
22Chapter

Computational Reflection
and Open Systems

 2.1 Introduction

“Reflection hypothesis: In as much as a computational process can be
constructed to reason about an external world in virtue of comprising an
ingredient process (interpreter) formally manipulating representations of
that world, so too a computational process could be made to reason about
itself in virtue of comprising an ingredient process (interpreter) formally
manipulating representations of its own operations and structures."

Smith (1982)

The notion of reflection can be found in disciplines as diverse as philosophy,
linguistics, logic and computer science. It is not clear how all these different
notions of reflection are connected. Even in computer science the notion of
reflection, mainly used in the disciplines of artificial intelligence and
programming language design, has different connotations, and especially
different motivations. The common theme is that of building computational
systems that, in a substantial way, have access to, reason about, and act upon
their own computational process.

Before plunging into the technical, or less technical, details of what a reflective
system looks like and how to build it, we will first try to answer the question
“why ?”. Why is it necessary to build reflective systems ? Obviously, there is no
need for reasoning about one’s self if this doesn’t increase one’s capabilities for
reasoning about one’s subject domain. A full analysis of representation, efficiency,
and reflection in the most general case is certainly beyond the scope of this
dissertation, and would necessarily have to follow the analysis that can be found
in [Smith86]. Rather than doing that, we analyse these concepts in the more

Chapter 2

12

restricted case of programming languages and computational systems described by
programs expressed in a programming language.

For the particular case of programming languages, we will give an in-depth
answer to the question why reflection is needed in section 2.4 and section 2.5. The
notions of absorption and reification are introduced as two main factors in the
need to design systems that open up their implementation. It is shown what it
means for one system to access the implementational structures of another system.
The notion of systems with an open implementation1 is contrasted with the notion
of systems that allow implementational access. Reflective systems are then
introduced as a specific kind of systems with an open implementation.

While doing so, we will take a less conventional, more constructive, approach to
reflective programming languages. It is a constructive introduction of reflection
since we introduce reflection almost by saying how to construct a reflective
system. It is less conventional because of the firm link that is made between
reflection and systems with an open implementation. Rather than directly
turning to the question of how a system can have access to, reason about and act
upon its own internal structures, we first turn to the question of how one system can
have access to, reason about and act upon another system. In particular we use the
notion of open implementations where one system can inspect and manipulate the
implementation of another system. It is our strong belief that this is an important
step in the demystification of reflection.

We conclude this section with a discussion on the difference between systems
with an open implementation and systems with an open design. We start with
some assumptions and some terminology. Note that inevitably the terminology
used, can differ from that of other author’s.

 2.2 Model of Computation

The assumption with which we start is that a program expressed in some
programming language is turned into a computational system by means of another
computational system commonly called the meta-system [Maes87]. For example,
for a program this meta-system can take the form of an evaluator.

Meta-System

Program

executes
Computational
System

Figure 2.1

1 It should be stressed that the notion of open implementations must not be confused with that
of meta-systems [Maes87a] nor with meta-level architectures. See the section on open
implementations for a discussion on the topic.

Computational Reflection and Open Implementations

13

Although we find that for this special case, the term meta-system is somewhat
misleading, it will be adopted in this text. In contrast with what would be
expected, the meta-system is not a system that reasons, or acts upon another
system, but rather it is a system that reasons about a program which is a
description or representation of a computational system2. In the section on open
implementations examples will be given of computational systems that do reason
about other computational systems.

The meta-system is called a language processor in the case where the description
of the computational system is a program expressed in some programming
language. A language processor can take on different forms. In this text we will
focus on evaluators.

A language processor itself can be composed of a program (the processor program)
processed by another processor.

Meta system's
Meta-System

Processor
Program

executes

Computational
System

Program

executes

Meta-
System

Figure 2.2

In the special case where the language in which the processor program is
implemented, is the same as the language implemented by the processor program,
the processor program is called meta-circular 3 [Abelson&Sussman84].

Programs that describe computational systems that manipulate other programs
are often termed meta-programs. The program describing a programming
environment is an example. The programs manipulated by meta-programs are
called object-level programs; a relative notion, of course: object-level programs, in
their own turn can be meta-programs.

The program of our meta-system is a special sort of meta-program. It is special
since it is the meta-program that describes how to turn programs into
computational systems. The architecture where the program of the meta-system
is explicitly available for inspection and modification is a particular instance of
a meta-level architecture. It has the advantage of being able to modify the
meta-system prior to (or even during) the execution of a program.

2 It is the author's conviction that much of the misunderstandings about reflective programming
languages comes from a lack of distinction between computational systems and
representations or descriptions of computational systems.

3 This process of decomposition can be repeated ad infinitum for meta-circular processor
programs. In the literature about reflective systems this 'tower of meta-circular processors' is
taken as the basis to introduce reflective programming languages, giving a slightly different
view on reflection as it is introduced in this text. See [De Volder&Steyaert94] (also in
appendix) for a discussion on the topic.

Chapter 2

14

In general a meta-level architecture is an architecture where the meta-system
can be acted upon. In the above case this is done by acting upon the description of
the meta-system. Below we will see an example where this is done by acting
directly upon the meta-system as is, i.e. acting upon it as a computational system
rather than on its description.

Finally, we presume that a computational system has a well-defined interface,
called the base-level interface, by which its behaviour can be invoked. For
example the base-level interface of a language processor comprises the
evaluation function.

 2.3 Absorption and Reification in Programming Languages

The main reason for constructing reflective systems is efficiency and modularity
in the structures used in representing a computational system. Typically only part
of the system can be explicitly encoded in such a representation. A substantial
part of the system's behaviour remains implicit in the internal relations between
elements of the representation, the process that interprets this representation
and the circumstances in the world in which the system is embedded. This is not
only an essential characteristic of such representations. It is also an integral part
of being able to efficiently express the behaviour of computational systems, if we
take a representation in which every aspect of the computational system must be
explicitly encoded as an inefficient representation. On the other hand this
characteristic puts limits on the generality and power of the underlying
representational system. Not all systems can be expressed in an equally efficient
way.

