
55Chapter

A Reflective Framework

 5.1 Introduction

Now that we have defined an open design for object-based and object-oriented
programming languages, we can focus on how to turn this open design into a
reflective system. Turning an open design into a reflective system differs in a
fundamental way from the conventional approach of defining reflective
languages.

Conventionally a reflective language is defined by giving a meta-circular
interpreter for it. This meta-circular interpreter can contain various circularities
that are resolved by imagining an entire tower of meta-circular interpreters. In an
actual running system various mechanism are used to implement this tower.
Resolving these circularities is an essential step in making a running reflective
language.

We will take another approach. As we said in the chapter on reflection a
programming language is turned into a reflective one by extending it with
reflection operators. We will consider those open designs that are powerful
enough so that reflection can be added as a full-fledged specialisation of the
open design. The advantage is that in that case a formal relation exists between
a reflective language and its open design. Reflection is added as an orthogonal
language concept. Among others this means that the open design itself (meta-
circularly defined or not) does not need to be altered in an ad hoc fashion to turn it
into a running reflective system.

As discussed in the chapter on reflection, turning a system with an open design in
a reflective system is a matter of 1) achieving a symbiosis of the implementation
language of the open implementation and the engendered language, and 2)
providing the necessary reflection operators that may or may not avoid
reflective overlap. Our discussion will follow these steps.

Chapter 5

166

A symbiosis between two object-oriented languages enables objects to freely travel
from one language to the other. First we will show how an object-oriented
language can achieve a symbiosis with its underlying object-oriented
implementation language. We will also show that this can be done with a fairly
general mechanism. A symbiosis between an object-oriented programming
language and its implementation language will be achieved by the introduction
of conversion-methods and objects that incorporate reflection equations. The
properties of these will be discussed.

In practice, the choice of the reflection operators is an important issue. Reflection
operators must give access to both the base- and meta-level interface of the meta-
system. A fully reflective language must give access to the entire base- and meta-
level interfaces. We will discuss different sets of operators each with different
characteristics, and show that to a certain degree, making a choice between them
is a matter of taste.

Exactly as discussed, both the linguistic symbiosis and the reflection operators
are added to the framework as an extra layer, i.e. reflection operators are in some
sense not different of any other extension of the framework that adds new sorts of
expressions and new sorts of objects. In fact the extension of the framework with
reflection involves extending the framework's object hierarchy (with conversion
objects that realise the symbiosis) and the expression hierarchy (with the actual
reflection operators).

 5.2 Object-based Reflection

5.2.1 Linguistic Symbiosis

Both Agora and its implementation language are object-oriented languages. The
purpose of this section is to show how objects from Agora's implementation
language can be used as Agora objects, i.e. how messages, expressed in Agora, can
be sent to implementation language objects. Vice versa, we will show how Agora
objects can be used as objects from the implementation language, i.e. how
messages, expressed in the implementation language, can be sent to Agora objects.
This is depicted informally in the following figure.

A Reflective Framework

167

Implementation Language Agora

m
n

m

Implementation Object

Agora Object

Implementation Object

Representant for
Implementation Object

Agora Object
Representant for

Agora Object

Implementation Message Agora Messagem

n

m

n Resulting, Mixed Message

Figure 5.1

Before plunging into the technical details of the symbiosis of Agora and its
implementation language, we will need some terminology. The distinction
between Agora objects and implementation level objects will be blurred because
after the symbiosis, objects will be able to travel between Agora and its
implementation language. The simple terminological difference between Agora
objects and implementation level objects is not good enough anymore. Therefor we
will need a new terminology. The point is that we will need to make a distinction
between the language in which an object is expressed and the language from
which messages can be sent to an object. First of all we can make a distinction
between implicit messages — messages expressed in the implementation language
— and explicit messages — messages expressed in Agora. Secondly we will talk
about an explicitly encoded object when this object is expressed in Agora, and
about an implicitly encoded object when this object is expressed in the
implementation language. Not every explicitly encoded object need to be
referenced from within an Agora program. An object that can be sent implicit
messages is called an implicitly referable object, an object that can be sent
explicit messages is called an explicitly referable object. Finally we will simply
talk about an implicit (explicit) object when this object is both implicitly
(explicitly) encoded and referable. The following table summarises our
terminology.

Chapter 5

168

Implementation Language Agora

referable

encoded Explicitly Encoded ObjectImplicitly Encoded Object

Explicit ObjectImplicit Object

Explicitly Referable ObjectImplicitly Referable Object

referable &
encoded

Figure 5.2

For one particular kind of objects this terminology can be interpreted in an
ambiguous way. This is the source of much terminological confusion in object-
oriented reflective programming languages. A meta-object is an object that is both
implicitly and explicitly referable, albeit with two different protocols. To
illustrate this, let us have a look at how explicit objects are represented in the
implementation language. Each explicit object is represented at the
implementation level by an implicitly referable meta-object. The latter will be
called the representation of the former, the former will be called the referent of
the latter. An explicit message to an explicit object is represented (or
implemented) by an implicit message to the implicitly referable representation
of that object, albeit a message with a different signature.

Implementation Language Agora

has as Referent (reF)

msend:#m

has as Representation (reP)

m
Implicit Message

Explicit Messagem
Meta-Object

Figure 5.3

If the relation 'r

e

P

'

 associates each explicit object with its representation object,
and the relation 'reF' associates each meta-object with its referent object, then
the following holds for message passing between objects (depicted in the next
table). Pattern objects are conveniently represented as '#x:y:z:', and argument
lists as '{a1, … an}'.

A Reflective Framework

169

Agora Objects and Their Representations (rule 1a)
r

e

P

[

o

x

1

:

a

1

x

2

:

a

2

…

x

n

:

a

n

]

=

r

e

P

[

o

]

s

e

n

d

:

#

x

1

:

x

2

:

…

x

n

:

c

l

i

e

n

t

:

(

S

t

a

n

d

a

r

d

C

l

i

e

n

t

p

r

i

v

a

t

e

:

{

r

e

P

[

a

1

]

,

…

r

e

P

[

a

n

]

}

)

i

f

o

,

a

1

,

a

2

,

…

,

a

n

a

r

e

e

x

p

l

i

c

i

t

l

y

r

e

f

e

r

a

b

l

e

o

b

j

e

c

t

s

,

a

n

d

o

x

1

:

a

1

x

2

:

a

2

…

x

n

:

a

n

i

s

a

n

e

x

p

l

i

c

i

t

l

y

s

e

n

t

m

e

s

s

a

g

e

Meta-Objects and Their Referents (rule 1b)
r

e

P

[

r

e

F

[

m

o

]

x

1

:

r

e

F

[

m

a

1

]

x

2

:

r

e

F

[

m

a

2

]

…

x

n

:

r

e

F

[

m

a

n

]

]

=

m

o

s

e

n

d

:

#

x

1

:

x

2

:

…

x

n

:

c

l

i

e

n

t

:

(

S

t

a

n

d

a

r

d

C

l

i

e

n

t

p

r

i

v

a

t

e

:

{

m

a

1

…

m

a

n

}

)

i

f

m

o

,

m

a

1

,

m

a

2

,

…

,

m

a

n

a

r

e

i

m

p

l

i

c

i

t

l

y

r

e

f

e

r

a

b

l

e

m

e

t

a

-

o

b

j

e

c

t

s

,

a

n

d

m

o

s

e

n

d

:

(

…

)

c

l

i

e

n

t

:

(

…

)

i

s

a

n

i

m

p

l

i

c

i

t

l

y

s

e

n

t

m

e

s

s

a

g

e

Equality of Referents and Representations (rule 1c)

r

e

F

[

m

o

1

]

=

r

e

F

[

m

o

2

]

⇔

m

o

1

=

m

o

2

r

e

P

[

o

1

]

=

r

e

P

[

o

2

]

⇔

o

1

=

o

2

i

f

m

o

1

,

m

o

2

a

r

e

i

m

p

l

i

c

i

t

l

y

r

e

f

e

r

a

b

l

e

m

e

t

a

-

o

b

j

e

c

t

s

,

a

n

d

i

f

o

1

,

o

2

a

r

e

e

x

p

l

i

c

i

t

l

y

r

e

f

e

r

a

b

l

e

o

b

j

e

c

t

s

Notice that it can be proved that the relations reF and reP are in a sense inverse
relations with respect to message passing. It can be shown that an explicit
message sent to 'reF[reP[o]]' has the same effect as an explicit message sent to 'o'.

r

e

P

[

r

e

F

[

r

e

P

[

o

]

]

x

1

:

r

e

F

[

r

e

P

[

a

1

]

]

…

x

n

:

r

e

F

[

r

e

P

[

a

n

]

]

]

=

(

r

u

l

e

1

b

)

r

e

P

[

o

]

s

e

n

d

:

#

x

1

:

x

2

:

…

x

n

:

c

l

i

e

n

t

:

(

S

t

a

n

d

a

r

d

C

l

i

e

n

t

p

r

i

v

a

t

e

:

{

r

e

p

[

a

1

]

…

r

e

P

[

a

n

]

}

)

=

(

r

u

l

e

1

a

)

r

e

P

[

o

x

1

:

a

1

…

x

n

:

a

n

]

t

h

e

r

e

f

o

r

e

(

r

u

l

e

1

c

)

r

e

F

[

r

e

P

[

o

]

]

x

1

:

r

e

F

[

r

e

P

[

a

1

]

]

…

x

n

:

r

e

F

[

r

e

P

[

a

n

]

]

=

o

x

1

:

a

1

…

x

n

:

a

n

Conversely it can be shown that an implicit 'send:client:' message to
'reP[reF[mo]]' has the same effect as an implicit 'send:client:' message to 'mo'.

r

e

P

[

r

e

F

[

m

o

]

]

s

e

n

d

:

#

x

1

:

x

2

:

…

x

n

:

c

l

i

e

n

t

:

(

S

t

a

n

d

a

r

d

C

l

i

e

n

t

p

r

i

v

a

t

e

:

{

r

e

P

[

r

e

F

[

m

a

1

]

]

,

…

,

r

e

P

[

r

e

F

[

a

n

]

]

}

)

=

(

r

u

l

e

1

a

)

r

e

P

[

r

e

F

[

m

o

]

x

1

:

r

e

F

[

m

a

1

]

…

x

n

:

r

e

F

[

m

a

n

]

]

=

(

r

u

l

e

1

b

)

m

o

s

e

n

d

:

#

x

1

:

x

2

:

…

x

n

:

c

l

i

e

n

t

:

(

S

t

a

n

d

a

r

d

C

l

i

e

n

t

p

r

i

v

a

t

e

:

{

m

a

1

…

m

a

n

}

)

Returning to the question of how to construct a symbiosis, we can now consider two
conversion methods for implicitly referable objects. The first — named
'asImplicit' — turns a meta-object into an implicitly referable object with the
protocol of the referent of the meta-object. The second — named 'asExplicit' —
turns an arbitrary implicitly referable object into a meta-object, i.e. into a
representation of an explicitly referable object with the same protocol as the
initial implicitly referable object. Note that these conversion methods are
implementation level methods, i.e. they can only be sent at the implementation

Chapter 5

170

level. The two conversion methods are illustrated in the following figure.

