
A Generic, Customisable, Hybrid
Structure-Oriented Editor

Koen De Hondt

Programming Technology Lab
Computer Science Department

Vrije Universiteit Brussel
Pleinlaan 2, B-1050 Brussel, Belgium

email: kdehondt@vnet3.vub.ac.be

Abstract

After a brief evaluation of some design choices of existing
structure-oriented editors, several design aspects of the Agora
Structure Editor (ASE) are discussed. In the design of ASE
ergonomics has played a very important role. This contrasts
strongly with existing systems, which seem to neglect it
altogether.

1 Introduction

Since the work of Teitelbaum and Reps on the Cornell Program Synthesizer [Teitelbaum & Reps 81],
research on structure-oriented editors and structure-oriented environments has boomed. In the last decade
many software development environments featuring a structure-oriented editor were developed, and today
structure-oriented editing still is an active research topic. Several approaches have been taken. Ad-hoc
implementations for existing programming languages have been made, structure-oriented editor
generators have been developed, structure-oriented editors have been integrated in generic environments.
Several formalisms suitable for structure-oriented editing were developed in order to represent programs
internally. Besides for programs, structure-oriented editing has also been used for manipulation of
structured documents.

Up until now, very few prototypes have left the research laboratories. Due to deficiencies in their
design, current structure-oriented editors are hard to use. They have to struggle against the well
designed text editors of today, with which programmers have a long experience. As long as ergonomics
of structure-oriented editors does not improve, the average programmer will be reluctant to use them.

We have evaluated several structure-oriented editors to pinpoint their deficiencies. Such an evaluation is
not an easy task, since not all structure-oriented editor implementations are made public. In the
literature several systems are reported on, but issues concerning ergonomics, in which we are
particularly interested, are seldom discussed. Many documents describe how a structure-oriented editor
is designed on the inside, but fail to mention what the look and feel is on the outside.
The results of our evaluation have served as basis for the design of a structure-oriented editor for Agora
[Steyaert & al. 93], an object-oriented language developed at our lab.

2 Evaluation of Existing Structure-Oriented Editors

We have evaluated several structure-oriented editors based on one report for each editor (see the
references), while two recent systems have been evaluated in detail.
SbyS, or Structure by Structure, is evaluated based on [Minör 90], [Minör 91], [Mjølner 91] and the
implementation in the Mjølner/Orm environment, version 1.3. Working in Orm, an abstract grammar

of a target language was specified and the resulting structure editor for that language was used to write
programs with. The abstract grammar was also specified with SbyS.
GSE, or Generic Text and Structure Editor, is evaluated based on [Koorn 92], [Centaur 92], [Hendriks
91] and the implementation in the Centaur environment, version 1.2. Centaur uses GSE for language
specifications in the SDF formalism. An SDF specification of a target language was given using
GSE. Since more specifications in other formalisms had to be given before Centaur could generate an
environment for the target language, GSE was not used to write target language programs with.

2 . 1 Structure Synthesis

Structure editors basically provide three operations for program construction:
• expand to replace a placeholder by a template
• insert to add a template to a list of templates
• remove to delete a template or a placeholder

Structure synthesis is done by selecting a program fragment and giving an expand command. Older
editors have as many commands as templates, recent editors display a (hierarchical) menu containing all
expansion alternatives.
Traditional structure editors only support expanding placeholders, that is, replacing a placeholder by an
appropriate grammatical construct as defined by the language's grammar. As a consequence changing
the component of a grammatical construct requires two editing steps : removal of the component and
expansion of the placeholder appearing after the removal. It is clear that such editors lack a general
replacement operation.
Structure synthesis ensures syntactical correctness of the synthesised program (modulo the non
expanded placeholders). Due to the limited editing operations some changes to the program are hard to
make. It takes a sequence of actions to carry out "complex" changes such as, for example, substituting
a program fragment by another one containing that fragment. Even "simple" changes take several
actions before completion: Changing a Modula-2 procedure to a function is a simple task when using a
text editor (adding a colon and a function type), but becomes a complicated one when using a pure
structure editor (cutting the formal parameter list, cutting the procedure body, removing the procedure
template, inserting a function template, pasting the body, pasting the formal parameter list, expanding
the function type).