This may all seem to be in want of a more thorough explanation, and indeed it is.
But, an in-depth analysis of representation, efficiency, and reflection in the most
general case is certainly beyond the scope of this dissertation, and would
necessarily have to follow the analysis that can be found in [Smith86]. Rather
than doing that, we will analyse these concepts in the more restricted case of
programming languages and computational systems described by programs
expressed in a programming language.

Programming languages are used to describe implementations of computational
systems. They do so by giving a means to express the internal workings of a
computational system that is relatively close to executable code. What
differentiates one programming language from another is how the internal
workings are expressed. By this we don’t mean the syntactical differences
between one programming language and another, but rather the notable
differences of how a system is divided into subsystems. How a system is divided
into subsystems is determined by the kinds of abstractions (e.g. procedural
abstraction, data abstraction) or programming concepts [Maes87a] that are
supported by the programming language.

In the discipline of programming language design, one speaks of programming
paradigms as those classes of languages that support fundamentally different
programming concepts [Wegner90]. The major programming paradigms are:
procedural programming, object-oriented programming, concurrent programming,
functional programming, logic programming and rule-based programming.

Computational Reflection and Open Implementations

15

Programs expressed in exemplar programming languages of the different
programming paradigms will exhibit different characteristics. They will differ
essentially in what aspects of the internal workings of a computational system
can be left implicit, and what aspects must be explicitly encoded. For example, it
is obvious that for a backtracking problem (e.g. the 8-queens problem) expressed
in a procedural programming language, the flow of control that is typical for
backtracking must be explicitly encoded, whereas in an implementation in a logic
programming language this can be left implicit.

In a program where a certain aspect of the internal workings of the implemented
computational system is left implicit, we say that this aspect is absorbed (by the
programming concepts of the programming language). When it is made explicit
we say that it is reified. Efficiency, in terms of how concise a computational
system can be expressed4, is defined as the amount of detail that can be absorbed
in the implementation language.

Obviously, it is not possible to give a total ordering of programming languages
according to this kind of efficiency. Not just because we can only speak about
efficiency for implementing a certain system (or a set of systems that belong to a
particular problem domain if we are a bit liberal), but also because even within
one system, conflicting demands with respect to the programming paradigm can
coexist.

Notice that not all aspects of a computational system that can be absorbed in the
implementation language also need to be absorbed. This is, for example, the basis
on which different language interpreters (in most cases preferably meta-circular
interpreters) are compared. A meta-circular interpreter for a Scheme-like
language can choose to absorb or make explicit different aspects of the underlying
structure of the Scheme language (see also [Abelson&Sussman84], [Maes87a]). The
entire evaluation function can be absorbed by falling back on the meta-level
programming facilities of Scheme, i.e. by using the explicit evaluation function of
Scheme in Scheme. Or, the evaluation function can be implemented in terms of
expressions and environments, thereby absorbing continuations and consequently
the explicit encoding of the flow of control. Or, the evaluation function can be
explicitly encoded with expressions, environments and continuations, but leaving
implicit storage handling for lists. Or, an evaluation function can be constructed
that makes explicit all machine actions performed by a hypothetical, or real
processor. All these differences become relevant in case one wants to reason about
or alter this implementation. As we will see in a moment, it is exactly these
differences that will determine the theory with which we will be able to reason
about our language implementation.

Within one and the same programming paradigm, also, differences exist between
programming languages regarding their abilities to absorb implementation
aspects of computational systems.

One set of examples are facilities such as garbage collection, persistency aspects
of data, scoping issues, modularity etc. (in a mind boggling way, reflection itself
can be added to this list, see also [Maes87a]). These facilities are generally
considered as programming concepts that can, or should, be added orthogonal to
most of the above programming paradigms. Languages that include these
facilities have a larger capability to absorb implementation details.

4 We hesitate to use the term expressivity here. It is not clear whether expressivity, in its
normal usage of “expressivity of a programming language” applies to the efficiency in
expression or generality in expression.

Chapter 2

16

Other more specific examples are (lack of) refinements of existing programming
paradigms, or programming languages. We will discuss one example that is by
now part of the folklore of object-oriented reflection (example from [Kiczales,des
Rivières&Bobrow91]). Consider a computational system in which we need to
represent data elements that are composed of other (named) data elements. In
the object-oriented paradigm it is customary to implement such a data element as
an object. The composition structure is reflected in the instance variables the
object has. However, most object-oriented languages only provide facilities for
representing objects with a small number of instance variables, all of which
typically have a non-default value. Sometimes we need to implement a
compound data element that has a possibly large number of components of which
a large number has a default value for the major part of the object’s life-time.
Such a data element must be explicitly encoded as a dictionary for example. Only
an object-oriented language that has the facility to represent objects with a large
number of instance variables of which only a few have a non-default value, can
absorb the implementation of this sort of data elements.

So, we observe that programming languages have different potential to absorb
implementation details of a computational system, going from large grained
programming paradigms, to more fine grained orthogonal sets of language
features, to fine grained specific refinements of certain language features.
Whereas the efficiency of programming paradigms is very hard to compare
relative to each other, within one paradigm it is possible to compare the
absorption capabilities of different language features.

One could be tempted to conclude that the more that can be absorbed by the
programming language the better programs can be expressed, and thus that
programming language design has as its goal the design of programming
languages with ever better absorption capabilities. There is a catch however. It
has the form of a trade-off between efficiency in expression, and generality of
programs expressed in a programming language. Stated otherwise, the more that
can be absorbed by the programming language the less general programs expressed
in such a programming language tend to be. This is illustrated by the following
example (example due to [Agha90]).

Consider writing a program that calculates the product of values that are stored
in the leaf nodes of a tree. When expressed in a programming language that
supports recursion, a substantial part of the control flow of this program can be
absorbed by the programming language. The return stack of procedure calls can
remain implicit. Such an encoding is more efficient than an encoding where we
explicitly need to keep track of the visited nodes. It is less general, however,
since we are unable to express, in a simple way, the fact that when a leaf node
with the value '0' is encountered, the entire computation can stop and return the
value '0' as a result. In an encoding with an explicit return stack, this can be
encoded simply by emptying the control stack.