Implementation Language Agora

m

Representant for
Implicitly Referable
Explicitly Encoded Object

Implicit Object Explicit Object

Implicit Message

Explicit Messagem

Representant for
Explicitly Referable
Implicitly Encoded Object

n mMaking Implicit
(result of applying
asImplicit)

Making Explicit
(result of applying
asExplicit)

m

n

Meta-Object

n Resulting, Mixed Message

has as Referent (reF)

has as Representation (reP)

Figure 5.4

These conversion methods are crucial in achieving a symbiosis between Agora and
its implementation language. The 'asImplicit' conversion method allows an object
to travel from an Agora program to a program expressed in the implementation
language. Conversely the 'asExplicit' conversion allows an object to travel from
the implementation level to an Agora program. The conversion methods are
defined by the following equalities :

A Reflective Framework

171

Reflection Equations for Conversion Methods
r

e

P

[

o

x

1

:

r

e

F

[

a

1

a

s

E

x

p

l

i

c

i

t

]

…

x

n

:

r

e

F

[

a

n

a

s

E

x

p

l

i

c

i

t

]

]

a

s

I

m

p

l

i

c

i

t

=

(

r

e

P

[

o

]

a

s

I

m

p

l

i

c

i

t

)

x

1

:

a

1

…

x

n

:

a

n

i

f

o

i

s

a

n

e

x

p

l

i

c

i

t

l

y

r

e

f

e

r

a

b

l

e

o

b

j

e

c

t

a

1

,

a

2

,

…

a

r

e

i

m

p

l

i

c

i

t

l

y

r

e

f

e

r

a

b

l

e

o

b

j

e

c

t

s

a

n

d

o

x

1

:

…

…

x

n

:

…

i

s

a

n

e

x

p

l

i

c

i

t

l

y

s

e

n

t

m

e

s

s

a

g

e

(

r

e

F

[

o

a

s

E

x

p

l

i

c

i

t

]

)

x

1

:

a

1

…

x

n

:

a

n

=

r

e

F

[

(

o

x

1

:

(

r

e

P

[

a

1

]

a

s

I

m

p

l

i

c

i

t

)

…

x

n

:

(

r

e

P

[

a

n

]

a

s

I

m

p

l

i

c

i

t

)

)

a

s

E

x

p

l

i

c

i

t

]

i

f

o

i

s

a

n

i

m

p

l

i

c

i

t

l

y

r

e

f

e

r

a

b

l

e

o

b

j

e

c

t

a

1

,

a

2

,

…

a

r

e

e

x

p

l

i

c

i

t

l

y

r

e

f

e

r

a

b

l

e

o

b

j

e

c

t

s

a

n

d

o

x

1

:

…

…

x

n

:

…

i

s

a

n

i

m

p

l

i

c

i

t

l

y

s

e

n

t

m

e

s

s

a

g

e

(

o

a

s

E

x

p

l

i

c

i

t

a

s

I

m

p

l

i

c

i

t

)

=

o

=

(

o

a

s

I

m

p

l

i

c

i

t

a

s

E

x

p

l

i

c

i

t

)

i

f

o

i

s

a

n

i

m

p

l

i

c

i

t

l

y

r

e

f

e

r

a

b

l

e

m

e

t

a

-

o

b

j

e

c

t

The 'asImplicit' and 'asExplicit' conversion methods are by axiom inverse
methods for meta-objects. Intuitively, the previous equalities can be interpreted
as a form of distribution of the 'asImplicit' and 'asExplicit' conversions over
message passing.

The 'reP' and 'reF' relations on the one hand and the 'asImplicit' and 'asExplicit'
conversion methods on the other hand should not be confused. The former are
relations between implicit objects and explicit objects, i.e. a relation that can be
observed to exist, or not. The latter are methods that must be explicitly applied.
Furthermore the protocol changes involved are of a different nature. The 'reP'
relation, for example, relates an explicitly referable object with an arbitrary
protocol to an implicitly referable object with a protocol that is comprised of
essentially a 'send:client:' method. The 'asImplicit' conversion method,
however, converts the representation of an explicitly referable object with an
arbitrary protocol to an implicitly referable object with the same protocol.

The role of the 'asImplicit' and the 'asExplicit' conversion methods will be
illustrated with an example. Consider implicit expression objects. The method
'a

s

E

x

p

l

i

c

i

t

' for expressions converts an implicitly encoded expression object (i.e.
an implementation object of type 'A

b

s

t

r

a

c

t

E

x

p

r

e

s

s

i

o

n

') into an explicitly
referable object. The resulting object can receive explicit evaluation messages.
Upon reception of an evaluation message 'e

v

a

l

:

', expressed in Agora's message
passing, the converted object translates this message to an 'e

v

a

l

:

' message on the
implementation level. It also takes care that the context argument is translated
into an implicit referable object, and the result is translated back into an
explicitly referable object. These translations are necessary since the message
was sent from within an Agora program. Obviously the 'asExplicit' conversion
method will play an important role in making primitive objects — that are
present in the implementation — available to Agora programs.

Conversely, an Agora object that implements an 'e

v

a

l

:

' method, can be
transformed to a implicitly referable object with the conversion method
'a

s

I

m

p

l

i

c

i

t

'. This method will translate this explicitly encoded object into an
implicitly referable expression object, i.e. the implementation-language-
representant (preferably of type 'A

b

s

t

r

a

c

t

E

x

p

r

e

s

s

i

o

n

') for explicitly encoded
expression objects that can receive implicit evaluation messages. Upon reception
of an implicit evaluation message 'e

v

a

l

:

' the converted object translates this

Chapter 5

172

message to an Agora style 'e

v

a

l

:

' message. Care is taken that the context
argument is translated to an Agora object, and the result is translated back to an
implementation object. Obviously, the 'asImplicit' conversion method will play
an important role in the implementation of reflective operators.

So, we see that this form of symbiosis is but a mere extension of handling
primitive data-types, as can be found in most implementations of programming
languages. A primitive data-type is a data-type from the implementation
language that is transported to the implemented language. In most languages,
only the direction of implementation language to implemented language is
supported; from the viewpoint of reflection, the other direction is much more
interesting. In reflection terms the conversion methods allow objects to "shift
levels".

The implementation of conversion methods for the symbiosis is straightforward
in principle, but tedious in practice. Let us first look at the 'asExplicit' method.
This method is for example defined for expression objects. It converts an implicit
expression object into an explicitly referable expression object of which the
definition is found below. Notice that the class of explicitly referable expression
objects is a concretisation of the abstract class of meta-objects. Its implementation
is one of translating explicit messages to implicit messages according to the
following schema.

asExplicit Conversion Method
c

l

a

s

s

A

b

s

t

r

a

c

t

E

x

p

r

e

s

s

i

o

n

e

x

t

e

n

d

s

O

b

j

e

c

t

T

h

a

t

C

a

n

B

e

M

a

d

e

E

x

p

l

i

c

i

t

a

b

s

t

r

a

c

t

c

l

a

s

s

a

t

t

r

i

b

u

t

e

s

E

x

p

l

i

c

i

t

l

y

R

e

f

e

r

a

b

l

e

E

x

p

r

e

s

s

i

o

n

m

e

t

h

o

d

s

c

o

n

c

r

e

t

e

a

s

E

x

p

l

i

c

i

t

r

e

s

u

l

t

A

b

s

t

r

a

c

t

M

e

t

a

O

b

j

e

c

t

^

E

x

p

l

i

c

i

t

l

y

R

e

f

e

r

a

b

l

e

E

x

p

r

e

s

s

i

o

n

e

x

p

r

e

s

s

i

o

n

:

s

e

l

f

e

n

d

c

l

a

s

s

Explicitly Referable Expressions
c

l

a

s

s

E

x

p

l

i

c

i

t

l

y

R

e

f

e

r

a

b

l

e

E

x

p

r

e

s

s

i

o

n

e

x

t

e

n

d

s

A

b

s

t

r

a

c

t

M

e

t

a

O

b

j

e

c

t

c

o

n

s

t

a

n

t

s

E

v

a

l

P

a

t

t

e

r

n

=

K

e

y

w

o

r

d

P

a

t

t

e

r

n

n

a

m

e

:

"

e

v

a

l

:

"

i

n

s

t

a

n

c

e

v

a

r

i

a

b

l

e

s

e

x

p

r

e

s

s

i

o

n

:

A

b

s

t

r

a

c

t

E

x

p

r

e

s

s

i

o

n

m

e

t

h

o

d

s

c

o

n

c

r

e

t

e

s

e

n

d

:

p

a

t

t

e

r

n

c

l

i

e

n

t

:

c

l

i

e

n

t

r

e

s

u

l

t

A

b

s

t

r

a

c

t

M

e

t

a

O

b

j

e

c

t

i

f

p

a

t

t

e

r

n

=

E

v

a

l

P

a

t

t

e

r

n

t

h

e

n

^

(

e

x

p

r

e

s

s

i

o

n

e

v

a

l

:

(

c

l

i

e

n

t

a

r

g

u

m

e

n

t

s

a

s

I

m

p

l

i

c

i

t

)

)

a

s

E

x

p

l

i

c

i

t

e

l

s

e

…

r

a

i

s

e

a

n

e

r

r

o

r

e

n

d

c

l

a

s

s

The implementation of the reverse 'asImplicit' conversion method is as
straightforward as the previous one. This conversion method is defined only on
meta-objects. In principle it translates an anonymous meta-object into an
anonymous implementation level object. More specific variants of this conversion
method can be useful. For example an 'asImplicitExpression' conversion method
would translate a meta-object into an object of the 'ExplicitlyEncodedExpression'
class of which the definition can be found below. Again, this class does a simple
translation of messages.