2 . 2 Structural Transformation

Structural transformation is the replacement of a subtree of the program by another one that is a
transformation of the original. The two subtrees belong to the same syntactic category. For example,
replacing a statement by a loop statement containing the original statement as the body is a structural
transformation. Structural transformation solves the problems discussed at the end of the previous
section.
In [Shani 83] it is stated: "The reason for preferring textual commands to perform major structural
changes in a program is the lack of appropriate structural commands in current editors.". To date, still
little editors support structural transformations, and if they do, the transformers are usually hard coded.
Clearly, a structure editor should be open-ended concerning transformers. A fixed set of transformers is
unsatisfactory. It limits user freedom. A user should be able to add, remove and change transformers.
Hard coding them precludes modification and should therefore be avoided.
It is striking that relatively recent structure editor environment generators, like Centaur [Hendriks
91][Centaur 92], DOSE [Kaiser & al. 88], Pregmatic [van den Brand 92] and generic structure editor
environments, like Orm [Mjølner 91], do not provide any formalism to describe structural
transformations, as if structural transformation is felt to be redundant. We can only regret this fact.
Structural transformation is an indispensable structure-oriented editing tool.

2 . 3 Hybrid Editing

In the last decade there has been some discussion on the use of text-oriented commands in structure-
oriented editors [Waters 82][Shani 83][Notkin & al. 83]. Now, it is widely accepted1 that allowing text
editing in structure-oriented editors solves many interaction problems of pure structure-oriented editing,
although many existing editors restrict the way text editing should be performed by the user.

2 . 4 Other Aspects

Besides the aspects handled above, the following comments can be made about current systems: Direct
manipulation interfaces do not exist, sometimes navigation commands are awkward, search facilities are
not provided, ergonomics is almost always neglected. Discussing these topics is beyond the scope of
this paper, but a full discussion can be found in [De Hondt 93].

3 A Generic Structure-Oriented Editor

The Agora Structure Editor (ASE) is generic, that is, it is designed to be independent of the target
language. It uses the structured grammar formalism (see next section) to describe language grammars.
The production rules of the grammar are represented internally by instance of themselves (using
placeholders for non terminals). ASE interprets the production rules during editing operations. As a
consequence one can plug-in an arbitrary structured grammar in order to utilise ASE for writing
programs in the corresponding language.

3 . 1 Structured Context-Free Grammars

Standard grammars are felt to be too general for use in a structure editor environment. Therefore several
formalisms, restricting and structuring parsing grammars and abstract grammars, were developed in the
eighties. [Minör 90] gives an overview of these formalisms, of which the GRAMPS formalism
[Cameron & Ito 84] influenced the structured grammar formalisms used in Mjølner [Madsen &
Nørgaard 87][Minör 90] and the Agora Structure Editor.

A structured context-free grammar is a tuple G = (N, Ta, Ts, PA, PC, PR, PL, PX, S), with N the set
of non terminals, Ta the alphabet (identifiers and literals), Ts the surface syntax (reserved words and
punctuation marks), S the start non terminal and PA, PC, PR, PL, PX the sets of alternation rules,

construction rules, repetition rules, list rules and lexeme rules respectively. The production rules have
one of five possible forms.

A → Y1 | Y2 | … | Yk alternation rule
C → c1 Y1 c2 … Yk ck+1 construction rule

R → b Y s * e repetition rule
L → b Y s + e list rule
X → LEXEME lexeme rule

Two production rules have different left-hand sides. An alternation rule A → Y1 | Y2 | … | Yk
specifies that Y1, …, Yk are derivations of A. The non terminals in the right-hand side are mutually
different. A construction rule C → c1 Y1 c2 … Yk ck+1 specifies a heterogeneous aggregation of non

terminal symbols with the corresponding surface syntax. This form is equal to the one found in
standard context-free grammars. A repetition rule R → b Y s * e specifies a homogeneous aggregation
of non terminal symbols with the corresponding surface syntax. The rule must be read as follows : R
is a repetition of zero or more Ys separated by separator s and bracketed by begin and end delimiters b
and e. A list rule L → b Y s + e is a repetition of one or more Ys. A lexeme rule specifies that a

1SbyS is a notable exception. It is a pure structure editor. In [Minör 90], Minör argues against mixing text-oriented and
structure-oriented editing.

syntactic construct has an associated string. The format of that string is considered a lexical issue, not
a grammatical issue. Therefore it is not specified in the grammar.
One could argue that repetition rules are redundant, because repetitions could as well be described by
recursive construction productions (cf. Chomsky Normal Form). However, repetition productions
express repetitions in a natural fashion and they also result in a more convenient interaction in structure
editors.
One can prove [De Hondt 93] that for any context-free grammar G = (N, T, P, S) with T = Ta ∪ Ts and
Ta ∩ Ts = ∅ there exists a structured context-free grammar SG = (N', Ta, Ts, PA, PC, PR, PL, PX, S)

that generates the same language. Proof follows from the fact that in standard context-free grammars
repetition rules can be described with recursive construction rules.