It is true that, in the above example, programs are not forced to use all the
facilities (i.e. recursion) given by the programming language. Then again, if
programs do not use such facilities out of fear of loss of generality, then why
provide them ? One could also say that when such features are given, then all
the complementary features to recover the loss of generality must be provided as
well. For the above example this means that recursion must be complemented by a
feature to ‘jump out’ of recursion. This, however, leads us to a (very old and often
held) discussion on efficiency and generality on the level of programming
languages, i.e. a small, concise programming language definition for a less general
programming language versus a large, less concise programming language
definition for a general programming language.

Computational Reflection and Open Implementations

17

 2.4 Open Implemented Computational Systems

So we seem to be stuck with an apparent contradiction between generality and
efficiency. This need not be the case. What we truly wanted, in the above
example, is a mechanism where the control stack can be left implicit until it is
really needed. At that moment the control stack is made explicit, it is emptied
and given back to the implementation to be absorbed. In general we need a
mechanism where aspects that are absorbed in the underlying structures of the
implementation language can, at any point in time, be made explicit, modified,
and absorbed back again in the implementation of the programming language.

A mechanism is needed to inspect and alter the implementation structures of a
programming language. Rather than tackling the question of how a program can
inspect and alter the implementation structure of its own underlying
implementation language, we will first tackle the question of what it means for
one system to reason about the implementation of another system5.

Computational systems, either programming language processors or other
systems, that give access to their implementational structures are not new.
Systems that provide, for example, facilities to test whether some extension of
the system is available and how to use it, facilities for testing what version of
the system is running, facilities for setting and testing parameters of internal
data-structures (e.g. buffer-sizes, block-sizes, … in the area of operating systems)
can be found in abundance.

in
sp

ec
ts

/a
lt

er
s

im
p
le

m
en

ta
ti

on
al

st
ru

ct
u

re
s

Computational
System Computational

System with Facilities for
Implementational Access

Figure 2.3

In the case of programming languages, access to implementational structures
means that one can, for example, inspect the control stack or the variable binding
environment, and that one is able to change these or hand back a modified
version, so that the changes are reflected in the further execution of the program
(i.e. in a causally connected way). Access takes the form of operations such as
'get-environment', 'put-environment' that are defined for the language's
evaluator. These facilities are, in most cases, the basis for implementing
debugging systems, or can even be put to use to partially solve the problems
discussed in the previous section.

5 [Rao91] uses the term "implementational reflection" for inspecting and/or manipulating the
implementational structures of other systems used by a program. We prefer to restrict usage of
the term reflection to systems that reason about themselves.

Chapter 2

18

Debugging
System

inspects/alters
implementational structures

Meta-System

Program

executes Computational
System

Figure 2.4

All of the above are limited cases of implementational access. First of all, it is
not always clear whether such facilities are part of the 'ordinary' usage of the
system, or whether they are 'special' in the sense of revealing part of the
system's implementation. Moreover, they do not solve all problems of the above
section.

For example, in order to solve our problem of absorbing the representation of
composite data elements with a large number of components, it is not sufficient to
be able to inspect, and possibly change the implementational structures of an
object. Rather, an alternative implementation of objects is needed. It is not
sufficient to be able to inspect all the instance variables, nor is it sufficient to be
able to add or delete instance variables. An instance variable, even if it has a
default value, is an instance variable that must be represented in the object.
What is needed is that, for this particular kind of objects, we can override the
mechanism to look up instance variables.

In the general case, a more structured, 'open-ended' access to a system's
implementation6 must be provided. Presuming that a computational system has
an interface, the base-level interface, that shields its users from the
implementation details that are involved in realising the system, and that is
used by all users of the system, we can define the following:

Open Implementations [Rao91] : A system with an open implementation
provides (at least) two linked interfaces to its clients, a base-level
interface to the system's functionality similar to the interface of other
such systems, and a meta-level interface that reveals aspects of how the
base-level interface is implemented.

The idea is that a user of an open implemented system can, by means of the meta-
level interface, have a substantial influence on the implementation, and
accordingly, the behaviour of the system. The notion of open implementations
was introduced by Rao in [Rao91], where an open implementation is given of a
windowing system that allows the exploration of different window system
behaviours and implementations. The base-level interface of the windowing
system is, obviously, an interface that allows the opening and closing of windows,
dragging, generating pictures in windows, etc. The meta-level interface allows,
for example, for the definition of new windowing relationships (such as window,
sub-window relations).

6 The difference between plain implementational access, and structured , open-ended access to
a system's implementation is parallel to the difference between reflective facilities and
reflective architectures [Maes88].

Computational Reflection and Open Implementations

19

A programming language with an open implementation will be called an open
implemented programming language. A well-designed open implementation of
respectively our object-oriented programming language and our recursion
supporting language can, in principle, solve the respective problems of object
representations and access to the control stack of the previous section.

Consider the problem of representing composite data elements with a large
number of components. Any well-designed open implementation of an object-
oriented programming language (the CLOS meta-object protocol is such an
example [Kiczales,des Rivières&Bobrow91]) will provide a meta-level interface
that allows alternative implementations for object representations. An object
representation can be implemented in which only the instance variables with
non-default values are stored.

In an open implementation the meta-level interface specifies points where the
user can provide alternative implementations. Such an alternative
implementation can differ from the default implementation of the system in
performance characteristics, or it can alter the behaviour of the system, or it can
extend the system with new behaviour. The extent to which the behaviour of the
system can be altered, or extended, depends on the meta-level interface and its
link to the object-level interface. To illustrate this we will consider two example
open implementations.

Example 1: A Meta-function for a Scheme-like Language
An evaluator for a Scheme like language can be expressed as a dispatcher on
the type of expression to be evaluated. Each expression is tagged with an
expression type. A tag can for example be an atom at the head of each list that
represents an expression. Typical tags for expression types are 'lambda', 'if',….
This tag is used by the dispatcher to invoke an appropriate evaluation
function. For the above listed tags these evaluation function would
respectively be a function to construct a closure, evaluate an if expression, ….

A useful open implementation would be one in which clauses can be added to
this dispatcher, thereby allowing to add new expression types and their
corresponding evaluation function. An extension to the dispatcher can be
formulated as a list that associates tags to evaluation functions. The open
implementation takes the form of a function (the meta-function) that has such
a list as argument and returns an extended evaluator.