A Reflective Framework

173

asImplicit Conversion Method
c

l

a

s

s

A

b

s

t

r

a

c

t

M

e

t

a

O

b

j

e

c

t

a

b

s

t

r

a

c

t

c

l

a

s

s

a

t

t

r

i

b

u

t

e

s

E

x

p

l

i

c

i

t

l

y

E

n

c

o

d

e

d

E

x

p

r

e

s

s

i

o

n

m

e

t

h

o

d

s

c

o

n

c

r

e

t

e

a

s

I

m

p

l

i

c

i

t

E

x

p

r

e

s

s

i

o

n

r

e

s

u

l

t

A

b

s

t

r

a

c

t

M

e

t

a

O

b

j

e

c

t

^

E

x

p

l

i

c

i

t

l

y

E

n

c

o

d

e

d

E

x

p

r

e

s

s

i

o

n

o

b

j

e

c

t

:

s

e

l

f

e

n

d

c

l

a

s

s

Explicitly Encoded Expressions
c

l

a

s

s

E

x

p

l

i

c

i

t

l

y

E

n

c

o

d

e

d

E

x

p

r

e

s

s

i

o

n

e

x

t

e

n

d

s

A

b

s

t

r

a

c

t

E

x

p

r

e

s

s

i

o

n

c

o

n

s

t

a

n

t

s

E

v

a

l

P

a

t

t

e

r

n

=

K

e

y

w

o

r

d

P

a

t

t

e

r

n

n

a

m

e

:

"

e

v

a

l

:

"

i

n

s

t

a

n

c

e

v

a

r

i

a

b

l

e

s

o

b

j

e

c

t

:

A

b

s

t

r

a

c

t

M

e

t

a

O

b

j

e

c

t

m

e

t

h

o

d

s

c

o

n

c

r

e

t

e

e

v

a

l

:

c

o

n

t

e

x

t

r

e

s

u

l

t

A

b

s

t

r

a

c

t

M

e

t

a

O

b

j

e

c

t

^

(

o

b

j

e

c

t

s

e

n

d

:

E

v

a

l

P

a

t

t

e

r

n

c

l

i

e

n

t

:

(

S

t

a

n

d

a

r

d

C

l

i

e

n

t

a

r

g

u

m

e

n

t

s

:

(

c

o

n

t

e

x

t

a

s

E

x

p

l

i

c

i

t

)

)

)

a

s

I

m

p

l

i

c

i

t

e

n

d

c

l

a

s

s

Finally, note that because meta-objects (not their referents) are implicitly
referable objects, the 'asExplicit' conversion method should be defined for them.

Making
Explicit

Implementation Language Agora

has as Referent (reF)

m

send:#m

m
Implicit Message

Explicit Message
m

Meta-Object

has as Referent (reF)

send:#send

send:#m

Referent of
ExplicitlyReferableMetaObject

Figure 5.5

Chapter 5

174

The according conversion class can be found below. It encodes meta-objects to
which explicit 'send:client:' messages can be sent. Remark that, on meta-objects,
the 'asExplicit' conversion can be applied an infinite number of times.

Explicitly Referable Meta-objects
c

l

a

s

s

E

x

p

l

i

c

i

t

l

y

R

e

f

e

r

a

b

l

e

M

e

t

a

O

b

j

e

c

t

e

x

t

e

n

d

s

A

b

s

t

r

a

c

t

M

e

t

a

O

b

j

e

c

t

c

o

n

s

t

a

n

t

s

S

e

n

d

P

a

t

t

e

r

n

=

K

e

y

w

o

r

d

P

a

t

t

e

r

n

n

a

m

e

:

"

s

e

n

d

:

c

l

i

e

n

t

:

"

i

n

s

t

a

n

c

e

v

a

r

i

a

b

l

e

s

a

M

e

t

a

:

A

b

s

t

r

a

c

t

M

e

t

a

O

b

j

e

c

t

m

e

t

h

o

d

s

c

o

n

c

r

e

t

e

s

e

n

d

:

p

a

t

t

e

r

n

c

l

i

e

n

t

:

c

l

i

e

n

t

r

e

s

u

l

t

A

b

s

t

r

a

c

t

M

e

t

a

O

b

j

e

c

t

i

f

p

a

t

t

e

r

n

=

S

e

n

d

P

a

t

t

e

r

n

t

h

e

n

^

(

a

M

e

t

a

s

e

n

d

:

(

c

l

i

e

n

t

f

i

r

s

t

A

r

g

u

m

e

n

t

a

s

I

m

p

l

i

c

i

t

)

c

l

i

e

n

t

:

(

c

l

i

e

n

t

s

c

n

d

A

r

g

u

m

e

n

t

a

s

I

m

p

l

i

c

i

t

)

)

a

s

E

x

p

l

i

c

i

t

e

l

s

e

…

r

a

i

s

e

a

n

e

r

r

o

r

e

n

d

c

l

a

s

s

5.2.2 Simple Meta-Programming Operators for Agora

To illustrate the linguistic symbiosis we will discuss a set of reflection operators
that is directly inspired by the above conversion methods. As we saw in the
previous section the 'asImplicit' method can be used for example to convert an
implicitly referable expression object into an explicitly referable expression
object. This is called a quoting operator when provided as a language construct.
Similarly, meta-objects can be converted into explicitly referable meta-objects.
We will also illustrate how the inverse operations — that of converting an
explicitly encoded expression or meta-object into an implicitly referable object —
can be made useful.

The quoting reifier (form: 'e

q

u

o

t

e

') allows us to get hold on expressions as
Agora objects in what is usually called a meta-program. A quoted expression is an
object that can be sent an explicit evaluation message, given a context as
argument. The following meta-program evaluates the object-level program
'"hello world" print' in an initially empty context. We presume that somewhere
an appropriate prototype 'EmptyContext' has been defined. This prototype
should conform to the protocol of standard contexts.

E

m

p

t

y

C

o

n

t

e

x

t

d

e

f

i

n

e

:

…

;

-

-

-

a

n

i

n

i

t

i

a

l

l

y

e

m

p

t

y

c

o

n

t

e

x

t

a

P

r

o

g

r

a

m

d

e

f

i

n

e

;

a

P

r

o

g

r

a

m

<

-

(

"

h

e

l

l

o

w

o

r

l

d

"

p

r

i

n

t

)

q

u

o

t

e

;

a

P

r

o

g

r

a

m

e

v

a

l

:

(

E

m

p

t

y

C

o

n

t

e

x

t

c

l

o

n

e

)

-

-

-

p

r

i

n

t

s

"

h

e

l

l

o

w

o

r

l

d

"

This is a typical example of meta-programming: allowing us to manipulate
programs as first-class objects, but on the other hand absorbing (leaving implicit)
the evaluator for these programs. Some remarks must be made. Consider the
following example. The object-level program creates a point object that is
returned as result1.

1 Note that in Agora block expressions do not evaluate to something like closures (such as is
the case in Smalltalk) but rather all component expressions are evaluated. The return reifier
indicates what result must be returned.

A Reflective Framework

175

a

P

r

o

g

r

a

m

<

-

(

[

P

o

i

n

t

d

e

f

i

n

e

:

…

;

-

-

-

a

p

o

i

n

t

p

r

o

t

o

t

y

p

e

P

o

i

n

t

x

:

3

y

:

4

r

e

t

u

r

n

]

)

q

u

o

t

e

;

p

<

-

a

P

r

o

g

r

a

m

e

v

a

l

:

(

E

m

p

t

y

C

o

n

t

e

x

t

c

l

o

n

e

)

;

p

x

-

-

-

E

R

R

O

R

:

d

o

e

s

n

o

t

u

n

d

e

r

s

t

a

n

d

-

-

-

p

i

s

a

r

e

s

u

l

t

a

t

t

h

e

m

e

t

a

-

l

e

v

e

l

!

-

-

-

t

h

e

r

e

f

o

r

e

p

i

s

a

m

e

t

a

-

o

b

j

e

c

t

The first remark is that due to the fact that the evaluation is done in an
explicitly given context the object-level program in the example can not refer to
any of the prototypes defined in the meta-level program. Object-level programs
must be 'self-contained' with respect to the referenced objects. Secondly, and more
importantly, it must be noted that the result of an explicit evaluation is a meta-
object. This is not only a direct result from the definition of our conversion
methods, but it is also what we want. Whereas an object-level program deals
with referents directly, the meta-program deals with the representations (meta-
objects) of the objects of its object-level program. An evaluator (or a meta-system
in general) that does not respect this is said to be a level-crossing evaluator
[Smith82].

The implementation of the quoting operator is straightforward, and relies on the
symbiosis of Agora and its implementation language. A quote reifier returns, upon
evaluation, its receiver as an explicitly referable Agora object.

Quoting Expressions (without precautions to avoid reflective overlap)
c

l

a

s

s

A

b

s

t

r

a

c

t

E

x

p

r

e

s

s

i

o

n

m

e

t

h

o

d

s

r

e

i

f

i

e

r

q

u

o

t

e

r

e

s

u

l

t

A

b

s

t

r

a

c

t

M

e

t

a

O

b

j

e

c

t

u

s

i

n

g

(

c

o

n

t

e

x

t

:

S

t

a

n

d

a

r

d

C

o

n

t

e

x

t

)

^

(

s

e

l

f

a

s

E

x

p

l

i

c

i

t

)

e

n

d

c

l

a

s

s

Explicit meta-objects can be obtained in a way that is similar to the way
expression objects are obtained. Similar to the quoting operator we introduce a
reifier (form: '

e

a

s

M

e

t

a

') that transforms the representation of its evaluated
receiver into an explicitly referable meta-object. Here again a typical example of
a meta-program can be given. A meta-program that sends an explicit message to a
meta-object. We presume that somewhere appropriate prototypes 'UnaryPattern'
and 'EmptyClient' have been defined. These prototypes should conform to the
protocols of respectively standard patterns and standard clients.