3.2 Internal Representation

From structured context-free grammars, structured abstract grammars can be derived. The production
rules of a structured abstract grammar have the same format as the production rules of a structured
context-free grammar, but surface syntax is stripped. ASE employs abstract syntax trees based on
structured abstract grammars to represent programs internally. It extends these syntax trees with objects
representing placeholders.
The production rules of the target language's grammar are represented by abstract syntax trees
containing placeholders. The placeholders represent the production rule's right-hand side non terminals.
ASE interprets the production rules during editing to check whether structure-oriented commands are
applicable at a given time.

4 Look and Feel of the Agora Structure Editor

From the evaluation in section 2 it is clear that the design of present day structure-oriented editors
leaves room for improvement. The major goal of the Agora Structure Editor (ASE) project was to
tackle the problems existing structure-oriented editors suffer of. ASE is intended to be a generic,
customisable, hybrid structure-oriented editor in which ergonomics plays a central role. ASE is generic
because it is designed to be target language independent. It is highly customisable because structure-
oriented commands can be adapted to the user's needs. It is intended to be hybrid in order to freely mix
text-oriented editing and structure-oriented editing.

4 . 1 Structure Synthesis

ASE comes with the following structure synthesis operations: replace/expand, unexpand, insert
before/after, remove. The replace operation replaces an arbitrary structural selection by another picked
from a set of alternatives. Expansion is replacement of a placeholder, unexpansion (shrinking) is a
replacement by a placeholder. The insert before/after operations insert arbitrary program fragments
picked from a set of alternatives. When replace and insert commands are given, the user is presented a
pop-up menu containing all program fragments that can be substituted and inserted.

4 . 2 Customising Structure Synthesis Commands

ASE allows the user to customise the set of expansion alternatives used with replace and insert
operations. With every production rule of the target language's grammar a pop-up menu is associated.
These pop-up menus are nested according to the possible derivations, as laid down by the target
language's grammar. The nesting can be determined by the user. Although more than two levels are
discouraged from an ergonomic point of view, the user is free to nest as he likes, as long as the
language's grammar is not violated.

Figure 1
Figure 1 shows the interface with which the user is able to modify the expansion alternatives. On the
left, (part of) the contents of the 'Expression' menu is displayed. The triangular marker indicates that
'Message' is a submenu of the 'Expression' menu. The 'message' submenu contains three items, of
which one is selected. On the right, the program fragment (the expansion) corresponding with the
selection on the left is displayed. Expansions are represented internally as abstract syntax trees. The
text view on the right is an instance of ASE, which manipulates the expansion.

4 . 3 Structural Transformation

A structural transformation is an association between two structural patterns, the source and destination
patterns. The former specifies what program fragments the transformation is applicable on. The latter
specifies what the source looks like after transformation.
Transformation is performed by:

• pattern matching a target tree to the source pattern, associating with each placeholder in the
source the matching subtree of the target

• replacing the target tree by a copy of the destination pattern with each placeholder substituted
by its associated subtree originating from the pattern match

The transform command in the Tools menu (see figure 2) puts up a menu containing all structural
transformations applicable on the current selection. The editor determines applicability of the
transformations by pattern matching the current selection with each transformer source pattern.

Figure 2
When the menu item under the mouse pointer is selected, the current selection is transformed according
to the transformation having the name 'Method: > Method:Result:'. This transformation changes an
Agora imperative method declaration into a functional method declaration, as shown in figure 3.

Figure 3
This approach to structural transformation seems very promising. Nevertheless, investigation is still
to be done to make the pattern matching technique more powerful. The current matching technique
only supports matching a tree to a placeholder, but, in practice, matching a list of trees to a placeholder
is necessary to construct more powerful transformations. For example, one wants to be able to
transform a list containing some component into one without that component.
This technique is simple, yet powerful. Therefore it is surprising that other environments do not
provide a similar transformation operation.