The base-level interface of this simple open implementation is the evaluator.
The meta-level interface is the above meta-function. Base and meta-level
interface are linked by the fact that the meta-function, given an appropriate
extension to the dispatcher, returns an extended evaluator as a result.

Note that this open implementation implements many different variants of
the Scheme programming language. Each particular usage of the meta-level
interface engenders a different variant.

Example 2: A Class Hierarchy for a Scheme-like Language
Alternatively, a Scheme-like language can be implemented in the form of a
class hierarchy in some object-oriented programming language. In this case
expressions, lists, closures, and all other components of the evaluator are
expressed as objects. To a certain degree the class hierarchy, to which all
these objects belong, exposes aspects of the implementation of our evaluator.
This has much to do with the often talked about code-reuse facilities that
come with object-oriented programming.

Chapter 2

20

To turn this class hierarchy into a true open implementation, however, we
need to explicitly identify the base and the meta-level interface, and the link
between both. In casu, the base-level interface will have the form of a
protocol to which, for example, all objects representing expressions must
conform, thereby establishing a contract between implementors of the classes
that are used for instantiating 'expression objects', and users of these objects
(e.g. users that invoke the evaluator). The meta-level interface will be
expressed as an interface with which new classes that implement expression
objects can be added to the class hierarchy, or with which expression objects
themselves can be added to a program representation such that they can be
used in combination with the already existing expressions.

Not only the protocol of expression objects needs to be specified. All other
objects that are part of the implementation may play an important role in the
division between base and meta-level interface. The result of such an
identification and specification of protocols is called a framework in object-
oriented terminology; in the reflection community the term meta-object
protocol is used.

This open implementation, just like the previous one, defines many different
flavours of the Scheme programming language.

Both of the above open implementations give rise to the meta-level architecture
as depicted in figure 2.5. In this meta-level architecture it is possible for a meta-
program to act upon the meta-system prior to, or during execution of a program.

Meta-Program

Meta-Program's
Meta-System

inspects/alters
implementational structures

executes

Program

Computational
System

Open Implemented
Computational
System

Meta-System

Program

executes Computational
System

Figure 2.5

What differentiates this architecture from 1) the debugging system of above and
from 2) a meta-level architecture where the program of the meta-system can be
acted upon, is the structured access it provides to the meta-system. In the first
case access to the meta-system is too limited (as already shown above); in the
second case access to the meta-system is too “unlimited”7. Especially the
difference with this latter is important.

If modifications to the meta-system’s program are allowed, then the result can be

7 We can actually define a continuum with four marker points: a ‘plain’ evaluator without
access to the implementation, an evaluator with implementational access, an open
implemented evaluator and an explicitly encoded evaluator.

Computational Reflection and Open Implementations

21

just about anything. It is the programmer that explicitly modifies the meta-
system. And this is a matter of text-editing the meta-system’s program-text.

When the meta-level architecture is based upon an open implementation, it
actually is another computational system (admittedly, one programmed by the
programmer, but still a separately identifiable computational system) that
accesses and modifies the meta-system. It does so by using the meta-level
interface to extend the meta-system with functions or objects (not program text but
first class values !). The meta-level interfaces of the meta-system constrains the
sort of modifications that can be done.

Finally, note that in the above meta-level architecture, the meta-program
explicitly handles implementational structures of the meta-system used to
execute a program, i.e. structures that are implicit for that program. So, what is
explicit for the meta-program is implicit for the object-level program. As
already mentioned before, a system's implementation itself also absorbs and
reifies certain aspects of the implemented system (cf. the different meta-circular
interpreters of the previous section). This obviously puts a limit on what is
possible with open implementations.

In conclusion we can say that by opening up the implementation of a
computational system it is possible to have, to a certain degree, both efficiency in
expression and generality. In order to open up the implementation we need to
identify a base and a meta-level interface. The meta-level interface is used to
alter and/or extend the behaviour of the system. An open implementation can be
used to construct a particular kind of meta-level architecture, in which the meta-
system can be modified in a controlled manner.

We considered the special case of open implemented programming languages i.e.
programming languages that have an open implementation. For an open
implemented programming language we observed that they implement not one
but many different languages, according to how the meta-level interface is used.
These are called the languages engendered by the open implementation.

 2.5 Reflection: Accessing One’s Own Meta-system

The above meta-level architectures have in common that one computational
system acts upon the meta-system of another, in any other way unrelated,
computational system. Meta-level architectures of this kind have their
practical applications, even in the area of programming languages. For example
in [Kiczales93] a CLOS open implementation for a Scheme compiler is briefly
mentioned.

Chapter 2

22

CLOS-Program

CLOS
Executer

inspects/alters
implementational structures

executes

Scheme-
Compiler

Scheme-
Program

executes Computational
System

Figure 2.6

A more specific kind of architectures can be studied, i.e. that of reflective
systems. Since a program is turned into a computational system by a meta-system,
we can ask ourselves the question how and under what conditions a computational
system described by some program processed by a meta-system can be given access
to, use and alter the behaviour of its own meta-system (figure 2.7).

We will consider three forms of access to the meta-system: 1) access to the base-
level interface of the meta-system, 2) implementational access to the meta-
system, and 3) access to the meta-level interface of an open implemented meta-
system. For the special case of programming languages the first will result in a
special kind of meta-programming, the second in programming languages with
reflective facilities, and the third in programming languages with a reflective
architecture. The last architecture in this list being the most interesting one.

Meta-System

Program

executes Computational
System

in
sp

ec
ts

/a
lt

er
s

im
p
le

m
en

ta
ti

on
al

st
ru

ct
u

re
s

Figure 2.7

Not every open implementation is suitable as the basis for a reflective
architecture. We will consider the conditions that must be met. This will lead us
to the definition of open implementations with reflective potential.

The question how this access can be given can be answered in general. A program
can be given access to its meta-system by extending the programming language
with the necessary reflection operators. Reflection operators are language
facilities, offered by the programming language, that allow programs to access
the meta-system with which they are executed. A language that is extended
with a set of reflection operators, can be called a reflective programming
language.