U

n

a

r

y

P

a

t

t

e

r

n

d

e

f

i

n

e

:

…

;

-

-

-

a

p

a

t

t

e

r

n

p

r

o

t

o

t

y

p

e

E

m

p

t

y

C

l

i

e

n

t

d

e

f

i

n

e

:

…

;

-

-

-

a

c

l

i

e

n

t

p

r

o

t

o

t

y

p

e

P

o

i

n

t

d

e

f

i

n

e

:

…

;

-

-

-

a

p

o

i

n

t

p

r

o

t

o

t

y

p

e

m

e

t

a

O

f

P

d

e

f

i

n

e

;

p

d

e

f

i

n

e

:

P

o

i

n

t

x

:

3

y

:

4

;

m

e

t

a

O

f

P

<

-

(

p

a

s

M

e

t

a

)

;

r

e

s

u

l

t

<

-

m

e

t

a

O

f

P

s

e

n

d

:

(

U

n

a

r

y

P

a

t

t

e

r

n

n

a

m

e

:

"

x

"

)

c

l

i

e

n

t

:

(

E

m

p

t

y

C

l

i

e

n

t

c

l

o

n

e

)

Similarly to the above example, and for the same reasons, the result of an
explicit message to a explicitly referable meta-object is a meta-object.

The definition of this new operator is as straightforward as the definition of the
quote operator. It also relies on the symbiosis of Agora and its implementation
language.

Chapter 5

176

Accessing Meta-Objects
c

l

a

s

s

A

b

s

t

r

a

c

t

E

x

p

r

e

s

s

i

o

n

m

e

t

h

o

d

s

r

e

i

f

i

e

r

a

s

M

e

t

a

r

e

s

u

l

t

A

b

s

t

r

a

c

t

M

e

t

a

O

b

j

e

c

t

u

s

i

n

g

(

c

o

n

t

e

x

t

:

S

t

a

n

d

a

r

d

C

o

n

t

e

x

t

)

^

(

(

s

e

l

f

e

v

a

l

:

c

o

n

t

e

x

t

)

a

s

E

x

p

l

i

c

i

t

)

e

n

d

c

l

a

s

s

Notice that, in contrast with other object - meta-object approaches, an object
does not contain a reference to its meta-object but, rather, that object and meta-
object are different views for communicating with an object (much in the style of
the reP relation). Every object in Agora is implemented as an object in the
implementation language (typically called the meta-object, and having a
‘s

e

n

d

:

c

l

i

e

n

t

:

’ method in its protocol). According to our symbiosis this latter
object can be made explicit, via the ‘a

s

E

x

p

l

i

c

i

t

’ conversion method. It is made
explicit as an Agora object, such that Agora messages can be sent to it. The kind of
messages that can be sent are 's

e

n

d

:

c

l

i

e

n

t

:

' messages. The implementation level
objects that implement Agora objects, are in that respect no different of, say,
context-, or expression objects at the implementation level. Still, the fact that
there is already a relationship (i.e. the reP and reF relation) between Agora
objects, and implementation level meta-objects (which is not the case for context,
or expression objects for example) can make this a bit confusing.

Making
Explicit

Implementation Language Agora

has as Referent (reF)

m

send:#m client:…

m
Implicit Message

Explicit Message
m

Meta-Object

has as Referent (reF)

send:#send

send:#m

Referent of
ExplicitlyReferableMetaObject

asM
eta

Figure 5.6

A Reflective Framework

177

5.2.3 Simple Reflection Operators

The most important aspect of the meta-level interface of the open
implementation of Agora is the extension of the class hierarchy of expressions
and the class hierarchy of objects. In this section we will discuss two reflection
operators that make this aspect of the meta-level interface available to Agora
programs. These operators, also, are directly inspired by the conversion methods
'asImplicit' and 'asExplicit'. Whereas in the previous section we made use of the
fact that expression and meta-objects can be made explicitly referable, we will
now make use of the fact that explicitly encoded expression and meta-objects can
be made implicitly referable by the 'asImplicit' conversion method.

The introduction of new sorts of expressions in an open implemented programming
language, in principle, goes hand in hand with the introduction of new syntactic
constructs. Mere extension of the expression class hierarchy is not enough, it is not
even the goal. The goal is to be able to construct program trees that make use of
the newly added expression objects. As we saw before, this can be realised, for
example, with a generic syntax.

To keep things simple, however, the construction for reflectively adding new
types of expressions, discussed here, will be of a flavour that avoids this
complication. This construction is reminiscent of reifier functions in e.g. 3-Lisp
[Smith82], albeit of a more primitive nature.

Furthermore it is our intention to illustrate the dynamic character of using the
meta-level interface that comes with reflection. Previously, in the ‘plain’ open
implementation, the usage of base- and meta-level interface were strictly
separated in time. In case of reflection this need not be so.

The point is to offer a reflection operator that allows the dynamic extension of
the program tree with explicitly encoded expression objects, i.e. an operator that,
given a Agora object that implements an evaluation method, virtually installs
this object in the program tree. The reifier (form: '

e

a

s

E

x

p

r

e

s

s

i

o

n

') we propose
for this purpose is more or less the reverse of the quote operator. It evaluates its
receiver expression 'e

' — that will be called the expression-definition of the
absorbed expression —, transforms the result — that will be called the explicit
expression-object of the absorbed expression — to an implicitly referable
expression object, and sends an implicit evaluation method to this transformed
object. Whereas the quote operator reifies parts of the program tree into
explicitly referable objects, the asExpression operator absorbs explicitly encoded
expression objects into the program tree.

Consider the following example. The goal is to construct an expression type that
reifies the current context. For this purpose an appropriate expression object is
defined. Each time this explicit expression object is absorbed in the evaluation
process, by means of the 'asExpression' reifier, it reifies the current context.

P

o

i

n

t

d

e

f

i

n

e

:

…

;

-

-

-

a

p

o

i

n

t

p

r

o

t

o

t

y

p

e

M

a

k

e

C

u

r

r

e

n

t

C

o

n

t

e

x

t

E

x

p

M

i

x

i

n

:

[

e

v

a

l

:

c

o

n

t

e

x

t

M

e

t

h

o

d

:

[

c

o

n

t

e

x

t

r

e

t

u

r

n

]

]

;

C

u

r

r

e

n

t

C

o

n

t

e

x

t

E

x

p

d

e

f

i

n

e

:

O

b

j

e

c

t

M

a

k

e

C

u

r

r

e

n

t

C

o

n

t

e

x

t

E

x

p

;

c

u

r

r

e

n

t

C

o

n

t

e

x

t

d

e

f

i

n

e

;

c

u

r

r

e

n

t

C

o

n

t

e

x

t

<

-

(

C

u

r

r

e

n

t

C

o

n

t

e

x

t

E

x

p

a

s

E

x

p

r

e

s

s

i

o

n

)

;

a

<

-

(

P

o

i

n

t

x

:

3

y

:

4

)

q

u

o

t

e

;

p

<

-

a

e

v

a

l

:

c

u

r

r

e

n

t

C

o

n

t

e

x

t

;

(

p

a

s

O

b

j

e

c

t

)

x

p

r

i

n

t

-

-

-

p

r

i

n

t

s

3

Chapter 5

178

This example features two different forms of reflective overlap. Firstly, the
context that is reified by the 'currentContextExp' expression, is both reified and
left implicit. This is apparent in the fact that the variable that points to the
reified context also is part of this reified context. Secondly, and more
importantly, the evaluation method of the explicit expression object is evaluated
in the same context that it reifies. This evaluation method has, for example,
access to the point prototype, both directly and via its context argument.
Whereas the first kind of reflective overlap is the result of how the above
program is formulated, the second kind is a direct result of the definition of the
'asExpression' reifier. We will see in the next section how an alternative set of
reflection operators that avoid reflective overlap can be defined.

Explicitly encoded meta-objects can also be made implicitly referable. The
reifier 'asObject' allows the absorption of explicitly encoded meta-objects. In the
following example meta-objects are constructed that reply lazily to messages.
The result of a message sent to a lazy object is computed only if a message is sent to
this result. Therefore two different sorts of meta-objects are defined. The first
kind ('Lazy' objects) that contains a reference to the object that is made lazy. The
second kind ('ResultHolder' objects) that act as representants for the results of
the messages sent to a lazy object. Notice that in the example, the first kind of
meta-objects is put to use by an explicit application of the 'asObject' reifier.
Whereas the second kind is created in the execution of an explicitly encoded
'send:client:' message. Since this latter is executed at the meta-level the so
created meta-object is automatically absorbed.

M

a

k

e

R

e

s

u

l

t

H

o

l

d

e

r

M

i

x

i

n

:

[

r

e

c

e

i

v

e

r

d

e

f

i

n

e

;

p

a

t

t

e

r

n

d

e

f

i

n

e

;

c

l

i

e

n

t

d

e

f

i

n

e

;

r

e

c

e

i

v

e

r

:

r

p

a

t

t

e

r

n

:

p

c

l

i

e

n

t

:

c

C

l

o

n

i

n

g

M

e

t

h

o

d

:

[

r

e

c

e

i

v

e

r

<

-

r

;

p

a

t

t

e

r

n

<

-

p

;

c

l

i

e

n

t

<

-

c

]

;

s

e

n

d

:

p

c

l

i

e

n

t

:

c

M

e

t

h

o

d

:

[

(

R

e

s

u

l

t

H

o

l

d

e

r

r

e

c

e

i

v

e

r

:

(

r

e

c

e

i

v

e

r

s

e

n

d

:

p

a

t

t

e

r

n

c

l

i

e

n

t

:

c

l

i

e

n

t

)

p

a

t

t

e

r

n

:

p

c

l

i

e

n

t

:

c

)

r

e

t

u

r

n

]

]

;

R

e

s

u

l

t

H

o

l

d

e

r

d

e

f

i

n

e

:

O

b

j

e

c

t

M

a

k

e

R

e

s

u

l

t

H

o

l

d

e

r

;

M

a

k

e

L

a

z

y

M

i

x

i

n

:

[

w

h

o

d

e

f

i

n

e

;

w

h

o

:

w

C

l

o

n

i

n

g

M

e

t

h

o

d

:

[

w

h

o

<

-

w

]

;

s

e

n

d

:

p

c

l

i

e

n

t

:

c

M

e

t

h

o

d

:

[

(

R

e

s

u

l

t

H

o

l

d

e

r

r

e

c

e

i

v

e

r

:

w

h

o

p

a

t

t

e

r

n

:

p

c

l

i

e

n

t

:

c

)

r

e

t

u

r

n

]

]

;

L

a

z

y

d

e

f

i

n

e

:

O

b

j

e

c

t

M

a

k

e

L

a

z

y

;

P

o

i

n

t

d

e

f

i

n

e

:

…

;

p

d

e

f

i

n

e

:

(

L

a

z

y

w

h

o

:

(

(

P

o

i

n

t

x

:

3

y

:

4

)

a

s

M

e

t

a

)

)

a

s

O

b

j

e

c

t

;

-

-

-

p

c

o

n

t

a

i

n

s

a

l

a

z

y

p

o

i

n

t

n

o

w

The definitions of both the 'asObject' and 'asExpression' operators are
straightforward.

