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Abstract
In object-oriented programming languages the class concept is heavily overworked. To simplify
things, there is a tendency to unbundle the different roles they play by trying to create more
modular inheritance operators [Bracha&Lindstrom92]. This offers the advantage that classes
can be composed in a modular way. Prototype-based languages on the other hand, also provide
a simpler view on object-oriented programming, but there modular composition is totally
neglected.

We introduce a generalisation of mixin-based inheritance that combines the advantages of both
classes and prototypes. Mixin-methods introduce modular composition in prototype-based
languages.
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1. Modularity in Object-Oriented Languages
When discussing modularity in object-oriented languages at least two different tracks can be
followed. On the one hand efforts have been made to let modules (similar to those in e.g.
Modula-2) and classes/objects coexist in one language. Modula-3 and Oberon are examples of
such languages. In that view modularity is regarded from an encapsulation perspective.

The other possibility is to look at a modular way of composing objects and/or classes. We refer
e.g. to the Jigsaw language [Bracha&Lindstrom92], where modules are the primary definitional
construct and concepts as multiple inheritance, mixins, encapsulation and strong typing are all
modelled through a set of module operators. Here modularity is regarded from a composition
perspective.

It is on this second track that this paper should be situated. Nevertheless, we want to start out
with a short discussion of the concepts used in both approaches.

1.1 Modularity and Encapsulation
Conventionally modules are used as a name space management and encapsulation mechanism.
A module defines an interface — a set of public definitions — and encapsulates the
implementation of this interface. The essence of module-based encapsulation is that an item in a
module’s interface can access the implementations of all the module’s items. In other words,
with modules the implementation details are mutually visible to all items of the module. A
language is called modular if it has language constructs that support encapsulation and the
definition of interfaces.

Object-oriented programming languages share their concern about interfaces and encapsulation
with modules.With object-based encapsulation a method of some object only has access to the



encapsulated part of one object: the receiver. With module-based encapsulation all items that
share the same interface can access each others implementation details, whereas for object-
based inheritance this is not the case [Cook90].

Some object-oriented languages employ a form of class-based encapsulation. With class-based
encapsulation attributes can be declared private, but in contrast with object-based encapsulation,
all objects of the same class can invoke or access each others private attributes. Class-based
encapsulation is more akin to the more general form of module-based encapsulation.

Existing languages mostly employ object-based encapsulation. In its ideal form module-based
encapsulation should be an extra form of encapsulation on top of this, although this is not
always the case (e.g. C++ has no object-based encapsulation). Furthermore, module-based and
class-based encapsulation are often blended. It will be argued further on why this is not
desirable.

1.2 Modularity and Composition
More recently the notion of modular composition has been studied. The emphasis here is on
how modules can be combined to form new ones. This is done by a set of  composition
operators. In this approach a language is called modular if it supports modular composition.

In object-oriented languages modular composition is investigated as an alternative for
inheritance[Bracha&Lindstrom92]. The idea of inheritance is that a new class is defined by how
it differs from an already existing class. This process is referred to as incremental modification
[Wegner&Zdonik88]. Consider a simplified model of inheritance as an incremental
modification mechanism [Wegner&Zdonik88]. A parent P (the superclass) is transformed with
a modifier M to form a result R = P ∆ M = P + M(P) (the subclass); the result R can be used
as a parent for further incremental modification. The modifier M is  parameterised by a parent P
to model that a subclass can invoke operations defined in the superclass. With conventional
inheritance the modifier M has no existence of its own and generally is more or less part of the
result R.

As opposed to this asymmetric way of working a more symmetric and more modular
mechanism can be devised. Viewing the modifier M as an abstraction that exists apart from
parent and result is the essence of this approach. In [Bracha&Lindstrom92] a suite of
composition operators on modules is proposed, independently controlling effects as
combination, incremental modification, encapsulation, name resolution and sharing. They claim
that modularity is not only not in conflict with inheritance, but is its foundation.