Computational Reflection and Open Implementations

23

A programming language must be extended with reflection operators. The special
case can be identified where the open implementation of the programming
language is powerful enough to formulate this extension. The open
implementation of Agora that will be given will be of this kind. In all other
cases reflection operators must be added to the programming language in an ad
hoc fashion.

A program that uses reflection operators to access its own meta-system can be
called a reflective program. A reflective program is both meta-program and
object-level program at the same time. As mentioned before, the meta-program
can explicitly handle implementational structures that are implicit for the
object-level program. Collapsing meta-, and object-level program into one
reflective program may lead to reflective overlap, i.e. implementational
structures that are both explicit and implicit in the same expression. Reflective
overlap is a phenomenon that can not be observed in ordinary meta-level
architectures. Sometimes reflective overlap is undesirable. We will discuss a
technique to manage reflective overlap.

An issue related to reflective overlap is that of meta-regression. A reflective
program is said to reflect when it actually uses reflection operators to access its
meta-system. The part of the program that reflects must, by definition, be a
meta-program. On the other hand in a reflective program, not only the object-
level program can reflect, but also the meta-program itself can reflect since it is
executed by the same meta-system as the object-level program. This process of
reflection can go on ad infinitum. If so, the program is said to regress infinitely.
We will talk about static reflection when the maximum number of levels the
program regresses can be statically determined. When the number of times the
program regresses is dynamically determined, the program is said to exhibit
dynamic reflection.

2.5.1 Reflective Architectures

If the meta-system has an open implementation, then a program processed by
this meta-system can be given access to the meta-level interface of the meta-
system with the intention of altering its behaviour. This gives rise to reflective
architectures.

For example, in the case of the above "meta-function" open implementation of
Scheme, access to the meta-function (i.e. to the meta-level interface) can be given
under the form of reflection operators that allow the "installation" of extensions
to the dispatcher (see [Simmons II&al.92] for an actual example).

The conditions under which access to the meta-level interface of an open
implementation can be given, are reminiscent of, but fundamentally different
from, meta-circular language processors.

In an open implemented programming language, two (kinds of) languages are of
importance. First, the language in which the open implementation, and
consequently all code that is added to this open implementation by means of the
meta-level interface, is expressed. And second, the languages that are being
implemented (not one but many, according to how the meta-level interface is
programmed). We will call the former language the meta-level language of the
open implementation, and the latter will be called the languages engendered by
the open implementation. The meta-level language and the engendered
languages need not be related. Even in practice examples can be found where it is
advantageous to have a meta-level language that totally differs from the
engendered languages. For example in the above CLOS open implementation for a

Chapter 2

24

Scheme compiler these languages are different.

Since programs are processed by the open implementation, they are expressed in
one of the engendered languages, and since the meta-level interface is coded from
within such a program, a class of 'special' open implemented programming
languages needs to be identified. This is the class of open implemented
programming languages for which the meta-level can be programmed in any
language engendered by this same open implementation. This class will be called
the class of open implemented programming languages with reflective potential.

How can we construct such 'special' open implementations ? Notice that, in
contrast with e.g. a plain evaluator, it is not possible to talk about a meta
circularly implemented open implementation, exactly because an open
implementation can be used to engender many different languages8 (whereas a
plain evaluator engenders only one). A meta circular open implementation would
have to pick one engendered language as being preferred, excluding all the rest
for programming the meta-level. For a reflective programming language this
would mean that only the ‘vanilla variant’ of the programming language can be
used for reflective programming, excluding all languages engendered by reflective
programming, themselves, to be used for reflective programming. This latter
ability, however, is considered as an essential characteristic of reflection
[Smith82].

What is needed to construct an open implemented programming language with
reflective potential is that all first class values (primitive values, functions,
objects, …) can freely travel between implementation language and engendered
language, and that both languages can transparently use each others first class
values. Such a construction is called a linguistic symbiosis [Ichisugi&al.92] of the
implementation language of the open implementation and possible engendered
languages. A detailed description of such a construction for Agora will be given in
a subsequent section.

2.5.2 Reflective Facilities

In the weaker case where the meta-system only allows access to its
implementational structures (and is not a full-fledged open implementation), the
system can only be extended with reflective facilities.

Reflective facilities usually take the form of two sets of operators. One set of
operators to read the implementational structures of the meta-system. And one
set of operators to overwrite the implementational structures of the meta-system.
In the former case one speaks of reification [Friedman&Wand84]; in the latter
the term absorption, or deification is used. Typical examples include reflective
facilities to get access to and alter the variable binding environment or the
control stack. See [Jagannathan&Agha92] for a fairly complex example of the
usage of reflective facilities.

Reflective facilities often give rise to reflective overlap. Reflective overlap
occurs when a part of the implementational structures of the meta-system is both
reified (explicit) and absorbed (implicit) at the same time. Take for example a
language with reflection operators 'get-environment' and 'put-environment' to
reify and absorb environments (i.e. the reflective variants of the operators for
implementational access from the previous section). Here, reflective overlap is
most noticeable when environments are reified in a causally connected way, i.e. in
a way such that modifications to the reified environment have an effect upon the

8 This is in fact a manifestation of what is called the causal connection requirement [Smith82].

Computational Reflection and Open Implementations

25

executing program's implicit environment. Stated otherwise, the environment
that is made explicit is shared by the program in which it is made explicit and
the meta-system. Environments that are reified are both explicit to the program
and implicit in the meta-system. In such a case one speaks of reflective overlap.
In our example this is apparent by the fact that the variable that holds the
environment is also part of that environment.

This sort of reflective overlap can be disturbing. In the above example the
programs that want to manipulate and alter environments must be careful not to
destroy or alter their own variables for example. Reflective architectures often
provide better mechanisms to control reflective overlap. It must be stressed,
however, that not all cases of reflective overlap need to be avoided.

2.5.3 Meta-Programming

In practice programs are not executed by assembling expressions by hand, and then
making an explicit call to the evaluator. Rather, an entire set of programs (or to
be correct: computational systems) is available to construct and execute programs.

Programs that describe computational systems that manipulate other programs
are often termed meta-programs. The program of our meta-system is such a meta-
program. It is often desirable to construct one's own meta-programs. Constructing a
programming environment is an example.