A Reflective Framework

179

Installing Expressions and Meta-Objects (without precautions to avoid
reflective overlap)

c

l

a

s

s

A

b

s

t

r

a

c

t

E

x

p

r

e

s

s

i

o

n

m

e

t

h

o

d

s

r

e

i

f

i

e

r

a

s

O

b

j

e

c

t

r

e

s

u

l

t

A

b

s

t

r

a

c

t

M

e

t

a

O

b

j

e

c

t

u

s

i

n

g

(

c

o

n

t

e

x

t

:

S

t

a

n

d

a

r

d

C

o

n

t

e

x

t

)

^

(

(

s

e

l

f

e

v

a

l

:

c

o

n

t

e

x

t

)

a

s

I

m

p

l

i

c

i

t

)

e

n

d

c

l

a

s

s

c

l

a

s

s

A

b

s

t

r

a

c

t

E

x

p

r

e

s

s

i

o

n

m

e

t

h

o

d

s

r

e

i

f

i

e

r

a

s

E

x

p

r

e

s

s

i

o

n

r

e

s

u

l

t

A

b

s

t

r

a

c

t

M

e

t

a

O

b

j

e

c

t

u

s

i

n

g

(

c

o

n

t

e

x

t

:

S

t

a

n

d

a

r

d

C

o

n

t

e

x

t

)

^

(

(

(

s

e

l

f

e

v

a

l

:

c

o

n

t

e

x

t

)

a

s

I

m

p

l

i

c

i

t

)

e

v

a

l

:

c

o

n

t

e

x

t

)

e

n

d

c

l

a

s

s

This last definition is an interesting one since it illustrates two important aspects
of a reflective system. The first is the notion of reflection levels. In the definition
of the 'asExpression' reifier it is apparent that two evaluation messages are sent.
Unlike a recursive call to the evaluator function, the above calls to the evaluator
are 'cascaded'. The second call to the evaluator is sent to the result of the first
evaluation. This obviously gives rise to layers of evaluation (reflection levels).
All usages of the 'asExpression' reifier need two layers of evaluation. Closely
connected is the notion of reflective overlap. The 'asExpression' reifier suffers
from it since both layers of evaluation use the same context.

5.2.4 Nature of Meta-Programs and Reflective Overlap

As illustrated in the example in which contexts where reified, the 'asExpression'
reifier introduces a form of reflective overlap. An explicitly encoded expression
object is evaluated in the same context that will be passed as argument of the
implicitly sent evaluation message. This reflective overlap can, but must not
necessarily, be avoided. If we do want to avoid reflective overlap, the question of
what should be considered part of the meta-program and what should be
considered part of the object-level program must be answered.

As we saw in the first quoting example, quoting introduces a natural boundary
between meta-program and object-level program. The result of a quote expression
is a new object-level program. Conversely the expression-definition used in an
'asExpression' reifier should be part of the meta-program since, conceptually, it
adds an expression type to the open implementation. Consider the following
example. Obviously the main part of the program can be interpreted as a meta-
level program. It defines a 'constant 3' expression, and evaluates some quoted
object-level program. It is more than natural that, in the object-level program,
this newly defined expression type can be used. Therefore the expression-
definitions used in calls to the asExpression reifier from within the object-level
program should be evaluated in the context of the meta-program rather than in
the context of the object-level program. Such a strict separation of the meta-
context and the object-level context also solves our problem of reflective overlap.
The following example features the variant reifiers 'cleanQuote' and
'cleanAsExpression' that avoid reflective overlap.

Chapter 5

180

M

a

k

e

C

o

n

s

t

a

n

t

3

E

x

p

M

i

x

i

n

:

[

e

v

a

l

:

c

o

n

t

e

x

t

M

e

t

h

o

d

:

[

(

3

a

s

M

e

t

a

)

r

e

t

u

r

n

]

]

;

C

o

n

s

t

a

n

t

3

E

x

p

d

e

f

i

n

e

:

O

b

j

e

c

t

M

a

k

e

C

o

n

s

t

a

n

t

3

E

x

p

;

E

m

p

t

y

C

o

n

t

e

x

t

d

e

f

i

n

e

:

…

;

-

-

-

a

n

i

n

i

t

i

a

l

l

y

e

m

p

t

y

c

o

n

t

e

x

t

a

P

r

o

g

r

a

m

d

e

f

i

n

e

;

a

P

r

o

g

r

a

m

<

-

(

(

C

o

n

s

t

a

n

t

3

E

x

p

c

l

e

a

n

A

s

E

x

p

r

e

s

s

i

o

n

)

p

r

i

n

t

)

c

l

e

a

n

Q

u

o

t

e

;

a

P

r

o

g

r

a

m

e

v

a

l

:

(

E

m

p

t

y

C

o

n

t

e

x

t

c

l

o

n

e

)

-

-

-

p

r

i

n

t

s

"

3

"

Trivially, reflective overlap can be avoided by keeping track of meta-contexts by
means of a stack mechanism. The explicitly given context in which a quoted
expression is evaluated is pushed on the stack of meta-contexts. This stack is
popped to return to the meta-level when the receiver expression of the
asExpression reifier is evaluated.

Quoting Expressions
c

l

a

s

s

Q

u

o

t

e

E

x

p

r

e

s

s

i

o

n

e

x

t

e

n

d

s

A

b

s

t

r

a

c

t

E

x

p

r

e

s

s

i

o

n

i

n

s

t

a

n

c

e

v

a

r

i

a

b

l

e

s

q

u

o

t

e

:

A

b

s

t

r

a

c

t

E

x

p

r

e

s

s

i

o

n

i

n

C

o

n

t

e

x

t

:

S

t

a

n

d

a

r

d

C

o

n

t

e

x

t

m

e

t

h

o

d

s

c

o

n

c

r

e

t

e

e

v

a

l

:

c

o

n

t

e

x

t

r

e

s

u

l

t

A

b

s

t

r

a

c

t

M

e

t

a

O

b

j

e

c

t

^

(

q

u

o

t

e

e

v

a

l

:

(

c

o

n

t

e

x

t

p

u

s

h

:

i

n

C

o

n

t

e

x

t

)

)

e

n

d

c

l

a

s

s

c

l

a

s

s

A

b

s

t

r

a

c

t

E

x

p

r

e

s

s

i

o

n

a

b

s

t

r

a

c

t

c

l

a

s

s

a

t

t

r

i

b

u

t

e

s

Q

u

o

t

e

E

x

p

r

e

s

s

i

o

n

m

e

t

h

o

d

s

r

e

i

f

i

e

r

c

l

e

a

n

Q

u

o

t

e

r

e

s

u

l

t

A

b

s

t

r

a

c

t

M

e

t

a

O

b

j

e

c

t

u

s

i

n

g

(

c

o

n

t

e

x

t

:

S

t

a

n

d

a

r

d

C

o

n

t

e

x

t

)

^

(

(

Q

u

o

t

e

E

x

p

r

e

s

s

i

o

n

q

u

o

t

e

:

s

e

l

f

i

n

C

o

n

t

e

x

t

:

c

o

n

t

e

x

t

)

a

s

E

x

p

l

i

c

i

t

)

e

n

d

c

l

a

s

s

Installing Expressions and Meta-Objects
c

l

a

s

s

A

b

s

t

r

a

c

t

E

x

p

r

e

s

s

i

o

n

m

e

t

h

o

d

s

r

e

i

f

i

e

r

c

l

e

a

n

A

s

E

x

p

r

e

s

s

i

o

n

r

e

s

u

l

t

A

b

s

t

r

a

c

t

M

e

t

a

O

b

j

e

c

t

u

s

i

n

g

(

c

o

n

t

e

x

t

:

S

t

a

n

d

a

r

d

C

o

n

t

e

x

t

)

^

(

(

(

s

e

l

f

e

v

a

l

:

(

c

o

n

t

e

x

t

p

o

p

)

)

a

s

I

m

p

l

i

c

i

t

)

e

v

a

l

:

c

o

n

t

e

x

t

)

e

n

d

c

l

a

s

s

5.2.5 Dynamic Reflection and Infinite Regress

As we said in the previous section, reflective overlap need not necessarily be
avoided. One particular case where reflective overlap comes in handy is in the
definition of dynamic reflection. As we explained in the second chapter, dynamic
reflection is characterised by the fact that the number of times a program
regresses is dynamically determined. Below is an example of a program that
regresses infinitely (reflecting upon one's own behaviour in an infinitely recursive
way). A regression expression is used in the evaluation of its own evaluation
method. This definition looks very similar to a meta-circular definition, except
for the fact that in this case there is no special provision to 'bottom out' of the
circularity. The meta-circular definition is effectively used in its own
interpretation.