2. Classes versus Prototypes
We will discuss the two most popular inheritance mechanisms in this section and propose an
alternative in the next one. Two criteria will be used: modularity as defined above and
orthogonality of language design. We use orthogonality as a criterion for the quality of a
programming language, thus claiming that separate concepts have to be introduced to model
separate functionalities.

2.1 Why Class-Based Languages Are Not Modular
It is clear that current class-based programming languages do not satisfy our definition of
modularity as there is no modular composition. It is however possible to achieve modular
composition in a class-based system, by introducing stand alone modifiers [Bracha & Cook90].

However, the principle of orthogonality is severly violated by the class concept. Among others,
classes are used for classification, incremental modification, constructing instances,
determining attribute visibility and typing. [Bracha&Lindstrom92] enumerates no less than 11
different roles classes play. It is widely understood that several concepts have been confused



with the notion of a class. Witness of this are numerous proposals to differentiate classes from
types [Canning et al.89], from modules [Szyperski92] and to provide sharing mechanisms that
are independent of the class construct.

We therefore agree with [Szyperski92] that some sort of module-based encapsulation is indeed
very useful in some cases, but that classes and modules are separate concepts. Therefore
module-based encapsulation should not be strictly coupled to classes, but rather modules
should be provided as an explicit language construction.

2.2 Why Prototype-Based Languages Are Not Modular
The unbundling of the different roles played by classes is one way to try to simplify things.
Parallel to this evolution is the development of prototype-based languages. They also provide a
simpler view on object-oriented programming. However, in prototype-based languages
modularity is often neglected.

Classless languages employ a delegation mechanism rather than inheritance. Delegation is a
message forwarding mechanism for objects. With explicit delegation an object can explicitly
delegate a message to any object it has knowledge of. With implicit delegation an object can
designate another object as its parent to which messages will be delegated. Once again, two
design choices can be made depending on whether the delegation structure (i.e. the parent) can
be dynamically changed or not. [Stein,Lieberman &Ungar89] calls the former unanticipated
delegation, the latter is called anticipated delegation.

The objection we make to both explicit delegation and implicit unanticipated delegation is that
they can not be recast in terms of modular composition [Steyaert94].

Both implicit anticipated delegation and classes are however in essence based on an incremental
modification mechanism. Whereas in class-based languages inheritance involves incremental
modification of classes, implicit anticipated delegation can be considered as incremental
modification of objects. It is therefore possible to achieve modular composition in a system
with implicit anticipated delegation also. Rather than composing classes with stand alone
modifiers, objects will be composed this way. We will propose a generalisation of mixin-based
inheritance that is such a mechanism.

3. Mixin-Based Inheritance and Mixin-Methods
After discussing conventional mixin-classes and mixin-based inheritance, we will introduce
mixin-methods and show in what way they are modular.

3.1 Mixin-Classes
In multiple inheritance languages that linearise the inheritance graph (e.g. CLOS [Moon89]), it
is possible to have classes that have no apparent ancestor but that do invoke parent operations in
a meaningful way. This sort of classes has to rely on linearisation to be ‘mixed in’ at the
appropriate place in the linearised inheritance hierarchy (i.e. as inheritor from a class that
provides the necessary operations). These classes have therefore been named mixin-classes.
The effect is that it is possible to create mixin-classes that can be applied to a set of different
superclasses.

The prototypical example is that of a colour mixin, that adds a colour attribute and the
associated access methods, and can be applied to classes as different as vehicles and polygons.
A typical example involving the invocation of parent operations is the “bounds” mixin that puts
boundaries on the co-ordinates of a geometric figure. The actual base class can be taken from a
set of possible classes. This could be, amongst others, a class Point, a class Line or a class
Circle.



3.2 Mixin-Based Inheritance
Contrary to mixin-classes, in mixin-based inheritance, a mixin is not a class (a mixin cannot be
instantiated for example), and multiple inheritance is a consequence of, rather than the
supporting mechanism for, the use of mixins. In contrast to CLOS, in which mixins are
nothing but a special use of multiple inheritance, mixins are promoted as the only abstraction
mechanism for building the inheritance hierarchy [Bracha&Cook90] [Bracha92] [Hense92]
[Steyaert & al.93].