To support meta-programming the base-level interface of the meta-system can be
made available to programs executed by the meta-system. This enables the
construction of meta-programs such that the processing of programs is absorbed,
i.e. the language processor is not explicitly encoded. The difference9 with the
case where the language processor is explicitly encoded as a meta-circular
processor, is that in that case we are using two different meta-systems; even
though they have a possibly similar representation (i.e. one is meta-circularly
defined in the other).

In our Scheme example access to the base-level interface, means that a Scheme
program can explicitly invoke the underlying evaluator. A feature that is
available in most Scheme implementations.

Finally note that in a reflective architecture, the code that is used in
programming the meta-level interface is typically a meta-program,
manipulating pieces of its own program, and applying the evaluator upon these
program pieces. Meta-programming and reflective programming often go hand in
hand.

9 In a more general account of reflection this distinction would be made on the basis of causal
connection, i.e. the difference would be made on the basis whether programs are executed by
an executer program that is causally connected to the meta-system or executer programs that
are not causally connected to the meta-system. Given our modest goals, our differentiation
between the two is based on our consequent distinction between programs and
computations.

Chapter 2

26

 2.6 Managing Reflective Overlap and Tower Architectures

What differentiates access to the meta system through reflection operators from
'ordinary' access to the meta-system is its dynamic character. The meta-system is
accessed from within an executing program, and therefore meta-program and
program possibly execute in the same execution environment. On the other hand,
since meta-programs may actually reify and act upon this execution environment
this may lead to reflective overlap. It is exactly this aspect that is the most
difficult to manage in a practical setting.

A general recipe to avoid reflective overlap is closely connected to the notion of
tower architectures [Smith82]. Conventionally, tower architectures are based on
the notion of towers of meta-circular processors. Since our discussion on reflection
is based on open implementations rather than meta-circular processors, we will
briefly discuss the notion of towers of open implementations, and how they can be
used to avoid reflective overlap. A more thorough discussion can be found in
[De Volder&Steyaert94] (also in appendix).

The general idea is to provide a vantage point on which to stand when reasoning
about one's own meta-system. Moreover, a vantage point that is similar in nature
to the vantage point one system has when reasoning about another system (as in
figure 2.5).

Reflective tower architectures mimic the fact that meta-programs execute in
their own execution-environment. Actually, a tower of execution environments is
needed rather than a single one, since in a true reflective system, not only is it
possible to reflect on the meta-system of 'ordinary' programs, but also is it
possible to reflect over the meta-system of meta-programs, and so on. What is
actually mimicked is the infinite ascending chain of figure 2.8.

Meta-System

Program

executes

Meta-Program

Meta-Program's
Meta-System

executes

Meta-Program

Meta-Program's
Meta-System

executes

Figure 2.8

A couple of notes should be made here. The first is that in an actual
implementation this infinite ascending chain can not be realised literally. In an
actual implementation all meta-systems in the chain are one and the same (i.e.
the open implementation with reflective potential), only a chain of execution
states is realised. This chain of execution states conforms to those parts of the
reflective program that can be identified as meta-programs. This leads us to the
second remark. What is the nature of meta-programs, and how can they be

Computational Reflection and Open Implementations

27

identified, if they are part of the object-level program ?

In the conventional tower model meta-programs mostly take the form of meta-
circular processor programs. In the tower model based on open implementations,
meta-programs are generally programs that use the base and meta-level
interface of the open implemented meta-system. A typical meta-program is a
program that first uses the meta-level interface to alter the behaviour of the
meta-system, and then uses the base-level interface of this altered meta-system
to execute a program. Whether meta-programs can be identified as such depends
on the exact nature of the reflection operators. It should be kept in mind however
that in order to avoid reflective overlap, meta-programs should be
distinguishable as separate entities in a reflective program. Examples will be
given in later sections.

 2.7 Computational Systems with an Open Design

In the previous section we saw that open implementations can be used as a basis to
construct reflective systems. In this section we argue that for programming
languages mere open implementations are not enough. We will analyse what is
wrong with open implementations as a basis for safe and fully expressive
reflective programming languages and introduce the improved concept of open
designs. We will analyse the question of abstract representations in programming
languages. The discussion on how to construct open designs is deferred till the
section on object-oriented frameworks.

A computational system with an open implementation does not define a single
system but an entire design space of (related) systems. The behaviour of a system
with an open implementation can be altered through the meta-level interface.
Although the meta-level interface puts constraints on the extent to which the
behaviour of the system can be altered, merely opening up a system's
implementation gives no guarantee that the so created design space is coherent or
is the intended design space.

For an open programming language, for example, we could want such a design
space to cover all languages belonging to the same programming paradigm.
Merely opening up the implementation of a particular programming language
does not guarantee that the intended design space is covered, nor does it
guarantee that no languages out of the intended design space can be reached. The
former obviously is important, having to do with expressivity, but also the
latter, having to do with safety and the ability to reason about programs.

Take for example the design space of pure functional languages. In opening up a
particular programming language we need to make sure that we make explicit
the important language concepts. In case of our functional programming language
obviously what needs to be made explicit is the concept of a function. In an actual
implementation of a functional programming language this notion need not be
explicitly represented. The implementation is not necessarily a good source for
finding the important language concepts.

Furthermore it is equally important to identify the constraints surrounding the
language concepts that are made explicit. Take for example an open

Chapter 2

28

implementation of a pure functional programming language, where one can
provide one's own function representation. Here, an important constraint is that
functions stay pure, i.e. that one does not introduce function representations that
can be used to construct functions that are not referentially transparent. Certainly
such constraints will not be found in an implementation, they may not even be
enforceable by an implementation.

Finally, one must see to it that the concepts that are made explicit are
represented abstractly enough. Or vice versa, that they are not represented too
operationally. Take the above example again. Functions might be made explicit
as closures, i.e. as a record with three fields: formal parameters, body and lexical
context. Clearly closures are a representation of functions highly inspired by a
particular implementation. Obviously such a representation does not conform to
the truly abstract notion of a function, i.e. something that uniquely associates
each input argument to an output argument. In case where the important language
concepts are too operationally defined, it is possible that not the entire intended
design space is covered.