A Reflective Framework

181

M

a

k

e

R

e

g

r

e

s

s

i

n

g

E

x

p

r

e

s

s

i

o

n

M

i

x

i

n

:

[

e

v

a

l

:

c

o

n

t

e

x

t

M

e

t

h

o

d

:

[

(

R

e

g

r

e

s

s

i

n

g

E

x

p

r

e

s

s

i

o

n

a

s

E

x

p

r

e

s

s

i

o

n

)

r

e

t

u

r

n

]

]

;

R

e

g

r

e

s

s

i

n

g

E

x

p

r

e

s

s

i

o

n

d

e

f

i

n

e

:

O

b

j

e

c

t

M

a

k

e

R

e

g

r

e

s

s

i

n

g

E

x

p

r

e

s

s

i

o

n

;

(

R

e

g

r

e

s

s

i

n

g

E

x

p

r

e

s

s

i

o

n

a

s

E

x

p

r

e

s

s

i

o

n

)

-

-

-

i

n

f

i

n

i

t

e

r

e

g

r

e

s

s

i

o

n

The definition above is only possible in the case where the version of the
'asExpression' reifier is used that suffers from reflective overlap. Obviously,
infinite meta-regress is easily constructed with such reifiers. Less obvious is how
this sort of reflection can be applied to practical situations. This is reminiscent of
what we said in our introduction of reflection: what use is it to keep on reasoning
about one's self if this does not improve one's reasoning about the world. The use
of dynamic reflection is in fact an open question. Here, we only point out a
possible candidate that uses dynamic reflection in a useful way.

We talk about dynamic reflection when the number of 'reflection levels' is
dynamically determined. One particular form of dynamic reflection occurs when
the number of explicit meta-objects a particular object has, is dynamically
determined — i.e. if the 'asObject' reifier has been applied a dynamically
determined number of times. Notice that this is another kind of dynamic
reflection than the above reifier that uses itself recursively in its evaluation
method (leading to an undetermined number of evaluation levels). The dynamic
aspect here has to do with levels of explicitly encoded 'send:client:' methods
that are used in sending 'send:client:' messages (as depicted if figure 5.6). We
will try to show that this can occur in a practical situation.

Consider writing a meta-circular definition for the Agora framework. One part of
the job in doing so, is implementing a linguistic symbiosis between the newly
defined Agora and its implementation language, the already defined Agora. The
fact that both sorts of objects — the implicit Agora objects, and the explicit Agora
objects — are so closely related doesn't seem to help. The problem is that objects
need to shift levels. But, this is exactly the functionality provided by the
'asObject' and 'asMeta' reifiers. So, in the reflective variant of Agora, level
shifting of objects can be absorbed. This is illustrated in the following sample of a
hypothetical meta-circular Agora definition.

M

a

k

e

M

e

t

a

O

b

j

e

c

t

M

i

x

i

n

:

[

…

s

e

n

d

:

p

a

t

t

e

r

n

c

l

i

e

n

t

:

c

l

i

e

n

t

M

e

t

h

o

d

:

[

…

]

;

a

s

I

m

p

l

i

c

i

t

M

e

t

h

o

d

:

[

(

s

e

l

f

a

s

O

b

j

e

c

t

)

r

e

t

u

r

n

]

…

]

;

M

a

k

e

O

b

j

e

c

t

T

h

a

t

C

a

n

B

e

M

a

d

e

E

x

p

l

i

c

i

t

M

i

x

i

n

:

[

a

s

E

x

p

l

i

c

i

t

M

e

t

h

o

d

:

[

(

s

e

l

f

a

s

M

e

t

a

)

r

e

t

u

r

n

]

]

Notice that with each application of the 'asObject' reifier (to some object) in a
program executed by the meta-circular Agora interpreter corresponds an
application of the 'asObject' reifier in the code of the meta-circular interpreter
(in fact to the meta-object, see figure 5.7). The number of times the 'asObject'
reifier is applied to some object in the meta-circular interpreter is determined by
the program it is evaluating. From the standpoint of this meta-circular
definition this number is dynamically determined.

Chapter 5

182

Making
Explici t

Implementation
Language

Meta-Circularly
Interpreted Agora

has as Referent (reF)

send:#m client:…

Message
m

Meta-Object

has as Referent (reF)

 send:#send

asM
eta

has as Refer ent (reF)

Agora

send:#send

m

send:#m client:…

asM
eta

Meta-Circularly
Encoded Meta-Object

Referent of
ExplicitlyReferabl eMetaObject

Referent of
Meta-Circularly Encoded Meta-Object

has as Referent (reF)

Figure 5.7

5.2.6 Full Abstraction and Compositionality

A final issue that is partially left open, is the role of compositionality and full
abstraction in reflective programming languages. Apart from extensibility issues
(as discussed before), it is clear that both concepts have an important role to
play.

First of all full abstraction guarantees us that the meta-level programmer can not
'mess things up' more than is possible at the object level. For example, in a
reflective object-oriented programming language where objects are not
represented fully abstractly, a programmer can always break the encapsulation
of objects. Consider again the non-abstract representation of meta-objects in the
form of slot objects (see chapter 3). Imagine a reflective programming variant of
Agora based on this alternative kind of meta-objects. As shown in the next
example, in that case encapsulation of objects can not be ensured. The example
features a turtle class that tries to encapsulate its location and heading
variables. However, at the meta-level these instance variables can be freely
accessed.

U

n

a

r

y

P

a

t

t

e

r

n

d

e

f

i

n

e

:

…

;

-

-

-

a

p

a

t

t

e

r

n

p

r

o

t

o

t

y

p

e

M

a

k

e

T

u

r

t

l

e

M

i

x

i

n

:

[

l

o

c

a

t

i

o

n

d

e

f

i

n

e

:

P

o

i

n

t

r

h

o

:

0

t

h

e

t

a

:

0

*

p

i

;

h

e

a

d

i

n

g

d

e

f

i

n

e

:

0

*

p

i

;

h

o

m

e

C

l

o

n

i

n

g

M

e

t

h

o

d

:

[

…

]

;

t

u

r

n

:

t

u

r

n

M

e

t

h

o

d

:

[

…

]

;

f

o

r

w

a

r

d

:

d

i

s

t

a

n

c

e

M

e

t

h

o

d

:

[

…

]

]

;

T

u

r

t

l

e

d

e

f

i

n

e

:

O

b

j

e

c

t

M

a

k

e

T

u

r

t

l

e

;

t

u

r

t

l

e

L

o

c

a

t

i

o

n

d

e

f

i

n

e

;

a

T

u

r

t

l

e

d

e

f

i

n

e

:

T

u

r

t

l

e

h

o

m

e

;

A Reflective Framework

183

-

-

-

b

r

e

a

k

i

n

g

t

h

e

t

u

r

t

l

e

'

s

e

n

c

a

p

s

u

l

a

t

i

o

n

t

u

r

t

l

e

L

o

c

a

t

i

o

n

<

-

(

(

(

a

T

u

r

t

l

e

a

s

M

e

t

a

)

l

o

o

k

u

p

:

(

U

n

a

r

y

P

a

t

t

e

r

n

n

a

m

e

:

"

l

o

c

a

t

i

o

n

"

)

)

v

a

l

u

e

)

a

s

O

b

j

e

c

t

Another way to look at this is that in a non abstract implementation, the view
one has on objects at the implementation level is a finer view (finer in the sense
that one sees more implementation details) than one has at the programming
level. Since in a reflective system it is possible to switch between these levels, it
is always possible to take the finer view. This makes reasoning about programs
more difficult, and diminishes reusability. Similar remarks apply for
compositionality.

Compositionality and full abstraction also have implications on possible
optimisation techniques. It is for example, easier to provide alternative
implementation strategies for abstract object representations than for non abstract
object representations. Also reification of expressions in a compositional way is a
prerequisite for a compositional semantic definition of a reflective language
[Malmkjær90].

So, compositionality and abstraction, indeed play an important role in reflective
programming languages that transcends the role they play in the definition of
open implementations. However, it is not yet possible to estimate the full
consequences of both.

 5.3 Object-Oriented Reflection

The above reflection operators do not give full access to the open implementation
of Agora. Although an operator was presented to add new expression types one
important aspect of Agora was ignored: that of reifiers. Another element that
was ignored is the ability to extend the existing classes from the framework that
constitutes Agora's implementation. We will show that a more fine-grained
linguistic symbiosis is needed.

5.3.1. The Evaluation and Declaration of Reifiers

Since Agora itself is a full-fledged object-oriented programming language,
considerable freedom exists in the choice of reflection operators. Moreover, since
Agora aims to be a general purpose programming language, an important factor in
the choice of reflection operators, apart from being complete, is their practical
applicability, and ease of use.

Agora is best extended with new expression types by the addition of new reifiers.
We will discuss the different characteristics of two sorts of reifiers that exist in
Agora: that of reifier classes, and that of reifier methods. We will see that
reifier classes are more appropriate for dynamic reflection and that reifier
methods are more appropriate for static reflection. The evaluation of reifier
expressions (both messages and receiverless messages) has been left open until
now. All that was said is that somehow each time a reifier expression is
evaluated, a corresponding reifier method or class has to be evaluated. Given the
above symbiosis, we are now ready to show a possible interpretation of reifier
expressions.

Chapter 5

184

Reifier Classes
The first kind of reifier expressions that will be discussed are the receiverless
reifier expressions, or also called reifier pattern expressions. An example reifier
pattern expression is given below. The receiverless 'trace' reifier will first give
rise to the creation of an implicit trace expression object that is then sent an
implicit evaluation message.

p

d

e

f

i

n

e

:

P

o

i

n

t

;

p

x

:

3

y

:

4

;

p

<

-

t

r

a

c

e

:

p

;

-

-

-

f

r

o

m

h

e

r

e

o

n

a

l

l

m

e

s

s

a

g

e

s

t

o

p

w

i

l

l

b

e

t

r

a

c

e

d

We are now ready to show how reifier pattern expressions can be interpreted.
Two choices exist according to whether we want to avoid reflective overlap or
not. We will take the latter choice. The idea is that the expression object that
corresponds to a reifier pattern is to be found in the evaluation context. The
corresponding expression object is looked up by sending a message to the
evaluation context. The arguments of this message are explicit expression objects.
When a correct expression object is found, it is made implicit and it is sent an
evaluation message. Notice that the pattern with which the expression object is
looked up is a reifier pattern.

