top m) (pop m) 'error)))

(define apply-procedure
 (lambda (m proc args k)
 (if (procedure? proc)
 (apply proc (cons (push m k) args))
 (wrong m "operator is not a procedure" proc))))

(define extend
 (lambda (r ids vals)
 (cons (extend-frame '() ids vals) r)))

(define extend-frame
 (lambda (f ids vals)
 (if (null? ids)
 f
 (if (pair? ids)
 (extend-frame (cons (cons (car ids) (car vals)) f)
 (cdr ids)
 (cdr vals))
 (cons (cons ids vals) f)))))

(define get-pair
 (lambda (id r success failure)
 (if (null? r)
 (failure)
 (find-pair id (car r)
 success
 (lambda ()
 (get-pair id (cdr r) success failure))))))

(define find-pair
 (lambda (elt alist success failure)
 ((lambda (assq-result)
 (if assq-result
 (success assq-result)
 (failure)))
 (assq elt alist))))

(define empty-env '())

(define 1st (lambda (l) (car l)))
(define 2nd (lambda (l) (car (cdr l))))
(define 3rd (lambda (l) (car (cdr (cdr l)))))
(define 4th (lambda (l) (car (cdr (cdr (cdr l))))))
(define 5th (lambda (l) (car (cdr (cdr (cdr (cdr l)))))))

(define test-tag
 (lambda (tag)
 (lambda (e)
 (if (pair? e) (eq? (car e) tag) #f))))

(define make-primitive ;;use only for "non-higher order" primitives
 (lambda (op)
 (lambda (m . args)
 ((top m) (pop m) (apply op args)))))

(define primitive-identifiers
 (lambda ()
 '(car cdr cons set-car! set-cdr! assq memq
 null? = eq? newline write display read
 + - * symbol? list pair? eof-object?

— 26 —

 close-input-port open-input-file void procedure?)))

(define primitive-procs
 (lambda ()
 (list car cdr cons set-car! set-cdr! assq memq
 null? = eq? newline write display read
 + - * symbol? list pair? eof-object?
 close-input-port open-input-file void procedure?)))

(define variable? symbol?)
(define if? (test-tag 'if))
(define assignment? (test-tag 'set!))
(define definition? (test-tag 'define))
(define abstraction? (test-tag 'lambda))
(define quote? (test-tag 'quote))

(define constant?
 (lambda (e)
 (if (pair? e) (quote? e)
 (if (symbol? e) #f #t))))

(define constant-part
 (lambda (e) (if (quote? e) (2nd e) e)))

(define test-part 2nd)
(define then-part 3rd)
(define else-part 4th)

(define id-part 2nd)
(define value-part 3rd)

(define formals-part 2nd)
(define body-part (lambda (e) (cdr (cdr e))))

(define operator-part 1st)
(define operands-part cdr)

(define void
 ((lambda (v) (lambda () v)) (cons '* '*)))

(define mapper
 (lambda (f l)
 (if (null? l)
 '()
 (cons (f (car l)) (mapper f (cdr l))))))

(define openloop
 (lambda (m evaluate read-prompt write-prompt)
 (display read-prompt)
 (evaluate m (read) global-env
 (lambda (m v)
 (display write-prompt)
 (if (eq? v (void))
 "Nothing is displayed"
 (write v))
 (newline)
 (openloop m evaluate read-prompt write-prompt)))))

(define initialize-global-env
 (lambda ()
 (set! global-env
 (extend
 empty-env
 (cons 'apply (primitive-identifiers))
 (cons (lambda (m proc args)
 (apply-procedure (pop m) proc args (top m)))
 (mapper make-primitive (primitive-procs)))))
 (set! global-env
 (extend global-env

— 27 —

 '(meta* default-dispatcher openloop)
 (list meta default-dispatcher openloop)))))

(define default-dispatcher '())

(define basic-eval (meta id-cont default-dispatcher))

(define start
 (lambda ()
 (initialize-global-env)
 (set-car! global-env (cons (cons 'global-env global-env) (car global-env)))
 (let ((s (make-default-stack 0)))
 ((top s) (pop s) 'begin))))

(define boot
 (lambda ()
 (initialize-global-env)
 (let ((s (make-default-stack 0)))
 ((top s) (pop s) 'begin))))

(define global-env 'dummy)
;;just so that global-env exists and can be set! to