A system with an open design differs exactly in the above points from a system
with an open implementation. Rather than elaborating on these issues in general
terms, we will explore them in more restricted settings.

The notion of abstractness will be explored in the particular setting of
programming languages. We will see that in the area of programming language
semantics, these issues have already been investigated, and that a set of
objective criteria to test abstractness has already been developed for semantic
definitions. These criteria will be adopted.

The questions how to make explicit the important design issues and what forms
the constraints can take, will be discussed in the particular area of open object-
oriented programs. As already said, this discussion is deferred to the section on
object-oriented frameworks.

 2.8 Full Abstraction and Compositionality in Programming
Languages

“Programs are not text; they are hierarchical compositional structures and
should be edited, executed and debugged in an environment that consistently
acknowledges and reinforces this viewpoint.”

Teitelbaum & Reps (1981)

“The meaning of a sentence must remain unchanged when a part of the sentence
is replaced by an expression having the same meaning.”

G. Frege (1892)

As said in the previous section, criteria are needed to test whether an
implementation or design is defined abstract enough. For programming languages,
and in particular in the domain of programming language semantics, such criteria
have been defined. They are called full abstraction and compositionality. Full
abstraction and compositionality are two complementary constraints. The latter
ensures an abstract representation of expressions, the former an abstract

Computational Reflection and Open Implementations

29

representation of the first class values of the programming language. In this
section we will discuss how these mechanisms can be adapted to the context of
programming language implementations.

2.8.1 Full Abstraction and Compositionality in Semantics of Programming
Languages

Although different kinds of semantic definitions exist for programming
languages, it is possible to identify a common set of evaluation criteria. Semantic
definitions are primarily judged by their soundness and completeness and the
possibility to prove this. Any semantical description that lacks one of both is
very questionable. Other evaluation criteria for semantic descriptions include
formality, mathematical rigour and intelligibility. Although all of the former
criteria are important, they are of lesser interest to us since they give no
constructive indication on how semantical descriptions should be structured, and
these criteria are not directly applicable to the implementation of programming
languages. However, we will discuss two other criteria, compositionality
[Frege92] [Tennent91] and full abstraction [Tennent91], that can be interpreted in
the context of implementation of programming languages and can be used in a
constructive way.

Throughout this discussion, and to illustrate it, we will adopt a denotational
style of semantics. In general we define the semantics as a function that maps
elements of the syntactic domain to the semantic domain. Each expression is
mapped to its “meaning”.

µ

:

S

y

n

t

a

c

t

i

c

D

o

m

a

i

n

-

>

S

e

m

a

n

t

i

c

D

o

m

a

i

n

Compositionality
A semantic description is compositional if the meaning of composite expressions is
expressed as a function of the meaning of its immediate subexpressions. For a
compositionally defined semantics one can say that, in a composite expression,
subexpressions can be substituted by semantically equivalent subexpressions
without changing the meaning of the composite expression.

C o m p o s i t i o n a l i t y : A semantic definition is compositional if two
semantically equivalent expressions X and X’ (i.e. µ(X) = µ(X’)); in
each program context (…_…) where X can be used, X’ can be substituted such
that: µ(…X…) = µ(…X’…). [Tennent91]

A compositionally defined semantics should not be confused with a semantics
that is defined in a recursive compositional style (e.g. [Smith82]). In the latter
the meaning of a composite expression is defined as a function of its immediate
subexpressions, and not necessarily of the meaning of the subexpressions.
Although in this latter kind of semantics the compositional nature is still an
important issue, it does not have the above discussed property of substitutability
of semantically equivalent expressions. An example of a semantics that is
defined in a recursive compositional style but is not compositionally defined
(example taken from [Smith82]) is the semantics of a Lisp-like language with a
(one argument) quote expression, in which the meaning of this quote expression is
the quoted expression. Clearly the semantics of the quote expression is not a
function of the meaning of its subexpression.

Compositionality is crucial in proving properties of programs. It allows inductive
reasoning about the structure of programs, i.e. to prove a property one proves the
property for all non-composite (primitive) syntactic structures first, then the

Chapter 2

30

property can be inductively proven for each composite expression on the
hypothesis that the property holds for the immediate subexpressions.

Full Abstraction
Semantic definitions can be classified according to how operational, or vice
versa, how abstract they are. A “too operational” semantic definition is one that
makes too much distinction in assigning meaning to expressions; abstractly
equivalent expressions are assigned different meanings. An abstract semantics
maps abstractly equivalent expressions to the same meaning.

A fully abstract semantics is a semantics that considers those expressions
as equivalent that are indistinguishable in any program context. Consider
two expressions X and X’. X and X’ are indistinguishable if for all program
contexts (…_…) it can be observed that: µ(…X…) = µ(…X’…). A semantic
description is fully abstract if for all indistinguishable X and X’ it is true
that µ(X) = µ(X’) . [Tennent91]

The difference between a semantics that is too operational and an abstract
semantics is best illustrated with an example. Consider defining the semantics of
an object-oriented programming language that supports strong encapsulation of
objects.

On the programming level, strong encapsulation means that if we have two
objects with the same behaviour, then these two objects are indistinguishable,
according to our definition of indistinguishability above, regardless of how the
behaviour of both objects is realised. For example two strongly encapsulated
objects can have different private attributes and still be indistinguishable.

The semantic domain will consist mainly of a representation of objects. A
semantic description where objects are, for example, represented as a couple
(public methods, private instance variables), would be called too operational.
Objects in this case can be considered semantically different on the basis of their
private attributes. In contrast, a fully abstract semantics must consider all objects
with the same behaviour as semantically equivalent.

The question of abstractness of the semantics boils down, in this case, to the
question of how well the semantical representation of objects supports the notion
of encapsulation. The question of whether such semantics exist remains open,
however, and certainly lies beyond the scope of this work.

As Tennent [Tennent91] points out, the practical significance of full abstraction is
that: if the semantics unnecessarily distinguishes the meaning of expression P
and P’, an axiom asserting the equivalence of P and P’ could not be validated by
the semantics, and an axiom asserting that P and P’ are not equivalent might
incorrectly be regarded as sound. This means, as can also be observed in the above
example, that the semantics is too fine-grained in distinguishing values.