Agora Receiverless Reifier Message Passing
c

l

a

s

s

R

e

i

f

i

e

r

P

a

t

t

e

r

n

E

x

p

r

e

s

s

i

o

n

e

x

t

e

n

d

s

A

b

s

t

r

a

c

t

E

x

p

r

e

s

s

i

o

n

a

b

s

t

r

a

c

t

c

l

a

s

s

a

t

t

r

i

b

u

t

e

s

S

t

a

n

d

a

r

d

C

l

i

e

n

t

i

n

s

t

a

n

c

e

v

a

r

i

a

b

l

e

s

p

a

t

t

e

r

n

:

A

b

s

t

r

a

c

t

R

e

i

f

i

e

r

P

a

t

t

e

r

n

m

e

t

h

o

d

s

c

o

n

c

r

e

t

e

e

v

a

l

:

c

o

n

t

e

x

t

r

e

s

u

l

t

A

b

s

t

r

a

c

t

M

e

t

a

O

b

j

e

c

t

l

o

c

a

l

v

a

r

i

a

b

l

e

s

r

e

i

f

i

e

r

A

r

g

u

m

e

n

t

s

:

A

r

g

u

m

e

n

t

L

i

s

t

r

e

i

f

i

e

r

I

n

s

t

a

n

c

e

:

A

b

s

t

r

a

c

t

M

e

t

a

O

b

j

e

c

t

f

o

r

e

a

c

h

a

r

g

u

m

e

n

t

i

n

p

a

t

t

e

r

n

d

o

r

e

i

f

i

e

r

A

r

g

u

m

e

n

t

s

a

d

d

:

(

a

r

g

u

m

e

n

t

a

s

E

x

p

l

i

c

i

t

)

r

e

i

f

i

e

r

I

n

s

t

a

n

c

e

:

=

c

o

n

t

e

x

t

p

r

i

v

a

t

e

s

e

n

d

:

(

p

a

t

t

e

r

n

a

s

C

a

t

e

g

o

r

y

:

c

o

n

t

e

x

t

)

c

l

i

e

n

t

:

(

S

t

a

n

d

a

r

d

C

l

i

e

n

t

a

r

g

u

m

e

n

t

s

:

r

e

i

f

i

e

r

A

r

g

u

m

e

n

t

s

)

^

r

e

i

f

i

e

r

I

n

s

t

a

n

c

e

a

s

I

m

p

l

i

c

i

t

e

v

a

l

:

c

o

n

t

e

x

t

e

n

d

c

l

a

s

s

The following example shows how to declare reifier expression objects. The
definition of a reifier object is that of any explicitly encoded expression object. In
this case a tracing expression is implemented that defines how to make a tracing
meta-object. The mapping between the 'trace:' reifier pattern and the trace
expression object takes the form of a private method declaration. This private
method is executed each time the trace reifier is evaluated. Notice that it is
declared with a reifier pattern as head.

M

a

k

e

T

r

a

c

i

n

g

O

b

j

e

c

t

M

i

x

i

n

:

[

w

h

o

d

e

f

i

n

e

;

w

h

o

:

w

C

l

o

n

i

n

g

M

e

t

h

o

d

:

[

w

h

o

<

-

w

]

;

s

e

n

d

:

p

a

t

t

e

r

n

c

l

i

e

n

t

:

c

l

i

e

n

t

m

e

t

h

o

d

:

[

…

p

u

t

t

r

a

c

e

i

n

f

o

r

m

a

t

i

o

n

o

n

s

c

r

e

e

n

…

(

w

h

o

s

e

n

d

:

p

a

t

t

e

r

n

c

l

i

e

n

t

:

c

l

i

e

n

t

)

r

e

t

u

r

n

]

]

;

T

r

a

c

i

n

g

O

b

j

e

c

t

d

e

f

i

n

e

:

O

b

j

e

c

t

M

a

k

e

T

r

a

c

i

n

g

O

b

j

e

c

t

;

A Reflective Framework

185

M

a

k

e

T

r

a

c

i

n

g

E

x

p

r

e

s

s

i

o

n

M

i

x

i

n

:

[

e

x

p

d

e

f

i

n

e

;

t

r

a

c

e

:

e

C

l

o

n

i

n

g

M

e

t

h

o

d

:

[

e

x

p

<

-

e

]

;

e

v

a

l

:

c

o

n

t

e

x

t

M

e

t

h

o

d

:

[

(

T

r

a

c

i

n

g

O

b

j

e

c

t

w

h

o

:

(

e

e

v

a

l

:

c

o

n

t

e

x

t

)

)

r

e

t

u

r

n

]

]

;

T

r

a

c

i

n

g

E

x

p

r

e

s

s

i

o

n

d

e

f

i

n

e

:

O

b

j

e

c

t

M

a

k

e

T

r

a

c

i

n

g

E

x

p

r

e

s

s

i

o

n

;

(

t

r

a

c

e

:

e

)

p

r

i

v

a

t

e

M

e

t

h

o

d

:

T

r

a

c

i

n

g

E

x

p

r

e

s

s

i

o

n

t

r

a

c

e

:

e

;

p

d

e

f

i

n

e

:

P

o

i

n

t

;

p

x

:

3

y

:

4

;

p

<

-

t

r

a

c

e

:

p

;

-

-

-

f

r

o

m

h

e

r

e

o

n

a

l

l

m

e

s

s

a

g

e

s

t

o

p

w

i

l

l

b

e

t

r

a

c

e

d

With the above mechanism local extensions to Agora can be made at run-time. A
program is evaluated under a local extension of the class hierarchy. Such a local
extension takes the form of a set of reifier declarations.

Other such mechanisms can be devised (e.g. global reifier declarations, recursive
reifier declarations). They all share the property that programs can, during
execution time, extend the set of reifiers that can be used. Obviously, in some
cases this ability must go hand in hand with a mechanism for handling
reflective overlap. The notion of meta-contexts can be reused for these purposes.

Reifier Methods
The evaluation of reifier expressions has been left open until now. All that was
said is that somehow each time a reifier message is sent, the correct reifier
method has to be executed. We are now ready to show how reifier messages can be
interpreted as a special kind of messages. What is needed for this special
interpretation is the notion of a linguistic symbiosis. Reifier messages are nothing
but messages sent to converted expression objects. Besides passing all converted
component expressions as arguments, the context also needs to be passed to the
receiver expression object.

Agora Reifier Message Passing
c

l

a

s

s

R

e

i

f

i

e

r

M

e

s

s

a

g

e

E

x

p

r

e

s

s

i

o

n

e

x

t

e

n

d

s

A

b

s

t

r

a

c

t

E

x

p

r

e

s

s

i

o

n

a

b

s

t

r

a

c

t

c

l

a

s

s

a

t

t

r

i

b

u

t

e

s

R

e

i

f

i

e

r

C

l

i

e

n

t

i

n

s

t

a

n

c

e

v

a

r

i

a

b

l

e

s

r

e

c

e

i

v

e

r

:

A

b

s

t

r

a

c

t

E

x

p

r

e

s

s

i

o

n

,

p

a

t

t

e

r

n

:

A

b

s

t

r

a

c

t

R

e

i

f

i

e

r

P

a

t

t

e

r

n

m

e

t

h

o

d

s

c

o

n

c

r

e

t

e

e

v

a

l

:

c

o

n

t

e

x

t

r

e

s

u

l

t

A

b

s

t

r

a

c

t

M

e

t

a

O

b

j

e

c

t

l

o

c

a

l

v

a

r

i

a

b

l

e

s

r

e

i

f

i

e

r

A

r

g

u

m

e

n

t

s

:

A

r

g

u

m

e

n

t

L

i

s

t

f

o

r

e

a

c

h

a

r

g

u

m

e

n

t

i

n

p

a

t

t

e

r

n

d

o

r

e

i

f

i

e

r

A

r

g

u

m

e

n

t

s

a

d

d

:

(

a

r

g

u

m

e

n

t

a

s

E

x

p

l

i

c

i

t

)

r

e

i

f

i

e

r

A

r

g

u

m

e

n

t

s

a

d

d

:

(

c

o

n

t

e

x

t

a

s

E

x

p

l

i

c

i

t

)

^

(

r

e

c

e

i

v

e

r

a

s

E

x

p

l

i

c

i

t

)

s

e

n

d

:

(

p

a

t

t

e

r

n

a

s

C

a

t

e

g

o

r

y

:

c

o

n

t

e

x

t

)

c

l

i

e

n

t

:

(

R

e

i

f

i

e

r

C

l

i

e

n

t

a

r

g

u

m

e

n

t

s

:

r

e

i

f

i

e

r

A

r

g

u

m

e

n

t

s

)

e

n

d

c

l

a

s

s

Thus, reifier declarations in Agora are nothing but special method declarations
within expression objects. What differentiates a reifier from any other method is
that it has an implicit context argument2. An example reifier declaration can be
found below. It should be declared in a pattern class.

2 In fact message passing to explicitly referable objects must be adapted accordingly. Also the
client that carries the reifier arguments must allow one extra argument.

Chapter 5

186

(

P

r

i

v

a

t

e

M

e

t

h

o

d

:

r

i

g

h

t

h

a

n

d

)

u

s

i

n

g

:

c

o

n

t

e

x

t

r

e

i

f

i

e

r

:

[

c

o

n

t

e

x

t

p

r

i

v

a

t

e

S

l

o

t

s

a

d

d

:

(

M

e

t

h

o

d

S

l

o

t

k

e

y

:

s

e

l

f

v

a

l

u

e

:

r

i

g

h

t

h

a

n

d

)

]

The implementation of the "using:reifier:" reifier simply adds a reifier slot to
the public part of the object in which this declaration took place. A reifier slot
differs from other method slots by the fact that it can handle hidden context
arguments (the formal argument name of the hidden argument is stored in this
slot).

c

l

a

s

s

A

b

s

t

r

a

c

t

R

e

i

f

i

e

r

P

a

t

t

e

r

n

a

b

s

t

r

a

c

t

c

l

a

s

s

a

t

t

r

i

b

u

t

e

s

R

e

i

f

i

e

r

S

l

o

t

m

e

t

h

o

d

s

r

e

i

f

i

e

r

u

s

i

n

g

:

c

o

n

t

e

x

t

P

a

t

t

e

r

n

r

e

i

f

i

e

r

:

b

o

d

y

r

e

s

u

l

t

A

b

s

t

r

a

c

t

M

e

t

a

O

b

j

e

c

t

u

s

i

n

g

(

d

e

c

l

a

r

a

t

i

o

n

C

o

n

t

e

x

t

:

S

t

a

n

d

a

r

d

C

o

n

t

e

x

t

)

d

e

c

l

a

r

a

t

i

o

n

C

o

n

t

e

x

t

p

u

b

l

i

c

S

l

o

t

s

a

d

d

:

(

R

e

i

f

i

e

r

S

l

o

t

k

e

y

:

s

e

l

f

v

a

l

u

e

:

b

o

d

y

u

s

i

n

g

:

c

o

n

t

e

x

t

P

a

t

t

e

r

n

)

e

n

d

c

l

a

s

s

The disadvantage of reifier methods is that they necessarily lead to a more
static form of reflection. Reifiers can be declared in newly created expression
classes. The problem is that when a program is being executed all expression-
objects are already instantiated. One either has to devise some mechanism
whereby reifier methods can be added to already existing expression objects — for
example in the form of some reclassification mechanism — or one falls back upon
a more static form of reflection. Let us consider the latter.