Referring back to our model of inheritance as an incremental modification mechanism, the
essence of mixin-based inheritance is exactly to view the modifier M as an abstraction that
exists apart from parent and result. Modifiers are called mixins. The composition operation ∆ is
called mixin application. The class to which a mixin is applied is called the base class. In pure
mixin-based  inheritance, classes can only be extended through application of mixins (see
Listing 1).

The ∆ operator sees to it that the parent P is passed as explicit parameter to the modifier M. In
practice a mixin does not have its base class as explicit parameter, but rather, a mixin has access
to the base class through a pseudo variable, in the same way that a subclass has access to a
superclass through a pseudo variable (e.g. the super variable in Smalltalk). In a statically
typed language, though, this means that a mixin must specify the names and associated types of
the attributes a possible base class must provide. This is why mixins are sometimes called
abstract subclasses.

class-based inheritance
class R1
 inherits P1
 extended with NamedAttribute1 ... NamedAttributen
endclass

class R2
 inherits P2
 extended with NamedAttribute1 ... NamedAttributen
endclass

mixin-based inheritance
M is mixin

defining NamedAttribute1 ... NamedAttributen
applicable to base class with1

SuperAttributeSignature1 ... SuperAttributeSignaturem
endmixin

class R1 is P1 extended with M endclass
class R2 is P2 extended with M endclass

Listing 1: Class-based versus mixin-based inheritance

3.3 Mixin-Methods
We suggest an approach, as used in the Agora language, that differs from classical mixin-based
inheritance. For reasons of simplicity though, we will use an informal object-oriented syntax
here. For an extensive discussion of the Agora language we refer to [Codenie et
al.94],[Steyaert94],[Steyaert et al 93].

1
  For reasons of brevity, this specification will be omitted in further examples.



Applying the orthogonality principle to the facts that we have mixins and that an object consists
of a collection of named attributes, one must address the question of how a mixin can be seen
as a named attribute of an object. The adopted solution is that an object lists as mixin attributes
all mixins that are applicable to it. The mixins that are listed as attributes in a certain object can
only be used to create extensions of that object and its future extensions. Furthermore, an object
can only be extended by selecting one of its mixin attributes. In much the same way that
selecting a method attribute from a certain object has the effect of executing the selected method-
body in the context of that object, selecting a mixin attribute of a certain object has the effect of
extending that object with the attributes defined in the selected mixin. Therefore, the
terminology: mixin-methods. So, rather than having an explicit operation to apply an arbitrary
mixin to an arbitrary object, an object is asked to extend itself.

Mixin-methods use object-based inheritance. There are no classes and new objects can only be
created by copying or cloning or extending existing objects. This makes sharing of state
possible, next to sharing of behaviour. Objects can be extended by sending mixins to them2.
This can also be done dynamically, which means that it is not necessary to declare all
prototypes that will be used in some program beforehand. This also means that there is no
distinction between different kinds of objects, all objects are candidates for extension.
object SecondObject is FirstObject aMixin

Inheritance of mixins plays an important role in this approach. If it were not for the possibility
to inherit mixins, the above restriction on the applicability of mixins would result in a rather
static inheritance hierarchy and in duplication of mixin code (each mixin would be applicable to
only one object). A mixin can be made applicable to more or less objects according to its
position in the inheritance tree. The higher a mixin is defined the more objects that can be
extended with it. In a programming language such as Agora, where mixin-based inheritance is
the only inheritance mechanism available, this means that all generally applicable mixins (such
as a mixin that adds colour attributes)  must be defined in some given root object (that all other
objects will be extensions of).