4 . 4 Customising Structural Transformations

Structural transformations of the Agora Structure Editor are not hard coded, but user-defined. Providing
a language to manipulate the internal representation of a program, probably seems appealing to many
(cf. Mentol in [Donzeau-Gouge & al. 84]), but adding such a language to the environment puts a
burden on the user who has to learn an additional language and the internal representation used by the
structure editor. Therefore another approach was taken. ASE's set of structural transformations can be
interactively modified through the interface depicted in figure 4. The selected structural transformation
is the one used in figures 2 and 3. The 'original' and 'transformed' fields define the source and
destination structural patterns. The source and destination patterns specify that the selected structural
transformation can be applied to any subtree matching a method declaration and that it transforms that
method declaration into a functional method declaration with the same pattern and body.

Figure 4
Structural patterns are represented internally as abstract syntax trees and can thus be manipulated by
ASE. The 'original' and 'transformed' fields in figure 4 are in fact instances of ASE.

4 . 5 Direct Manipulation

ASE uses the pointing device as the major navigation and editing tool. Apart from textual and
structural selection, the mouse is used to implement very fast shortcuts for common editing operations.
Selecting program fragments and dragging them to another place is known as drag & drop. It can be
used to replace and insert program fragments (the two most important structure synthesis operations).
In particular identifiers can be typed once and dragged and dropped later on. Normally drag & drop has
copy behaviour, that is, the replacement fragment or the inserted fragment is a copy of the dragged
fragment. Sometimes move behaviour is more convenient: The dragged fragment is removed from its
original position in the program and put elsewhere.
Drag & drop is also an implementation of cut/copy and paste (cut for move behaviour, copy for copy
behaviour), using the whole program (and all structure editor windows on the desktop) as a random
access multiitem clipboard.
From experience with the existing prototypes it has become clear that drag & drop is a very powerful
tool. To the best of our knowledge2, the Agora Structure Editor is currently the only structure-oriented
editor featuring drag & drop.

4 . 6 Hybrid Editing

In our view a hybrid structure-oriented editor should support text editing of arbitrary program pieces.
Text editing should be possible at all times and it should not put the editor in a mode. The user should
be able to switch from text editing to structure editing and back at any time.
These design options pose some technical difficulties. When the attention is moved away from a text
edited program piece, a parser must be invoked to generate the corresponding partial abstract syntax tree.
To support hybrid editing without modes, the editor should not complain about erroneous program text.
From a technical standpoint this means that more than one erroneous program piece can exist in the
abstract syntax tree representing a program. Furthermore, these erroneous program pieces should be
subject to structure-oriented editing operations as all other program fragments. To prevent that the
abstract syntax tree turns into a tree only containing erroneous program pieces, the editor should merge
text fragments into program text that can be parsed. How erroneous pieces should be merged is still
under investigation at the time of writing.

5 Implementation Status

Several prototypes of the Agora Structure Editor exist. The first prototype (1992), implemented in
Pascal, supports construction of complete Agora programs. It provides all editing operations presented
in previous chapters, except structural transformation and general structural search & replace. It features
drag & drop and textual editing of arbitrary program pieces. Presentation schemes can be modified and
replacement and insertion menus can be adapted to the user's needs.
The current prototype is implemented in VisualWorks\Smalltalk. It is integrated in the programming
environment for Agora. Now, the editor is completely independent of Agora. An editor is available for
a target language if (1) a grammar class hierarchy for the target language is constructed, (2) those
classes are connected with the structured grammar class hierarchy used by the editor classes, (3) a parser
for the target language is provided.
The editor currently provides all structure-oriented editing operations, including structural
transformation. Transformers can be added, removed or changed through the interface presented earlier.
Due to minor technical problems involving dragging in VisualWorks\Smalltalk, drag & drop is not yet
supported, but will be in the near future. The implementation of the hybrid aspect and the search
facilities is currently ongoing.

2In [Minör 91] a direct manipulation interface for structure-oriented editors is suggested, but not implemented. Program
fragments can only be dragged from a palette onto the program, not from within the program itself.

6 Conclusion and Future Work

Some design issues of the Agora Structure Editor have been presented. What really stands out against
other work is the customisability of the editor. Replacement and insertion menus can be tailored to the
user's needs and structural transformations can be defined interactively.
Since we embrace ergonomics as a principle, and other systems seem to neglect it, ASE differs strongly
from other systems in that respect. The direct manipulation technique drag & drop is but one of the
features that raise ergonomics to a higher level.
The editor has a hybrid nature. Text editing can be initiated at any moment, at any place in the
program. No modes are introduced by the editor. The user can switch from text to structure editing and
back at any time.
Due to the fact that the design is independent of the target language, the editor can also be considered
generic. The independence relies on the application of structured grammars for internal representation of
programs. The production rules of the target language's grammar are represented internally by instances
of themselves, which are interpreted by the editor during editing.