Expression classes must be defined prior to using them in the construction of
program trees. This leads us to a form of reflection highly inspired upon the
pragmatics of the existing open implementation of Agora. In practice the open
implementation of Agora is used as follows. First, new kinds of expressions,
objects, etc. are constructed by inheriting from, and extending the existing class
hierarchies. Then, these new classes are used by the programming environment
(e.g. the parser) to construct a program tree. Finally this program tree is executed.
The difference is that now expression classes can be expressed in Agora.

The advantage of the above approach is that all the power that comes with
nested mixins can be used in structuring the class hierarchy of for example
expressions. Particular extensions of Agora can be grouped together in mixins, and
nesting and overriding of mixins can be used to record dependencies between such
groups of extensions.

The disadvantage of this approach is that, if we literally follow the above, the
entire programming environment for Agora must be made explicit in Agora. In
some cases this may be just what we wanted (the Smalltalk programming
environment for example is explicitly encoded in Smalltalk). In other cases this
may be a dramatic overhead. Other solutions exist however. The techniques used
in opening up the implementation of Agora's evaluator may equally well be
applied to a programming environment. It is then only a question of making the
interface of this open implemented programming environment available to the
Agora programmer. For the time being, this issue remains open.

Another, more important disadvantage is that reflection, in the above, is reduced
to a static mechanism. Although in a literal sense programs implicitly reflect
during run-time, all extensions to Agora are made prior to running a program with
this extended version of Agora.

A Reflective Framework

187

5.3.1. Need for a More Fine-Grained Linguistic Symbiosis

The above reflection operators do not give full access to the open implementation
of Agora. What is lacking is the ability to extend existing classes from the
framework that constitutes Agora's implementation. Agora's implementation
hierarchy must be made accessible from within Agora. In practice this class
hierarchy can be made available as a library of mixins. For the expression
hierarchy, for example, this means that the following library of nested mixins —
of which the root mixins are applicable to the root object — are made available:

M

a

k

e

A

b

s

t

r

a

c

t

E

x

p

r

e

s

s

i

o

n

M

a

k

e

M

e

s

s

a

g

e

E

x

p

r

e

s

s

i

o

n

M

a

k

e

R

e

i

f

i

e

r

M

e

s

s

a

g

e

E

x

p

r

e

s

s

i

o

n

M

a

k

e

A

g

g

r

e

g

a

t

e

E

x

p

r

e

s

s

i

o

n

M

a

k

e

L

i

t

e

r

a

l

E

x

p

r

e

s

s

i

o

n

M

a

k

e

P

a

t

t

e

r

n

E

x

p

r

e

s

s

i

o

n

M

a

k

e

R

e

i

f

i

e

r

P

a

t

t

e

r

n

E

x

p

r

e

s

s

i

o

n

M

a

k

e

A

b

s

t

r

a

c

t

P

a

t

t

e

r

n

M

a

k

e

U

n

a

r

y

P

a

t

t

e

r

n

M

a

k

e

O

p

e

r

a

t

o

r

P

a

t

t

e

r

n

M

a

k

e

K

e

y

w

o

r

d

P

a

t

t

e

r

n

M

a

k

e

A

b

s

t

r

a

c

t

R

e

i

f

i

e

r

P

a

t

t

e

r

n

M

a

k

e

U

n

a

r

y

R

e

i

f

i

e

r

P

a

t

t

e

r

n

M

a

k

e

O

p

e

r

a

t

o

r

R

e

i

f

i

e

r

P

a

t

t

e

r

n

M

a

k

e

K

e

y

w

o

r

d

R

e

i

f

i

e

r

P

a

t

t

e

r

n

Similar libraries of mixins must be made available for all other class
hierarchies in the implementation. Each of these mixins can then be used to
extend the implementation hierarchy of Agora.

The symbiosis of Agora and its implementation language that was achieved in
the previous section is not sufficient for this purpose. Given our goal, a more fine-
grained symbiosis of Agora and its implementation language is called for. In
particular, what is needed is that Agora objects can inherit from implicitly
encoded objects. If we divide an object into sub-objects corresponding to the
inheritance structure, then the following figure depicts what is needed.

Implementation Language Agora

Implementation
Sub-Object Agor a Sub-Object

Inher its

Figure 5.8

Since Agora's inheritance mechanism is prototype-, and mixin-based,
technically, this can become non-trivial. We will not go into the technical
details, but just give some indications of the problems involved.

Chapter 5

188

Similarly to the symbiosis on the level of objects we need to identify how sub-
objects are represented in the implementation. As we saw in chapter 4, sub-objects
are represented internally by instances of concrete subclasses of
'AbstractInternalObject' that communicate with 'delegate:client:' messages. We
can adopt the terminology of implicitly and explicitly encoded and referable sub-
objects. We can also adopt a referent and representation relation on the level of
sub-objects. This is shown in the next figure.

Implementation Language Agora

Implicit
Internal Object Explicit Sub-Object

Inherits

super:x
 delegate:#x
 client:…
 context:…

Implicit Message
 m

has as Referent (reF)

has as Representation (reP)

has as Referent (reF)

has as Representation (reP)

Figure 5.9

The problem now is that if we want explicitly encoded objects to inherit from
implicitly encoded objects, then we need implicitly encoded objects that can be
delegated to. Consider the following ideal situation. Presume that all implicitly
encoded objects (e.g. 'AbstractExpression', 'Pattern', 'AbstractMetaObject', …) are
such that messages can be delegated to them. In that case a variant of the
'asExplicit' conversion method can be devised such that implicit objects can be
made explicit as sub-objects of explicit objects. This is depicted in figure 5.10.

So, in principle if implicitly encoded objects are objects that accept delegated
messages then a symbiosis on the level of sub-objects between Agora and its
implementations language can be realised. In practice however it is not possible
to delegate messages to implicitly encoded objects. For this to be possible either
the implementation language must be a language that supports message
delegation or all objects that are part of the implementation must be encoded such
that all methods have an extra set of delegation arguments (such as the 'self').
The former kind of languages were discarded in our analysis of object-orientation.
The latter is an ad hoc implementation. An elegant solution to this problem
remains an open issue.

A Reflective Framework

189

Agora Sub-Object
Representant for
Implementation
Sub-Object

x
Implementation Language Agora

Implicit
Internal Object Explicit Sub-Object

Inherits

super:x

has as Referent (reF)

has as Referent (reF)

Implicit Message
 m

Implementation
Sub-Object

Making
Explicit

Resulting Delegated
Message

x

 delegate:#x
 client:…
 context:…

Figure 5.10

 5.4 Conclusion and Open Issues

We conclude this section with some open issues regarding the introduction of
reflection operators in an open implemented programming language.

Both of the above approaches to reflection in Agora (i.e. receiverless and other
reifier messages) have their merits and their drawbacks. The second approach is
too static but has the nice property of seamlessly integrating reflection and meta-
programming. In the first approach reflection can be made more dynamic, but no
explicit provisions are made for meta-programming.

Another apparent distinction is the management of extensions. The first
approach is directed towards combining program pieces that are evaluated under
different versions of the base language. The second approach may have better
capabilities to combine different versions, but in its straightforward usage,
programs, as a whole, must be expressed in the same extended language. In this
situation differences may be trivially resolved, in the general case management
of extensions of the base language may become an issue [Simmons&Friedman92]
[Simmons&Friedman93].

We saw that for a considerably complex open implementation the choice of

Chapter 5

190

reflection operators can become less than trivial. The design choices one has to
make largely depend on the dynamic nature of reflection, and on how extensions
of the base language are managed. One question that can be asked is whether
reflection operators themselves can be used to introduce new reflection operators.
It is trivial to see that all possible reflective facilities can be reconstructed in a
reflective architecture (an example of a quote reifier is given below).

(

A

b

s

t

r

a

c

t

E

x

p

r

e

s

s

i

o

n

q

u

o

t

e

)

u

s

i

n

g

:

c

o

n

t

e

x

t

r

e

i

f

i

e

r

:

[

s

e

l

f

r

e

t

u

r

n

]

More interestingly, in the case of Agora for example, the reifier declaration
reifier itself can be reconstructed (meta-circularly):

(

A

b

s

t

r

a

c

t

R

e

i

f

i

e

r

P

a

t

t

e

r

n

u

s

i

n

g

:

c

o

n

t

e

x

t

P

a

t

t

e

r

n

r

e

i

f

i

e

r

:

b

o

d

y

)

u

s

i

n

g

:

d

e

c

l

a

r

a

t

i

o

n

C

o

n

t

e

x

t

r

e

i

f

i

e

r

:

[

d

e

c

l

a

r

a

t

i

o

n

C

o

n

t

e

x

t

p

u

b

l

i

c

S

l

o

t

s

a

d

d

:

(

R

e

i

f

i

e

r

S

l

o

t

k

e

y

:

s

e

l

f

v

a

l

u

e

:

b

o

d

y

u

s

i

n

g

:

c

o

n

t

e

x

t

P

a

t

t

e

r

n

)

]

It remains open to what extent and what useful reflective operators can be
introduced reflectively.