--- Root object attributes ---
 MakeColoured is mixin
   defining colour
 endmixin

 MakeCar is mixin
   defining enginetype
 endmixin

object Car is RootObject MakeCar
 --- object Car inherits MakeColoured defined on the Root object
object ColouredCar is Car MakeColoured

Listing 2: Inheritance of mixin methods

3.4 Why Is This Modular ?
Mixins provide the extra abstraction that is needed to be able to construct an entire inheritance
hierarchy in a modular fashion. Furthermore, extension of objects is obtained in a very object-
oriented way.

Consider the multiple inheritance hierarchy in Figure 1. This hierarchy models a variety of
classes. The root class BasicClass implements the standard behaviour of a class as a
template. Other functionalities that can be assigned to classes are: they can be inheritable, they

2 We therefore use a Smalltalk-like message passing syntax.



can have a name, they can hold a collection of all their instances, ...3 Furthermore,
combinations of these functionalities are possible with the result that we get a complicated,
extremely tangled hierarchy.

BasicClass
instance-template

InheritableClass NamedClass
name

InstanceCollectingClass
instances

NamedInheritableClass NamedInstanceCollectingClass

SingleParentClass

NamedSingleParentClass

SingleParentInstanceCollectingClass

BrowsableClass
comments

BrowsableInstanceCollectingClass

SharedClass

Figure1: A multiple inheritance hierarchy modelling classes

If we try to model this same hierarchy with mixins, we get the situation as sketched in Figure 2.
Every different functionality is modelled by a different mixin and to create a certain kind of
class one just needs to combine the right mixin-methods.

MakeClass
instance-template

MakeSingleParent
parent

MakeMultipleParent
parents

MakeBrowsable
comments

MakeShared

MakeInheritable

MakeNamed
name

MakeInstanceCollecting
instances

o

o

o

Figure 2: Classes modelled by mixin-methods

We mentioned above that every object responds to a limited set of mixin messages. This is
expressed by the structure of Figure 2. The mixin MakeClass will typically be defined on the
root object. The mixins M a k e I n h e r i t a b l e , M a k e N a m e d  and
MakeInstanceCollecting are defined in the mixin MakeClass. This means that only

3 Note how this example demonstrates once more how overworked the class concept is.



objects to which the mixin MakeClass has already been applied understand these three
mixins. In other words, these mixins can only be applied after (the symbol o) MakeClass.
The same holds for the mixins on the left.4

Listing 3 clearly demonstrates how e.g. the mixins MakeInheritable, MakeNamed and
MakeInstanceCollecting are defined in the mixin MakeClass. It furthermore
demonstrates how objects are created in a highly modular fashion. First the object aClass is
created by sending the mixin MakeClass to the RootObject. By doing this the mixins
MakeInheritable, MakeNamed and MakeInstance-Collecting are defined on the
object aClass, so that it is now possible to send MakeNamed to aClass. The same goes for
the mixin MakeBrowsable.

...
MakeClass is mixin

defining
instance-template is variable
MakeInheritable is mixin

   defining ...
endmixin

MakeNamed is mixin
   defining

name is variable
MakeBrowsable is mixin

defining
comments is variable

endmixin
...

endmixin
MakeInstanceCollecting is mixin

   defining
instances is variable

endmixin
endmixin

object aClass is RootObject MakeClass
object aNamedClass is aClass MakeNamed
object FirstBrowsableClass is aNamedClass MakeBrowsable
object SecondBrowsableClass is aNamedClass MakeBrowsable

Listing 3: The class example

Besides creating the ability to construct inheritance hierarchies in a modular fashion, our system
is also modular in its own conception. We discussed above how e.g. the class concept is
heavily overworked and that we follow the orthogonality principle in language design. In the
core of our system objects model object-based encapsulation and modular composition models
inheritance. Other concepts can be added to this core in an orthogonal way. Classes could be
added as a classification mechanism (and nothing else !!), modules could be added to achieve
module-based encapsulation and thus separate compilation, explicit types could be added for
typing purposes, etc. Referring to the general belief that OO = objects + classes + inheritance,

4 Note that the set of mixin-methods in Figure 2 allows you to create even more classes than are shown in
Figure 1. We did however not draw all possible combinations in Figure 1 to avoid overloading the figure.



we demonstrated the alternative   OO = objects + composition (+ classes) (+modules) (+types)
(+...).