In its current state, ASE can be used to implement other interface components. Currently ASE is
being used for inspection purposes and will be used for debugging and browsing in the near future.
Nevertheless work still needs to be carried out concerning multiple structural selection, full blown
structural transformation, search, table driven parsing, merging erroneous text fragments and conditional
program presentation.

Acknowledgements

I would like to thank Patrick Steyaert and Karel Driesen for reading drafts of this document.

References

[Allison 83] Allison, L., Syntax Directed Program Editing, Software-Practice and
Experience, Vol. 13, 453-465, 1983

[Cameron & Ito 84] Cameron, R.D., Ito, M.R., Grammar-Based Definit ion Of
Metaprogramming Systems, ACM Transactions on programming
Languages and Systems, Vol. 6, No. 1, January 1984

[Centaur 92] Centaur 1.2 Manual, September 1992
[De Hondt 93] De Hondt, K., A Customizable, Ergonomic, Hybrid Structure-Oriented

Editor, Master thesis Vrije Universiteit Brussel, August 1993
[Hendriks 91] Hendriks, P.R.H., Implementation of Modular Algebraic Specifications,

PhD thesis, University of Amsterdam, 1991
[Kaiser & al. 88] Kaiser, G.E., Feiler, P.H., Jalili, F., Schlichter, J.H., A Retrospective on

DOSE: An Interpretive Approach to Structure Editor Generation, Software—
Practice and Experience, Vol. 18(8), 733-748, August 1988

[Koorn 92] Koorn, J.W.C., GSE : A Generic Text and Structure Editor, Report P9202,
University of Amsterdam, Programming Research Group, January 1992

[Minör 90] Minör S., On Structure-Oriented Editing, PhD. Thesis, Department of
Computer Science, Lund University, Sweden, 1990

[Minör 91] Minör, S., Interacting with Structure-Oriented Editors, Technical report LU-
CS-TR:91-74, Department of Computer Science, Lund University, Sweden,
1991

[Mjølner 90] Mjølner Informatics ApS, Sif - A Hyper Structure Editor, Users Guide,
Mjølner Informatics Report MIA-90-11(0.1), November 1990

[Mjølner 91] The Mjølner Group, Mjølner/Orm User's Guide (Version 1.3), Department
of Computer Science, Lund University, Sweden, 1991

[Notkin & al. 83] Notkin, D., Habermann, N., Ellison, R., Kaiser, G., Garlan, D., Respons
to Waters' article on structure-oriented editors, SIGPLAN Notices, Vol. 18,
No. 4, April 1983

[Shani 83] Shani, U., Should Program Editors not Abandon Text Oriented Commands?,
SIGPLAN Notices, Vol. 18, No. 1, January 1983

[Shneiderman 83] Shneiderman, B., Direct Manipulation: A Step Beyond Programming
Languages, IEEE Computer, August 1983

[Steyaert & al. 93] Steyaert, P., Codenie, W., D'Hondt, T., De Hondt, K., Lucas, C., Van
Limberghen, M., Nested Mixin-Methods in Agora, Proceedings of the
ECOOP 93 Conference, July 1993

[Teitelbaum 80] Teitelbaum, T., The Cornell Program Syntheziser: A Tutorial Introduction,
Technical Report TR 79-381, Revised June 1980, Department of Computer
Science, Cornell University, Ithaca, New York, 1980

[Teitelbaum & Reps 81] Teitelbaum, T., Reps, T., The Cornell Program Synthesizer: A Syntax-
Directed Programming Environment, Communications of the ACM, Vol.
24, No. 9, September 1981

[Toleman & al. 92] Toleman, M.A., Welsh, J., Chapman, A.J., An Empirical Investigation of
Menu Design in Language-Based Editors, Proceedings of the Fifth ACM
SIGSOFT Symposium on Software Development Environments, Software
Engineering Notes, Vol. 17, No. 5, December 1992

[van den Brand 92] van den Brand, M.G.J., Pregmatic, A Generator for Incremental
Programming Environments, PhD. Thesis, Catholic University of
Nijmegen, the Netherlands, 1992

[Waters 82] Waters, R.C., Program Editors Should Not Abandon Text Oriented
Commands, SIGPLAN Notices, Vol. 17, No. 7, July 1982

[Zelkowitz 84] Zelkowitz, M.V., A Small Contribution to Editing With a Syntax Directed
Editor, Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments, SIGPLAN
Notices, Vol. 9, No. 3, May 1984