Full abstraction and compositionality are two complementary constraints. The
latter assures an abstract representation of expressions, the former an abstract
representation of the semantic values.

Computational Reflection and Open Implementations

31

2.8.2 Full Abstraction and Compositionality in Implementation of Programming
Languages

The notions of full abstraction and compositionality are informally applicable to
the implementation of programming languages. First remark that an
implementation of a programming language in general involves more than the
simple execution of programs. The different components, i.e. compiler, evaluator,
program browser, program debugger, type checker, … of an entire programming
environment must be taken into consideration. Although we will focus on the
execution of programs, it is important to keep in mind that all that will be
discussed is part of a larger whole, i.e. the programming environment.

There are two major mechanisms to execute a program. The first is pure
interpretation, i.e. the program is executed by direct inspection of the internal
representation of the program. The second is pure compilation, i.e. the program is
translated to a form that is directly executable by the hardware. Hybrid forms
exist, whereby a program is first translated to some intermediate program code
which is then interpreted (by a virtual machine).

In this text we concentrate on pure interpretation. The issue of compilation of open
programming languages is outside the scope of this dissertation and is left
untouched. We refer the reader to [Asai,Matsuoka&Yonezawa93] [Ruf93]
[Kiczales&Paepcke93] for this matter.

Compositionality
A programming language evaluator takes a program representation as input and
processes it to generate a result. It is a recursive process over the program
representation that generates the result of evaluating the program. In an abstract
form, it can be looked upon as a procedure, possibly involving side effects, taking
an expression argument and returning a result from some type of answers:

E

v

a

l

:

E

x

p

r

e

s

s

i

o

n

-

>

A

n

s

w

e

r

The compositionality criterium, as defined for the semantics of programming
languages, can be adopted for programming language evaluators, albeit in an
informal way.

An evaluator is compositionally implemented if for each composite expression
this evaluator is implemented by means of the application of the evaluator to its
subexpressions and its result depends only on the result of the application of the
evaluator to the subexpressions. The evaluator may not depend on any other
properties of the subexpressions.

The role of compositionality in the implementation of evaluators is
extensibility. An evaluator can be extended for each new expression type that is
added to the programming language in an incremental way.

Full Abstraction
In implementations in general it is hard to devise a criterium for what is a more
abstract implementation and what is a more concrete implementation. In the case
of an evaluator, however, the notion of full abstraction is such a criterium. In
analogy with semantic definitions, the notion of full abstraction can be used as a
criterium for the implementation of evaluators. Moreover this notion conforms to
the notion of abstractness in implementations in general; i.e. in a fully abstract
interpreter implementation details of the values that are manipulated by that
interpreter are hidden.

Chapter 2

32

An evaluator is a recursive process over the representation of a program. The
result of evaluation is a value of some data type of values. It can be represented
abstractly as a function of expressions to values. In analogy with full abstraction
in semantic definitions, an interpreter is fully abstract if indistinguishable
expressions X1 and X2, evaluate to indistinguishable values.
Indistinguishability of expressions has already been discussed. Whether two
values are indistinguishable depends, of course, on how these values are
expressed (e.g. as data types). In general however this amounts to simple
equality or some sort of behavioural equality (all operations that are applicable
on the value type give the same results on indistinguishable values).

The importance of full abstraction at the implementation level lies, again, in the
incremental extensibility of the implemented system. An example is indicated.

Consider implementing a functional programming language. In the
implementation of the evaluator the question arises how functions are going to be
implemented. We can make two apparent choices. The first is to implement a
function as a record with three fields, i.e. the formal parameter names, the body
and the lexical context of the function. Or we can implement our language level
functions directly as functions that are available at the implementation level,
i.e. as a function that takes a list of actual arguments. The formal parameter
names, the body and the lexical context are encapsulated in this function. Notice
that no circularity is involved here.

The second implementation is fully abstract: at the programming level functions
can only be distinguished by observing their effect on all possible arguments, at
the implementation level also functions can only be distinguished by observing
their effect on all possible arguments. The first implementation of functions is not
fully abstract. Functions can be distinguished at the implementation level by
comparing their formal parameter names, whereas at the programming level the
formal parameter names have no effect on a function's input-output behaviour.

The abstract implementation is more suited for extension. Consider adding a
function type that is extensionally defined, i.e. a function is explicitly defined as
a mapping of input values to output values. In the abstract implementation this
function type can be added without modifying the implementation of function
calling. In the non-abstract implementation the interpreter must be adapted to
take into consideration this new function type.

It should be clear that the potential for constructing an abstractly implemented
interpreter largely depends on the abstraction capabilities of the
implementation language.

Computational Reflection and Open Implementations

33

 2.9 Conclusion

A program expressed in some programming language is turned into a
computational system by means of a language processor (the meta-system). Not
all aspects of the resulting computational system are explicit in the program.
Some aspects are absorbed by the programming language concepts. We showed
that due to this, there is trade-off between generality and efficiency in the
description of computational systems.

Computational systems that allow implementational access try to improve on
this trade-off by allowing a program to leave certain aspects implicit until they
are needed. When needed, these aspects can be made explicit, modified and given
back to the system to be absorbed. Computational systems that have an open
implementation allow structured access to their implementation. They have an
explicit meta-level interface by which a substantial part of the implementation,
and accordingly, the behaviour of the system can be influenced. Language
processors that have an open implementation can be used to construct a particular
form of a meta-level architecture whereby the behaviour of the language
processor can be customised prior to executing a program. Programs that alter the
behaviour of a meta-system that executes a base-level program, are called meta-
level programs.

Architectures in which programs can access their own executing meta-system
have been studied. Different flavours of such architectures can be identified
according to what aspect of the meta-system can be accessed. The particular kind
where the meta-level interface of the meta-system can be accessed was called a
reflective architecture. Open implementations with reflective potential allow
the construction of reflective architectures.

Finally we discussed the difference between open implementations and open
designs. The role of compositionality and full abstraction was discussed in the
representation of aspects of programming languages.

In the next two chapters we will develop an open design for object-oriented
programming languages. In chapter 5 we will come back to the issues of how to
turn an open design into a reflective system.