4. The Power of Mixin-Methods
We would like to conclude with some illustrations of the power and expressivity of mixin-
methods.

4.1 Dynamic Mixin Application
As mentioned earlier on, extension of objects through mixin application can also be achieved
dynamically. This means that if we return to our code fragment from above, we get the
following situation. We first made an object aClass, that we extended to get aNamedClass,
by sending the mixin MakeNamed to it. Now imagine that two users use this same class, but
both want to add their own comments. This is achieved by making two objects
FirstBrowsableClass and SecondBrowsableClass, that share the ‘MakeNamed-
part’. When a message is sent to FirstBrowsableClass that e.g. changes the name of this
class, this will also be visible to SecondBrowsableClass and vice versa.

instance-template

name

comments comments

aClass

aNamedClass

FirstBrowsableClass SecondBrowsableClass

Figure 3: Dynamic Application of Mixin-Methods

4.2 Applicability of Mixin-Methods
We showed that unconstrained multiple inheritance hierarchies often end up as tangled
hierarchies. Multiple inheritance is less expressive than it appears, essentially in its lack to put
constraints on multiple inheritance from certain classes [Hendler86] [Hamer92]. One such
constraint is a mutual exclusion constraint on subclasses. Restricting the applicability of mixin-
methods puts a constraint on the possible inheritance hierarchies that can be constructed.

Consider a Person object with a MakeFemale and a MakeMale mixin-method (example
taken from [Hamer92]). A mutual exclusion constraint on MakeFemale and MakeMale
expresses that once MakeFemale is applied to a Person object, MakeMale should not be
applicable to the resulting object, and vice versa. This mutual exclusion constraint can be
realized simply by canceling MakeMale in MakeFemale, and by canceling MakeFemale in
MakeMale.

A more elegant solution, and one that should be provided in a full-fledged programming
language, would be to have some declarative means to express that two mixin-methods are
mutually exclusive or covering or any other imaginable constraint. Classifiers [Hamer92] play
this role for (non mixin-based) class-based  languages. A similar mechanism is imaginable for
mixin-methods.



4.3 Mixins and Object-Oriented Design
These considerations automatically lead us to object-oriented design. The example of the
hierarchy of classes demonstrated clearly that each mixin used in the creation of an object can
encode one specific role an object plays in its context.

In [Andersen&Reenskaug92] an object-oriented design technique based on roles and role
models is introduced. They define a role model to be a unit of design, that comprises two or
more interacting entities denoted as roles. Each role is considered a requirement/ responsibility
of objects participating in the actual execution of the behaviour described in the role model.
Roles are basically more fine-grained than classes. Typically several roles in several role
models will correspond to the same real-world phenomenon to be implemented by a single
class. This is exactly what we do with our mixin-methods.

Moreover we just showed that it is possible to constrain the combinations of mixins — and thus
the combinations of the roles they implement. This makes an easy mapping of the design
concepts to the implementation possible. A further investigation of these possibilities is one of
our future goals.

4.4 Mixins and Multiple Inheritance
In [Boyen,Lucas,Steyaert94] we have shown that minor extensions to mixin-based inheritance
can offer a solution to the much discussed problems involved in expressing multiple inheritance
hierarchies.

5. Conclusions
Recasting inheritance in terms of modular composition is promising. Modular composition has
already been studied in class-based languages. However, in class-based languages inheritance
and classes are not orthogonal language concepts. Moreover they lack some of the interesting
properties of prototype-based languages. In this paper we investigated mixin-methods as an
inheritance mechanism for objects. We showed that mixin-methods are a form of modular
composition and that mixin-method inheritance is orthogonal to the class concept. We also gave
an indication of the expressive power of mixin-methods.
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